Approximation schemes for viscosity solutions of
fully nonlinear stochastic partial differential
equations

Benjamin Seeger

Abstract We develop a method for constructing convergent approximation schemes
for viscosity solutions of fully nonlinear stochastic partial differential equations.
Our results apply to explicit finite difference schemes and Trotter-Kato splitting
formulas, and error estimates are found for schemes approximating solutions of
stochastic Hamilton-Jacobi equations.

1 Introduction

We develop a general program for constructing numerical schemes to approximate
pathwise viscosity solutions of the initial value problem

du = F(D?u, Du) dt + Z H(Du)-dW' inR?x (0,T] and
i=1 (D

u(-,0) =uy in RY,

where T > 0, F € C%'(S? x R?)! is degenerate elliptic, H € C>(RY), W =
WL W2, ..., W™) e C([0,T],R™), and ug € BUC(R%)2.

When W is continuously differentiable or of bounded variation, (1) falls within the
scope of the theory of viscosity solutions; see, for instance, [5]. However, a general
continuous path W may be nowhere differentiable and have unbounded variation on
every open interval, as is the case, for example, for Brownian paths with probability
one. For such paths, the study of (1) requires the theory of pathwise (or stochastic)
viscosity solutions put forth by Lions and Souganidis [10, 11, 12, 13].
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1 84 is the space of symmetric d x d matrices
2 BUC(R?) is the space of bounded and uniformly continuous functions on R¢
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In view of the robust stability properties of viscosity solutions, there is an extensive
literature on the construction of approximation schemes for fully nonlinear equations,
initiated by Crandall and Lions [6] and Souganidis [15, 16], who found error estimates
for convergent approximations of Hamilton-Jacobi equations, and extended to second
order equations by Barles and Souganidis [2] with a qualitative proof of convergence.
Rates of convergence in the second order case have also been obtained in various
cases, see for instance [1, 4, 8,9, 17].

It turns out [14] that pathwise viscosity solutions are also quite amenable to
various approximation schemes, although the methods are more involved due to the
presence of the singular terms dW*, as we describe in what follows.

2 A summary of the main results

We discuss first the general algorithm for the construction of schemes, and we present
some specific examples to illustrate its use.

2.1 The scheme operator

The central object to be constructed is the scheme operator, which, for 7 > 0,
0<s<t<T,and/ € C([0,T];R™),isamap Sy (t,s; ) : BUC(RY) — BUC(RY).
Then, given a partition P := {0 =tg <t < ---,ty = T} of [0,T] with mesh-size
|P| := max,=q,1,. ,N-1 ({1 —tn) and a path £ € C([0,T];R™), we define the
function iy, (+; £, P) by

(@3]

in(,0;4,P):=up and,forn=0,1,...,N—1andzr € (¢y,tp+1],
ﬁh('»t; gs P) = Sh(t’ tn:é,)ﬁh(’ tn?& 7))

Piecewise smooth approximating paths {Wp,};~¢ and partitions {#, };,~0 satisfying
li Wi —Wlle=0=1i 3
Jm ([ Wy, = Wi Jm [P | 3)
are then chosen in such a way that the function
up(x, 1) := i (x, 1, W, Pr) C))

is an approximation of the solution of (5) for small 2 > 0.
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2.2 The main examples

We focus here on finite difference schemes, while noting that the general convergence
results apply to other approximations, for example, Trotter-Kato splitting formulas;
see also [7].

To simplify the presentation, assume d = m = 1, ||Dug||, < L, F and H are both
smooth with bounded derivatives, and F' depends only on u,, so that (1) becomes

du = F(uxy) dt + H(uy) -dW inRx (0,7] and u(-,0)=ug inR, (5)
or, in the first order case, when F = 0,
du=H@uy)-dW inRx (0, 7] and u(-,0)=uy inR. (6)

Below, the various specifications for #, and Wj,, while technical, are all made
in order to ensure that, for some fixed, sufficiently small 4 > 0, the following
generalized CFL condition holds:

[Wh(tne1) — Wi (1)l <1

sup sup @)
h>0n=0,1,2,...N-1 h
The reason for this is discussed further in Section 4.
The first scheme is defined, for some &5, > 0, by
u(x +h) —u(x—h)
Sn(t, 53 Hu(x) := u(x) +H( o )({(t)—{(s))
+[F(u(x+h)-i—u(x—h)—2u(x)) ®
h2
u(x +h) +u(x—h) —2u(x)
Eh (t—s).
h2
Theorem 1 Assume that, in addition to (3), Wy, and Py, satisfy
h? , : h—0
Pul < —— and &y, = h||H'||||Wa|_ — o.

£l

Then, as h — 0, the function uy, defined by (4) using the scheme operator (8)
converges locally uniformly to the pathwise viscosity solution u of (5).

For schemes approximating solutions of the pathwise Hamilton-Jacobi equation
(6), we are able to obtain explicit error estimates. We focus here on the particular
scheme defined, for some 6 € (0, 1], by

u(x+h) —ulx—h)
2h

Sp(t,s; u(x) == u(x) + H ( (&) = £(s))
)

+ g (u(x + h) +u(x—h) —2u(x)).
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Assume that w : [0,00) — [0, c0) is the modulus of continuity of the fixed
continuous path W on [0, T]. For i > 0, define p;, implicitly by

1/2 1/2 9
1.2 o) Tollpn) ) . (10)
h 1H |l
and let the partition #, and path W}, satisfy
Pi = (npn AT Mi = Lon) ™21,
and, for k € Ny and r € [kM}, pi,, (k + 1) My, pp,), an

W((k + 1)Mppp) = W(kMpph)

Wi (t) == W(kMppn) + ’
hPh

)(t—thPh)-

Theorem 2 There exists C > 0 depending only on L such that, if uy, is constructed
using (4) and (9) with Py, and Wy, as in (10) and (11), and u is the pathwise viscosity
solution of (6), then

sup  Jup(x, 1) —u(x, 0] < C(1+Tw((pn)'?).
(x,t)eRdx[O,T]

If W € C%%([0, T]), then the CFL condition (10) becomes pj, = O(h*1+®)) and
the rate of convergence in Theorem 2 is O (h%/(1+®)),

When W is a Brownian motion, then the CFL condition (10) can be chosen
according to the Lévy modulus of continuity:

_ (o) llog pn|'"? 4

A .
h 1H||oo

12)

The proof of Theorem 2 can then be modified to show that, with probability one, for
a deterministic constant C > 0 depending only on L and A4,

t) — t
lim sup sup o (3. ) = u(x. )| <C(+T71).

=0 (x,r)erdx(o,r] h'/3 |logh|l/3

The final example converges in distribution. Let A, pp, Wy, and P, be given, for
some probability space (A, G, P), by

3/4
_ )™ 0 ’
h 1H lloo
Pp = {tn}h o = npn AT}, »

{€n)pry o+ A — {-1, 1} are independent and Rademacher,

A My, = L(pn) %],

(13)
W,(0) =0, and
. &k 3
Wi (t) = Wh(thPh)+m(t kM pn)

fork e Ny, t € [thph, (k + DMy pp).
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Donsker’s invariance principle (see [3]) implies that, as & — 0, W}, converges in
distribution to a Brownian motion W in the space C([0, o), R).

Theorem 3 Ifuy, is constructed using (4) and (9) with Wy, and Py, as in (13), and u is
the solution of (5), then, as h — 0, uj, converges to u in distribution in the topology
of local uniform convergence.

3 The convergence proof: monotonicity and consistency

We next outline the proof of the general convergence result, which is based on
a generalization of the method of half-relaxed limits from the theory of viscosity
solutions, used by Barles and Souganidis [2] to prove the convergence of finite
difference approximations of second order equations.

We always impose the following monotonicity condition on the scheme:

{ift,, <1 <tpils Instns1 € Pp, and u,v € BUC(RY), then 14

usv = Sp(tty; Wpu < Sp(tta; We)v,

and also that the scheme operator commutes with constants, that is, for all u €
BUCRY),h>0,0<s<t<o00,{eC(0T],R™),and k € R,

Sn(t,s;0) (u+ k) =Sp(t,s;)u+ k. (15)

In addition, the scheme operator must satisfy a consistency requirement (see (19)
below). We motivate such a condition by outlining the proof next, keeping the details
light.

To that end, assume that, for some u € BUC(R? x [0, T1), limp_oup, = u locally
uniformly?3, and we attempt to show that u is a pathwise viscosity sub- and super-
solution of (1). Recall (see [10]) that u is said to be a sub- (super)- solution of (1)
if, whenever I c [0,T] is an open interval; ® € C(I; C*(R%)) is a local-in-time,
smooth-in-space solution of

m
dd = Z H{(D®) - dW' inR?xI; (16)
i=1

Y e CY(D); and u(x,t) — O(x,1) — Y () attains a strict maximum (minimum) at
(y,5) € R? x I, then

W' (s) < F(D*®(y, s), DO(y, 5)).

We show that u is a sub-solution, and the argument for super-solutions is similar.

3 In general, the existence of such a limit is not guaranteed a priori, and one must work with
so-called “half-relaxed” limits. To simplify the presentation, we avoid such details here.
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Let I, @, ¥, and (y, s) be as above, and, for & > 0, let @), be the local-in-time,
smooth-in-space solution, constructed with the method of characteristics, of

m

O, = Z H (D)W, inRYX I, ®p(,s) = D(10). (17)

i=1

Since W), converges to W uniformly as 2 — 0, it follows that ®;, converges in
C(I,C*(R%)) to @ as h — 0, with 7 made smaller if necessary, independently of 4.

As a result, there exists {(yn, Sh) >0 C R4 x I such that limp—0(yn, sn) = (3, 5)
and

up(x,1) = Qp(x,1) = Y (1)

attains a local maximum at (yy, sp,).
The mesh-size |Py,| converges to 0 as & — 0, so, for sufficiently small A, there
exists n € N depending on % such that

th <sp <tys1 and t,,t,41 € 1.
Then
up (s tn) = Pp (1) =Y (tn) < up(Yns sn) = Cn(yn, sn) — ¥ (sn),
which leads to
up (5 tn) < un(Yhs Sn) + Pn (1) = P (i, Sn) + Y (tn) — Y (sn). (18)

It is here that the monotonicity (14) of the scheme is used. Applying Sy, (sn, t,; W)
to both sides of (18), using the fact that the scheme commutes with constants, and
plugging in x = yp, we arrive at

up (Y i) < up (Vs S1) + Sk Sy bt W)@ (5 10) (V) — ©n (Y, Sp) + ¥ (8,) — ¥ (sp),

whence

Y (sp) — Y (tn) < Sh(Shy tns Wi)®@r (5 1) (Yr) — @ (Yn» Sn)
Sp — Iy N Sp — Iy '

As h — 0, the left-hand side converges to ¢’ (s). The right-hand side converges to
F(D*®(y, s), DD(y, s)) if we make the following consistency requirement: when-
ever ® and @, are as in respectively (16) and (17), we have

i Sh(t, 53 Wi)Dp (-, 5) — Op (-, 5)
im

s,t€l, t—s—0 t—=s

= F(D*®, DO). (19)
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4 On the construction of the scheme operator

We discuss next the strategy for constructing scheme operators that satisfy the
assumptions of the previous section, and, in particular, the need for regularizing the
path W in general. We focus on the equation (6) and consider the scheme operator
given by

u(x+h)—ulx—nh)
7 ) (W) —W(s))

(u(x +h) +u(x - h) —2u(x)
En /’l2

Sp(t, )u(x) :=u(x)+ H (
(20)

)(t—S),

which can be seen to be monotone for 0 < t — s < py, as long as, for some 6 € (0, 1],

0h? 1 - 0
A := max M < Ap :

&p = and < = .
L Ye lr=s<pn h O H

ey

For any s,t € [0, T] with |s — ¢| sufficiently small, spatially smooth solutions ® of
(6) have the expansion

D(x, 1) = D(x,5) + HDx(x, 5))(W(t) — W(s))

(22)
+ H (Dy (X, 5))?Orx (x, ) (W(t) = W(s))2 + O(W (1) = W(s) ),

so that, if 0 < ¢ — s < py, then, for some C > 0 depending only on H,
Sup [y (2, $)®(, 5) = ©(- )| < C sup ||D*DC,r)|_ (IW(@) = W(s)P* + i?)
R rels,t]

< C sup ||[D*@¢n)|_ (1 + K.

rels,t]
Then (19) is satisfied if
h2
lim — = 0. (23)
h—0 pp

Both (21) and (23) can be achieved when W is continuously differentiable, or, more
generally, if W € C®®([0,T]) with & > 1, by setting

Ah 1/a
on = ([W] T) . 24)

However, this approach fails as soon as the quadratic variation path

N-1
Whr = i w - W(t,)|?
(W)r ngogo| (tas1) = W(tn)|
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is non-zero, as (21) and (23) together imply that (W) = 0. This rules out, for
instance, the case where W is the sample path of a Brownian motion, or, more
generally, any nontrivial semimartingale.

On the other hand, if {W},};,~0 is a family of piecewise smooth paths converging

uniformly, as & — 0, to W, then (Wj,)r = 0 for each fixed & > 0, and therefore, W),
and p;, can be chosen so that (21) and (23) hold for W), rather than W. As described
in Section 2, such choices are related to the general CFL condition (7).
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