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Abstract We develop a method for constructing convergent approximation schemes
for viscosity solutions of fully nonlinear stochastic partial di�erential equations.
Our results apply to explicit finite di�erence schemes and Trotter-Kato splitting
formulas, and error estimates are found for schemes approximating solutions of
stochastic Hamilton-Jacobi equations.

1 Introduction

We develop a general program for constructing numerical schemes to approximate
pathwise viscosity solutions of the initial value problem

8>>>><>>>>:
du = F (D2u, Du) dt +

mX

i=1
H i (Du) · dW i in Rd ⇥ (0,T] and

u(·, 0) = u0 in Rd,

(1)

where T > 0, F 2 C0,1(Sd ⇥ Rd)1 is degenerate elliptic, H 2 C2(Rd), W =
(W1,W2, . . . ,Wm) 2 C([0,T],Rm), and u0 2 BUC(Rd)2.

When W is continuously di�erentiable or of bounded variation, (1) falls within the
scope of the theory of viscosity solutions; see, for instance, [5]. However, a general
continuous path W may be nowhere di�erentiable and have unbounded variation on
every open interval, as is the case, for example, for Brownian paths with probability
one. For such paths, the study of (1) requires the theory of pathwise (or stochastic)
viscosity solutions put forth by Lions and Souganidis [10, 11, 12, 13].
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1 Sd is the space of symmetric d ⇥ d matrices
2 BUC (Rd ) is the space of bounded and uniformly continuous functions on Rd
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In view of the robust stability properties of viscosity solutions, there is an extensive
literature on the construction of approximation schemes for fully nonlinear equations,
initiated by Crandall and Lions [6] and Souganidis [15, 16], who found error estimates
for convergent approximations of Hamilton-Jacobi equations, and extended to second
order equations by Barles and Souganidis [2] with a qualitative proof of convergence.
Rates of convergence in the second order case have also been obtained in various
cases, see for instance [1, 4, 8, 9, 17].

It turns out [14] that pathwise viscosity solutions are also quite amenable to
various approximation schemes, although the methods are more involved due to the
presence of the singular terms dW i , as we describe in what follows.

2 A summary of the main results

We discuss first the general algorithm for the construction of schemes, and we present
some specific examples to illustrate its use.

2.1 The scheme operator

The central object to be constructed is the scheme operator, which, for h > 0,
0  s  t  T , and ⇣ 2 C([0,T];Rm), is a map Sh (t, s; ⇣ ) : BUC(Rd) ! BUC(Rd).
Then, given a partition P := {0 = t0 < t1 < · · · , tN = T } of [0,T] with mesh-size
|P | := maxn=0,1,...,N�1 (tn+1 � tn) and a path ⇣ 2 C([0,T];Rm), we define the
function ũh (·; ⇣,P) by

8><>:
ũh (·, 0; ⇣,P) := u0 and, for n = 0, 1, . . . , N � 1 and t 2 (tn, tn+1],
ũh (·, t; ⇣,P) := Sh (t, tn; ⇣ )ũh (·, tn; ⇣,P).

(2)

Piecewise smooth approximating paths {Wh }h>0 and partitions {Ph }h>0 satisfying

lim
h!0+

kWh �W k1 = 0 = lim
h!0+

|Ph | (3)

are then chosen in such a way that the function

uh (x, t) := ũh (x, t; Wh,Ph) (4)

is an approximation of the solution of (5) for small h > 0.
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2.2 The main examples

We focus here on finite di�erence schemes, while noting that the general convergence
results apply to other approximations, for example, Trotter-Kato splitting formulas;
see also [7].

To simplify the presentation, assume d = m = 1, kDu0k1  L, F and H are both
smooth with bounded derivatives, and F depends only on uxx , so that (1) becomes

du = F (uxx ) dt + H (ux ) · dW in R ⇥ (0,T] and u(·, 0) = u0 in R, (5)

or, in the first order case, when F ⌘ 0,

du = H (ux ) · dW in R ⇥ (0,T] and u(·, 0) = u0 in R. (6)

Below, the various specifications for Ph and Wh , while technical, are all made
in order to ensure that, for some fixed, su�ciently small � > 0, the following
generalized CFL condition holds:

sup
h>0

sup
n=0,1,2,...,N�1

|Wh (tn+1) �Wh (tn) |
h

 �. (7)

The reason for this is discussed further in Section 4.
The first scheme is defined, for some "h > 0, by

Sh (t, s; ⇣ )u(x) := u(x) + H
 

u(x + h) � u(x � h)
2h

!
(⇣ (t) � ⇣ (s))

+

"
F

 
u(x + h) + u(x � h) � 2u(x)

h2

!

+ "h

 
u(x + h) + u(x � h) � 2u(x)

h2

!#
(t � s).

(8)

Theorem 1 Assume that, in addition to (3), Wh and Ph satisfy

|Ph | <
h2

kF 0k1
and "h := h ��H 0��1 ���Ẇh

���1 h!0����! 0.

Then, as h ! 0, the function uh defined by (4) using the scheme operator (8)
converges locally uniformly to the pathwise viscosity solution u of (5).

For schemes approximating solutions of the pathwise Hamilton-Jacobi equation
(6), we are able to obtain explicit error estimates. We focus here on the particular
scheme defined, for some ✓ 2 (0, 1], by

Sh (t, s; ⇣ )u(x) := u(x) + H
 

u(x + h) � u(x � h)
2h

!
(⇣ (t) � ⇣ (s))

+
✓

2
(u(x + h) + u(x � h) � 2u(x)) .

(9)
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Assume that ! : [0,1) ! [0,1) is the modulus of continuity of the fixed
continuous path W on [0,T]. For h > 0, define ⇢h implicitly by

� :=
(⇢h)1/2!((⇢h)1/2)

h
<

✓

kH 0k1
, (10)

and let the partition Ph and path Wh satisfy

8>>>>>><>>>>>>:

Ph := {n⇢h ^ T }n2N0, Mh := b(⇢h)�1/2c,
and, for k 2 N0 and t 2 [k Mh ⇢h, (k + 1)Mh ⇢h),

Wh (t) := W (k Mh ⇢h) +
 

W ((k + 1)Mh ⇢h) �W (k Mh ⇢h)
Mh ⇢h

!
(t � k Mh ⇢h) .

(11)

Theorem 2 There exists C > 0 depending only on L such that, if uh is constructed
using (4) and (9) with Ph and Wh as in (10) and (11), and u is the pathwise viscosity
solution of (6), then

sup
(x,t)2Rd⇥[0,T ]

|uh (x, t) � u(x, t) |  C(1 + T )!((⇢h)1/2).

If W 2 C0,↵ ([0,T]), then the CFL condition (10) becomes ⇢h = O(h2/(1+↵) ), and
the rate of convergence in Theorem 2 is O(h↵/(1+↵) ).

When W is a Brownian motion, then the CFL condition (10) can be chosen
according to the Lévy modulus of continuity:

� :=
(⇢h)3/4 ��log ⇢h ��1/2

h
<

✓

kH 0k1
. (12)

The proof of Theorem 2 can then be modified to show that, with probability one, for
a deterministic constant C > 0 depending only on L and �,

lim sup
h!0

sup
(x,t)2Rd⇥[0,T ]

|uh (x, t) � u(x, t) |
h1/3 ��log h��1/3  C(1 + T ).

The final example converges in distribution. Let �, ⇢h , Wh , and Ph be given, for
some probability space (A,G,P), by

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

� :=
(⇢h)3/4

h
 ✓

kH 0k1
, Mh := b(⇢h)�1/2c,

Ph := {tn}Nn=0 = {n⇢h ^ T }n2N0 ,

{⇠n}1n=1 : A ! {�1, 1} are independent and Rademacher,
Wh (0) = 0, and

Wh (t) := Wh (k Mh ⇢h) +
⇠kp

Mh ⇢h
(t � k Mh ⇢h)

for k 2 N0, t 2 [k Mh ⇢h, (k + 1)Mh ⇢h).

(13)
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Donsker’s invariance principle (see [3]) implies that, as h ! 0, Wh converges in
distribution to a Brownian motion W in the space C([0,1),R).

Theorem 3 If uh is constructed using (4) and (9) with Wh and Ph as in (13), and u is
the solution of (5), then, as h ! 0, uh converges to u in distribution in the topology
of local uniform convergence.

3 The convergence proof: monotonicity and consistency

We next outline the proof of the general convergence result, which is based on
a generalization of the method of half-relaxed limits from the theory of viscosity
solutions, used by Barles and Souganidis [2] to prove the convergence of finite
di�erence approximations of second order equations.

We always impose the following monotonicity condition on the scheme:

8><>:
if tn  t  tn+1, tn, tn+1 2 Ph, and u, v 2 BUC(Rd), then
u  v ) Sh (t, tn; Wh)u  Sh (t, tn; Wh)v,

(14)

and also that the scheme operator commutes with constants, that is, for all u 2
BUC(Rd), h > 0, 0  s  t < 1, ⇣ 2 C([0,T],Rm), and k 2 R,

Sh (t, s; ⇣ ) (u + k) = Sh (t, s; ⇣ )u + k . (15)

In addition, the scheme operator must satisfy a consistency requirement (see (19)
below). We motivate such a condition by outlining the proof next, keeping the details
light.

To that end, assume that, for some u 2 BUC(Rd ⇥ [0,T]), limh!0 uh = u locally
uniformly3, and we attempt to show that u is a pathwise viscosity sub- and super-
solution of (1). Recall (see [10]) that u is said to be a sub- (super)- solution of (1)
if, whenever I ⇢ [0,T] is an open interval; � 2 C(I; C2(Rd)) is a local-in-time,
smooth-in-space solution of

d� =
mX

i=1
H i (D�) · dW i in Rd ⇥ I; (16)

 2 C1(I); and u(x, t) � �(x, t) �  (t) attains a strict maximum (minimum) at
(y, s) 2 Rd ⇥ I, then

 0(s)  F (D2�(y, s), D�(y, s)).

We show that u is a sub-solution, and the argument for super-solutions is similar.

3 In general, the existence of such a limit is not guaranteed a priori, and one must work with
so-called “half-relaxed” limits. To simplify the presentation, we avoid such details here.
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Let I, �,  , and (y, s) be as above, and, for h > 0, let �h be the local-in-time,
smooth-in-space solution, constructed with the method of characteristics, of

�h,t =

mX

i=1
H i (D�h)Ẇ i

h in Rd ⇥ I, �h (·, s) = �(·, t0). (17)

Since Wh converges to W uniformly as h ! 0, it follows that �h converges in
C(I,C2(Rd)) to � as h ! 0, with I made smaller if necessary, independently of h.

As a result, there exists {(yh, sh)}h>0 ⇢ Rd ⇥ I such that limh!0(yh, sh) = (y, s)
and

uh (x, t) � �h (x, t) �  (t)

attains a local maximum at (yh, sh).
The mesh-size |Ph | converges to 0 as h ! 0, so, for su�ciently small h, there

exists n 2 N depending on h such that

tn < sh  tn+1 and tn, tn+1 2 I .

Then

uh (·, tn) � �h (·, tn) �  (tn)  uh (yh, sh) � �h (yh, sh) �  (sh),

which leads to

uh (·, tn)  uh (yh, sh) + �h (·, tn) � �h (yh, sh) +  (tn) �  (sh). (18)

It is here that the monotonicity (14) of the scheme is used. Applying Sh (sh, tn; Wh)
to both sides of (18), using the fact that the scheme commutes with constants, and
plugging in x = yh , we arrive at

uh (yh, sh)  uh (yh, sh) + Sh (sh, tn; Wh)�h (·, tn)(yh) ��h (yh, sh) + (tn) � (sh),

whence

 (sh) �  (tn)
sh � tn

 Sh (sh, tn; Wh)�h (·, tn)(yh) � �h (yh, sh)
sh � tn

.

As h ! 0, the left-hand side converges to  0(s). The right-hand side converges to
F (D2�(y, s), D�(y, s)) if we make the following consistency requirement: when-
ever � and �h are as in respectively (16) and (17), we have

lim
s,t2I, t�s!0

Sh (t, s; Wh)�h (·, s) � �h (·, s)
t � s

= F (D2�, D�). (19)

.
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4 On the construction of the scheme operator

We discuss next the strategy for constructing scheme operators that satisfy the
assumptions of the previous section, and, in particular, the need for regularizing the
path W in general. We focus on the equation (6) and consider the scheme operator
given by

Sh (t, s)u(x) := u(x) + H
 

u(x + h) � u(x � h)
2h

!
(W (t) �W (s))

+ "h

 
u(x + h) + u(x � h) � 2u(x)

h2

!
(t � s),

(20)

which can be seen to be monotone for 0  t � s  ⇢h as long as, for some ✓ 2 (0, 1],

"h :=
✓h2

2(t � s)
and � := max

|t�s |⇢h

|W (t) �W (s) |
h

 �0 :=
✓

kH 0k1
. (21)

For any s, t 2 [0,T] with |s � t | su�ciently small, spatially smooth solutions � of
(6) have the expansion

�(x, t) = �(x, s) + H (�x (x, s))(W (t) �W (s))

+ H 0(�x (x, s))2�xx (x, s)(W (t) �W (s))2 +O(|W (t) �W (s) |3),
(22)

so that, if 0  t � s  ⇢h , then, for some C > 0 depending only on H ,

sup
R
|Sh (t, s)�(·, s) � �(·, t) |  C sup

r 2[s,t]
���D2�(·, r)���1

⇣
|W (t) �W (s) |2 + h2

⌘

 C sup
r 2[s,t]

���D2�(·, r)���1 (1 + �2
0)h2.

Then (19) is satisfied if

lim
h!0

h2

⇢h
= 0. (23)

Both (21) and (23) can be achieved when W is continuously di�erentiable, or, more
generally, if W 2 C0,↵ ([0,T]) with ↵ > 1

2 , by setting

⇢h :=
 

�h
[W ]↵,T

!1/↵
. (24)

However, this approach fails as soon as the quadratic variation path

hW iT := lim
|P |!0

N�1X

n=0
|W (tn+1) �W (tn) |2
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is non-zero, as (21) and (23) together imply that hW iT = 0. This rules out, for
instance, the case where W is the sample path of a Brownian motion, or, more
generally, any nontrivial semimartingale.

On the other hand, if {Wh }h>0 is a family of piecewise smooth paths converging
uniformly, as h ! 0, to W , then hWhiT = 0 for each fixed h > 0, and therefore, Wh

and ⇢h can be chosen so that (21) and (23) hold for Wh rather than W . As described
in Section 2, such choices are related to the general CFL condition (7).
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