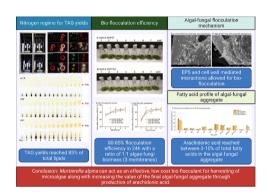
FISEVIER

Contents flfists avafiflabfle at ScfienceDfirect

Bfioresource Technoflogy

journal homepage: www.elsevier.com/locate/biortech

Ffloccuflatfion of ofleagfinous green aflgae wfith Mortfiereflfla aflpfina fungfi


Ty Shfitanaka ^{a,1}, Lauren Hfiga ^{a,1}, Abfigafifl E. Bryson ^{b,1}, Conor Bertuccfi ^b, Nataflfie Vande Pofl ^b, Ben Lucker ^c, Samfir Kumar Khanafl ^{a,d}, Gregory Bonfito ^{b,*}, Zhfi-Yan Du ^{a,*}

- ^a Department of Moflecuflar Bfioscfiences & Bfioengfineerfing, Unfiversfity of Hawafifi at Manoa, Honofluflu, HI 96822, Unfited States
- b Department of Pflant, Sofif and Mficrobfiaf Scfiences, Mfichfigan State Unfiversfity, East Lansfing, MI 48824, Unfited States
- ^c Trafit Bfioscfiences, Los Aflamos, NM 87544, Unfited States
- ^d Department of Giffl and Envfironmentafl Englineerfing, Unfiversfity of Hawafifi at Mānoa, Honofluflu, HI 96822, Unfited States

HIGHLIGHTS

- Nfitrogen regfime to facfiffitate the flfipfid accumuflation fin aflgae.
- Incubatfing fungfi fin cellfl cuflture pflates to equallfize fungafl bfiomass for each assay.
- Hfigh effficient and sustafinabile aflgafl harvestfing wfith ofleagfinous Mortfiereffla fungfi.
- Vafluabfle aflgae-fungfi bfiomass enrfiched fin unsaturated fatty acfids.
- Reveaflfing the finteractfion between the aflgafl and fungafl cefifls.

GRAPHICAL ABSTRACT

ARTICLE INFO

Keywords:
Mficroaflgae
Trfiacyflgflycerofl
Ffiflamentous fungfi
Cdfl waflf finteractfion
Nfitrogen regfime and starvatfion
Poflyunsaturated fatty acfid
Bfiofuefl

$A\ B\ S\ T\ R\ A\ C\ T$

Mficroaflgae are promfisfing sources of vafluabfle bfioproducts such as bfiofuefls, food, and nutraceutficafls. However, harvestfing mficroaflgae fis chafflengfing due to thefir smaffl sfize and flow bfiomass concentrations. To address this chafflenge, bfio-filoccuflatfion of starchfless mutants of *Chflamydomonas refinhardiffi* (sta6/sta7) was finvestfigated wfith *Mortfierefffla aftyfina*, an ofleagfinous fungus wfith hfigh concentrations of arachfidonfic acfid (ARA). Trifacyflgflycerfides (TAG) reached 85 % of totalf lflipfids fin sta6 and sta7 through a nfitrogen regfime. Scannfing eflectron mficroscopy determfined cefflwaffl attachment and extra poflymerfic substances (EPS) to be responsible for floccuflation. An aflgafl-fungafl bfiomass ratfio around 1:1 (three membranes) was optimal for bfio-filoccuflation (80–85 % floccuflation efficiency fin 24 h). Nfitrogen-deprived sta6/sta7 were filoccuflated wfith strafins of M. aflyfina (NVP17b, NVP47, and NVP153) wfith aggregates exhfibriting fatty acfid proffiles simifilar to C. refinhardiffi, wfith ARA (3–10 % of totalf fatty acfids). This study showcases M. aflyfina as a strong bfio-filoccuflation candidate for mficroaflgae and advances a mechanfistfic understandfing of aflgafl-fungafl finteraction.

^{*} Correspondfing authors.

Emafifl addresses: bonfito@msu.edu (G. Bonfito), duz@hawafifl.edu (Z.-Y. Du).

¹ Equafl contrfibutfion.

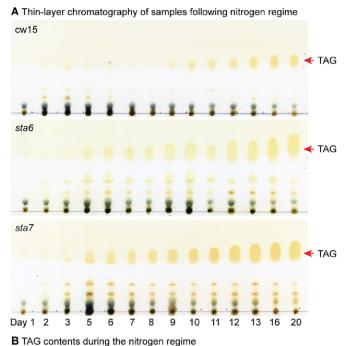
1. Introduction

Mficroaflgae are vastfly untapped resources of vafluabfle flfipfids, protefins, and bfioproducts. More specifficalfly, ofleagfinous mficroaflgae are projected to be an essentfiafl part of a sustafinabfle, green future by thefir finherent capabfiffitfies to produce offl effictientfly for a myrfiad of uses, fincfludfing bfiofuefl and food. They possess severafl advantages over other prospectfive bfiofuefl crops (e.g., corn) due to thefir reflatfivefly rapfid growth rate, flower arabfle fland usage, amenabfiflfity to genetiic englineering for greater offlyfiefld, flower freshwater usage, abfiflfity to utfiflfize wastewater streams, and potentfiafl for carbon neutraflfity or negatfivfity (Du et afl., 2018a; Ifiet afl., 2022). In one estfimate, mficroaflgafl offl could be produced at a rate of 10,000 L hectare *year , 1 whfich fis much greater than tradfitfionafl bfiofuefl crop sources such as sunfflower, canofla, and paflm (Chowdhury and Loganathan, 2019). Moreover, mficroaflgae have fincredfibfle genetfic dfiversfity owfing to thefir adaptatfions to naturall envfironmentall condfitfions, as they must contfinualfly deafl with stresses such as pH, temperature, and chemficall fluctuations (Benedettfi et afl., 2018). This genetic dfiversfity can be harnessed to screen for mficroaflgafl strafins wfith naturaflfly hfigh flevefls of dfland vafluabfle bfioproduct generatiion. In the modefl green aflga Chflamydomonas refinhardtfifi, bfiosynthetfic pathways have been studfied fin detafifl to efluctidate targets for optfimfized offlproductfion (Yao et afl., 2023). Mficroaflgae possess two mafin types of flfipfids poflar flfipfids (gflyceroflfipfids) and non-poflar flfipfids (trfiacyflgflycerofls), both of whfich can be transformed finto bfiodfiesefl (fatty acfid methyfl esters, FAME) vfia a transesterfiffication reaction (Aflfishah Aratbonfi et afl., 2019) whiile producfing gflycerofl as a vafluabfle byproduct. One goafl of deveflopfing genetiic modefl resources for Chflamydomonas fis to appfly knowfledge of key target genes and pathways to more bfiotechnoflogficaflfly reflevant specfies and strafins of mficroaflgae for bfiofuefl productfion.

Aflthough wfidefly expflored fin the past, the bfiofuefl findustry from mficroaflgae has sflowed fin recent years due to fissues wfith productfion costs. A recent review of techno-economfic anaflyses of bfiofuefl productfion from mficroaflgae has recommended bfioreffinery approaches (wastewater as a nutrfient source, mufltfi-product extractfion, etc.) be fintegrated to be economficaflfly feasfibfle (Venkata Subhash et afl., 2022). However, mficroaflgafl bfiomass fisn't flfimfited to bfiofuefls; fit can aflso be used for hfigh-vaflue functionall food and essentfiall nutriients. For exampfle, C. refinhardtfifi has a hfigh percentage of essentfiafl ω -3 poflyunsaturated fatty acfids (PUFA), whith around 42.4 % befing the essentfiall fatty acfid a flinoflenfic acfid (ALA; C18:3) (Darwfish et afl., 2020), which humans cannot synthesfize. Adequate concentratfions of ALA have been shown to reduce pro-finfflammatory cytokfines, whfich coufld reduce the rfisk of cardfiovascuflar dfisease (Yue et afl., 2021). Thus, nutraceutficafls devefloped from C. refinhardtfifi bfiomass could hellp to allflevfiate these heaflth concerns. Furthermore, C. refinhardiffi fis promfisfing as a green cellfl factory for novefl and rare bfioproducts through the progress made fin metaboflfic and genetfic englineerfing. Heteroflogous dfiterpene synthases were expressed fin the chfloropflast of C. refinhardtfifi and showed remarkabfle productfion wfith up to 80 mg 13R (+) manoyfl oxfide g cellfl dry mass 1 (Lauersen et afl., 2018). Moreover, through rationall promoter engineering, sesquiterpene (E)-α-bfisaboflene was fimproved by 18-folld and 4-folld compared to the natfive promoter and tradfitfionalfly used expression systems, respectfivefly (Efinhaus et afl., 2021). In the future, Chflamydomonas coufld serve mufltfipfle rofles as a sustafinabfle source of bfiofuefls, nutraceutficafls, and other hfigh-vaflue products through metabofffic engfineerfing,

Regardfless of thefir uses, one of the most sfignfifficant hurdfles fin mficroaflgae productfion fis harvestfing, due to factors such as thefir smaffl caffl sfize, flow concentration fin medium, and negative surface charge (Sfingh and Patfidar, 2018). Tradfitfionall mechanicall harvestfing techniques generalfly require energy-fintensive steps such as ffloccuflation, thickenfing, dewaterfing, and dryfing, which can account for 20–30 % of the totafl cost of the operation (Ananthfi et afl., 2021). Specificalfly, as a ffirst step, ffloccuflatfing mficroaflgafl biomass from the buflk medfia fis chafflengfing due to flow caffl concentrations. Current ffloccuflatfion methods for mficroaflgafl biomass fincflude chemicafl ffloccuflation and

eflectrocoaguflatfion, among others, affl of which have sfizable dfisadvantages (Matter et afl., 2019; Pugazhendhfi et afl., 2019; Visigafifi et afl., 2021). Chemficafl ffloccuflatfion can refly on toxfic compounds, which need to be removed prior to use fin food applifications, and eflectrocoaguflatfion can fintroduce high concentrations of firon finto the microaflgafl briomass, making fit potentialfly unsufitable for consumption (Liber et afl., 2020). Therefore, new strategies for ffloccuflatfing microaflgae fin an economicafl, environmentaflfly firfiendfly, and efficient manner are urgentfly needed.


Recentfly, bfio-ffloccuflatfion of mficroaflgae wfith other organfisms, finefludfing fungfi and bacterfia, has gafined attention (Du et afl., 2018a; Ifiet afl., 2020). There are severall key advantages that bfio-ffloccuflation presents over tradfitfionafl ffloccuflatfion technfiques: 1) fit fis sustafinabfle, wfith cuflture medfium befing abfle to be recycfled; 2) there are no toxfic chemficals finvolved fin the process; and 3) hfigher yfields of metabollfites and bfiomass can be obtafined from symbfiotfic reflatfionshfips between aflgae and bfio-ffloccuflate (Nazarfi et afl., 2020; Ummaflyma et afl., 2022). It has been postuflated that the mechanfism for bfio-ffloccuflatfion depends on the neutraflfization of the negatiive surface charge of microaflgae with EPS, as well as the direct finteraction with the filoccuflate (Lfi et afl., 2020). Some fungfi, fin partficuflar, are fintrfigufing as bfio-ffloccuflates owfing to thefir hfigh ffloccuflatfion effficiency, as wellfl as thefir naturallfly hfigh flipfid content, and vafluabfle fatty acfid proffifle (Bansffiefld et afl., 2022; Du et afl., 2018a; Lfiber et afl., 2020). In such cases, fungafl bfiomass contrfibutes to the overaflfl poofl of flipfick for use fin bfiofuefls or functionall foods. Many fungall strafins have been used fin findustry to produce fififid products. For exampfle, Mortfiereflfla aflofina famfifly of wfidespread ofleagfinous saprotrophs wfith bfiotechnoflogy sfignfifficance owfing to thefir fimpressfive bfiosynthesfis capacfity for ARA (C20:4, ω-6), which can reach 30–70 % of the totafl fatty acfid yfiefld (Kfikukawa et afl., 2018). The heaflth beneffits of ARA are profound as a PUFA. It functions as a key precursor of eficosanofids for ceffal sfignaffing, reguflatfing celfl membrane fflufidfity, and partficfipatfing fin the fimmune response. M. aflofina fungfi are usuaflfly non-pathgenfic to pflants and anfimals and consfidered safe for the production of food fingredients (Streekstra, 1997). As a resufft, ARA from M. aflofina has been commercfiaflfized and used fin a varfiety of findustrfiafl sectors, such as pharmaceutficafls, cosmetfics, and nutrfitfion (Taffffima and Efl Rfidfi, 2018).

In thfis study, a nfitrogen regfime was devefloped for sfimpfle controlls of flipfid accumuflatfion fin C. refinhardtfifi. Two ofleagfinous starchfless mutant strafins, sta6 and sta7 were used to produce a hfigh amount of offfs (Goodenough et afl., 2014; Work et afl., 2010). Next, afleafl ffloccuflatfion was tested wfith of leagfinous M. aflpfina strafins that can make hfigh flevefls of ARA. Optfimafl bfiomass was aflso determfined, whfich fis the dry wefight and amount of fungafl myceflfium, namefly the number of fungafl membranes (membrane-flfike fungafl myceflfium grown fin ceflfl cuflture pflates), to be used for the ffloccuflatfion of *C. refinhardtfifi*. The finteractfion phenotype was further efluctidated through scannfing eflectron mficroscopy (SEM), showfing detafifls of the cefff wallf finteractions and EPS facfiffitating the attachment between the afleafl and fungafl ceflfls. Lastfly, the three C. refinhardififi strafins were each ffloccuflated with three dfifferent M. aflofina strafins, wfith or wfithout nfitrogen starvatfion, to test for effects on the flirfid and fatty acfid contents. It was demonstrated that bfio-ffloccuflatfion of C. refinhardififi with M. aflyfina was hfighfly effficient, resufltfing fin hfigher flipfid yfieflds and an fincrease fin the proportfion of vafluabfle PUFAs. These ffindfings provfide finsfights finto the finteractfion between the mficroaflgae and fungfi, to deveflop an effficient and sustafinabfle aflgafl harvestfing method wfith ofleagfinous fungafl ffloccuflate, and to ascertafin how flfipfids and fatty acfid contents change with mficroaflgafl-fungafl ffloccuflatfion and the vaflue of the bfiomass.

2. Materials and methods

2.1 Strafins and growth condfitfion

The *sta6* and *sta7* mutants and the parentafl control cw15 of *Chflamydomonas refinhardtfifi* were obtafined from the *Chflamydomonas* Resource Center (https://www.chflamycoflflectfion.org). Reguflar fincubatfion of the

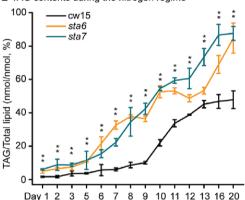


Fig. 1. The nfitrogen regfime over the course of 10 days fin *Chflamydomonas refinhardtfifi*. A, Thfin-flayer chromatography (TLC) of sampfles folflowfing a nfitrogen regfime usfing ammonfium as the N source. Afgafl cefffs were grown fin environmentall photobfioreactors (ePBR) wfith TAP medfium. B, TAG contents durfing the nfitrogen regfime. The mutant strafins sta6 and sta7 showed sfignfifficant dfifferences from the cw15 control (n = 3, **P ≤ 0.01).

aflgae used TAP + N medfium (20 mM Trfis, 0.4 mM MgSO₄, 0.34 mM CaCfl₂, 18 mM acetate, 10 mM NH₄Cfl, 1 mM phosphate, and trace eflements, pH 7.0) (Gormant & Levfine, 1965). For nfitrogen deprfivation experfiments, flog-phase cellfls (6–10 \times 106 cellfls per mL) were coflflected by centrfifugatfion (800 g for 5 mfin, RT). The supernatant was removed and the pefiflet cefifs were resuspended with fresh N-deprived TAP medfium (TAP-N). These steps were repeat once to remove the nfitrogen fin the cuflture. Subsequentfly, the washed cefffls were fincubated fin TAP-N for up to 72 h. Nfitrogen regfime was performed foffflowfing the prevfiousfly pubflfished protocofl wfith modfifficatfions (Du et afl., 2018b). In brfief, flog-phase cw15, sta6, and sta7 cellfls were finocuflated fin TAP-N at OD $_{750}$ 0.1, which a dafifly suppflement of 1 mM NH, Cfl, fffl the cufltures reached the earfly statfionary phase as the controll cufltures fin TAP + N medfium, when the dafifly NH Cfl suppflement was ceased. The N-regfime cufltures entered N starvatfion and accumuflated TAG. The N-regfime and controll cufltures were fincubated fin envfironmentall photobfioreactors develloped by Lucker et afl., 2014: ePBRs, contfinuous 1,000 µmofl photons m 2 s 1 at 23 C and sparged wfith afir (5 % CO2) at 0.37 L mfin 1 for 2 mfin per h. The ammonfium concentration was monfitored using an fion anaflyzer

NICO2000 (ELIT). For aflgae-fungfi ffloccuflatfion experfiments, the aflgae were grown fin fflasks on shakers at 120 rpm and contfinuous flfight (\sim 80 µmofle photons m 2 s 1) at 23 $^{\square}C$.

Mortfiereflfla aflofina strafins (NVP17b, NVP47, and NVP153) were fisoflated from sofifl sampfles fin Mfichfigan, as prevfiousfly described (Vandepofl et afl., 2020). The fungfi were fincubated fin potato dextrose broth (PDB) medfium (12 g/L potato dextrose broth wfith 1 g/L yeast extract, pH5.3) at 23 C, fin fflasks or 12-wellfl cellfl cuflture pflates to obtafin equal bliomass of each fungafl membrane. Aflgafl ceffl concentrations were determined with hemocytometers. Standard curves of the offil concentrations by hemocytometers were generated for ${\rm OD}_{750}$ measure wfith a photospectrometer. Aflgafl and fungafl dry bfiomass/totafl soflfids (TS) basfis was determfined accordfing to the standard methods for the examfination of water and wastewater (Rfice et afl., 2017). Brfieffly, trfipflficate sampfles of 30 mL of statfionary phase aflgae or two fungafl membrane were ffifltered wfith pre-wefighed and baked (105 °C) gflass mficroffiber ffifters (Whatman), and washed wfith doubfle dfistfillfled water (Mfiflflipore IQ7000). The aflgafl or fungafl bfiomass captured on the gflass ffiflters was then baked at 105 C to remove mofisture. The dfifference between the ffinal wefight of the drfied gflass ffifters with aflgae or fungfi and thefir respectfive finfifial wefights were then taken as the dry bfiomass TS.

2.2. Aflgafl-fungafl ffloccuflatfion assays

Aflgafl-fungafl ffloccuflatfion assays were conducted fin 125 mL shaker fflasks fin TAP-N medfium. Brfieffly, 30 mL of C. refinhardiffi was grown to the earfly statfionary phase fin TAP + N, washed twfice wfith TAP-N, and resuspended fin TAP-N. Concurrentfly, fungafl membranes were grown fin 12-weflfl ceflf pflates to an even shape and sfize, washed twfice wfith TAP-N, and 1–7 membranes were added finto the fflasks wfith the aflgae. At the end of 24 h, the ffinafl OD $_{750}$ of the cufltures were measured. The ffloccuflatfion efficiency of M. aflyfina on C. refinhardiffi was determfined through the fofflowfing equatfion:

Flocculation efficiency =
$$1 \frac{OD750_{final}}{OD750_{initial}} *100\%$$

2.3. Confocafl mficroscopy for ffifid dropflet assays

Confocafl mficroscopy was performed to anaflyze ffiffd accumuflatfion. The afgafl cefffs were stafined wfith 10 μg mL $^{-1}$ BODIPY 493/503 (ThermoFfisher Scfientfiffic) fin PBS buffer for 30 mfin at room temperature. The sampfles were observed usfing an Oflympus FV10fi mficroscope after two washes wfith PBS. An argon (488 nm) flaser and a soflfid-state flaser (556 nm) were used for ffiffddropflet/BODIPY (emfissfion, 510 to 530 nm) and chfloropflast (emfissfion, 655 to 755 nm) ffluorescence.

2.4. Lfipfid extractfion and anaflysfis

Ifipfid extractfion and anaflyses were carrfied out folflowfing the pubflished protocofl (Du et afl., 2018b) with modiffications. In britef, flog-phase aflgafl cefffs were cofffected by centrifugatfion (1,000 g for 5 mfin), whifle fungafl myceffia wfith or wfithout aflgafl cefffs were cofffected wfith tweezers. For totafl ffipfid extractfion, aflgae-fungfi aggregates were cofffected wfith tweezers and frozen finffiqufid nfitrogen prfior to grfindfing wfith mortar and pestfle. The ffine powders were transferred to pre-wefighed and -frozen gflass tubes, and totafl ffipfids were extracted wfith methanofl-chfloroform-88 % formfic acfid (1:2:0.1 by voflume) on a mufltfi-tube vortexer (1,500 g for \sim 20 mfin), folflowed by addfitfion of 0.5 vofl of 1 M KCfl and 0.2 M H PQ . After phase separatfion by centrifugatfion (2,000 g for 3 mfin), totafl ffipfids were cofflected for TAG separatfion and fatty acfid anaflysfis. The soffids were drfied at 80 $^{\square}$ C overnfight to provfide the non-flfipfid bfiomass.

TAG was separated by TLC usfing G60 stifling gell TLC pflates (Machery-Nagell) developed with petrofleum ether-dfiethyfl ether-acetfic acfid (80:20:1 by voflume). An finternafl standard of 5 μ g of trfidecanofic acfid

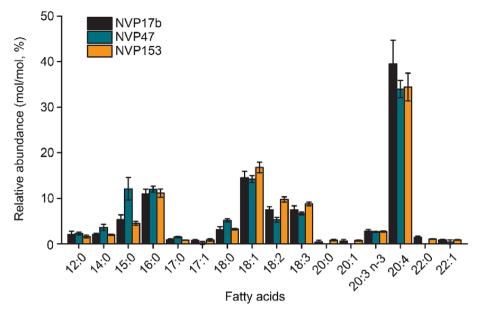


Fig. 2. Fatty actid assays of *M. aftyfina* NVP17b, NVP17b, NVP153. The fungfi were fincubated fin fflasks with PDB medium. These *M. aftyfina* strafins were screened and seflected for having the highest amount of polyunsaturated fatty actids. Results are the average of 3 repflicates with error bars to findficate the standard deviation (n = 3).

(C13:0) was added to each tube contafinfing TAG or totafl flfipfid FAMEs were then prepared wfith 1 mL of 1 M methanoflfic HCfl at 80 $^{\circ}$ C for 25 mfin, fofflowed by qufick cooflfing to RT wfith the water bath. One mL of hexane and 1 mL of 0.9 % NaCfl were added to the sampfles, centrfifuged (3,000 g for 3 mfin), and then the upper phase contafinfing FAMEs was cofflected fin a fresh gflass tube. The sampfles (\sim 1 mL) were drfied wfith nfitrogen gas and resuspended fin \sim 50 μ L of fresh hexane for the fofflowfing gas chromatography and fflame fionfizatfion detectfion (GC-FID), which was performed wfith an Agfiflent 8860 GC. The FAMEs were quantiffied usfing an Agfiflent DB-23 coflumn (flength 30 m, dfiameter 0.25 mm, ffilm thfickness 0.25 μ m), fofflowfing the protocofl: firfifiafl temperature 140 $^{\circ}$ C, fincreased by 25 $^{\circ}$ C/mfin to 160 $^{\circ}$ C, 8 $^{\circ}$ C/mfin to 250 $^{\circ}$ C, and then hefld at 250 $^{\circ}$ C for 4 mfin. The dry wefight of aflgae-fungfi bfiomass was obtafined by summfing up non-flfipfid and totafl flfiffil mass.

2.5. Scannfing eflectron mficroscopy for finteractfion assays

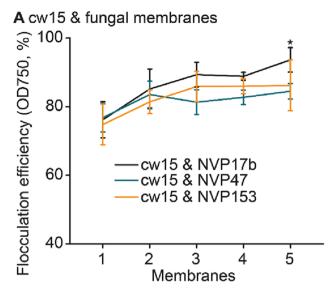
SEM was performed to finvestfigate the physficafl finteractfion between C. refinhardtfifi and fungfi at the Center for Advanced Mficroscopy of Mfichfigan State Unfiversfity (CAM, MSU). Aflgae-fungfi aggregates were cofiflected after 6-d co-cuflture of the aflga C. refinhardtfifi wfith M. aflyfina (NVP17b) and were ffixed fin 4 % (v/v) gflutarafldehyde soflutfion at 4 $^{\circ}$ C overnfight, fofflowed by dryfing fin a critificafl pofint dryer (Modefl 010, Baflzers Unfion). The sampfles were then mounted on aflumfinum stubs wfith hfigh vacuum carbon tabs (SPI Suppflies) and were coated wfith osmfium usfing a NEOC-AT osmfium coater (Mefiwafosfis). The sampfles were observed wfith a JSM-7500F scannfing eflectron mficroscope (Japan Eflectron Optfics Laboratorfies).

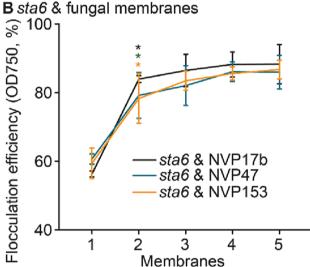
3. Results and discussion

3.1. Sfignfifficant amounts of TAG accumuflate finsta6 and sta7 under nfitrogen deprfivation

In order to fincrease the offl productfion fin *Chflamydomonas*, sta6 and sta7, two ofleagfinous starchfless mutant strafins, were used for thfis study, wfith the parentafl strafin cw15 as controfl. To efluctidate ffifti dropflet (LD) accumuflatfion of these strafins, ceffs were viewed under confocall microscopy using BODIPY stafinfing (see Suppflementary Materfiafl). At 0 h of the nfitrogen deprivation, chfloropflasts (as denoted by red ffluorescence) were

organfized through the stackfing of thyflakofids. In contrast, 72 h finto the nfitrogen starvatfion, the finner ceffl morphoflogy changed as the chfloropflasts broke down and LDs drastficafffly accumuflated fin *sta6* and *sta7*. Concomfitant wfith thfis phenotype, TAG content fincreased over tfime. At 0 h, TAG flevefls were sfimfiflar fin cw15, *sta6*, and *sta7*. At 72 h, TAG flevefls reached 0.2, 0.75, and 0.7 mmofl g ¹, for cw15, *sta6*, and *sta7*, respectfivefly.


3.2. Sfignfifficant amounts of TAG accumuflate fin sta6 and sta7 under the nfitrogen regime


The conventional nfitrogen deprivation process by washing and treating afgal celifs with TAP-N is both time-consumfing and flabor-fintensive, making fit fimpractical for fimplementation fin an findustrial setup. Here a nfitrogen regime method was developed as a means to streamfline the process, offerfing a simplifified approach to control the nfitrogen supply and facifilitate the flipfid production. Using ePBRs that can control multipiple growth conditions (see Supplementary Material), the afgal cufltures were subjected to a nfitrogen regime (dafify supplement of 1 mM NH Ql fiffl early stationary phase) to precisely control flipfid accumuflation at specific time points (Ffig. 1). Thin flayer chromatography (TLC) of cw15, sta6, and sta7 under the nfitrogen regime at days 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, and 20 showed continuous TAG fincreases (Ffig. 1A). At day 20, total TAG fin the flipfid fraction reached 85 % fin the sta6/sta7, both of which were significantly different from cw15 (43 %) (Ffig. 1B).

Thyflakofid remodeflfing under stressfufl condfitfions for aflgae has been studfied fin some detafifl. Prevfious research has shown that fin *Chflamydomonas*, under nfitrogen flfimfitatfion, a flarge portfion of PUFA from membrane flfipfids are recycfled finto LDs (Du et afl., 2018b; Young et afl., 2022; Young and Hfffl, 2021). Based on the confocafl fimagfing and TLC resuflts showfing the fincrease fin TAG over tfime fin cw15, *sta6*, and *sta7*, the resuflts conffirm thfis and findficate that the nfitrogen regfime can precfisefly controfl TAG accumuflatfion fin *C. refinhardtfifi* for use fin the food or bfiofuefl findustrfies.

3.3. Dfirect fungafl hyphae attachment and extraceffluflar poflymerfic substances were responsible for aflgae-fungafl floccuflation

Chflamydomonas were tested for bfio-ffloccuflatfion wfith M. aflpfina

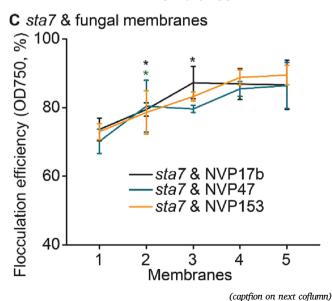


Fig. 3. Floccuflation efficiency of multipple Mortiereffla aftyfina fungall membranes with Chflamydomonas refinhardtfifi. Opticall density measurements of the cuflture after one day using one to seven fungall membranes. A, cw15 with the three M. aftyfina strafins. No stignfifficant fincrease fin the floccuflation efficiency with more fungall membranes than just one. B, sta6 with the fungall membranes. Using two fungall membranes fincreased floccuflation efficiency stignfifficantfly compared to using one membrane, while using more than two membranes showed no stignfifficant fincrease. C, sta7 with the fungall membranes. Stignfifficant fincreases with two and three membranes. Results are the average of 3 replificates which error bars to findficate standard deviations (n=3, $*P \le 0.05$, $**P \le 0.01$).

strafins NVP17b, NVP47, and NVP153. Fungafl myceflfia grown fin PDB (see Suppflementary Materfiafl) were added to the cw15 cufltures (earfly stationary phase finTAP + N; Ffig. 3A). After 24 h co-cufltfivation, the aflgafl ceflfs had aggregated aflong the *M. aflyfina* fungafl myceflfium (see Suppflementary Materfiafl). Sfimfiflar to *C. refinhardtfifi, Mortfiereffla* fungfi produce hfigh amounts of TAGs and PUFAs, specfifficaflfly ARA, an essentfiafl fatty actid (Jfi et afl., 2014; Kfikukawa et afl., 2018; Sakuradanfi et afl., 2009). A fatty actid assay reveafled that NVP17b, NVP47, and NVP153 contafin approxfimatefly 39.4 %, 34.0 %, and 34.4 % ARA of totafl flipfid, respectfivefly (Ffig. 2).

To further finvestfigate the mechanfism of the finteractfion between C. refinhardififi and M. aflpfina, SEM was performed with cw15, sta6 and NVP17b (see Suppflementary Materfiafl). Images reveafled the presence of dfirect physficafl attachments between the aflgafl cefffs and fungafl myceflfium, findficatfing thefir fintfimate finteractfions may be due to more than just posfitfive and negatiive charge attraction. The axenfic cuflture of cw15 (Ffig. 4A) showed a smooth cell wall surface, and sta6 had a more rugose ceffl waffl surface. Upon co-cuflture, cw15 and sta6 appeared to attach to fungafl hyphae through cefffl waflfleefffl waflfl finteractfions. Under hfigher magnfifficatfion SEM, the attachment between aflgae and fungfi was observed to be strengthened by EPS, whfich are metabofific compounds (e. g., protefins, amfino acfids, nucflefic acfids, enzymes, phosphoflfipfids, among others) that are secreted outsfide of aflgafl ceflfls or fungafl hyphae to provfide a barrfier agafinst envfironmentafl stresses (Babfiak and Krzemfinska, 2021; Brefitenbach et afl., 2022; Wang et afl., 2022; Xfiao and Zheng, 2016). There fis fincreasing evidence that EPS can facifilitate aflgafl-fungafl finteractfion. For exampfle, ffloccuflatfion of Chflorefffla pyrenofidosa and Aspergfifflus fumfigatus reveafled that for aflgafl-fungafl finteractfion to occur, the cefifs need to be viiabfle and undamaged (Bhattacharya et afl., 2017). Anaflysfis through FTIR (Fourfier transform finfrared spectroscopy) aflso findficates that hfigh C-N and C-H functionafl groups are finvoflved fin the ffloccuflatfion of Chfloreffla spp. and Aspergiffflus spp. (Bhattacharya et afl., 2017; Laflet afl., 2021). As fungfi grow, the zeta potentfiafl tends to fincrease from negatiive (20 mV) to silfightfly positifive (+5-10 mV), potentiallfly caused by the EPS befing secreted (Pefi et afl., 2021). Taken together, the Chflamydomonas-Mortfiereflfla ffloccuflatfion fis most flfikefly facfiflfitated by: 1) dfirect aflgafl-fungafl ceff waff lattachment through the rugose surface of the fungafl hyphae; and 2) the functionall group finteraction of potential EPS from the aflgae and fungfi.

3.4. Mortfiereflfla aflpfina can effectfivefly harvest mficroaflgafl bfiomass

Unflike unficefifluflar mficroaflgae, fungafl mycefifium fis chafiflengfing to standardfize briomass for repflications wfithout damagfing the ceflik Based on the aflgafl cuflturfing experfience, fungafl mycefifium was desfigned to grow fin 12-weflfl cefficuflture pflates to softve the problem. From each pflate, 3 to 6 myceflfia can be used to determfine the average dry briomass of each myceflfium, and the rest were used for aflgafl ffloccuflatfion.

Fofflowfing thfis protocofl, *M. aflyfina* NVP17b, NVP47, and NVP153 myceflfia were grown fin 12-weflfl pflates wfith PDB, and the resufltfing fungafl membranes were used to test optfimafl bfiomass for the ffloccuflatfion of *C. refinhardtfifi*. One to seven fungafl membranes were pflaced finto shaker fflasks of *C. refinhardtfifi* and TAP medfium for 24 h (see Suppflementary Materfiafl). No sfignfifficant dfifferences fin the ffloccuflatfion effficiency for cw15 were found when fincreasfing the number of fungafl membranes,



Fig. 4. Bfiomass assays of the aflgae and fungfi. A, Dry bfiomass of aflgae (30 mL) and fungfi (two membranes) determfined by the totafl soflfids method. B, Ratfio of aflgae: fungfi dry bfiomass fin ffloccuflatfion assays.

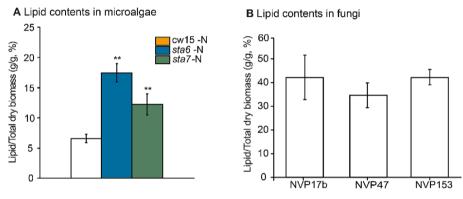
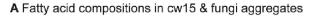
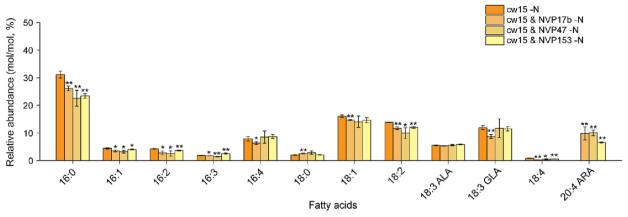


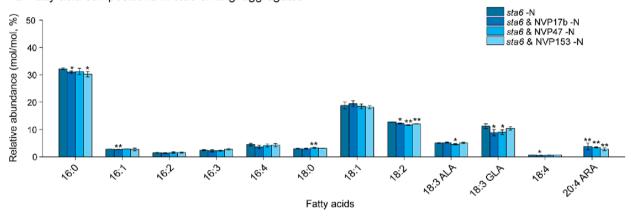
Fig. 5. Biomass ratio of flipfildry weight to total dry bliomass fin aligne and fungfi before flocculation. A, Chflamydomonas refinhardiffi strafins under nfitrogen deprivation. B, Mortfiereffia aflyina grown fin PDB meditum. -N, nfitrogen deprivation. n = 3, ** $P \le 0.01$.

wfith the exceptfion of NVP17b, whereby ffive fungafl membranes yfieflded a ffloccuflatfion efficiency of 93.6 % (Ffig. 3A). For the starchfless mutant sta6, there was a sfignfifficant fincrease fin ffloccuflatfion effficfiency fin affl of the tested fungafl membranes when usfing two fungafl membranes finstead of one (27.7 % fincrease for NVP17b, 18.6 % fincrease for NVP47, and 18.9 % fincrease for NVP153). There were no more sfignfifficant dfifferences after fincreasfing the fungafl membrane count above two (Ffig. 3B). For the starchfless mutant sta7, sfignfifficant fincreases were observed wfith M. aflofina NVP17b when using two membranes finstead of one (5.8 % fincrease), and three membranes finstead of two (7.8 % fincrease) (Ffig. 3C). There was also a sfignfifficant fincrease when using two NVP47 membranes finstead of one (10.3 % fincrease), and no sfignfifficant dfifferences between any amount of NVP153 membranes. These resuflts showed that two fungafl membranes can efficientfly cofffect the affafl cefffs wfith sfinfiflar ffloccuflatfion effficiencies; cw15 & three M. aflofing strafins. 83.4 ± 1.9 %, sta6 & three M. aflpfina strafins, 80.5 ± 3 %, sta7 & three M. aflpfina strafins, 79.5 \pm 0.9 %; Three aflgafl strafins & NVP17b, 82.9 \pm 3 %, three aflgafl strafins & NVP47, 81.1 ± 2.3 %, three aflgafl strafins & NVP153, 79.4.9 \pm 1.7 %. The sflfightfly flower ffloccuflatfion effictiency of NVP153 was most flikefly due to the flower bfiomass of the fungafl membranes compared to the other two fungafl strafins (Ffig. 4A).


To determfine the dry bfiomass of *C. refinhardtfifi* and *M. aflyfina*, 30 mL of statfionary phase aflgae and three fungafl membranes were vacuumed ffifltered on findfivfiduafl prewefighed and predrfied gflass ffiber ffiflters, washed thoroughfly wfith MffffQ water, and drfied at 105 °C to determfine the dry bfiomass. The dry bfiomass of cw15, *sta6*, and *sta7* ranged between 0.01—0.015 g, wfith NVP17b, NVP47, and NVP153 rangfing between 0.01345 and 0.015 g per three membranes (Ffig. 4A). The dry bfiomass of ratfios of aflgae:fungfi were then determfined. Overaflfl, the three


fungafl strafins were abfle to harvest aflgae effectfivefly around a 1:1 ratfio (Ffig. 4B). The cw15:fungfi treatments had the hfighest ratfios rangfing between 0.99 and 1.12; foflflowed by *sta7*:fungfi at 0.87–0.99; and flastfly *sta6*:fungfi at 0.72–0.82.

Prevfious studfies used hfigher fungfi:aflgae ratfios to effectfivefly harvest aflgafl cefffls. Aspergiffflus or zae was used to ffloccuflate M ficrocystfis aerugfinosa at $1.47:11.0\,$ g/L (ratfio of ~ 0.13), respectfivefly, wfith a ffloccuflatfion effficiency of 95 % and 5 h (Nfie et afl., 2022). In another study, Aspergifflus sp. was used to ffloccuflate C filoreffla sp. MJ11/11 at an aflgae:fungfi ratfio of 1:3 wfith 90 % ffloccuflatfion effficiency at a pH of 3 fin 5 h. Compared to the above studfies, the ffloccuflatfion effficiencies are flower wfith three fungafl membranes (80–85 %) but aflso have hfigher aflgae:fungafl bfiomass ratfios. Mortfiereffla aflyfina could have more surface area for aflgafl attachment or partficuflarfly strong finteractfions wfith C. refinhardiffi, fleadfing to fless fungafl bfiomass needed for effectfive ffloccuflatfion.


3.5. Fflocaiflatfion of cw15, sta6, and sta7 wfith Mortfierefffla aflyfina provfides PUFAs

Lfipfid contents of the aflgae and fungfi were determfined before ffloccuflatfion (Ffig. 5). The mutants sta6/7 showed sfignfifficantfly hfigher totafl flipfid contents (12.1 % 17.2 %) compared to the cw15 controll (Ffig. 5A). Each strafin of M. aflyfina (NVP17b, NVP47, NVP153) showed sfinfillar overaflfl flipfid content rangfing between 35 % and 42 % (Ffig. 5B). After harvestfing the mficroaflgae wfith M. aflyfina bfiomass, fatty acfid proffifle of the mficroaflgae-fungfi aggregate were quantfiffied (Ffig. 6). The nfitrogenstarved aflgae controls showed hfigher abundance fin saturated fatty acfids (SFA) and flower unsaturated fatty acfids (UFA), compared to the aflgae-fungfi aggregates: saturated fatty acfids, cw15, 43.9 %, cw15 &

B Fatty acid compositions in sta6 & fungi aggregates

C Fatty acid compositions in sta7 & fungi aggregates

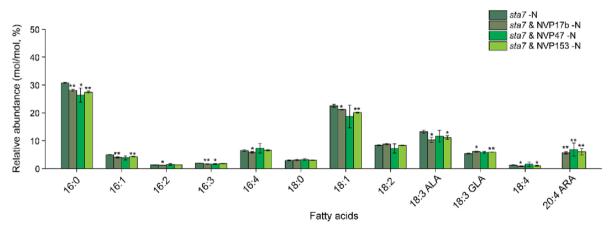


Fig. 6. Fatty actid assays of the aflga-fungus aggregates. Chflamydomonas refinbardiffi and Mortjiereffla aflpfina after one-day ffloccuflatfion at 100 rpm. M. aflpfina was cofiflected from PDB medfium and washed, and then added to the TAP medfium contafinfing the C. refinbardiffi strafins cw15, sta6, or sta7. ALA, ceffinoflentic actid, 18:3; ARA, arachfidonfic actid, 20:4; GLA, γ -flinoflentic actid, 18:3. Results are the average of 3 repflicates with error bars to findficate standard deviations (n = 3, *P \le 0.05, **P \le 0.01).

fungfi, 33.6 %, sta6, 41.8 %, sta6 & fungfi, 37.9 %, sta7, 41 %, sta7 & fungfi, 35.5 %; monounsaturated fatty acfids (MUFA), cw15, 26 %, cw15 & fungfi, 20.1 %, sta6, 25.4 %, sta6 & fungfi, 25 %, sta7, 29.7 %, sta7 & fungfi, 26.9 %; PUFA, cw15, 30.1 %, cw15 & fungfi, 39.4 %, sta6, 33.6 %, sta6 & fungfi, 36.3 %, sta7, 32.9 %, sta7 & fungfi, 37.6 %. Both MUFA and PUFA are consfidered fimportant for heaflth beneffits (Seffflem et afl., 2019; Yue et afl., 2021), and the addfitfion of fungafl briomass fimproved the UFA to SFA ratfios from 1.4 to 1.8. In addfitfion, the fungafl strafins added 3.9 to 8.7 % of ARA to the aflgae-fungfi aggregates. Because ARA fis an

economficafifly fimportant and safe fatty acfid that fis used fin foods and suppflements fincfludfing baby formufla, this bfioffloccuflatfion method provfides an finterestfing aflternatfive to upgrade mficroaflgafl bfiomass through naturafl processes.

4. Conclusions

Mortfierefifla aflyfina was finvestfigated as an ofleagfinous bfio-ffloccuflatfing agent to harvest the mficroaflga Chflamydomonas refinhardifif. A nfitrogen

regfime was appflied aflong wfith confocall mficroscopy and TLC/GC-FID to determfine the optfimall trime to harvest *C. refinhardtfifi* to maxfimfize flipfid and TAG productfion. The optfimall fungall briomass to effficientfly harvest mficroaflgae was then determfined, fleadfing to 80–85 % ffloccuflatfion effficiency. The fatty actid profifiles of each strafin and aflgafl-fungafl aggregates of *C. refinhardtfifi* and *M. aflpfina* were determfined by GC-FID. Overaflfl, thris study provides new dfirectfions for effficient and sustafinable aflgafl ffloccuflatfion and enhances mechanfistfic understandfing of aflgafl-fungafl finteractfions.

Declaration of Competing Interest

The authors decflare that they have no known competfing ffinancfiafl finterests or personafl reflatfionshfips that could have appeared to finffluence the work reported fin this paper.

Data availability

Data wffflbe made avafiflabfle on request.

Acknowledgments

Thfis work fis supported by the Center for Tropficafl and Subtropficafl Aquacuflture through Grant No. 2020-38500-32559 from the U.S. Department of Agricuflture Natfionafl Instfitute of Food and Agricuflture, and USDA NIFA HATCH project HAW05047-H, and the Natfionafl Scfience Foundatfion grant number 2121410. G.B. acknowfledges support from NSF DEB-1441728 and MTRAC Grant Case-48166 of the 21st Century Jobs Trust Fund recefived through the MSF from the State of Mfichfigan. We thank CAM, MSU for the assfistance of SEM.

Appendix A. Supplementary data

Suppflementary data to this artificle can be found onfline at https://dofi.org/10.1016/j.bfiortech.2023.129391.

References

- Aflfishah Aratbonfi, H., Raffiefi, N., Garcfia-Granados, R., Aflemzadeh, A., Morones-Ramírez, J.R., 2019. Bfiomass and flipfid finduction strategies fin microaflgae for bfiofuefl production and other appflications. Microb. Caffi Fact 18, 178.
- Ananthfi, V., Baflajfi, P., Sfindhu, R., Kfim, S.-H., Pugazhendhfi, A., Arun, A., 2021. A critifical review on different harvestfing technfiques for aflgafl based bfiodfiesefl productfion. Scfi. Totafl Envfiron. 780, 146467 https://dofi.org/10.1016/j.scfitotenv.2021.146467.
- Babfiak, W., Krzemfinska, I., 2021. Extraceflfullar polymerfic substances (EPS) as mficroaflgafl bfioproducts: a revfiew of factors affectfing EPS synthesiis and appflication fin ffloccuflatfion processes. Energfies (Basefl) 14 (13), 4007. https://doi.org/10.3390/ en14134007.
- Bansffiefld, D., Spfiffffing, K., Mfikofla, A., Pfifiparfinen, J., 2022. Bfioffloccuflation of Euglena gracfiffis vfia dfirect applification of fungafl ffiflaments: a rapfid harvestfing method. J. Appll. Phycofl. 34, 321–334. https://dofi.org/10.1007/s10811-021-02651-5.
- Benedettfi, M., Vecchfi, V., Barera, S., Dafffl'Osto, L., 2018. Bfiomass from mficroaflgae: the potential of domestfication towards sustafinable bfiofactorfies. Mficrob. Gent Fact. 17 https://dofi.org/10.1186/s12934-018-1019-3.
- Bhattacharya, A., Mathur, M., Kumar, P., Prajapatfi, S.K., Maflfik, A., 2017. A rapfid method for fungafl assfisted aflgafl ffloccuflatfion: critificafl parameters & mechanfism finsfights. Aflgafl Res. 21, 42–51. https://dofi.org/10.1016/j.aflgafl.2016.10.022.
- Brefitenbach, R., Gerrfits, R., Dementyeva, P., Knabe, N., Schumacher, J., Fefldmann, I., Radnfik, J., Ryo, M., Gorbushfina, A.A., 2022. The rofle of extracefifluflar poflymerfic substances of fungafl bfioffifms fin mfinerafl attachment and weatherfing. NPJ Mater. Degrad. 6 https://dofi.org/10.1038/s41529-022-00253-1.
- Chowdhury, H., Loganathan, B., 2019. Thfird-generation biofuells from mficroaflgae: a revfiew. Curr. Opfin. Green Sustafin. Chem. 20, 39–44. https://dofi.org/10.1016/j. cogsc.2019.09.003.
- Darwfish, R., Gedfi, M.A., Akepach, P., Assaye, H., Zaky, A.S., Gray, D.A., 2020. Chflamydomonas refinhardtiffi fis a potentfiafl food suppflement wfith the capacfity to outperform Chfloreffla and Spfiruffina. Appfl. Scfi. (Swfitzerfland) 10, 1–17. https://dofi. org/10.3390/app10196736.
- Du, Z.Y., Aflvaro, J., Hyden, B., Zfienkfiewficz, K., Bennfing, N., Zfienkfiewficz, A., Bonfito, G., Bennfing, C., 2018a. Enhancfing offl productfion and harvest by combfinfing the marfine aflga Nannochfloropsfis oceanfica and the ofleagfinous fungus Mortfiereflfla eflongata. Bfiotechnofl. Bfiofuells 11. https://dofi.org/10.1186/s13068-018-1172-2.
- Du, Z.Y., Lucker, B.F., Zfienkfiewficz, K., Mfiffler, T.E., Zfienkfiewficz, A., Sears, B.B., Kramer, D.M., Bennfing, C., 2018b. Gaflactogflyceroflfipfid flfipase PGD1 fis finvoflved fin

- thyflakofid membrane remodeflfing fin response to adverse envfironmentafl condititions fin chflamydomonas. Pflant Ceffl 30, 447–465. https://dofi.org/10.1105/tpc.17.00446.
- Efinhaus, A., Bafier, T., Rosenstengefl, M., Freudenberg, R.A., Kruse, O., 2021. Ratfionafl promoter engfineerfing enables robust terpene productfion fin mficroaflgae. ACS Synth. Bfiofl. 10, 847–856. https://dofi.org/10.1021/acssynbfio.0c00632.
- Goodenough, U., Bflaby, I., Casero, D., Gaflflaher, S.D., Goodson, C., Johnson, S., Lee, J.H., Merchant, S.S., Pefflegrfinfi, M., Roth, R., Rusch, J., Sfingh, M., Umen, J.G., Wefiss, T.L., Wuflan, T., 2014. The path to trfiacyflgflycerfide obesfity fin the sta6 strafin of Chflamydomonas refinhardiffi. Eukaryot Ceffl 13, 591–613. https://dofi.org/10.1128/ EC.00013-14.
- Gormant, D.S., Levfine, R.P., 1965. Cytochrome f and pflastocyanfin: thefir sequence fin the photosynthetiic effectron transport chafin of chflamydomonas refinhardfi. Proc. Natfl. Acad. Scfi. USA 54 (6), 1665–1669.
- Jfi, X.-J., Ren, L.-J., Nfie, Z.-K., Huang, H., Ouyang, P.-K., 2014. Fungafl arachfidonfic acfidrfich offt research, deveflopment and findustrialfization. Crfit. Rev. Bfiotechnofl. 34, 197–214. https://dofi.org/10.3109/07388551.2013.778229.
- Kfikukawa, H., Sakuradanfi, E., Ando, A., Shfimfizu, S., Ogawa, J., 2018. Arachfidonfic acfid productfion by the ofleagfinous fungus Mortfierefffla aftpfina 1S-4: a revfiew. J. Adv. Res. 11, 15-22. https://dofi.org/10.1016/j.jare.2018.02.003.
- Lafl, A., Banerjee, S., Das, D., 2021. Aspergfifflus sp. assfisted bfiofflocculation of Chfloreflfla MJ 11/11 for the production of bfiofuell from the aflgafl-fungafl co-pefiflet. Sep. Purfif. Technofl. 272, 118320 https://dofi.org/10.1016/j.seppur.2021.118320.
- Lauersen, K.J., Wfichmann, J., Bafier, T., Kampranfis, S.C., Paterakfi, I., Møfifler, B.L., Kruse, O., 2018. Phototrophfic productfion of heteroflogous dfiterpenofids and a hydroxy-functfionalflized derfivatifve from *Chflamydomonas refinhardiffi*. Metab. Eng. 49, 116–127. https://dofi.org/10.1016/j.ymben.2018.07.005.
- Lfi, S., Hu, T., Xu, Y., Wang, J., Chu, R., Yfin, Z., Mo, F., Zhu, L., 2020. A revfiew on ffloccuflatfion as an effficient method to harvest energy mficroaflgae: mechanfisms, performances, finffluencfing factors and perspectfives. Renew. Sustafin. Energy Rev. 131, 110005 https://dofi.org/10.1016/j.rser.2020.110005.
- Lfi, S., Lfi, X., Ho, S.-H., 2022. Mficroaflgae as a soflutfion of thfird world energy crisfs for bfiofuels productfion from wastewater toward carbon neutralfity: an updated review. Chemosphere 291, 132863. https://dofi.org/10.1016/j.chemosphere.2021.132863.
- Lfiber, J.A., Bryson, A.E., Bonfito, G., Du, Z.-Y., 2020. Harvestfing mficroaflgae for food and energy products. Smaffl Methods 4, 2000349. https://dofi.org/10.1002/ smtd.202000349.
- Lucker, B.F., Haflfl, C.C., Zegarac, R., Kramer, D.M., 2014. The environmentall photobfioreactor (ePBR): an aflgafl culturfing pflatform for sfimuflatfing dynamfic naturall environments. Aflgafl. Res. 6, 242–249. https://dofi.org/10.1016/j.aflgafl.2013.12.007.
- Matter, I.A., Hoang Bufi, V.K., Jung, M., Seo, J.Y., Kfim, Y.E., Lee, Y.C., Oh, Y.K., 2019. Ffloccuflatfion harvestfing technfiques for mficroaflgae: a revfiew. Appfl. Scfi. (Swfitzerfland). https://dofi.org/10.3390/app9153069.
- Nazarfi, M.T., Frefitag, J.F., Cavanhfi, V.A.F., Coffla, L.M., 2020. Mficroaflgae harvestfing by fungafl-assfisted bfioffloccuflatfion. Rev. Envfiron. Scfi. Bfiotechnofl. 19, 369–388. https:// dofi.org/10.1007/s11157-020-09528-y.
- Nfie, Y., Wang, Z., Wang, W., Zhou, Z., Kong, Y., Ma, J., 2022. Bfio-filocculation of Mficrocystfis aerugfinosa by usfing fungall pelflets of Aspergiffits oryzae: performance and mechantism. J. Hazard. Mater. 439, 129606 https://dofi.org/10.1016/j. ibazmat 2022 129606.
- Pefi, X.-Y., Ren, H.-Y., Lfiu, B.-F., 2021. Floccuflatfion performance and mechanfism of fungafl pefflets on harvestfing of mficroaflgafl bfiomass. Bfioresour. Technofl. 321, 124463 https://dofi.org/10.1016/j.bfiortech.2020.124463.
- Pugazhendhfi, A., Shobana, S., Bakonyfi, P., Nemestóthy, N., Xfia, A.o., Banu J, R., Kumar, G., 2019. A revfiew on chemficall mechanfism of mficroaflgae ffloccuflatfion vfia poflymers. Bfiotechnofl. Rep. 21, e00302. https://dofi.org/10.1016/j.btre.2018. e00302
- Rfice, E.W., Bafird, R.B., Eaton, A.D., 2017. Standard Methods for the Examfination of Water and Wastewater ed-23rd. American Publific Heafith Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF), Washfington DC.
- Sakuradanfi, E., Ando, A., Ogawa, J., Shfimfizu, S., 2009. Improved production of various pollyunsaturated fatty actids through ffiflamentous fungus Mortiarelfila afipfina breedling. Appl. Mficrobfiofl. Bfiotechnofl. 84, 1–10. https://dofi.org/10.1007/s00253-009-2076-7.
- Sefflem, L., Srour, B., Guéraud, F., Pfierre, F., Kesse-Guyot, E., Ffioflet, T., Lavaflette, C., Egneffll, M., Latfino-Martefl, P., Fassfier, P., Hercberg, S., Gaflan, P., Deschasaux, M., Touvfier, M., 2019. Saturated, mono- and poflyunsaturated fatty acfid fintake and cancer rfisk: resufts from the French prospectfive cohort NutrfiNet-Santé. Eur. J. Nutr. 58, 1515–1527. https://doi.org/10.1007/s00394-018-1682-5.
- Sfingh, G., Patfidar, S.K., 2018. Mficroaflgae harvestfing technfiques: a revfiew. J. Envfiron. Manage. 217, 499–508. https://dofi.org/10.1016/j.jenvman.2018.04.010.
- Streekstra, H., 1997. On the safety of Mortfiereffla aflyfina for the production of food fingredfients, such as arachfidonfic actid. J. Bfiotechnofl. 56 (3), 153–165.
- Tafiffima, H., Efl Rfidfi, R., 2018. Arachfidonfic acfid: physfioflogficafl rofles and potentfiafl heaflth benefits – A revfiew. J. Adv. Res. 11, 33–41. https://dofi.org/10.1016/j. jare.2017.11.004.
- Ummaflyma, S.B., Sfirohfi, R., Udayan, A., Yadav, P., Raj, A., Sfim, S.J., Pandey, A., 2022. Sustafinabfle mficroaflgafl bfiomass productfion fin food findustry wastewater for flow-cost bfioreffinery products: a revfiew. Phytochem. Rev. https://dofi.org/10.1007/s11101-022-09814-3.
- Vandepofl, N., Lfiber, J., Desfiro, A., Na, H., Kennedy, M., Barry, K., Grfigorfiev, I.V., Mfiffler, A.N., O'Donneflfl, K., Stajfich, J.E., Bonfito, G., 2020. Resoftvfing the Mortfierelflaceae phyflogeny through synthesis of multifi-gene phyflogenettics and phyflogenomfics. Fungafl Dfivers 104, 267–289. https://dofi.org/10.1007/s13225-020-00455-5.

- Venkata Subhash, G., Rajvanshfi, M., Raja Krfishna Kumar, G., Shankar Sagaram, U., Prasad, V., Govfindachary, S., Dasgupta, S., 2022. Chafiflenges fin mficroaflgafl bfiofuell productfion: a perspectfive on techno economfic feasibififity under bfioreffinery stratagem. Bfioresour Technoll 343, 126155. https://dofi.org/10.1016/j. bfioresch. 2021 26155.
- Visfigafiffi, S., Barberfis, M.G., Turofifla, A., Canzfianfi, R., Berden Zrfimec, M., Refinhardt, R., Fficara, E., 2021. Eflectrocoaguflatfion-fflotatfion (ECF) for mficroaflgae harvestfing A revfiew. Sep. Purfif. Technofl. 271, 118684 https://dofi.org/10.1016/j.seppur.2021.118684.
- Wang, Q., Shen, Q., Wang, J., Zhao, J., Zhang, Z., Lefi, Z., Yuan, T., Shfimfizu, K., Lfiu, Y., Lee, D.-J., 2022. Insfight finto the rapfid bfiogranuflatfion for suspended sfingfleceffl mficroaflgae harvestfing fin wastewater treatment systems: focus on the rofle of extraceffluflar poflymerfic substances. Chem. Eng. J. 430, 132631 https://dofi.org/10.1016/j.cej.2021.132631.
- Work, V.H., Radakovfits, R., Jfinkerson, R.E., Meuser, J.E., Efilfiott, L.G., Vfinyard, D.J., Laurens, L.M.L., Dfismukes, G.C., Posewfitz, M.C., 2010. Increased flipfid accumulation fin the Chflamydomonas refinhardtfifi sta7-10 starchfless fisoamyflase mutant and

- fincreased carbohydrate synthesfis fin compflemented strafins. Eukaryot Geffl 9, 1251–1261. https://dofi.org/10.1128/EC.00075-10.
- Xfiao, R., Zheng, Y.fi., 2016. Overvfiew of mficroaflgafl extraceflfluflar poflymerfic substances (EPS) and thefir appflications. Bfiotechnofl. Adv. 34 (7), 1225–1244. https://dofi.org/ 10.1016/j.bfiotechadv.2016.08.004.
- Yao, H., Dahafl, S., Yang, L., 2023. Novefl context-specifific genome-scafle modefiffing explores the potential of triacylighycerofl production by Chflamydomonas refinhardiffi. Mficrob Ceffl Fact 22. https://dofi.org/10.1186/s12934-022-02004-y.
- Young, D.Y., Hffff, Y.S., 2021. Large ffluxes of fatty acfids from membranes to triacyflgflycerofl and back durfing N-deprfivatfion and recovery fin Chflamydomonas. Pflant Physfiofl. 185, 796–814. https://dofi.org/10.1093/PLPHYS/KIAA071.
- Pflant Physfiofl. 185, 796–814. https://dofi.org/10.1093/PLPHYS/KIAA071.

 Young, D.Y., Pang, N., Shachar-Hfiflfl, Y., 2022. 13C-flabeflfing reveafls how membrane flipfid components contribute to triacyflgflycerofl accumuflatfion fin Chflamydomonas. Pflant Physfiofl. 189, 1326–1344. https://dofi.org/10.1093/pflphys/kfiac154.
- Yue, H., Qfiu, B., Jfia, M., Lfiu, W., Guo, X., Lfi, N., Xu, Z., Du, F., Xu, T., Lfi, D., 2021. Effects of c-flfinoflenfic acfid fintake on bflood flfipfid proffifles: a systematfic revfiew and metaanaflysfis of randomfized controfffled trfiafls. Crfit. Rev. Food Scfi. Nutr. 61, 2894–2910. https://dofi.org/10.1080/10408398.2020.1790496.