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ABSTRACT

Just as a phylogeny encodes the evolutionary relationships among
a group of organisms, a cophylogeny represents the coevolutionary
relationships among symbiotic partners. Both are primarily recon-
structed using computational analysis of biomolecular sequence
data. The most widely used cophylogenetic reconstruction methods
utilize an important simplifying assumption: species phylogenies
for each set of coevolved taxa are required as input and assumed
to be correct. Many studies have shown that this assumption is
rarely - if ever - satisfied, and the consequences for cophylogenetic
studies are poorly understood.

To address this gap, we conduct a comprehensive performance
study that quantifies the relationship between species tree estima-
tion error and downstream cophylogenetic estimation accuracy.
We study the performance of state-of-the-art methods for cophy-
logenetic reconstruction using in silico model-based simulations.
Our investigation also includes assessments of cophylogenetic re-
producibility using genomic sequence datasets sampled from two
important models of symbiosis: soil-associated fungi and their en-
dosymbiotic bacteria, and bobtail squid and their bioluminescent
bacterial symbionts.

Our findings conclusively demonstrate the major impact that
upstream phylogenetic estimation error has on downstream co-
phylogenetic reconstruction quality. Relative to other experimental
factors such as cophylogenetic estimation method choice and coevo-
lutionary event costs, phylogenetic estimation error ranked highest
in importance based on a random forest-based variable importance
assessment. We conclude with practical guidance and future re-
search directions. In particular, among the many considerations
needed for accurate cophylogenetic reconstruction - choice of co-
phylogenetic reconstruction method and method settings, sampling
design, and others — just as much attention must be paid to careful
species phylogeny estimation using modern best practices.
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1 INTRODUCTION

A cophylogeny represents the evolutionary and coevolutionary
relationships among multiple sets of coevolved taxa, and cophy-
logenies are widely used to study fundamental and applied topics
throughout biology and the life sciences [4, 26]. For example, un-
tangling coevolutionary histories is essential to reconstructing the
web of life [49], as symbiosis and coevolution have played an im-
portant role in evolution at different scales — from genes to proteins,
biomolecular pathways, organisms, populations, and beyond [22].

As is the case in phylogenetic estimation, cophylogenies are prin-
cipally reconstructed using computational analyses of biomolecu-
lar sequences — increasingly abundant thanks to next-generation
biomolecular sequencing technologies [43] — as well as other types
of biological data [12]. The most widely used computational ap-
proach for cophylogenetic estimation consists of a multi-stage
pipeline where: (1) a species tree is independently estimated for
each coevolved set of taxa using the same approaches as in a tradi-
tional phylogenetic study, and (2) cophylogenetic analysis proceeds
using the estimated species trees as input, alongside the known
host and symbiont associations (Figure 1).

Many cophylogenetic methods have been developed and they
fall into two broad categories. (1) Global-fit methods [4] evaluate
overall congruence between host and symbiont tree topologies, and
examples include PARAFIT [21], PACo [1], and MRCAlink [42]. (2)
Event-based methods perform phylogenetic reconciliation using ei-
ther parsimony-based optimization or, less commonly, model-based
statistical optimization. These optimization problems are known
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Figure 1: A typical workflow for cophylogenetic reconstruction. (1) Biomolecular sequence data for host taxa and symbiont
taxa are aligned. (2) A host species tree and symbiont species tree are independently estimated using each multiple sequence
alignment as input. (3) The input to cophylogenetic reconstruction consists of the estimated host tree, estimated symbiont
tree, and known host/symbiont associations. All three can be visualized using a tanglegram. (4) Finally, a cophylogeny is
reconstructed using the two species trees and host/symbiont associations as input. The cophylogeny maps topological structure
in the host tree to corresponding topological structure in the symbiont tree based on shared coevolutionary history, where
each element in the mapping corresponds to a coevolutionary event (e.g., a cospeciation event, a host shift event, etc.). Example

dataset from [14].

to be computationally difficult [32]. Substantial research effort has
been devoted to developing scalable and practical algorithms for
this problem, which include eMPRess [41], Jane [9], Treemap [7],
COALA [2], CoRe-PA [28], and TALE [27]. Event-based methods
typically account for multiple types of coevolutionary events [6]:
cospeciation (or codivergence or codifferentiation) involving both
host and symbiont lineages, duplication of a symbiont lineage
within a host lineage, loss of a symbiont lineage within a host
lineage, and host shift (or host switch or host transfer) where a
symbiont lineage’s association transfers to a different host lineage.
In this study, we focus on event-based cophylogenetic reconstruc-
tion methods to investigate a finer granularity of evolutionary and
coevolutionary event reconstructions.

The multi-stage pipeline design requires a critically important
assumption: the estimated species trees in the first stage are used
directly in the second stage under the assumption that they are
correct. However, it is well understood in traditional phylogenetics
that many factors can cause phylogenetic estimation methods to
return some degree of estimation error, and estimation errors in-
troduced in upstream computational tasks are important factors
to consider. For example, numerous studies have investigated the
strong impact that upstream multiple sequence alignment error can
have on subsequent gene tree estimation [23, 29]. But this insight
conflicts with the prevailing assumption made by cophylogenetic
reconstruction pipelines, as noted by [4].

The implications of this conflict must be carefully assessed. A
rigorous examination of inter-related estimation error across a
multi-stage cophylogenetic reconstruction pipeline is needed, and
there is a lack of relevant experimental studies today [12]. The
high-level findings can be qualitative (e.g., whether major effects
occur or if downstream estimation is largely robust to upstream
estimation error) or, more usefully, quantitative assessments (e.g.,
quantification of the relationship between estimation error in differ-
ent pipeline stages.) Going further, more nuanced implications arise
from context dependence (e.g., the extent to which the combination
of estimation errors is modulated by evolutionary divergence) and

other experimental factors (e.g., dataset size, taxon sampling den-
sity, etc.). Finally, these outcomes will point to important practical
consequences for systematists and other researchers that study
cophylogenies. As with other topics in phylogenetics, recommen-
dations regarding best practices are needed to reconstruct accurate
phylogenies and cophylogenies. Any reconstruction errors invite
misinterpretation and incorrect conclusions in dependent analyses.
For example, incorrectly estimated cophylogenetic relationships
among a set of model organisms may yield spurious conclusions
about the evolutionary processes under study (e.g., the relative
frequency and significance of different coevolutionary processes).
Another practical matter is empirical study design. Ideally, com-
putational resources and research effort should concentrate on
computational and experimental bottlenecks. Clarification of the
above questions will help illuminate whether some, all, or none
of traditional cophylogeny reconstruction pipelines merit careful
consideration relative to other aspects of study design (e.g., taxon
sampling, sequencing technology, sequencing effort, etc.).

To address this gap, we have undertaken a study to examine
the relationship between upstream phylogenetic estimation error
and downstream cophylogeny reconstruction accuracy. Our per-
formance study utilizes both simulated and empirical datasets that
span a range of dataset sizes, evolutionary divergence, and evolu-
tionary scenarios.

2 METHODS

Our performance study included a comprehensive suite of simu-
lated benchmarking datasets that spanned a range of evolutionary
conditions. The simulation conditions differed in terms of number
of taxa, sequence length, evolutionary divergence, and distribution
of coevolutionary event types.

The simulation study experiments utilized two different proce-
dures to simulate synthetic datasets (Supplementary Figure S1).
First, the “mixed” simulations utilized an empirically estimated
cophylogeny and its constituent species trees and host/symbiont
associations as the models for in silico simulation of biomolecular
sequence evolution. Second, a fully in silico set of simulations were
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run using the forward-time cophylogeny model proposed by [13],
which we refer to as the “forward” simulations. Cophylogenetic
and phylogenetic method performance on each simulated dataset
was then assessed with respect to model/reference cophylogenies
and phylogenies.

We also performed comparative analyses of two empirical ge-
nomic sequence datasets. One empirical dataset consists of cephalo-
pod hosts and their bacterial symbionts, which serve as a well-
studied model of open symbiosis (i.e., partnerships arising from
horizontal transmission between hosts and/or the environment);
the other dataset was sampled from fungal hosts and their bacterial
endosymbionts, which are an emerging model of closed symbio-
sis (i.e., partnerships whose coevolution involves strictly vertical
descent over time). The two systems thus provide a comparative
contrast along a spectrum of symbiotic partnership flexibility [34].

The combination of experimental approaches is a design choice
in our study. Taken together, the simulation study and empirical
dataset experiments represent an array of natural symbiotic sys-
tems - by design and by definition, respectively. Some differences
between the experimental approaches are worth noting. The for-
ward simulations provide ground truth coevolutionary histories
that enable the analysis of cophylogenetic reconciliation accuracy,
whereas the mixed simulation experiments use an estimated co-
phylogeny reconciliation as reference to analyze cophylogenetic
reconciliation precision in the context of phylogenetic inference
error. On the other hand, our study uses empirical datasets to as-
sess cophylogenetic reconciliation reproducibility without prior
knowledge of the true coevolutionary history.

2.1 Definitions

We now introduce mathematical background needed to describe
the experimental procedures. Some of the notation and definitions
follow [50].

A rooted phylogenetic tree Ty = (Vpy, E ) is a rooted evolution-
ary history for a set of taxa V. We note that many cophylogenetic
reconstruction algorithms require rooted binary phylogenetic trees
as input. The rooted binary tree Txs has a root p with in-degree zero
and out-degree two, leaves N' C Vs where each leaf has out-degree
zero and in-degree one, and inner nodes v € Vo \N where each
inner node has out-degree two and in-degree one. For each directed
edge (u,v) € Ep, v is a child of u. Each edge is also denoted by
e, with branch length bl(e,) € R*. For vertices u,0 € Vy, u is an
ancestor of v, u € anc(v), v is a descendent of u, and u € desc(v) if
and only if u lies on the unique path from root p to v.

For a pair of rooted phylogenetic trees Ty and Ts denoting the
evolutionary history of a set H of hosts and a set S of symbionts,
respectively, Ty is the host tree and Ts is the symbiont tree. A map-
ping function ¢(s, k) : S X H — {0, 1} denotes known interactions
between the extant species of Tyy and Tg, where ¢ (s, h) = 1 means a
symbiont is associated with a host, and otherwise ¢ (s, h) = 0. The
tuple (Tg, Ts, ¢) serves as the input to cophylogenetic methods,
and can be nicely visualized using a tanglegram. A cophylogenetic
reconciliation or reconstruction is defined as the set of event asso-
ciations R C Vs X Vi between the internal nodes of the symbiont
tree Ts and the internal nodes of the host tree Ts. For a symbiont s,
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an event association (s, h) € R means h is one of the host species
known to have been associated with s.

The unrooted version Uy of a rooted phylogenetic tree Txs can
be obtained by converting all directed edges into undirected edges,
deleting the root, and connecting its two outgoing edges into a
single remaining edge. Equivalently, an unrooted binary tree U
on the leaf set NV has internal nodes with degree three and leaves
with degree one, and each leaf represents a distinct taxon in the
taxon set NV.

In our study, tree topology differences were evaluated with nor-
malized Robinson-Fould (nRF) distances [38]. For two unrooted
trees U; and U, with the same set of leaf nodes NV and having bipar-
tition sets By and By respectively, the Robinson-Fould (RF) metric
is the cardinality of the symmetric difference between the sets of
bipartitions that appear in U; and Uy, which is |B; — Bz| + | B2 — Bi|.
(Note that bipartitions corresponding to leaf edges are trivial since
the latter must always appear, and trivial bipartitions do not con-
tribute meaningfully to the RF calculation.) The normalized RF

distance is calculated by dividing RF distance by the maximum RF

|B1—Bs|+|B2—Bi|
2|N|-6 ’

We note that the RF distance is a de facto standard for topological

comparisons of phylogenetic trees involving the same set of taxa.
Generalizations of the RF distance have been proposed for compar-
ing phylogenetic trees with overlapping but non-identical sets of
taxa (e.g., [24]), although we note that the issue does not arise in
the context of our study due to the nature of our simulation and
empirical dataset analysis procedures.

Reconciled cophylogenies were compared based on the calcula-
tion proposed by [50], which we refer to as cophylogenetic precision.
We now define this calculation. Let R4 and R be the reconstructed
event associations of all internal vertices from cophylogenetic recon-

ciliations A and B, respectively. Then, the proportion of reconciled
[ReNRAl
[Ral
netic precision factors in all coevolutionary event types that are
accounted for by the cophylogenetic reconstruction methods in this

study - i.e., cospeciation, duplication, loss, and host switch events.

distance between two trees with | V| taxa, which is

events in R4 that were also found in Rp is . Cophyloge-

2.2 Simulation study

Mixed simulations. The mixed simulations utilized empirically-
based phylogenetic estimates to perform parametric sampling of
synthetic biomolecular sequence data. The simulation procedure
begins with the former: obtaining a pair of species trees and co-
phylogeny via empirical dataset analysis. Six empirical datasets
were obtained from literature to sample a range of evolutionary
scenarios and dataset types: from single-locus datasets with se-
quence length under 1 kb to next-generation-sequencing (NGS)
multi-locus datasets with sequence length well over 1 Mb (Table 1).
The sequence data were preprocessed and aligned using MAFFT
v7.221 with default settings [19]. Species phylogenies were recon-
structed from concatenated multiple sequence alignments under
the General Time Reversible (GTR) model of nucleotide substitution
with T model of rate heterogeneity [51] and midpoint rooted using
RAXML v8.2.12 [45]. As methods eMPRess [41] and COALA [2]
were limited to one-to-one host/symbiont associations; symbiont
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taxa were subsampled as needed to address this limitation. Cophy-
logenetic events were estimated with eMPRess [41] from the host
and symbiont phylogenies and host-symbiont associations.

Next, the resulting phylogenetic estimates for each empirical
dataset served as the statistical model for downstream in silico simu-
lation of biomolecular sequence data. Specifically, the reconstructed
species trees (including branch lengths) and associated substitu-
tion model parameter estimates served as generative models from
which multiple sequence alignments were simulated using Seq-Gen
[37]; accordingly, we refer to the species trees as model trees. Note
that the above cophylogeny was used for assessing methodological
performance (see “Phylogenetic and cophylogenetic reconstruction
and assessment” below) but was not directly used for simulations.

As noted above, our study is motivated by more nuanced ques-
tions beyond establishing the impact of upstream phylogenetic
estimation error on downstream cophylogeny reconstruction. We
also investigated how this relationship is modulated by two key con-
textual factors — the evolutionary divergence and number of taxa
under study - via two additional simulation experiments. In simu-
lations with varying evolutionary divergence, model tree branch
lengths were multiplied by a scaling parameter h. We explored a
range of settings for the parameter h where each set of experiments
selected a setting from the set {0.1, 0.5, 1, 2,5, 10}. The simulations
with varying dataset size were conducted by modifying alignment
lengths (as listed in Table 1) to 400,228 bp and 1,455,978 bp for host
and symbiont, respectively. The modified lengths were adapted
from the concatenated MSA lengths of the avian host dataset [35]
and the avian feather lice parasite dataset [11].

Forward simulations. The forward simulations utilized the R-based
[36] implementation of the Treeducken [13] version 1.1.0 software
and its forward-time coalescent model to sample a model cophy-
logeny, along with its associated species trees and host/symbiont
associations. The model cophylogeny and model trees served as the
reference cophylogeny and reference trees, respectively, during sub-
sequent performance assessments (see “Performance assessments”
below). Model parameter settings (Table 2) were based on estimates
from selected empirical datasets. The resulting five model condi-
tions included a range of dataset sizes (i.e., number of taxa and
sequence length), substitution rates, base frequency distributions,
and coevolutionary event distributions (Table 3). Model trees were
deviated away from ultrametricity using Moret et al. [30]’s approach
with deviation factor ¢ = 2.0 [31]. We used custom scripts to per-
form the ultrametricity deviation calculations. Sequence evolution
was then simulated on each model tree using the same approach as
in the mixed simulation procedure, resulting in host and symbiont
MSAs.

Additional experiments varying evolutionary divergence were
performed with the forward simulation procedure, where the scal-
ing parameter h was assigned a value from {0.1, 0.5, 1, 2,5, 10}.

Experimental replication. For each model condition, the procedure
to simulate biomolecular sequence evolution was repeated to ob-
tain 100 replicate datasets. Results are reported across all replicate
datasets in each model condition.

Phylogenetic and cophylogenetic reconstruction and assessment. On
each simulated dataset, phylogenetic trees were reconstructed un-
der the GTR+I" model and midpoint rooted using RAXML v8.2.12.

Zheng et al.

The resulting phylogenetic estimates and host/symbiont associa-
tions were used by eMPRess [41] to perform cophylogenetic rec-
onciliation using default settings. We also conducted additional
eMPRess analyses using alternative cophylogenetic event costs that
were estimated using COALA [2] and CoRe-PA [28]; the additional
estimated cophylogenies were used in the random forest-based
variable importance analyses described below (and additional ex-
periments in the Supplementary Online Materials). (Also see Supple-
mentary Online Materials section S7 for an additional experiment
that uses TALE to perform statistical cophylogenetic reconstruc-
tion).

In each simulation study experiment, the topological error of an
estimated tree was compared to its corresponding model tree based
on nRF distance. Each estimated cophylogeny was compared to the
reference cophylogeny based on [50]’s precision calculation. Scat-
terplots and linear regression analysis were used to characterize
the relationship between upstream phylogenetic estimation error
and downstream cophylogenetic reconstruction error, where phylo-
genetic estimation error was assessed based on average topological
error of host and symbiont trees, and cophylogenetic reconstruc-
tion error was assessed using cophylogenetic precision. The linear
regression analyses were performed using R version 4.2.2 [36].

Variable importance analysis. In mixed and forward simulation
experiments, the relative importance of species tree topology and
other factors that can impact cophylogenetic reconciliation accu-
racy was assessed using the randomForest package [10] imple-
mented in R [36]. The following variables were assessed for their
impact on cophylogenetic reconciliation: tree topology (true species
trees versus reconstructed trees in nRF distance), cophylogenetic
software (eMPRess versus CoRe-PA), dataset size (default versus
modified alignment lengths), event cost parameter (default versus
alternative), and evolutionary divergence (tree height scaling factor
h = 0.1 versus 10).

Random forests are used in machine learning to perform regres-
sion, classification, and other statistical analyses. To evaluate the
relative importance of each variable, the out-of-bag (OOB) data for
the tested variable was randomly shuffled and then this shuffled
OOB data was used to construct 1000 regression trees. The origi-
nal OOB data was used to construct another 1000 regression trees.
On each regression tree, a mean squared error (MSE) is calculated
based on the regression tree’s prediction error rate. The variable
importance is the difference in MSE between the random forest con-
structed on original OOB values and the random forest constructed
on the shuffled OOB values, divided by standard error [10]. We
scaled the importance of each factor to the most important variable
to generate partial dependence plots.

2.3 Empirical study of soil-associated fungi and
their bacterial endosymbionts

Sample acquisition and sequencing. A total of 13 metagenomic
samples of Mortierella spp. and their associated endobacteria were
collected and sequenced. Next-generation sequencing reads were as-
sembled into contigs, which were then used to call single-nucleotide
polymorphism variants (SNVs). The SNV MSAs for fungi and their
bacterial endosymbionts had total length of 4,607,802 bp and 215,165
bp, respectively.



The Impact of Species Tree Estimation Error
on Cophylogenetic Reconstruction

BCB ’23, September 3-6, 2023, Houston, TX, USA

Model conditions ~ Source Taxa #taxa Alnlength ANHD Avg ANHD SE Height Avg Height SE  # cospec #dup #switch # loss
, Host 15 379 0.2241 0.0007 0.4024 0.0042

mixed-gopher [14] symbiont 17 379 0.5249 0.0007 3.0598 0.0359 8 0 8 2
, , Host 7 1,745 0.2371 0.0016 0.2651 0.0016

mixed-stinkbug (17] " Symbiont 12 1,583 0.0661 0.0006 0.1349 0.0011 > > 1 0
, , Host 55 696 0.2599 0.0002 0.6079 0.0046

mixed-primate (4] Symbiont 41 425 0.3376 0.0004 0.8169 0.0050 24 0 422
) Host 24 1,051 0.1734 0.0004 0.4919 0.0036

mixed-damselfly (251 Symbiont 23 3,297 0.1327 0.0004 0.2643 0.0010 4 3 15 4
) Host 82 1,404 0.1021 0.0001 0.2147 0.0013

mixed-moth (521 symbiont 53 4,326 0.0250 0.0000 0.0486 0.0003 13 0 27 12
o [35] Host 37 5,000 0.1087 0.0001 0.1526 0.0009

mixed-bird [11] Symbiont 57 5,000 0.3562 0.0001 0.5459 0.0011 15 12 29 17

Table 1: Summary statistics for mixed simulation datasets. Each mixed simulation condition (“Model conditions”) is based on a
previously published cophylogenetic study (“Source”). For each dataset type (either host or symbiont, as denoted by “Taxa”),
the number of taxa (“# taxa”), true MSA length (“Aln length”), average and standard error of normalized Hamming distance of
true MSAs (“ANHD Avg” and “ANHD SE”, respectively), and average and standard error of model tree height (“Height Avg” and
“Height SE”, respectively) are reported. The number of cospeciation, duplication, host switch, and loss events in the reference
cophylogeny are reported as “# cospec, “# dup”, “# switch”, and “# loss”, respectively.

Model condition Hiips  Stips  Am Ac As Uy ps  time
forward-gopher 35 55 0.3104 1.2000 0.0290 O 0 2.2
forward-stinkbug 35 55 0.2104 1.2000 0.0290 0 0 2.0
forward-primate 203 50 0.3374 0.6246  0.0452 0 0 438
forward-damselfly 25 25 0.1843 0.8846 0.2920 0 0 2.0
forward-bird 27 134 0.0544 0.6000 0.4520 O 0 4.0

Table 2: Treeducken parameters used in forward simula-
tions. Treeducken was used to simulate cophylogenies and
their constituent species phylogenies under a forward-time
coalescent-based model [13]. Treeducken’s model specifies
the following parameters: the symbiont speciation rate Ag,
the symbiont extinction rate /g, the cospeciation rate Ac, the
host speciation rate Ay, the host extinction rate upy, the ex-
pected number of host taxa H;jps, and the expected number
of symbiont taxa Sy;ps.

Reconstruction and comparison of phylogenies and cophylogenies.
Maximum likelihood tree estimation was performed using RAXML
v8.2.12 [45] under finite-sites models of nucleotide sequence evolu-
tion. The latter consisted of the GTR+T" [48] and nested models -
specifically the HKY [15], K80 [20], and Jukes-Cantor [18] models;
these substitution models span a range of model complexity from
simplest (in the case of Jukes-Cantor) to more complex (i.e., GTR,
HKY, and K80). PAUP* [47] was used to conduct additional phylo-
genetic reconstructions using neighbor-joining (NJ) [39] and the
unweighted pair group method with arithmetic mean (UPGMA)
algorithms [44]. Multispecies coalescent model-based species tree
reconstruction was performed using SVDquartet [8]. If SVDquar-
tet produced a tree with polytomies, the matrix rank was set to 1,
4, and 5 to produce three different tree topologies. Reconstructed
phylogenetic trees were midpoint rooted. Finally, the estimated
phylogenetic trees were reconciled to obtain a cophylogeny using
either CoRe-PA [28] or eMPRess [41].

For each dataset, phylogenetic and cophylogenetic estimates
obtained using any phylogenetic estimation method and eMPRess,

respectively, were compared on a pairwise basis using the calcu-
lations described below; CoRe-PA-based results were evaluated
similarly. For each pairwise comparison, phylogenetic tree estima-
tion agreement was assessed using the average of the nRF distance
between the two host trees and the nRF distance between the two
symbiont trees. Then, for each pairwise comparison, cophyloge-
netic estimation agreement was assessed using the precision of
[50]. Linear regression analyses were also performed to assess the
relationship between phylogenetic tree estimation agreement and
cophylogenetic estimation agreement, using the same procedures
as in the simulation study experiments.

2.4 Empirical study of bobtail squids and their
symbiotic bioluminescent bacteria

Sample acquisition and sequencing. Genomic sequence data for
22 samples of bobtail squids from the study of Sanchez et al. [40],
and metadata for 37 Vibrio samples from the study of Bongrand
et al. [5] were downloaded. The concatenated squid MSA had total
length of 37,512 bp. Sanchez et al. [40] sequenced the former via
genome skimming to identify more than 5000 ultraconserved loci.
Host-symbiont association data came from the study of Bongrand
etal. [5].

Reconstruction and comparison of phylogenies and cophylogenies.
We reconstructed a phylogenetic tree for host taxa using the same
approach as in the fungal/endobacterial dataset analysis. The bacte-
rial symbiont phylogeny consisted of the Vibrio phylogeny reported
by Bongrand et al. [5]. Cophylogenetic reconciliation and compari-
son of estimated phylogenies and cophylogenies followed the same
procedures as in the other empirical dataset analysis.

3 RESULTS
3.1 Simulation study

The impact of upstream phylogenetic estimation error on downstream
cophylogenetic reconciliation accuracy. Across the mixed simu-
lation conditions, phylogenetic tree estimation returned average
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Model conditions ~ Source Taxa #taxa Alnlen ANHD Avg ANHD SE Height Avg Height SE #cosp #dup #switch #loss
Host 17 300 0.5664 0.0010 2.3260 0.0313
forward-gopher [14] g piont 16 300 0.5426 0.0009 2.5639 0.0403 16 0 1 0
_ Host 16 1,000 0.5672 0.0012 4.2617 0.0707
forward-stinkbug  [17] g piont 14 1,000 05825 0.0016 3.9159 0.0326 14 0 2 0
_ Host 48 400 0.6030 0.0002 8.0586 0.0791
forward-primate  [46] Symbiont 34 400 0.7017 0.0004 10.7577 0.2931 31 3 17 0
Host 24 1,000 0.3437 0.0003 0.5804 0.0031
forward-damselfly  [25] Symbiont 21 1,000  0.4233 0.0007 1.1334 0.0066 12 ? 12 0
i [35]  Host 31 5000  0.6953 0.0004 4.1329 0.0023
forward-bird [11] Symbiont 54 5000 07125 0.0002 5.0964 0.0027 2 3 10 0

Table 3: Summary statistics for forward simulation datasets. For each model condition (“Model conditions”), Treeducken was
used to perform forward simulations based on a previously published cophylogenetic study (“Source”). Each simulated dataset
consisted of a model cophylogeny, its constituent model species trees and host/symbiont associations, and true MSAs. Table

layout and description are otherwise identical to Table 1.

topological error of 7% and cophylogenetic reconstruction returned
average precision of 66%. (Supplementary Figure S2 reports average
topological errors of estimated species trees and cophylogenies for
each model condition.)

Random forest-based variable importance analyses confirmed
that tree topology inference error was the most important contrib-
utor to cophylogenetic reconciliation accuracy, while the second
most important was evolutionary divergence at 70% of the vari-
able importance of tree topology (Table 4). In our experiments, the
choice of cophylogenetic reconciliation software and the choice of
default versus statistically estimated event cost vectors contributed
the least to cophylogenetic reconciliation accuracy.

The relationship between phylogenetic and cophylogenetic es-
timation error was examined using linear regression: Figure 2a
shows the regression models fitted to observed topological errors
across replicate datasets in each model condition. The regression
analyses were statistically significant in all cases (@ = 0.05; n = 100),
as shown in Supplementary Table S1. Increasing topological error
during upstream estimation was clearly associated with reduced
cophylogenetic accuracy, as evidenced by consistently negative
regression coefficients and average regression coefficient of —1.96
across model conditions. We also observed varying scatter around
fitted models: the coefficient of determination was highest in the
mixed-gopher, mixed-stinkbug, and mixed-primate model condi-
tions — ranging between 0.47 and 0.89 — and lower in others.

As in the mixed simulations, the partial dependence scores from
random forest-based variable importance analysis showed that tree
topology inference error was the most important contributor to co-
phylogenetic reconciliation accuracy in forward simulations, with
evolutionary divergence having 82% of the relative importance of
tree topology (Table 4). Similar to mixed simulations, the choice of
cophylogenetic reconciliation software and the choice of default
versus statistically estimated event cost vectors contributed the
least to cophylogenetic reconciliation accuracy in forward sim-
ulation experiments. Topological error of estimated phylogenies
and cophylogenies varied among forward simulation conditions.
The observation is due in part to heterogeneity among the empir-
ical estimates that served as the basis for the forward simulation
conditions. On the other hand, topological errors were somewhat

higher than in the other simulation experiments: the forward sim-
ulation experiments returned average tree topology error of 13%
and average cophylogenetic precision of 35% (Supplementary Fig-
ure S4). As shown in Figure 2b, correlation between upstream tree
estimation error and downstream cophylogeny reconstruction pre-
cision yielded similar findings as in the rest of simulation study.
We observed significant and negative correlation in all forward
simulation conditions (Supplementary Table S2). Furthermore, the
coefficient of determination varied across forward simulation condi-
tions in a similar pattern to the mixed simulation conditions, based
on shared empirical dataset estimates. The largest values were seen
on forward-gopher, forward-stinkbug, and forward-primate model
conditions — ranging between 0.585 and 0.744; smaller values were
seen on the other model conditions.

The impact of evolutionary divergence on the relationship between
phylogenetic and cophylogenetic reconstruction accuracy. For each
set of forward simulation conditions (Figure 3b), we found that
phylogenetic and cophylogenetic estimation error was negatively
and significantly correlated as the tree height parameter h varied
between 0.1 and 10. Regression analysis returned regression coeffi-
cients between —0.899 and —0.220, and coeflicients of determination
between 0.668 and 0.222 (Supplementary Table S4). Both upstream
and downstream topological error was lowest for the smallest h
settings (i.e., 0.1, 0.5, and 1.0). As the height h increased, both
topological errors increased in tandem, and both were largest on
simulations with height h = 10. The latter was likely at saturation,
as topological errors tended to be maximal. Similar outcomes were
observed in the corresponding mixed simulation experiments with
varying tree height h, as shown in Figure 3a. The effect of increas-
ing h on topological error was more complicated and non-linear
in some cases. This was in part due to heterogeneity of empirical
estimates used for parametric resampling, unlike the fully in silico
simulations used elsewhere in the simulation study.

3.2 Empirical study

Soil-associated fungi and their bacterial endosymbionts. Topologi-
cal disagreements among estimated phylogenies were higher than
in the simulation study (Supplementary Figure S5); a similar out-
come was observed among estimated cophylogenies. This is by
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Simulations Tree topology  Evolutionary divergence Dataset size Cophylogenetic software Event cost parameter
Mixed 1.0000 0.7029 0.5511 0.3513 0.0611
Forward-time 1.0000 0.8160 0.7786 0.3144

Table 4: Simulation study: variable importance assessment for mixed and forward simulations. A random forest model was used
to determine the mean importance of each variable. Results are reported as an average across all mixed simulation conditions
and scaled relative to the most importance variable (n = 100), and similarly for the forward simulation conditions.

design: the empirical study utilized a wide array of phylogenetic re-
construction methods with varying estimation accuracy. The design
choice provides an indirect means to vary the topological accuracy
of input phylogenies and then observe its effects on downstream
cophylogenetic estimation, in contrast to the direct control and
model/reference comparisons enabled by in silico simulations. We
analyzed the relationship between phylogenetic and cophylogenetic
estimation error using linear regression (Figure 4a). Consistent with
the simulation study, we observed that greater topological agree-
ment in the former set of inputs was significantly associated with
greater topological agreement of the latter output, as assessed using
an F-test with Benjamini-Hochberg [3] correction for multiple tests
(a = 0.05; n = 114). The full assembly dataset analysis returned a
regression coefficient of —2.067 and coefficient of determination of
0.672, which is also in line with the simulation study.

Bobtail squids and their symbiotic bioluminescent bacteria Topolog-
ical disagreements among species cophylogenies and resulting co-
phylogenetic reconciliations were somewhat smaller than those ob-
served on the fungal/endosymbiont dataset (Supplementary Figure
S6). Another key difference concerns host/symbiont associations:
relatively few squid hosts were associated with most bacterial sym-
bionts. Still, we observed a similar relationship between upstream
phylogenetic estimation agreement and downstream cophylogeny
precision (Figure 4b). Linear regression analyses returned signif-
icant and negative correlation (@ = 0.05; n = 216), along with a
regression coefficient of —0.449, intercept of 0.841, F-test p-value
< 10712, coefficient of determination of 0.213, and residual standard
error of 0.109.

4 DISCUSSION

Across all forward simulation experiments, correlation between
upstream phylogenetic estimation error and downstream cophylo-
genetic estimation accuracy was significant and consistently nega-
tive. As the former increased, the latter would degrade. The mixed
simulation experiments and empirical dataset analyses involving
eMPRess-estimated cophylogenies (as well as a supplementary sim-
ulation experiment involving TALE, as described in the Supplemen-
tary Online Materials) also returned a consistent outcome: namely,
a significant and negatively correlated relationship between up-
stream phylogenetic reconstruction error and downstream cophy-
logenetic estimation reproducibility. The expanded simulation ex-
periments that focused on varying evolutionary divergence (while
fixing other experimental factors) refined our study’s primary find-
ing and demonstrated that evolutionary divergence plays a key
role in modulating upstream and downstream estimation error in
tandem. Of course, other factors also play a role (e.g., taxon sam-
pling, choice of phylogenetic and cophylogenetic reconstruction

method(s), coevolutionary event distribution, evolutionary and co-
evolutionary model mis-specification, etc.), and the relationship
between phylogenetic and cophylogenetic reconstruction is com-
plex [12]. Heterogeneity among simulation conditions due to these
factors helps to explain some of the more minor differences among
experimental outcomes. Nevertheless, our primary finding - that
phylogenetic estimation error strongly impacts downstream co-
phylogenetic reconciliation accuracy — was robust to these factors.
Furthermore, variable importance analyses revealed that phylo-
genetic tree estimation error was the most important experiment
factor associated with cophylogenetic reconciliation accuracy, com-
pared to the other factors.

We note a key difference between the simulation study and the
empirical study. A primary advantage of the former is the ability
to benchmark against model/reference phylogenies and cophyloge-
nies. But the latter is inherently more complex and nuanced than
the former. For example, the two systems in our empirical study
are models sampled along a continuum of symbiotic coevolution
modes [34]: from open - as in the case of bobtail squids and their
bioluminescent symbionts [34] - to mixed to closed - as in the case
of early diverging fungi and their endosymbionts [33]. Where a
system exists along this continuum is thought to strongly influence
the probabilities of different coevolutionary events: for example,
host shifts occur more frequently in an open system, and cospe-
ciation predominates in a closed system. Depending on the taxa
under study, it is plausible that symbiotic coevolution may switch
between different modes along a phylogeny (e.g., from closed to
mixed). But we are not aware of any suitable non-homogeneous
cophylogenetic models and we also lack a basic understanding
of their theoretical properties (e.g., statistical identifiability). The
gap between natural symbiotic coevolution and current statistical
cophylogenetic modeling represents an opportunity for advanced
model and methods development; for now, this study is constrained
by the limitations of the state of the art.

5 CONCLUSIONS

This study demonstrated the major effect that phylogenetic esti-
mation error has on downstream cophylogenetic reconstruction
accuracy. The finding was consistently observed throughout the
simulation study experiments. Empirical analyses of two genomic
sequence datasets for models of symbiosis also revealed that vari-
able phylogenetic tree estimation quality decreased reproducibility
of cophylogenetic estimation.

We propose the following strategies to put the key findings of
our study into practice. One ideal solution would be to develop and
utilize a new generation of cophylogenetic reconstruction methods
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(b) Forward simulation conditions.

Figure 2: Simulation study: the relationship between phylo-
genetic and cophylogenetic estimation error. For each model
condition, the topological error returned by phylogenetic
tree estimation (averaged across the pair of host and sym-
biont datasets) and the precision returned by cophylogenetic
reconstruction are shown for each replicate dataset (n = 100).
A fitted linear regression model is shown for each model
condition as well, and the 95% confidence interval is shown
in grey around the regression line. A red box inside each plot
shows the regression coefficient § and an asterisk (*) denot-
ing statistical significance (a« = 0.05; n = 100) using an F-test
with Benjamini-Hochberg multiple test correction [3]. The
linear regression analyses were statistically significant in all
cases. (Supplementary Tables S1 and S2 provide additional
regression analysis results.)

that account for upstream phylogenetic estimation error and per-
form statistical inference and learning directly from biomolecular
sequence data inputs. To our knowledge, the choices are very lim-
ited for now. We are aware of one option that represents a partial
first step towards this goal: a new method called TALE [27] which
accepts distributions of symbiont species trees and gene trees as
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(b) Forward simulation experiments.

Figure 3: Simulation study: the impact of evolutionary di-
vergence on phylogenetic and cophylogenetic estimation error.
Estimation error was assessed based upon average topologi-
cal error of estimated trees (averaged across the pair of host
and symbiont datasets) and cophylogenetic precision. Model
tree branch lengths were scaled by height parameter h (“fac-
tor”); data points for a given setting of h are distinguished
by a distinct color. A fitted linear regression model is shown
for each simulation condition. A red box inside each plot
shows the regression coefficient § and an asterisk (*) denot-
ing statistical significance (o = 0.05; n = 600) using an F-test
with Benjamini-Hochberg multiple test correction [3]. The
linear regression analyses were statistically significant in all
cases. (Supplementary Tables S3 and S4 provide additional
regression analysis results.)

input, but only a point estimate for the host species tree (as of this
writing). However, given the outcome of a supplementary exper-
iment involving TALE as well as other considerations regarding
TALE’s design (see Supplementary Online Materials section S7), our
study underscores the need for continued research, modeling, and
computational methods development in this direction. By far the
most widely used options for cophylogenetic reconstruction remain
the current generation of methods which require fixed species trees
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Figure 4: Empirical study: topological discordance among phy-
logenetic and cophylogenetic estimates. The scatterplots show
topological discordance between each pair of different phy-
logenetic tree estimation methods — averaged across the host
dataset and symbiont dataset — versus disagreement among
the resulting cophylogenetic reconciliations produced using
either eMPRess or CoRe-PA. (a) In the fungal dataset, a range
of different phylogenetic tree estimation methods were used
to estimate phylogenetic trees on the host dataset and the
symbiont dataset. Along with the known host/symbiont as-
sociations, each estimated host tree and symbiont tree pair
returned by a given phylogenetic tree estimation method
was reconciled into a cophylogeny using either eMPRess or
CoRe-PA. Topological discordance between different host
trees estimated by different methods was assessed on a pair-
wise basis using nRF distance. Disagreement among cophy-
logenies estimated using eMPRess reconciliation of differ-
ent phylogenetic tree estimates was assessed on a pairwise
basis using cophylogenetic precision; disagreement among
CoRe-PA estimates was evaluated similarly. A fitted linear
regression model is shown (n = 114). (b) The squid dataset
analyses used a symbiont tree that was fixed to the estimate
of [40] and n = 216; analyses and results are otherwise re-
ported similarly to the fungal dataset.

as input. In lieu of an ideal solution, we provide the following prac-
tical guidance as temporary workarounds. First, we propose that
researchers adopt more intensive species tree reconstruction as best
practices in a cophylogenetic study. For example, we recommend
that researchers select more intensive local optimization heuristic
settings for addressing the computationally difficult tree recon-
struction problems in this study and in the state of the art. Second,
more intensive sequencing effort to obtain additional high-quality
biomolecular sequence data can also help, assuming that suitable
methods can be used to account for the complex interplay of evolu-
tionary processes — substitutions, sequence insertion and deletion,
genetic drift and incomplete lineage sorting, and more - that arises
in this setting. A new generation of phylogenomic inference and
learning methods are now used to better address species phylogeny
reconstruction using large-scale multi-locus and/or genomic se-
quence data, and they may also pay dividends when reconstructing
cophylogenies using genomic sequence analysis.

We conclude with thoughts on future research directions. First,
we have already mentioned the need for richer coevolutionary
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models. Our study’s empirical models of open symbiosis (Hawai-
ian bobtail squid and its bioluminescent bacterial symbiont) and
closed symbiosis (soil-associated fungi and its bacterial endosym-
bionts) bookend a rich spectrum of symbiotic lifestyles and co-
evolution modes. Richer statistical models are urgently needed to
better account for the dynamic interplay of different coevolution-
ary processes that can shift over time. Second, new methods that
jointly reconstruct species trees, gene trees, and a cophylogeny
from multi-locus sequence data are needed. While TALE represents
an important partial step in this direction, more methodological
research and development is needed. But important prerequisites
must be addressed first: realistic models of coevolution that also
permit tractable statistical calculations, as well as statistically ef-
ficient inference and learning algorithms under the new models.
Scalability-enhancing algorithmic techniques such as phylogenetic
divide-and-conquer [16, 23, 29] may prove fruitful here.

6 DATA AVAILABILITY

Updated versions of the study data and software scripts underlying
this article are available in the public GitLab repository at https://

gitlab.msu.edu/liulab/cophylogeny-species-tree-quality-performance-

study-data-scripts. An archival snapshot of the study data and soft-
ware scripts has been uploaded to Figshare and can be accessed at
https://doi.org/10.6084/m9.figshare.21713996.v1.
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S1 SUPPLEMENTARY METHODS

Simulate species trees Experimental replicates using species trees as generative models
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Fig. S1. Illustrated overview of simulation study experiments. Two simulation procedures were used to simulate
datasets. The procedures differ in the cophylogeny source and simulation software that they utilized. (A)
The “mixed” simulation experiments utilized a cophylogeny and constituent species trees that were based on
empirical dataset analyses. (B) The fully in-silico “forward”-in-time simulations sampled cophylogenies and
constituent species trees under Treeducken’s forward-in-time coalescent-based cophylogeny model [12]. Since
both serve as generative parametric models in our simulations, we refer to them as “model cophylogenies”
and “model trees”, respectively. (C) For each model condition, sequence evolution along each constituent
species tree was simulated under finite-sites models, resulting in a multiple sequence alignment (MSA). The
simulation procedure was repeated to obtain k experimental replicates. (D) Phylogenetic and cophylogenetic
reconstruction was performed using a computational pipeline. For each replicate dataset, a phylogenetic
tree was reconstructed for host taxa using their corresponding MSA as input, and similarly for symbionts.
The estimated host tree and estimated symbiont tree were combined with host/symbiont association data

to produce a tanglegram. The two species trees and host/symbiont associations were then used as input to
reconstruct a cophylogeny.

S2 SUPPLEMENTARY RESULTS
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Model conditions intercept B coefficient R? RSE p-value g-value
mixed-gopher 0.9146 -2.9996 0.6406 0.1061 <107'® <1075
mixed-stinkbug  0.9254 -2.0067 0.8903 0.0331 <107'¢ <107
mixed-primate 0.6704 -2.3987 0.4732 0.0511 <107® <1071
mixed-damselfly  0.5590 -1.1198 0.0564 0.0928 0.0173  0.0173
mixed-moth 0.7460 -1.4036 0.1010 0.1146 0.0012  0.0025
mixed-bird 0.9341 -1.8328 0.1663 0.0408 < 107> <107°

Table S1. Linear regression results for mixed simulation experiments. The fitted model’s intercept
(“intercept”), regression coefficient (“B coefficient”), coefficient of determination (“R?”), and residual standard
error (“RSE”) are shown. Statistical significance was assessed using the F-test, and uncorrected p-values
(“p-value”) and corrected g-values (“g-value”) based on Benjamini-Hochberg multiple test correction [5] are
reported (n = 100).

Model conditions  intercept B coefficient R? RSE p-value g-value
forward-gopher ~ 0.7385 -1.1485 0.5854 0.0680 < 107 < 107%
forward-stinkbug ~ 0.6729 -1.2848 0.6171 0.0632 <107 <1072
forward-primate  0.4968 -0.9702 0.7442 0.0312 <107 <1073
forward-damselfly 0.2252 -0.3232 0.1035 0.0326 0.0011  0.0011

forward-bird 0.2495 -0.5780 0.1129 0.0141 <107°® < 107°

Table S2. Linear regression results for forward-time simulation experiments. Table layout and descrip-
tion are otherwise identical to Table S1.

Model conditions intercept B coefficient R? RSE p-value g-value
mixed-gopher 0.7901 -1.4661 0.7906 0.1216 <107% <107’
mixed-stinkbug ~ 0.8930 -1.6693 0.7860 0.0543 <1071 <1074
mixed-primate 0.6218 -1.3590 0.8797 0.0570 < 107! <107
mixed-damselfly  0.5514 -0.9679 0.1880 0.1067 < 107> <107°
mixed-moth 0.6783 -0.9971 0.6026 0.1090 < 107> <107°
mixed-bird 0.9329 -2.2698 0.7975 0.0706 < 1071¢ < 10716

Table S3. Linear regression results for mixed simulation experiments with varying evolutionary
divergence. Table layout and description are otherwise identical to Table S1.

Model conditions  intercept B coefficient R? RSE p-value g-value
forward-gopher  0.6677 -0.8078 0.9091 0.0738 <107 <1073
forward-stinkbug ~ 0.6429 -0.8991 0.9091 0.0777 <107 < 107313
forward-primate ~ 0.4133 -0.5121 0.8796 0.0584 < 1071¢ < 10727
forward-damselfly 0.2217 -0.2200 0.1693 0.0344 <1071 < 107%
forward-bird 0.2241 -0.2553 0.9317 0.0257 <1071 0

Table S4. Linear regression results for forward-time simulation experiments with varying evolu-
tionary divergence. Table layout and description are otherwise identical to Table S1.
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Fig. S2. For each mixed simulation condition, host tree topology error, average symbiont tree
topology error, and cophylogenetic precision are shown. Averages are reported across all experimental
replicate for each model condition (n = 100). Standard error bars are shown.
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Fig. S3. Backward simulation bar graphs for average host tree topology error, average symbiont tree
topology error, and average cophylogenetic precision. Averages are reported across all experimental
replicate for each model condition (n = 100). Error bars visualize standard error.
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Fig. S4. Forward simulation bar graphs for average host tree topology error, average symbiont tree
topology error, and average cophylogenetic precision. Error bars visualize standard error. Averages are
reported across all experimental replicate for each model condition (n = 100).
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Fig. S5. Bar graphs for Mortierella spp. and endobacteria dataset. Top to bottom: Average host tree

error, average symbiont tree error, and average cophylogenetic precision (n = 100). Standard error bars are
also shown.
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Fig. S6. Bar plots for bobtail squid and Vibrio dataset for average host tree error and average
cophylogenetic precision. Averages are reported across all experimental replicates (n = 100). Standard
error bars are also shown.
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S3 METAGENOMIC PROCESSING AND CONTIG ASSEMBLY FOR MORTIERELLA SPP.
AND ENDOSYMBIONT

Sample acquisition and sequencing. Isolates were collected and also sourced from established
culture collections. Modified versions of the soil plate [32] and selective-baiting method [28] were
used to isolate Mortierellomycotina from soil. The techniques described in [6] were used to isolate
Mortierellomycotina from pine and spruce roots.

In total, thirteen metagenomic samples of Mortierella spp. and their associated endobacteria
were collected and sequenced (Table S5). Ten samples were sequenced using Illumina HiSeq 2500
short-read sequencing and three samples were sequenced using PacBio long-read sequencing.

Mlumina-sequenced metagenomic reads were trimmed with BBDuk (ftl=5 minlen=90) [7] to
remove Illumina adapters, trim five leftmost bases, and discard reads shorter than 90 bp after
trimming. The quality of trimmed reads was assessed by FastQC [1]. De novo assembly of the
metagenomic samples was conducted with SPAdes (-k 21,33,55,77,99,127) [3] to produce contigs.
BBMap [7] was used to calculate summary statistics on assembled contigs. BUSCO [29] was used
with the mucoromycota_odb10 and burkholderiales_odb10 databases to assess the completeness of
de novo assembly and confirm the presence of endobacteria, respectively (Table S6).

The PacBio-sequenced metagenomic reads were de novo assembled with CANU [16], with the
exception of sample AV005: its draft assembly was obtained directly from JGI (Project ID: 1203140).
Completeness and summary statistics were assessed in the same manner as for Illumina-sequenced
assemblies (Table S6).

Sample ID  BioProject BioSample SRA accession GOLD JGIID Instrument Geographic location Specimen Scope  Fungal organism
AD022 PRINA367465 SAMNO06267312 SRR5822949 Gp0136994 Tllumina HiSeq 2500 Bryce Canyon, UT, USA  Rhizosphere Mortierella elongata
AD045 PRJNA340843 SAMNO05720529 SRR5190920 Gp0154302 Tllumina HiSeq 2500 East Lansing, MI, USA  Rhizosphere Mortierella gamsii
ADO51 PRJNA370772 SAMNO06297100 SRS2351483 Gp0136990 PacBio RS II Laingsburg, MI, USA Rhizosphere Mortierella minutissima
ADO058 PRJNA340839 SAMNO05720441 SRR5190916 Gp0154298 Illumina HiSeq 2500 Laingsburg, MI, USA Rhizosphere Podila epicladia

ADO073 PRJNA364919 SAMNO06265150 SRR5822802 Gp0136992 Illumina HiSeq 2500 Michigan, USA Rhizosphere Mortierella elongata
ADO086 PRJNA365031 SAMNO06264397 SRR5822800 Gp0136991 Tllumina HiSeq 2500 Coatesville, PA, USA Soil Mortierella humilis
AD266 PRJNA713069 SAMN18261529 NA Gp0397541 PacBio Sequel Oregon, USA Soil Mortierella alpina
AM1000  PRJNA340828 SAMNO05720794 SRS1930920 Gp0154287 Tllumina HiSeq 2500 Illinois, USA Monoisolate Mortierella clonocystis
AM980 PRJNA340833 SAMNO05720525 SRR5190941 Gp0154292 Tllumina HiSeq 2500 NA Monoisolate Mortierella elongata
AV005 PRJNA713068 SAMN18259510 NA Gp0397540 PacBio Sequel Camuy, Puerto Rico Soil Mortierella capitata
CK281 PRJNA364924 SAMNO06266091 SRR5823416 Gp0136997 Illumina HiSeq 2500 North Carolina, USA Soil Mortierella minutissima
NVP60 PRJNA340844 SAMNO05720530 SRR5192043 Gp0154303 Tllumina HiSeq 2500 Cassopolis, MI, USA Monoisolate Linnemannia gamsii
TTC192 PRJNA410574 SAMNO07687234 SRR6257765 Gp0154326 Illumina HiSeq 2500 North Carolina, USA Soil Mortierella verticillata

Table S5. List of Mortierella spp. and endobacteria used in this study.

Metagenomic assembly summary statistics BUSCO Marker Percentage (Mortierella spp.) BUSCO Marker Percentage (endobacteria)

Sample ID # Contig Mbp L50 N50 GC% Full Single Duplicate Fragment Full Single Duplicate Fragment
ADO022 14019 50.92 9866 1486 48.64 933 92.0 13 2.4 89.2 885 0.7 1.2
ADO045 4647 49.84 23855 618  47.70 945 934 11 14 90.0 89.4 0.6 1.2
ADO051 577 49.90 487613 29 48.90 974 923 5.1 0.2 88.9 827 6.2 1.2
ADO058 7618 41.20 9691 1226 48.35 82.6 81.2 14 5.8 86.4 858 0.6 1.2
ADO073 2797 50.79 113421 125 4827 97.5 96.0 15 0.5 89.7 89.0 0.7 1.2
ADO086 6417 4546 85097 158  48.60 96.7 94.4 23 0.8 85.1 84.4 0.7 1.9
AD266 471 41.25 150867 77 50.13 90.0 88.0 2.0 17 89.8 89.1 0.7 0.6
AM1000 5069 41.99 16545 784 4839 943 92.6 17 2.2 81.9 81.2 0.7 4.1
AM980 27840 23.86 2648 655  47.76 16 14 0.2 0.3 933 89.4 3.9 0.4
AV005 151 39.25 647500 21 49.35 929 923 0.6 1.9 89.3 887 0.6 1.0
CK281 3629 45.73 29152 448  48.54 96.6 94.7 1.9 2.5 90.4 89.4 1.0 13
NVP60 12396 50.25 7755 1896 48.13 86.0 84.9 1.1 5.7 89.6 89.2 0.4 1.2
TTC192 6909 42.60 11619 1075 48.95 85.6 84.2 14 5.2 90.7 90.1 0.6 1.0

Table S6. Summary statistics for Mortierella spp. and endobacterial assemblies.
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Variant calling. The all-genomic-loci dataset was processed using the following steps. Contigs
were extracted using the draft genome Linnemannia elongata AD073 v1.0 (JGI Project ID: 1203123)
as the reference genome for fungus and draft genome Mycoavidus cysteinexigens B1-EB (Genome
ID: 1553431.3) from the PATRIC database as a reference for endobacteria. The reference fungal
genome was processed using RepeatMasker [9]. BLASTN (-outfmt 6 -max_target_seqs 200) [8]
was used to identify fungus and endobacteria in the de novo assembly against the corresponding
reference genomes. Seqtk (subseq -1 60) [17] analyzed BLAST hits to recover a draft fungal genome
and a draft endobacteria genome from the de novo assembly. Variant calling was performed with
the MUMmer package [11] using the draft genomes against the reference genomes. Within the
MUMmer suite [11], NUCmer was used to align the draft genome against the reference and show-
snps identified the single nucleotide variants (SNV). Then, the MUMmerSNPs2VCF software was
used to convert SNVs into a VCF-formatted file (software downloaded from https://github.com/
liangjiaoxue/PythonNGSTools). Sequences with greater than 99.95% sequence similarity were
pruned. The SNV MSA for Mortierella spp. was 4,607,802 bp long with 81.9% gappiness and 0.03%
average normalized Hamming distance (ANHD); whereas the associated endobacteria had SNV
alignments of length 215,165 bp with 47.4% gappiness and 0.22% ANHD.

S4 BACKWARDS-IN-TIME SIMULATIONS AND EXPERIMENTS

Simulation and experimental procedures. The backward-time model of [2] was used to simulate
coevolution among n host taxa and n symbiont taxa, as well as host/symbiont associations. Our
simulations explored varying numbers of taxa n € {10, 50, 100, 500}. The simulations made use
of a custom-modified Python program that was originally implemented by Avino et al. [2]. The
simulation program takes a host tree as input and simulates a symbiont tree backward-in-time along
the host tree by randomly drawing wait times to determine the timing and type of coevolutionary
event(s) on a particular host tree branch. We used INDELible to sample host trees under a random
birth-death model (see Supplementary Materials for more details). Model trees were deviated away
from ultrametricity using Moret et al. [22]’s approach with deviation factor ¢ = 2.0 [23]. We used
custom scripts to perform the ultrametricity deviation calculations. We note that the Avino et al.
[2]’s simulation software does not directly provide the model cophylogeny as output. Instead, a
reference cophylogeny was obtained using eMPRess estimation on the true model trees for host and
symbiont taxa as input. The choice of reference cophylogeny allows comparison of cophylogenetic
estimation when ground truth inputs are provided (i.e., true model trees) versus cophylogenetic
estimation when estimated trees are used as input.

Simulation of sequence evolution along model phylogenies followed the same procedure as in
the mixed simulations. The substitution model parameters were based on empirical estimates from
our re-analysis of the dataset from [10]’s study. Model condition parameter values and simulated
dataset summary statistics are listed in Table S7.

As with the mixed simulations, additional experiments with varying evolutionary divergence
were performed using the backward-time simulation procedure. The scaling parameter h was
similarly set to a value from {0.1,0.5,1, 2,5, 10}.

Results and discussion. Similar outcomes were observed in the backward-time simulation ex-
periments, as compared to the mixed simulation experiments. Upstream tree estimation returned
topological error of around 10% or less (Supplementary Figure S3). Estimated cophylogeny preci-
sion was also similar — ranging around 50% to 60%. Negative and significant correlation between
upstream tree error and downstream cophylogeny precision was observed on all model conditions
(a = 0.05; n = 100), as shown in Supplementary Figure S7. Regression coefficients ranged between
—0.644 and —0.848 (Table S8). Scatter around linear regression models was smaller than in the
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Model conditions Taxa #taxa Alnlength ANHD Avg ANHD SE Height Avg Height SE # cospec # dup # switch
Host 10 1,000 0.6298 0.0008 26711 0.0191

backward-10 Symbiont 10 1,000 06820  0.0011 44742 0.0466 5 1 2
Host 50 1,000 0.7060 0.0002 8.8000 0.0465

backward-50 Symbiont 50 1,000 0.7232 0.0001 8.9585 0.1965 15 13 12
Host 100 10,000 0.7281 0.0000 8.1247 0.0439

backward-100 Symbiont 100 10,000 0.7283 0.0000 8.6243 0.0448 34 32 4
Host 500 10,000 0.7951 0.0039 46108 0.0077

backward-500 o/ pione 500 10,000 07894 0.0039 56020 0.0474 157177 27

Table S7. Summary statistics for backward-time simulation datasets. Each backward-time simulation
condition (“Model conditions”) varied the number of host and symbiont taxa (“# taxa”) simulated under Avino
et al. [2]’s backward-time coevolutionary model. The simulations included cospeciation, duplication, and
host switch events, but not loss events.

backward-time simulations, with coefficient of determination between 0.653 and 0.938. One minor
difference between backward-time simulation experiments and mixed simulation experiments is
that former the returned more consistent regression analysis results compared to the latter. We
attribute the difference in part to the relative heterogeneity of the mixed simulation conditions
compared to the backward-time simulation conditions.

Cophylogeny precision
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Fig. S7. The relationship between phylogenetic and cophylogenetic estimation error on the
backward-time simulation conditions.

Simple Linear Regression

Model conditions intercept B coefficient R? RSE p-value q-value
backward-10 0.6018 -0.6870 0.6525 0.1644 <10°™ <1078
backward-50 0.6236 -0.7010 0.9074 0.0817 <1077 <1077
backward-100 0.6482 -0.6438 0.9379 0.0545 <107° <107°
backward-500 0.7793 -0.8475 0.8950 0.0968 <10™° <107°

Table S8. Linear regression results for backward-time simulation experiments.
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Simple Linear Regression
Model conditions intercept B coefficient R? RSE p-value g-value
backward-10 0.5458 -0.6163 0.7227 0.1541 <107 < 10718
backward-50 0.6049 -0.6578 0.9253 0.0783 <1071 0
backward-100 0.5647 -0.6028 0.9566 0.0530 <1076 0
backward-500 0.7152 -0.7807 0.9189 0.0936 <107 0

Table S9. Linear regression results for backward-time simulation experiments with varying evolu-
tionary divergence.
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Fig. S8. Backward-time simulation experiments: the impact of evolutionary divergence on phyloge-
netic and cophylogenetic estimation error.

S5 COMPARISON BETWEEN DEFAULT EVENT COST PENALTY AND ALTERNATIVE
EVENT PENALTIES

Experiments on event costs used for co-phylogenetic reconciliation. Reconciliations were assessed
with different event costs estimated by COALA and CoRe-PA. On all forward-time model conditions,
we found that the alternative event costs did not outperform the default event costs used by eMPRess
(Figure S10). A similar outcome was observed on the mixed simulation conditions (Figure S9). For
this reason, our performance study primarily utilizes default event costs to perform eMPRess
analyses.
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Fig. S9. Effect of using default event cost versus COALA and CoRe-PA-estimated event frequencies
in eMPRess reconciliations for mixed simulations. Co-phylogenetic precision is reported across all model
condition, each with n = 100 experimental replicates.
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Fig. S10. Effect of using default event cost versus COALA and CoRe-PA-estimated event frequencies
in eMPRess reconciliations for forward simulations. Co-phylogenetic accuracy is reported across all
model condition, each with n = 100 experimental replicates.

S6 EXPERIMENTS WITH CORE-PA

Following the simulation methods section in the main paper, we used the same experimental condi-
tions and reconstructed the cophylogenies using CoRe-PA [20] instead of eMPRess. In general, we
obtained similar findings in CoRe-PA experiments as in the eMPRess experiments, thus confirming
our findings in the main manuscript.
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S6.1 Mixed simulation results with CoRe-PA

We obtained similar results using CoRe-PA as we did with eMPRess. There exists a negative
correlation between cophylogeny precision and average host and symbiont tree topology error.
The confidence band around the simple linear regressions were tight, indicating the data points
clustered around the regression line.

Contrary to eMPRess results, the mixed-stinkbug model condition obtained a nearly horizontal
regression line, showing that for this dataset, 15% perturbance in the tree topology did not result in
appreciable change to the cophylogenetic precision, which remained low at under 5% cophylogenetic
precision. The original annotation cophylogeny reconstruction was estimated using eMPRess, which
predicted 5 cospeciations, 5 duplications, and 1 host switch event. On the other hand, CoRe-PA
reconstructions on the replicate simulations on average predicted 2 cospeciations and 2 duplications.
We attribute the finding to CoRe-PA’s low cophylogenetic precision, which was among the lowest
observed in our study. The topological error returned by its cophylogenetic reconstructions may
overshadow the influence of upstream estimation error and other factors.
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Fig. S11. Mixed simulation datasets: precision of CoRe-PA reconciliations compared with averaged host
and symbiont tree normalized Robinson-Fould (nRF) distances. For each height scaling factor, a set of 100
replicates were simulated. Co-phylogenetic reconciliation precision was calculated as the aggregate statistic
for events found in all of the replicate cophylogeny reconstructions and their respective, original annotation
cophylogeny reconstruction.

S$6.2 Backward-time simulation results with CoRe-PA

In backward-time simulations, we obtained similar results using CoRe-PA as we did with eMPRess
such that there exists a negative correlation between cophylogeny precision and average host and
symbiont tree topology error. The data points clustered around the regression line as indicated by
the tight confidence band around the simple linear regressions line.

S$6.3 Forward-time simulation results with CoRe-PA

In forward-time simulations, we obtained similar results using CoRe-PA as we did with eMPRess.
We found a negative correlation between cophylogeny precision and average host and symbiont
tree topology error. The confidence band around the simple linear regressions were tight, indicating
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Simple Linear Regression

Model conditions intercept B coefficient R® RSE p-value
mixed-gopher 0.3655 -1.2081 0.4621 0.0606 < 1071
mixed-stinkbug 0.0438 0.0061 0.0022 0.0061 0.4176
mixed-primate 0.2161 -0.7561 0.3726 0.0196 < 1071
mixed-damselfly  0.0381 -0.1989 0.0218 0.0264 < 107°
mixed-moth 0.1056 -0.1167 0.0194 0.0225 <107°
mixed-bird 0.9341 -1.8328 0.1663 0.0408 < 107>

Table S10. Linear regression results for mixed simulation experiments involving CoRe-PA.
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Fig. S12. Backward-time simulation datasets: precision of CoRe-PA reconciliations compared with averaged
host and symbiont tree normalized Robinson-Fould (nRF) distances. For each height scaling factor, a set
of 100 replicates were simulated. Co-phylogenetic reconciliation precision was calculated as the aggregate
statistic for events found in all of the replicate cophylogeny reconstructions and their respective, original
annotation cophylogeny reconstruction.

Simple Linear Regression

Model conditions intercept B coefficient R? RSE p-value
backward-10 0.4689 -1.6189 0.3565 0.1031 < 107'°
backward-50 0.4327 -0.9491 0.2813 0.0481 < 107'°
backward-100 0.4305 -2.9033 0.3227 0.0333 < 1071°
backward-500 0.5380 -1.7934 0.2201 0.0210 < 1071°

Table S11. Linear regression results for backward-time simulation experiments involving CoRe-PA.

the data points clustered around the regression line. The forward-damselfly model condition corre-
sponded with the mixed-damselfly model condition in mixed simulations, which also demonstrated
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a linear regression line slope that was smaller in magnitude in CoRe-PA results than in eMPRess
results. Similarly, forward-bird model condition corresponded with the mixed-bird model condition
in mixed simulations, and it also demonstrated a linear regression line slope that was smaller in
magnitude in CoRe-PA results than in eMPRess results. Contrary to mixed simulations, forward-
stinkbug obtained a trendline closer to model conditions mixed-stinkbug and forward-stinkbug
from eMPRess results.
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Fig. S13. Forward-time simulation datasets: accuracy of CoRe-PA reconciliations compared with averaged
host and symbiont tree normalized Robinson-Fould (nRF) distances. Co-phylogenetic reconciliation accuracy
was calculated as the aggregate statistic for events found in the 100 replicate cophylogeny reconstructions
that were also found in the true coevolutionary history.

Simple Linear Regression

Model conditions  intercept B coefficient R? RSE p-value
forward-gopher 0.6913 -1.0173 0.4635 0.0707 <1071
forward-stinkbug ~ 0.6470  -1.1315 05401 0.0641 <107
forward-primate 0.4654 -0.9690 0.7348 0.0315 < 10716
forward-damselfly 0.1813 0.0374 0.0014  0.0346  0.3090

forward-bird 0.2309 -0.4118 0.1380 0.0230 <1076

Table S12. Linear regression results for forward-time simulation experiments involving CoRe-PA.

S7 MULTILOCUS SIMULATION EXPERIMENT WITH TALE

TALE [19] is a new, multilocus, probabilistic DTL-based cophylogenetic reconstruction method.
We conducted an experiment using multilocus data simulations to assess how reproducible TALE’s
cophylogenetic reconciliations are in the presence of phylogenetic uncertainty.

Experimental design. The model host and symbiont species trees and true MSA for gopher-lice
match that of our main manuscript’s mixed-gopher model condition summary statistics. From
an empirical MSA obtained from [14], we reconstructed host and symbiont species trees using
maximum likelihood estimation under the GTRGAMMA model implemented in RAXML v8.2.12
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[30]. We simulated 100 gene trees under the model symbiont species tree using SimPhy [18]. We
followed the SimPhy simulation procedure from [21], where the height of the SimPhy input tree
was adjusted to 2 million generations tall, and used the same SimPhy parameters as [21] (Table
S13))

Parameter Description Value

1l Number of locus per replicate 100

g Number of gene trees per locus tree 1

sp Population size n 200,000

su Global substitution rate 1,000,000

hs Species branch rate heterogeneity modifiers Log normal (1.5,1)
hl Locus rate heterogeneity modifiers Log normal (1.2,1)
hg Gene-tree-branch rate heterogeneity modifiers Log normal (1.4,1)
cs Seed for random number generator 22

Table S13. SimPhy parameters used in to simulate gene trees under the three-tree model.

Cophylogenetic reconstruction with TALE. TALE’s input consisted of the host species tree, sym-
biont species tree, the set of 100 simulated gene trees, host-symbiont mapping, and symbiont-gene
mapping. We used TALE to perform cophylogenetic reconstruction under its sequential heuristic
algorithm, which was shown by the original authors to provide similar recall and precision as the
more theoretically more robust Monte Carlo algorithm [19].

Experimental replication. We repeated the procedure to obtain 10 replicates.

Phylogenetic and cophylogenetic reconstruction and assessment. The phylogenetic inference meth-
ods matched that of the simulation study in the main manuscript. The TALE reconciliations on
each replicate dataset were compared against the reference TALE reconciliation. We followed the
main manuscript and assessed phylogenetic uncertainty alongside of cophylogenetic reconciliation
precision using linear regression. Note that we calculated the tree topology error by comparing the
species trees as specified by TALE to correspond to each of its output reconciliations.

Results and discussion. In this experiment (Figure S14), we observe similar correlation between
species tree topology uncertainty and cophylogenetic reconciliation precision, compared to the
experiments described in the main manuscript. Similar to parsimony-based cophylogenetic recon-
struction methods, TALE’s cophylogenetic reconstruction accuracy is impacted by phylogenetic
estimation error. The experiment therefore confirms the main finding in our study.

A secondary finding was that TALE returned lower cophylogenetic reconstruction precision
in this simulation experiment compared to eMPRess in the main simulation study, as well as in
our own testing of TALE using datasets from the study of Menet et al. [19] (results not shown).
Several factors help to explain the discrepancy. First, we note that TALE only partially accounts for
phylogenetic estimation error on the symbiont side (since symbiont gene trees are assumed to be
correct) and not at all on the host side (since host species trees are wholly assumed to be correct).
Phylogenetic estimation error is present in our simulation experiment and in real-world practice,
and its presence conflicts with common simplifying assumptions about input tree correctness.
Another key difference is that Menet et al. [19]’s simulation experiments utilized true species trees
and true gene trees as input to TALE while our simulation experiments utilized TALE inputs that
included some phylogenetic estimation error. Finally, TALE, eMPRess, and other state-of-the-art
cophylogenetic reconstruction methods do not explicitly account for genetic drift and incomplete
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Fig. S14. TALE experiment on gopher-lice dataset with 100 simulated symbiont gene trees.

lineage sorting. The latter are omnipresent in this simulation experiment and in natural genome
evolution. More work is needed to address this model misspecification.

Finally, we note that Menet et al. [19]’s main finding that 3-level DTL reconciliation (e.g., DTL
modeling at the host species and symbiont species level and then nested DTL modeling at the
symbiont species and symbiont gene level) outperforms 2-level DTL modeling (e.g., traditional DTL
modeling at the species and gene level) complements our main study finding. The general theme
emerging from both studies is the need for integrated computational frameworks that account for
upstream and downstream estimation error and uncertainty in a unified manner.

TALE command.

python3 TALE-main/src/main.py {symbiont directory}/ {genes directory}/
-mf {symbiont-gene-mapping} -tl {host directory}/ -imf {host-symbiont-mapping}
-b -o {out directory}/ -ncpu 8

S8 COMMANDS TO RUN COPHYLOGENETIC RECONCILIATION SOFTWARE

EMPRess v1.2.1 [25] was used to reconcile cophylogenies in two ways. First, we ran eMPRess v1.2.1
with default cost scheme.

python empress_cli.py reconcile {host tree file} {symbiont tree file}
{extant species associations} --csv {out file name}.csv

Second, we ran eMPRess v1.2.1 with modified event cost schemes.

python empress_cli.py reconcile {host tree file} {symbiont tree file}
{extant species associations} {event cost frequencies} --csv {out file}.csv

CoRe-PA version 0.5.2 [20] was used to reconcile cophylogenies and to generate alternative event
cost schemes.

java -jar core-pa_cli_0.5.2.jar -i {CoRe-PA's nexus format file} -o {out file}
COALA version 1.2.1 [4] was used to calculate alternative event cost schemes.

java -Xms4056M -Xms8g -jar Coala-1.2.1.jar -input {nexus format file}
-cluster -threads 16

S9 COMMANDS USED IN EMPIRICAL EXPERIMENTS

Note that texts inside curly brackets {} indicate files and inputs the user passes into the software,
thus they are not part of the command.
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BBtools version 37.62 [7] was invoked to run BBMap, BBDuk, and Reformat. The following BBDuk
command was used to filter and trim Illumina short reads to reduce artifacts and contaminants.
# run if lanes 1 and 2 are separate files
bbduk.sh in1={lanel reads} in2={lane2 reads} outl={paired reads 1}
out2={paired reads 2} ref=bbmap_adaptor.fa forcetrimleft=5 minlen=90

# run if you have interleaved reads

bbduk.sh in={interleaved reads} out1={lanel reads} out2={lane2 reads}

reformat.sh in1={lanel reads} in2={lane2 reads} outl={paired reads 1}
out2={paired reads 2} ref=bbmap_adaptor.fa forcetrimleft=5 minlen=90

# produce summary statistics for assembly
statswrapper.sh {assembly} format=4 >> {out file}
SPAdes version 3.15.5 [3] was used to assemble paired short reads.
spades.py -k 21,33,55,77,99,127 -o {directory} -1 {paired reads 1}
-2 {paired reads 2} -t 16
BUSCO version 5.3.2 [29] was used to assess the completeness of the assemblies.
busco -i $fungi -1 burkholderiales_odb1@ -o {out directory} -m genome -c 4
--force #bacteria
busco -i $endobac -1 mucoromycota_odb1@ -o {out directory} -m genome -c 4
--force #fungi
CANU version 2.2 [16] was used to assemble PacBio long reads.
canu -p {assembly prefix} -d {directory} genomeSize={size in bases?} -pacbio {pacbio reads
BLAST+ version 2.2.31 was used to query Mortierella spp. and endobacterial assembled contigs from

their respective de novo assemblies. Seqtk version 1.3 was used to extract contigs from assembly
using the blasted bed file to produce fasta format contigs.

blastn -query {assembly} -outfmt 6 -max_target_seqs 200 -db {reference} -out {blast file}
awk '!I_[$1]++' {blast file} > {bed file}
seqtk subseq -1 60 {blast file} {bed file} > {fasta file}
MUMmer version 3.23 [11] was used to variant call the extracted Mortierella spp. and endobacterial
contigs against their respective reference genomes. SAMtools version 1.15 was used to index and
retrieve the VCF file.
nucmer --prefix={prefix name} {blasted contigs} {reference genome}
show-snps -Clr -x 1 -T {SNPs prefix}.delta > {SNPs prefix}.snps
MUMmerSNPs2VCF.py {SNPs prefix}.snps {SNPs prefix}.vcf
bgzip -c {SNPs prefix}.vcf > {SNPs prefix}.vcf.gz
tabix -p vcf {SNPs prefix}.vcf.gz
Barrnap version 0.9 [27] was used to extract rRNA genes from Mortierella spp. assembly.
barrnap --kingdom euk --threads 8 -o {out directory} < {assembly} > {extract rRNA genes}

PROKKA version 1.14.6 [26] was used to extract rRNA genes from Mortierella’s endobacterial
assembly.

prokka {assembly} --centre X --compliant --force

RAxML version 8.2.12 [30] was used to reconstruct phylogenies under specified software (GTR,
HKY35, JC69, and K80).
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raxmlHPC -m GTRGAMMA -s {unrooted tree} --{software} -p {random number}
-n {out file suffix}

RAxML version 8.2.12 [30] was used to bootstrap alignments.
raxmlHPC -f j -b {random number} -# {number of samples} -m GTRGAMMA
-s {alignment} -n {out file suffix}

RAxML version 8.2.12 [30] was used to midpoint root the phylogenies.
raxmlHPC -f I -m GTRCAT -t {unrooted tree} -n {rooted tree file suffix}
-p {random number?}

PAUP™ 4.0 [31] was used to reconstruct phylogenies under NJ, UPGMA, and SVDquartet.
paup4al68_centos64
exe {alignment file}
{lower case model name}
savetree file={out tree file} brlen=yes
quit

Linear regression was performed using base R version 4.2.2 with the following code.
Im(precision ~ avg_nRF, df)

S10  COMMANDS USED IN SIMULATION EXPERIMENTS
Note that texts inside curly brackets {} indicate files and inputs the user passes into the software,
thus they are not part of the command
MAFFT v7.490 [15] was used to align sequences in empirical datasets that provided unaligned
sequence data.

mafft {unaligned sequence file} > {alignment file}
Seq-Gen v1.3.4 [24] was used to simulate gap-less alignments under model species trees from
parameters obtained from running RAXML v8.2.12 [30] on the original empirical alignments.

seg-gen -mGTR -r{GTR rate parameters} -z {random number} -or

-1{simulated alignment length} -f{nucleotide frequencies}
< {model species tree file} > {simulated alignment file}
Seq-Gen v1.3.4 [24] was used to simulate gap-less alignments under model species trees from
parameters obtained from running RAXxML v8.2.12 [30] on the original empirical alignments.
RAxXML version 8.2.12 [30] was used to reconstruct phylogenies under the GTR model.
raxmlHPC -m GTRGAMMA -s {alignment file} -p {random number} -n {tree file suffix}

RAxML version 8.2.12 [30] was used to midpoint root the phylogenies.

raxmlHPC -f I -m GTRCAT -t {unrooted tree} -n {rooted tree file suffix}

-p {random number}
INDELible version 1.03 [13] was used to simulate n-taxa trees that serve as input to reverse-time
simulator originally from [2]. To run INDELible, use the following command in the same folder as
a INDELible control file called "control.txt".

indelible
We used the following code in INDELible control file to sample an n-taxa tree topology under a
birth-death model with birth rate 2.4, death rate 1.1, sampling fraction 0.2566, and mutation rate
0.34.

[TYPE] NUCLEOTIDE 1

[TREE] treel
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[unrooted] 10 2.4 1.1 0.2566 0.34

We used the following code in INDELible control file to assign branch lengths using the GTR
parameter rates and nucleotide frequencies from the original annotation of the empirical dataset
[10] on avian feather lice.

[TYPE] NUCLEOTIDE 1

[MODEL] GTRmodel
[submodel] GTR 1.475477 4.831617 1.410614 1.732842 7.069432
[statefreq] ©.319 ©0.192 0.223 0.266

[TREE] treel {newick format tree topology from previous INDELible step}
[branchlengths] NON-ULTRAMETRIC

[PARTITIONS] taxapartition
[treel GTRmodel 1000]

[EVOLVE] taxapartition 1 species_tree

Relative variable importance was calculated using randomForest package in R version 4.2.2 with
the following code. Linear regression was performed using base R version 4.2.2 with the following
code.

randomForest(study ~ .,data=df,ntree=1000,importance=TRUE)
Linear regression was performed using base R version 4.2.2 with the following code.

Im(precision ~ avg_nRF, df)

S11  COMMANDS TO RUN SIMULATOR SOFTWARE

A modified version of the reverse-time nested coalescent simulator by [2] was used to simulate host
tree, symbiont tree, and output the true coevolutionary history. To the best of our knowledge, this
simulator was not published under copyleft license, therefore we could not include the modified
scripts used in this performance study. The following command was used to run the original
reverse-time cophylogeny simulator.

python nestedCoalescent.py {rooted host tree file} 0.8 0.3 0.4 {symbiont tree file}

Treeducken v1.1.0 [12] R software was used to simulate the host tree, the symbiont tree, and the
extant species associations. We modified Treeducken data structures to additionally output the true
coevolutionary history for the pair of trees in the next section. The following R code was used to
run Treeducken v1.1.0 software.

library(treeducken)

lambda_H <- {see Treeducken parameters table}
mu_H <- {see Treeducken parameters table}
lambda_C <- {see Treeducken parameters table}
lambda_S <- {see Treeducken parameters table}
mu_S <- {see Treeducken parameters table}
time <- {see Treeducken parameters table}
cophy_obj <- sim_cophylo_bdp(hbr = lambda_H,

hdr = mu_H,
sbr = lambda_S,
sdr = mu_S,

cosp_rate =lambda_C,
host_exp_rate = 0.0,
time_to_sim = time,
numbsim = 1)
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S12 MODIFIED TREEDUCKEN CODE

The following R code was used to modify Treeducken’s data structures post simulation to rename
coevolution events and output the desired format trees with internal node labeling as well as the
true, coevolutionary history.

library(treeducken)
library(ape)
library(geiger)

# Run Treeducken as normal

lambda_H <- {see Treeducken parameters table}
mu_H <- {see Treeducken parameters table}
lambda_C <- {see Treeducken parameters table}
lambda_S <- {see Treeducken parameters table}
mu_S <- {see Treeducken parameters table}
time <- {see Treeducken parameters table}
cophy_obj <- sim_cophylo_bdp(hbr = lambda_H,

hdr = mu_H,
sbr = lambda_S,
sdr = mu_S,

cosp_rate =lambda_C,
host_exp_rate = 0.0,
time_to_sim = time,
numbsim = 1)

# Start modifying phylo and associations data objects
# to output the coevolutionary history with the event types we want

### label internal nodes #it
label_internal_nodes <- function(tree){ #where tree is a phylo object
tot_internal_nodes<-tree$Nnode # total number of nodes
start_internal_nodes<-length(tree$tip.label)+1
end_internal_nodes<-start_internal_nodes+tot_internal_nodes-1
labels<-1list()
for (i in start_internal_nodes:end_internal_nodes){
# nodes start incrementing from number of tips
name<-paste(tips(tree,i),collapse = "_")
labels <- append(labels, name)
3
tree$node.label <- labels
new_tree <- write.tree(tree)
return(new_tree)
3
output_unlabeled_tree<-function(tree){
print(tree)
new_tree <- write.tree(tree)
return(new_tree)

3
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#host
write.table(output_unlabeled_tree(cophy_obj[[1]]$host_tree), file_host,
append = FALSE, sep = " ",
row.names = FALSE, col.names = FALSE,
quote=FALSE)
write.table(label_internal_nodes(cophy_obj[[1]]1$host_tree), file_host_labeled,
append = FALSE, sep = " ",
row.names = FALSE, col.names = FALSE,
quote=FALSE)
#symb
write.table(output_unlabeled_tree(cophy_obj[[1]1]1$symb_tree), file_symb,
append = FALSE, sep = " ",
row.names = FALSE, col.names = FALSE,
quote=FALSE)
write.table(label_internal_nodes(cophy_obj[[1]]$symb_tree), file_symb_labeled,
append = FALSE, sep = " ",
row.names = FALSE, col.names = FALSE,
quote=FALSE)

### relabel event history to format: event host_node symb_node) ###
#where tree is a phylo object
relabel_treeducken_event_history <- function(event_history, hosttree, symbtree){
#host trees
tot_internal_nodes_h<-hosttree$Nnode # total number of nodes
num_leaf_host<-length(hosttree$tip.label)
start_internal_nodes_h<-num_leaf_host+1
end_internal_nodes_h<-start_internal_nodes_h+tot_internal_nodes_h-1
labels_host<-list()
for (i in start_internal_nodes_h:end_internal_nodes_h){
# nodes start incrementing from number of tips
name<-paste(tips(hosttree,i),collapse = "_")
labels_host <- c(labels_host, name)
3
hosttree$node.label <- labels_host
#symb trees
tot_internal_nodes_s<-symbtree$Nnode # total number of nodes
num_leaf_symb<-length(symbtree$tip.label)
start_internal_nodes_s<-num_leaf_symb+1
end_internal_nodes_s<-start_internal_nodes_s+tot_internal_nodes_s-1
labels_symb<-list()
for (i in start_internal_nodes_s:end_internal_nodes_s){
# nodes start incrementing from number of tips
name<-paste(tips(symbtree,i),collapse = "_"
labels_symb <- c(labels_symb, name)
3
symbtree$node.label <- labels_symb
num_events<-nrow(event_history)
events<-c()
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hosts<-c()

symbs<-c()

prefix_host<-"H" # H for host, S for symb
prefix_symb<-"S"

# update event names in Treeducken to the known 4 events that works with cophy software
# https://github.com/wadedismukes/treeducken/blob/main/src/Simulator.cpp#L682
treeducken_events=c("SX", "HX", "SSP", "HSP", "AG", "AL", "CSP", "DISP","EXTP", "SHE", |

known_events=c("loss", "loss", "duplication", "host_switch",
"duplication", "loss", "cospeciation", "cospeciation",
"loss", "host_switch","host_Switch")

event_renaming=data.frame(treeducken_events, known_events)
# mapping to known format event history
for (i in 1:num_events){
print(i)
if (event_history$Event_Type[i] == "I"){
print("Initialized")
#skip this one, "I" stands for initialize event vector.
next
}
else{
new_event<-event_renaming$known_events[event_renaming$treeducken_events
==event_history$Event_Type[i]]
events <- c(events, new_event) # events
}
if (event_history$Host_Index[i] > num_leaf_host){ #hosts
hosts <- c(hosts, labels_host[event_history$Host_Index[i]-num_leaf_host])
3
else{
hosts <- c(hosts, paste@(prefix_host,event_history$Host_Index[i]))
}
if (event_history$Symbiont_Index[i] > num_leaf_symb){ #symbs
symbs <- c(symbs, labels_symb[event_history$Symbiont_Index[i]l-num_leaf_symb])

3
else{
symbs <- c(symbs, paste@(prefix_symb,event_history$Symbiont_Index[i]))
}
}
new_event_history<-data.frame(events, paste(hosts, sep=" "),
data.frame("symbs" = paste(symbs, sep=" ")))
colnames(new_event_history) <- c("events", "hosts", "symbs")

print(new_event_history)
return(new_event_history)
3
new_event_history<-relabel_treeducken_event_history(cophy_obj[[1]]$event_history,
cophy_obj[[1]]$host_tree, cophy_obj[[1]]1$symb_tree)
write.table(new_event_history, file_event_history,

non

append = FALSE, sep = ,
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row.names = FALSE, col.names = FALSE,
quote=FALSE)

### output nexus and empress association links #i##

Which.names <- function(DF, value, file_empress_link, file_nexus_link){
ind <- as.data.frame(which(DF==value, arr.ind=TRUE, useNames =TRUE))
print(ind)
num_links<-length(colnames(DF))
links_empress<-""
links_nexus<-""
for (i in T:num_links){

symb<-colnames(association_mat)[ind$col[i]]
host<-rownames(association_mat)[ind$row[i]]

links_empress<-paste(links_empress,paste(symb, host ,sep=":"), sep="\n")
links_nexus<-paste(links_nexus,paste@("'",symb,"':"'" host,"',",collapse=""), sep="\I
3
links_empress<-sub(".", "", links_empress) # remove first character \n
links_nexus<-sub(".", "", links_nexus)
cat(links_empress)
links_nexus <- gsub(".{13}$", ";",links_nexus) # replace last character with ";"

cat(links_nexus)
write(links_empress, file_empress_link)
write(links_nexus, file_nexus_link)
b
association_mat<-cophy_obj[[1]]$association_mat
# where cell value is 1 means association exists
Which.names(association_mat, 1, links_empress, links_nexus)
cophy_obj[[1]]$host_tree$Nnode
cophy_obj[[1]1]$symb_tree$Nnode
length(new_event_history$events)
sum(new_event_history$events=="cospeciation")
sum(new_event_history$events=="duplication")
sum(new_event_history$events=="host_switch")
num_links<-length(colnames(association_mat))
ind <- as.data.frame(which(association_mat==1, arr.ind=TRUE, useNames =TRUE))
all_symb=c()
# the following only matters if the cophylogenetic software doesn't allow
# a symbiont to associate with multiple hosts. eMPRess and CoRe-PA don't mind.
for (i in 1:num_links){
symb<-colnames(association_mat)[ind$col[i]]
if(sum(all_symb==symb) < 1){
all_symb<-append(all_symb, symb)
3
else{
print("symb lineage on multiple hosts.")
break
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