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run using the forward-time cophylogeny model proposed by [13],
which we refer to as the “forward” simulations. Cophylogenetic
and phylogenetic method performance on each simulated dataset
was then assessed with respect to model/reference cophylogenies
and phylogenies.

We also performed comparative analyses of two empirical ge-
nomic sequence datasets. One empirical dataset consists of cephalo-
pod hosts and their bacterial symbionts, which serve as a well-
studied model of open symbiosis (i.e., partnerships arising from
horizontal transmission between hosts and/or the environment);
the other dataset was sampled from fungal hosts and their bacterial
endosymbionts, which are an emerging model of closed symbio-
sis (i.e., partnerships whose coevolution involves strictly vertical
descent over time). The two systems thus provide a comparative
contrast along a spectrum of symbiotic partnership flexibility [34].

The combination of experimental approaches is a design choice
in our study. Taken together, the simulation study and empirical
dataset experiments represent an array of natural symbiotic sys-
tems – by design and by definition, respectively. Some differences
between the experimental approaches are worth noting. The for-
ward simulations provide ground truth coevolutionary histories
that enable the analysis of cophylogenetic reconciliation accuracy,
whereas the mixed simulation experiments use an estimated co-
phylogeny reconciliation as reference to analyze cophylogenetic
reconciliation precision in the context of phylogenetic inference
error. On the other hand, our study uses empirical datasets to as-
sess cophylogenetic reconciliation reproducibility without prior
knowledge of the true coevolutionary history.

2.1 Definitions

We now introduce mathematical background needed to describe
the experimental procedures. Some of the notation and definitions
follow [50].

A rooted phylogenetic tree)N = (+N , �N) is a rooted evolution-
ary history for a set of taxa N . We note that many cophylogenetic
reconstruction algorithms require rooted binary phylogenetic trees
as input. The rooted binary tree)N has a root d with in-degree zero
and out-degree two, leavesN ⊆ +N where each leaf has out-degree
zero and in-degree one, and inner nodes E ∈ +N\N where each
inner node has out-degree two and in-degree one. For each directed
edge (D, E) ∈ �N , E is a child of D. Each edge is also denoted by
4E with branch length 1; (4E) ∈ R

+. For vertices D, E ∈ += , D is an
ancestor of E , D ∈ 0=2 (E), E is a descendent of D, and D ∈ 34B2 (E) if
and only if D lies on the unique path from root d to E .

For a pair of rooted phylogenetic trees )� and )( denoting the
evolutionary history of a set � of hosts and a set ( of symbionts,
respectively,)� is the host tree and)( is the symbiont tree. A map-
ping function q (B, ℎ) : ( × � → {0, 1} denotes known interactions
between the extant species of)� and)( , where q (B, ℎ) = 1 means a
symbiont is associated with a host, and otherwise q (B, ℎ) = 0. The
tuple ()� ,)( , q) serves as the input to cophylogenetic methods,
and can be nicely visualized using a tanglegram. A cophylogenetic
reconciliation or reconstruction is defined as the set of event asso-
ciations R ⊂ +( ×+� between the internal nodes of the symbiont
tree )( and the internal nodes of the host tree )( . For a symbiont B ,

an event association (B, ℎ) ∈ R means ℎ is one of the host species
known to have been associated with B .

The unrooted version *N of a rooted phylogenetic tree )N can
be obtained by converting all directed edges into undirected edges,
deleting the root, and connecting its two outgoing edges into a
single remaining edge. Equivalently, an unrooted binary tree*N

on the leaf set N has internal nodes with degree three and leaves
with degree one, and each leaf represents a distinct taxon in the
taxon set N .

In our study, tree topology differences were evaluated with nor-
malized Robinson-Fould (nRF) distances [38]. For two unrooted
trees*1 and*2 with the same set of leaf nodesN and having bipar-
tition sets �1 and �2 respectively, the Robinson-Fould (RF) metric
is the cardinality of the symmetric difference between the sets of
bipartitions that appear in*1 and*2, which is |�1 −�2 | + |�2 −�1 |.
(Note that bipartitions corresponding to leaf edges are trivial since
the latter must always appear, and trivial bipartitions do not con-
tribute meaningfully to the RF calculation.) The normalized RF
distance is calculated by dividing RF distance by the maximum RF

distance between two trees with |N | taxa, which is |�1−�2 |+|�2−�1 |
2 |N |−6 .

We note that the RF distance is a de facto standard for topological
comparisons of phylogenetic trees involving the same set of taxa.
Generalizations of the RF distance have been proposed for compar-
ing phylogenetic trees with overlapping but non-identical sets of
taxa (e.g., [24]), although we note that the issue does not arise in
the context of our study due to the nature of our simulation and
empirical dataset analysis procedures.

Reconciled cophylogenies were compared based on the calcula-
tion proposed by [50], whichwe refer to as cophylogenetic precision.
We now define this calculation. Let R� and R� be the reconstructed
event associations of all internal vertices from cophylogenetic recon-
ciliations � and �, respectively. Then, the proportion of reconciled

events in R� that were also found in R� is | R�∩R� |
| R� |

. Cophyloge-

netic precision factors in all coevolutionary event types that are
accounted for by the cophylogenetic reconstruction methods in this
study – i.e., cospeciation, duplication, loss, and host switch events.

2.2 Simulation study

Mixed simulations. The mixed simulations utilized empirically-
based phylogenetic estimates to perform parametric sampling of
synthetic biomolecular sequence data. The simulation procedure
begins with the former: obtaining a pair of species trees and co-
phylogeny via empirical dataset analysis. Six empirical datasets
were obtained from literature to sample a range of evolutionary
scenarios and dataset types: from single-locus datasets with se-
quence length under 1 kb to next-generation-sequencing (NGS)
multi-locus datasets with sequence length well over 1 Mb (Table 1).
The sequence data were preprocessed and aligned using MAFFT
v7.221 with default settings [19]. Species phylogenies were recon-
structed from concatenated multiple sequence alignments under
the General Time Reversible (GTR) model of nucleotide substitution
with Γ model of rate heterogeneity [51] and midpoint rooted using
RAxML v8.2.12 [45]. As methods eMPRess [41] and COALA [2]
were limited to one-to-one host/symbiont associations; symbiont
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taxa were subsampled as needed to address this limitation. Cophy-
logenetic events were estimated with eMPRess [41] from the host
and symbiont phylogenies and host-symbiont associations.

Next, the resulting phylogenetic estimates for each empirical
dataset served as the statistical model for downstream in silico simu-
lation of biomolecular sequence data. Specifically, the reconstructed
species trees (including branch lengths) and associated substitu-
tion model parameter estimates served as generative models from
which multiple sequence alignments were simulated using Seq-Gen
[37]; accordingly, we refer to the species trees as model trees. Note
that the above cophylogeny was used for assessing methodological
performance (see “Phylogenetic and cophylogenetic reconstruction
and assessment” below) but was not directly used for simulations.

As noted above, our study is motivated by more nuanced ques-
tions beyond establishing the impact of upstream phylogenetic
estimation error on downstream cophylogeny reconstruction. We
also investigated how this relationship is modulated by two key con-
textual factors – the evolutionary divergence and number of taxa
under study – via two additional simulation experiments. In simu-
lations with varying evolutionary divergence, model tree branch
lengths were multiplied by a scaling parameter ℎ. We explored a
range of settings for the parameter ℎ where each set of experiments
selected a setting from the set {0.1, 0.5, 1, 2, 5, 10}. The simulations
with varying dataset size were conducted by modifying alignment
lengths (as listed in Table 1) to 400,228 bp and 1,455,978 bp for host
and symbiont, respectively. The modified lengths were adapted
from the concatenated MSA lengths of the avian host dataset [35]
and the avian feather lice parasite dataset [11].

Forward simulations. The forward simulations utilized the R-based
[36] implementation of the Treeducken [13] version 1.1.0 software
and its forward-time coalescent model to sample a model cophy-
logeny, along with its associated species trees and host/symbiont
associations. The model cophylogeny and model trees served as the
reference cophylogeny and reference trees, respectively, during sub-
sequent performance assessments (see “Performance assessments”
below). Model parameter settings (Table 2) were based on estimates
from selected empirical datasets. The resulting five model condi-
tions included a range of dataset sizes (i.e., number of taxa and
sequence length), substitution rates, base frequency distributions,
and coevolutionary event distributions (Table 3). Model trees were
deviated away fromultrametricity usingMoret et al. [30]’s approach
with deviation factor 2 = 2.0 [31]. We used custom scripts to per-
form the ultrametricity deviation calculations. Sequence evolution
was then simulated on each model tree using the same approach as
in the mixed simulation procedure, resulting in host and symbiont
MSAs.

Additional experiments varying evolutionary divergence were
performed with the forward simulation procedure, where the scal-
ing parameter ℎ was assigned a value from {0.1, 0.5, 1, 2, 5, 10}.

Experimental replication. For each model condition, the procedure
to simulate biomolecular sequence evolution was repeated to ob-
tain 100 replicate datasets. Results are reported across all replicate
datasets in each model condition.

Phylogenetic and cophylogenetic reconstruction and assessment. On
each simulated dataset, phylogenetic trees were reconstructed un-
der the GTR+Γ model and midpoint rooted using RAxML v8.2.12.

The resulting phylogenetic estimates and host/symbiont associa-
tions were used by eMPRess [41] to perform cophylogenetic rec-
onciliation using default settings. We also conducted additional
eMPRess analyses using alternative cophylogenetic event costs that
were estimated using COALA [2] and CoRe-PA [28]; the additional
estimated cophylogenies were used in the random forest-based
variable importance analyses described below (and additional ex-
periments in the Supplementary OnlineMaterials). (Also see Supple-
mentary Online Materials section S7 for an additional experiment
that uses TALE to perform statistical cophylogenetic reconstruc-
tion).

In each simulation study experiment, the topological error of an
estimated tree was compared to its corresponding model tree based
on nRF distance. Each estimated cophylogeny was compared to the
reference cophylogeny based on [50]’s precision calculation. Scat-
terplots and linear regression analysis were used to characterize
the relationship between upstream phylogenetic estimation error
and downstream cophylogenetic reconstruction error, where phylo-
genetic estimation error was assessed based on average topological
error of host and symbiont trees, and cophylogenetic reconstruc-
tion error was assessed using cophylogenetic precision. The linear
regression analyses were performed using R version 4.2.2 [36].

Variable importance analysis. In mixed and forward simulation
experiments, the relative importance of species tree topology and
other factors that can impact cophylogenetic reconciliation accu-
racy was assessed using the randomForest package [10] imple-
mented in R [36]. The following variables were assessed for their
impact on cophylogenetic reconciliation: tree topology (true species
trees versus reconstructed trees in nRF distance), cophylogenetic
software (eMPRess versus CoRe-PA), dataset size (default versus
modified alignment lengths), event cost parameter (default versus
alternative), and evolutionary divergence (tree height scaling factor
h = 0.1 versus 10).

Random forests are used in machine learning to perform regres-
sion, classification, and other statistical analyses. To evaluate the
relative importance of each variable, the out-of-bag (OOB) data for
the tested variable was randomly shuffled and then this shuffled
OOB data was used to construct 1000 regression trees. The origi-
nal OOB data was used to construct another 1000 regression trees.
On each regression tree, a mean squared error (MSE) is calculated
based on the regression tree’s prediction error rate. The variable
importance is the difference in MSE between the random forest con-
structed on original OOB values and the random forest constructed
on the shuffled OOB values, divided by standard error [10]. We
scaled the importance of each factor to the most important variable
to generate partial dependence plots.

2.3 Empirical study of soil-associated fungi and
their bacterial endosymbionts

Sample acquisition and sequencing. A total of 13 metagenomic
samples of Mortierella spp. and their associated endobacteria were
collected and sequenced. Next-generation sequencing reads were as-
sembled into contigs, which were then used to call single-nucleotide
polymorphism variants (SNVs). The SNV MSAs for fungi and their
bacterial endosymbionts had total length of 4,607,802 bp and 215,165
bp, respectively.
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Model conditions Source Taxa # taxa Aln length ANHD Avg ANHD SE Height Avg Height SE # cospec # dup # switch # loss

mixed-gopher [14]
Host 15 379 0.2241 0.0007 0.4024 0.0042

8 0 8 2Symbiont 17 379 0.5249 0.0007 3.0598 0.0359

mixed-stinkbug [17]
Host 7 1,745 0.2371 0.0016 0.2651 0.0016

5 5 1 0Symbiont 12 1,583 0.0661 0.0006 0.1349 0.0011

mixed-primate [46]
Host 55 696 0.2599 0.0002 0.6079 0.0046

24 0 14 22Symbiont 41 425 0.3376 0.0004 0.8169 0.0050

mixed-damselfly [25]
Host 24 1,051 0.1734 0.0004 0.4919 0.0036

4 3 15 4Symbiont 23 3,297 0.1327 0.0004 0.2643 0.0010

mixed-moth [52]
Host 82 1,404 0.1021 0.0001 0.2147 0.0013

13 0 27 12Symbiont 53 4,326 0.0250 0.0000 0.0486 0.0003

mixed-bird
[35] Host 37 5,000 0.1087 0.0001 0.1526 0.0009

15 12 29 17[11] Symbiont 57 5,000 0.3562 0.0001 0.5459 0.0011

Table 1: Summary statistics for mixed simulation datasets. Each mixed simulation condition (“Model conditions”) is based on a

previously published cophylogenetic study (“Source”). For each dataset type (either host or symbiont, as denoted by “Taxa”),

the number of taxa (“# taxa”), true MSA length (“Aln length”), average and standard error of normalized Hamming distance of

true MSAs (“ANHD Avg” and “ANHD SE”, respectively), and average and standard error of model tree height (“Height Avg” and

“Height SE”, respectively) are reported. The number of cospeciation, duplication, host switch, and loss events in the reference

cophylogeny are reported as “# cospec, “# dup”, “# switch”, and “# loss”, respectively.

Model condition �C8?B (C8?B _� _� _( `� `( time
forward-gopher 35 55 0.3104 1.2000 0.0290 0 0 2.2
forward-stinkbug 35 55 0.2104 1.2000 0.0290 0 0 2.0
forward-primate 203 50 0.3374 0.6246 0.0452 0 0 4.8
forward-damselfly 25 25 0.1843 0.8846 0.2920 0 0 2.0
forward-bird 27 134 0.0544 0.6000 0.4520 0 0 4.0

Table 2: Treeducken parameters used in forward simula-

tions. Treeducken was used to simulate cophylogenies and

their constituent species phylogenies under a forward-time

coalescent-based model [13]. Treeducken’s model specifies

the following parameters: the symbiont speciation rate _( ,

the symbiont extinction rate `( , the cospeciation rate _� , the

host speciation rate _� , the host extinction rate `� , the ex-

pected number of host taxa �C8?B , and the expected number

of symbiont taxa (C8?B .

Reconstruction and comparison of phylogenies and cophylogenies.

Maximum likelihood tree estimation was performed using RAxML
v8.2.12 [45] under finite-sites models of nucleotide sequence evolu-
tion. The latter consisted of the GTR+Γ [48] and nested models –
specifically the HKY [15], K80 [20], and Jukes-Cantor [18] models;
these substitution models span a range of model complexity from
simplest (in the case of Jukes-Cantor) to more complex (i.e., GTR,
HKY, and K80). PAUP* [47] was used to conduct additional phylo-
genetic reconstructions using neighbor-joining (NJ) [39] and the
unweighted pair group method with arithmetic mean (UPGMA)
algorithms [44]. Multispecies coalescent model-based species tree
reconstruction was performed using SVDquartet [8]. If SVDquar-
tet produced a tree with polytomies, the matrix rank was set to 1,
4, and 5 to produce three different tree topologies. Reconstructed
phylogenetic trees were midpoint rooted. Finally, the estimated
phylogenetic trees were reconciled to obtain a cophylogeny using
either CoRe-PA [28] or eMPRess [41].

For each dataset, phylogenetic and cophylogenetic estimates
obtained using any phylogenetic estimation method and eMPRess,

respectively, were compared on a pairwise basis using the calcu-
lations described below; CoRe-PA-based results were evaluated
similarly. For each pairwise comparison, phylogenetic tree estima-
tion agreement was assessed using the average of the nRF distance
between the two host trees and the nRF distance between the two
symbiont trees. Then, for each pairwise comparison, cophyloge-
netic estimation agreement was assessed using the precision of
[50]. Linear regression analyses were also performed to assess the
relationship between phylogenetic tree estimation agreement and
cophylogenetic estimation agreement, using the same procedures
as in the simulation study experiments.

2.4 Empirical study of bobtail squids and their
symbiotic bioluminescent bacteria

Sample acquisition and sequencing. Genomic sequence data for
22 samples of bobtail squids from the study of Sanchez et al. [40],
and metadata for 37 Vibrio samples from the study of Bongrand
et al. [5] were downloaded. The concatenated squid MSA had total
length of 37,512 bp. Sanchez et al. [40] sequenced the former via
genome skimming to identify more than 5000 ultraconserved loci.
Host-symbiont association data came from the study of Bongrand
et al. [5].

Reconstruction and comparison of phylogenies and cophylogenies.

We reconstructed a phylogenetic tree for host taxa using the same
approach as in the fungal/endobacterial dataset analysis. The bacte-
rial symbiont phylogeny consisted of the Vibrio phylogeny reported
by Bongrand et al. [5]. Cophylogenetic reconciliation and compari-
son of estimated phylogenies and cophylogenies followed the same
procedures as in the other empirical dataset analysis.

3 RESULTS

3.1 Simulation study

The impact of upstream phylogenetic estimation error on downstream

cophylogenetic reconciliation accuracy. Across the mixed simu-
lation conditions, phylogenetic tree estimation returned average
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Model conditions Source Taxa # taxa Aln len ANHD Avg ANHD SE Height Avg Height SE # cosp # dup # switch # loss

forward-gopher [14]
Host 17 300 0.5664 0.0010 2.3260 0.0313

16 0 1 0Symbiont 16 300 0.5426 0.0009 2.5639 0.0403

forward-stinkbug [17]
Host 16 1,000 0.5672 0.0012 4.2617 0.0707

14 0 2 0Symbiont 14 1,000 0.5825 0.0016 3.9159 0.0326

forward-primate [46]
Host 48 400 0.6030 0.0002 8.0586 0.0791

31 3 17 0Symbiont 34 400 0.7017 0.0004 10.7577 0.2931

forward-damselfly [25]
Host 24 1,000 0.3437 0.0003 0.5804 0.0031

12 9 12 0Symbiont 21 1,000 0.4233 0.0007 1.1334 0.0066

forward-bird
[35] Host 31 5,000 0.6953 0.0004 4.1329 0.0023

21 33 10 0[11] Symbiont 54 5,000 0.7125 0.0002 5.0964 0.0027

Table 3: Summary statistics for forward simulation datasets. For each model condition (“Model conditions”), Treeducken was

used to perform forward simulations based on a previously published cophylogenetic study (“Source”). Each simulated dataset

consisted of a model cophylogeny, its constituent model species trees and host/symbiont associations, and true MSAs. Table

layout and description are otherwise identical to Table 1.

topological error of 7% and cophylogenetic reconstruction returned
average precision of 66%. (Supplementary Figure S2 reports average
topological errors of estimated species trees and cophylogenies for
each model condition.)

Random forest-based variable importance analyses confirmed
that tree topology inference error was the most important contrib-
utor to cophylogenetic reconciliation accuracy, while the second
most important was evolutionary divergence at 70% of the vari-
able importance of tree topology (Table 4). In our experiments, the
choice of cophylogenetic reconciliation software and the choice of
default versus statistically estimated event cost vectors contributed
the least to cophylogenetic reconciliation accuracy.

The relationship between phylogenetic and cophylogenetic es-
timation error was examined using linear regression: Figure 2a
shows the regression models fitted to observed topological errors
across replicate datasets in each model condition. The regression
analyses were statistically significant in all cases (U = 0.05;= = 100),
as shown in Supplementary Table S1. Increasing topological error
during upstream estimation was clearly associated with reduced
cophylogenetic accuracy, as evidenced by consistently negative
regression coefficients and average regression coefficient of −1.96
across model conditions. We also observed varying scatter around
fitted models: the coefficient of determination was highest in the
mixed-gopher, mixed-stinkbug, and mixed-primate model condi-
tions – ranging between 0.47 and 0.89 – and lower in others.

As in the mixed simulations, the partial dependence scores from
random forest-based variable importance analysis showed that tree
topology inference error was the most important contributor to co-
phylogenetic reconciliation accuracy in forward simulations, with
evolutionary divergence having 82% of the relative importance of
tree topology (Table 4). Similar to mixed simulations, the choice of
cophylogenetic reconciliation software and the choice of default
versus statistically estimated event cost vectors contributed the
least to cophylogenetic reconciliation accuracy in forward sim-
ulation experiments. Topological error of estimated phylogenies
and cophylogenies varied among forward simulation conditions.
The observation is due in part to heterogeneity among the empir-
ical estimates that served as the basis for the forward simulation
conditions. On the other hand, topological errors were somewhat

higher than in the other simulation experiments: the forward sim-
ulation experiments returned average tree topology error of 13%
and average cophylogenetic precision of 35% (Supplementary Fig-
ure S4). As shown in Figure 2b, correlation between upstream tree
estimation error and downstream cophylogeny reconstruction pre-
cision yielded similar findings as in the rest of simulation study.
We observed significant and negative correlation in all forward
simulation conditions (Supplementary Table S2). Furthermore, the
coefficient of determination varied across forward simulation condi-
tions in a similar pattern to the mixed simulation conditions, based
on shared empirical dataset estimates. The largest values were seen
on forward-gopher, forward-stinkbug, and forward-primate model
conditions – ranging between 0.585 and 0.744; smaller values were
seen on the other model conditions.

The impact of evolutionary divergence on the relationship between

phylogenetic and cophylogenetic reconstruction accuracy. For each
set of forward simulation conditions (Figure 3b), we found that
phylogenetic and cophylogenetic estimation error was negatively
and significantly correlated as the tree height parameter ℎ varied
between 0.1 and 10. Regression analysis returned regression coeffi-
cients between−0.899 and−0.220, and coefficients of determination
between 0.668 and 0.222 (Supplementary Table S4). Both upstream
and downstream topological error was lowest for the smallest ℎ
settings (i.e., 0.1, 0.5, and 1.0). As the height ℎ increased, both
topological errors increased in tandem, and both were largest on
simulations with height ℎ = 10. The latter was likely at saturation,
as topological errors tended to be maximal. Similar outcomes were
observed in the corresponding mixed simulation experiments with
varying tree height ℎ, as shown in Figure 3a. The effect of increas-
ing ℎ on topological error was more complicated and non-linear
in some cases. This was in part due to heterogeneity of empirical
estimates used for parametric resampling, unlike the fully in silico

simulations used elsewhere in the simulation study.

3.2 Empirical study

Soil-associated fungi and their bacterial endosymbionts. Topologi-
cal disagreements among estimated phylogenies were higher than
in the simulation study (Supplementary Figure S5); a similar out-
come was observed among estimated cophylogenies. This is by
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Simulations Tree topology Evolutionary divergence Dataset size Cophylogenetic software Event cost parameter
Mixed 1.0000 0.7029 0.5511 0.3513 0.0611
Forward-time 1.0000 0.8160 N/A 0.7786 0.3144
Table 4: Simulation study: variable importance assessment for mixed and forward simulations. A random forest model was used

to determine the mean importance of each variable. Results are reported as an average across all mixed simulation conditions

and scaled relative to the most importance variable (= = 100), and similarly for the forward simulation conditions.

design: the empirical study utilized a wide array of phylogenetic re-
construction methods with varying estimation accuracy. The design
choice provides an indirect means to vary the topological accuracy
of input phylogenies and then observe its effects on downstream
cophylogenetic estimation, in contrast to the direct control and
model/reference comparisons enabled by in silico simulations. We
analyzed the relationship between phylogenetic and cophylogenetic
estimation error using linear regression (Figure 4a). Consistent with
the simulation study, we observed that greater topological agree-
ment in the former set of inputs was significantly associated with
greater topological agreement of the latter output, as assessed using
an F-test with Benjamini-Hochberg [3] correction for multiple tests
(U = 0.05; = = 114). The full assembly dataset analysis returned a
regression coefficient of −2.067 and coefficient of determination of
0.672, which is also in line with the simulation study.

Bobtail squids and their symbiotic bioluminescent bacteria Topolog-
ical disagreements among species cophylogenies and resulting co-
phylogenetic reconciliations were somewhat smaller than those ob-
served on the fungal/endosymbiont dataset (Supplementary Figure
S6). Another key difference concerns host/symbiont associations:
relatively few squid hosts were associated with most bacterial sym-
bionts. Still, we observed a similar relationship between upstream
phylogenetic estimation agreement and downstream cophylogeny
precision (Figure 4b). Linear regression analyses returned signif-
icant and negative correlation (U = 0.05; = = 216), along with a
regression coefficient of −0.449, intercept of 0.841, F-test p-value
< 10−12, coefficient of determination of 0.213, and residual standard
error of 0.109.

4 DISCUSSION

Across all forward simulation experiments, correlation between
upstream phylogenetic estimation error and downstream cophylo-
genetic estimation accuracy was significant and consistently nega-
tive. As the former increased, the latter would degrade. The mixed
simulation experiments and empirical dataset analyses involving
eMPRess-estimated cophylogenies (as well as a supplementary sim-
ulation experiment involving TALE, as described in the Supplemen-
tary Online Materials) also returned a consistent outcome: namely,
a significant and negatively correlated relationship between up-
stream phylogenetic reconstruction error and downstream cophy-
logenetic estimation reproducibility. The expanded simulation ex-
periments that focused on varying evolutionary divergence (while
fixing other experimental factors) refined our study’s primary find-
ing and demonstrated that evolutionary divergence plays a key
role in modulating upstream and downstream estimation error in
tandem. Of course, other factors also play a role (e.g., taxon sam-
pling, choice of phylogenetic and cophylogenetic reconstruction

method(s), coevolutionary event distribution, evolutionary and co-
evolutionary model mis-specification, etc.), and the relationship
between phylogenetic and cophylogenetic reconstruction is com-
plex [12]. Heterogeneity among simulation conditions due to these
factors helps to explain some of the more minor differences among
experimental outcomes. Nevertheless, our primary finding – that
phylogenetic estimation error strongly impacts downstream co-
phylogenetic reconciliation accuracy – was robust to these factors.
Furthermore, variable importance analyses revealed that phylo-
genetic tree estimation error was the most important experiment
factor associated with cophylogenetic reconciliation accuracy, com-
pared to the other factors.

We note a key difference between the simulation study and the
empirical study. A primary advantage of the former is the ability
to benchmark against model/reference phylogenies and cophyloge-
nies. But the latter is inherently more complex and nuanced than
the former. For example, the two systems in our empirical study
are models sampled along a continuum of symbiotic coevolution
modes [34]: from open – as in the case of bobtail squids and their
bioluminescent symbionts [34] – to mixed to closed – as in the case
of early diverging fungi and their endosymbionts [33]. Where a
system exists along this continuum is thought to strongly influence
the probabilities of different coevolutionary events: for example,
host shifts occur more frequently in an open system, and cospe-
ciation predominates in a closed system. Depending on the taxa
under study, it is plausible that symbiotic coevolution may switch
between different modes along a phylogeny (e.g., from closed to
mixed). But we are not aware of any suitable non-homogeneous
cophylogenetic models and we also lack a basic understanding
of their theoretical properties (e.g., statistical identifiability). The
gap between natural symbiotic coevolution and current statistical
cophylogenetic modeling represents an opportunity for advanced
model and methods development; for now, this study is constrained
by the limitations of the state of the art.

5 CONCLUSIONS

This study demonstrated the major effect that phylogenetic esti-
mation error has on downstream cophylogenetic reconstruction
accuracy. The finding was consistently observed throughout the
simulation study experiments. Empirical analyses of two genomic
sequence datasets for models of symbiosis also revealed that vari-
able phylogenetic tree estimation quality decreased reproducibility
of cophylogenetic estimation.

We propose the following strategies to put the key findings of
our study into practice. One ideal solution would be to develop and
utilize a new generation of cophylogenetic reconstruction methods
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Model conditions intercept B coefficient R2 RSE p-value q-value

mixed-gopher 0.9146 -2.9996 0.6406 0.1061 < 10−16 < 10−23

mixed-stinkbug 0.9254 -2.0067 0.8903 0.0331 < 10−16 < 10−48

mixed-primate 0.6704 -2.3987 0.4732 0.0511 < 10−15 < 10−14

mixed-damselfly 0.5590 -1.1198 0.0564 0.0928 0.0173 0.0173

mixed-moth 0.7460 -1.4036 0.1010 0.1146 0.0012 0.0025

mixed-bird 0.9341 -1.8328 0.1663 0.0408 < 10−5 < 10−5

Table S1. Linear regression results for mixed simulation experiments. The fi�ed model’s intercept
(“intercept”), regression coefficient (“B coefficient”), coefficient of determination (“R2”), and residual standard
error (“RSE”) are shown. Statistical significance was assessed using the F-test, and uncorrected p-values
(“p-value”) and corrected q-values (“q-value”) based on Benjamini-Hochberg multiple test correction [5] are
reported (= = 100).

Model conditions intercept B coefficient R2 RSE p-value q-value

forward-gopher 0.7385 -1.1485 0.5854 0.0680 < 10−16 < 10−20

forward-stinkbug 0.6729 -1.2848 0.6171 0.0632 < 10−16 < 10−21

forward-primate 0.4968 -0.9702 0.7442 0.0312 < 10−16 < 10−30

forward-damselfly 0.2252 -0.3232 0.1035 0.0326 0.0011 0.0011

forward-bird 0.2495 -0.5780 0.1129 0.0141 < 10−6 < 10−6

Table S2. Linear regression results for forward-time simulation experiments. Table layout and descrip-
tion are otherwise identical to Table S1.

Model conditions intercept B coefficient R2 RSE p-value q-value

mixed-gopher 0.7901 -1.4661 0.7906 0.1216 < 10−8 < 10−7

mixed-stinkbug 0.8930 -1.6693 0.7860 0.0543 < 10−16 < 10−46

mixed-primate 0.6218 -1.3590 0.8797 0.0570 < 10−16 < 10−19

mixed-damselfly 0.5514 -0.9679 0.1880 0.1067 < 10−5 < 10−5

mixed-moth 0.6783 -0.9971 0.6026 0.1090 < 10−5 < 10−5

mixed-bird 0.9329 -2.2698 0.7975 0.0706 < 10−16 < 10−16

Table S3. Linear regression results for mixed simulation experiments with varying evolutionary

divergence. Table layout and description are otherwise identical to Table S1.

Model conditions intercept B coefficient R2 RSE p-value q-value

forward-gopher 0.6677 -0.8078 0.9091 0.0738 < 10−16 < 10−313

forward-stinkbug 0.6429 -0.8991 0.9091 0.0777 < 10−16 < 10−313

forward-primate 0.4133 -0.5121 0.8796 0.0584 < 10−16 < 10−276

forward-damselfly 0.2217 -0.2200 0.1693 0.0344 < 10−16 < 10−26

forward-bird 0.2241 -0.2553 0.9317 0.0257 < 10−16 0
Table S4. Linear regression results for forward-time simulation experiments with varying evolu-

tionary divergence. Table layout and description are otherwise identical to Table S1.
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S3 METAGENOMIC PROCESSING AND CONTIG ASSEMBLY FOR MORTIERELLA SPP.

AND ENDOSYMBIONT

Sample acquisition and sequencing. Isolates were collected and also sourced from established

culture collections. Modified versions of the soil plate [32] and selective-baiting method [28] were

used to isolate Mortierellomycotina from soil. The techniques described in [6] were used to isolate

Mortierellomycotina from pine and spruce roots.

In total, thirteen metagenomic samples of Mortierella spp. and their associated endobacteria

were collected and sequenced (Table S5). Ten samples were sequenced using Illumina HiSeq 2500

short-read sequencing and three samples were sequenced using PacBio long-read sequencing.

Illumina-sequenced metagenomic reads were trimmed with BBDuk (ftl=5 minlen=90) [7] to

remove Illumina adapters, trim five leftmost bases, and discard reads shorter than 90 bp after

trimming. The quality of trimmed reads was assessed by FastQC [1]. De novo assembly of the

metagenomic samples was conducted with SPAdes (-k 21,33,55,77,99,127) [3] to produce contigs.

BBMap [7] was used to calculate summary statistics on assembled contigs. BUSCO [29] was used

with the mucoromycota_odb10 and burkholderiales_odb10 databases to assess the completeness of

de novo assembly and confirm the presence of endobacteria, respectively (Table S6).

The PacBio-sequenced metagenomic reads were de novo assembled with CANU [16], with the

exception of sample AV005: its draft assembly was obtained directly from JGI (Project ID: 1203140).

Completeness and summary statistics were assessed in the same manner as for Illumina-sequenced

assemblies (Table S6).

Sample ID BioProject BioSample SRA accession GOLD JGI ID Instrument Geographic location Specimen Scope Fungal organism

AD022 PRJNA367465 SAMN06267312 SRR5822949 Gp0136994 Illumina HiSeq 2500 Bryce Canyon, UT, USA Rhizosphere Mortierella elongata

AD045 PRJNA340843 SAMN05720529 SRR5190920 Gp0154302 Illumina HiSeq 2500 East Lansing, MI, USA Rhizosphere Mortierella gamsii

AD051 PRJNA370772 SAMN06297100 SRS2351483 Gp0136990 PacBio RS II Laingsburg, MI, USA Rhizosphere Mortierella minutissima

AD058 PRJNA340839 SAMN05720441 SRR5190916 Gp0154298 Illumina HiSeq 2500 Laingsburg, MI, USA Rhizosphere Podila epicladia

AD073 PRJNA364919 SAMN06265150 SRR5822802 Gp0136992 Illumina HiSeq 2500 Michigan, USA Rhizosphere Mortierella elongata

AD086 PRJNA365031 SAMN06264397 SRR5822800 Gp0136991 Illumina HiSeq 2500 Coatesville, PA, USA Soil Mortierella humilis

AD266 PRJNA713069 SAMN18261529 NA Gp0397541 PacBio Sequel Oregon, USA Soil Mortierella alpina

AM1000 PRJNA340828 SAMN05720794 SRS1930920 Gp0154287 Illumina HiSeq 2500 Illinois, USA Monoisolate Mortierella clonocystis

AM980 PRJNA340833 SAMN05720525 SRR5190941 Gp0154292 Illumina HiSeq 2500 NA Monoisolate Mortierella elongata

AV005 PRJNA713068 SAMN18259510 NA Gp0397540 PacBio Sequel Camuy, Puerto Rico Soil Mortierella capitata

CK281 PRJNA364924 SAMN06266091 SRR5823416 Gp0136997 Illumina HiSeq 2500 North Carolina, USA Soil Mortierella minutissima

NVP60 PRJNA340844 SAMN05720530 SRR5192043 Gp0154303 Illumina HiSeq 2500 Cassopolis, MI, USA Monoisolate Linnemannia gamsii

TTC192 PRJNA410574 SAMN07687234 SRR6257765 Gp0154326 Illumina HiSeq 2500 North Carolina, USA Soil Mortierella verticillata

Table S5. List of Mortierella spp. and endobacteria used in this study.

Metagenomic assembly summary statistics BUSCO Marker Percentage (Mortierella spp.) BUSCO Marker Percentage (endobacteria)

Sample ID # Contig Mbp L50 N50 GC % Full Single Duplicate Fragment Full Single Duplicate Fragment

AD022 14019 50.92 9866 1486 48.64 93.3 92.0 1.3 2.4 89.2 88.5 0.7 1.2

AD045 4647 49.84 23855 618 47.70 94.5 93.4 1.1 1.4 90.0 89.4 0.6 1.2

AD051 577 49.90 487613 29 48.90 97.4 92.3 5.1 0.2 88.9 82.7 6.2 1.2

AD058 7618 41.20 9691 1226 48.35 82.6 81.2 1.4 5.8 86.4 85.8 0.6 1.2

AD073 2797 50.79 113421 125 48.27 97.5 96.0 1.5 0.5 89.7 89.0 0.7 1.2

AD086 6417 45.46 85097 158 48.60 96.7 94.4 2.3 0.8 85.1 84.4 0.7 1.9

AD266 471 41.25 150867 77 50.13 90.0 88.0 2.0 1.7 89.8 89.1 0.7 0.6

AM1000 5069 41.99 16545 784 48.39 94.3 92.6 1.7 2.2 81.9 81.2 0.7 4.1

AM980 27840 23.86 2648 655 47.76 1.6 1.4 0.2 0.3 93.3 89.4 3.9 0.4

AV005 151 39.25 647500 21 49.35 92.9 92.3 0.6 1.9 89.3 88.7 0.6 1.0

CK281 3629 45.73 29152 448 48.54 96.6 94.7 1.9 2.5 90.4 89.4 1.0 1.3

NVP60 12396 50.25 7755 1896 48.13 86.0 84.9 1.1 5.7 89.6 89.2 0.4 1.2

TTC192 6909 42.60 11619 1075 48.95 85.6 84.2 1.4 5.2 90.7 90.1 0.6 1.0

Table S6. Summary statistics for Mortierella spp. and endobacterial assemblies.
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Variant calling. The all-genomic-loci dataset was processed using the following steps. Contigs

were extracted using the draft genome Linnemannia elongata AD073 v1.0 (JGI Project ID: 1203123)

as the reference genome for fungus and draft genome Mycoavidus cysteinexigens B1-EB (Genome

ID: 1553431.3) from the PATRIC database as a reference for endobacteria. The reference fungal

genome was processed using RepeatMasker [9]. BLASTN (-outfmt 6 -max_target_seqs 200) [8]

was used to identify fungus and endobacteria in the de novo assembly against the corresponding

reference genomes. Seqtk (subseq -l 60) [17] analyzed BLAST hits to recover a draft fungal genome

and a draft endobacteria genome from the de novo assembly. Variant calling was performed with

the MUMmer package [11] using the draft genomes against the reference genomes. Within the

MUMmer suite [11], NUCmer was used to align the draft genome against the reference and show-

snps identified the single nucleotide variants (SNV). Then, the MUMmerSNPs2VCF software was

used to convert SNVs into a VCF-formatted file (software downloaded from https://github.com/

liangjiaoxue/PythonNGSTools). Sequences with greater than 99.95% sequence similarity were

pruned. The SNV MSA for Mortierella spp. was 4,607,802 bp long with 81.9% gappiness and 0.03%

average normalized Hamming distance (ANHD); whereas the associated endobacteria had SNV

alignments of length 215,165 bp with 47.4% gappiness and 0.22% ANHD.

S4 BACKWARDS-IN-TIME SIMULATIONS AND EXPERIMENTS

Simulation and experimental procedures. The backward-time model of [2] was used to simulate

coevolution among = host taxa and = symbiont taxa, as well as host/symbiont associations. Our

simulations explored varying numbers of taxa = ∈ {10, 50, 100, 500}. The simulations made use

of a custom-modified Python program that was originally implemented by Avino et al. [2]. The

simulation program takes a host tree as input and simulates a symbiont tree backward-in-time along

the host tree by randomly drawing wait times to determine the timing and type of coevolutionary

event(s) on a particular host tree branch. We used INDELible to sample host trees under a random

birth-death model (see Supplementary Materials for more details). Model trees were deviated away

from ultrametricity using Moret et al. [22]’s approach with deviation factor 2 = 2.0 [23]. We used

custom scripts to perform the ultrametricity deviation calculations. We note that the Avino et al.

[2]’s simulation software does not directly provide the model cophylogeny as output. Instead, a

reference cophylogeny was obtained using eMPRess estimation on the true model trees for host and

symbiont taxa as input. The choice of reference cophylogeny allows comparison of cophylogenetic

estimation when ground truth inputs are provided (i.e., true model trees) versus cophylogenetic

estimation when estimated trees are used as input.

Simulation of sequence evolution along model phylogenies followed the same procedure as in

the mixed simulations. The substitution model parameters were based on empirical estimates from

our re-analysis of the dataset from [10]’s study. Model condition parameter values and simulated

dataset summary statistics are listed in Table S7.

As with the mixed simulations, additional experiments with varying evolutionary divergence

were performed using the backward-time simulation procedure. The scaling parameter ℎ was

similarly set to a value from {0.1, 0.5, 1, 2, 5, 10}.

Results and discussion. Similar outcomes were observed in the backward-time simulation ex-

periments, as compared to the mixed simulation experiments. Upstream tree estimation returned

topological error of around 10% or less (Supplementary Figure S3). Estimated cophylogeny preci-

sion was also similar – ranging around 50% to 60%. Negative and significant correlation between

upstream tree error and downstream cophylogeny precision was observed on all model conditions

(U = 0.05; = = 100), as shown in Supplementary Figure S7. Regression coefficients ranged between

−0.644 and −0.848 (Table S8). Scatter around linear regression models was smaller than in the
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Model conditions Taxa # taxa Aln length ANHD Avg ANHD SE Height Avg Height SE # cospec # dup # switch

backward-10
Host 10 1,000 0.6298 0.0008 2.6711 0.0191

5 1 2
Symbiont 10 1,000 0.6820 0.0011 4.4742 0.0466

backward-50
Host 50 1,000 0.7060 0.0002 8.8000 0.0465

15 13 12
Symbiont 50 1,000 0.7232 0.0001 8.9585 0.1965

backward-100
Host 100 10,000 0.7281 0.0000 8.1247 0.0439

34 32 47
Symbiont 100 10,000 0.7283 0.0000 8.6243 0.0448

backward-500
Host 500 10,000 0.7951 0.0039 4.6108 0.0077

157 177 271
Symbiont 500 10,000 0.7894 0.0039 5.6020 0.0474

Table S7. Summary statistics for backward-time simulation datasets. Each backward-time simulation
condition (“Model conditions”) varied the number of host and symbiont taxa (“# taxa”) simulated under Avino
et al. [2]’s backward-time coevolutionary model. The simulations included cospeciation, duplication, and
host switch events, but not loss events.

backward-time simulations, with coefficient of determination between 0.653 and 0.938. One minor

difference between backward-time simulation experiments and mixed simulation experiments is

that former the returned more consistent regression analysis results compared to the latter. We

attribute the difference in part to the relative heterogeneity of the mixed simulation conditions

compared to the backward-time simulation conditions.

Fig. S7. The relationship between phylogenetic and cophylogenetic estimation error on the

backward-time simulation conditions.

Simple Linear Regression

Model conditions intercept B coefficient R2 RSE p-value q-value

backward-10 0.6018 -0.6870 0.6525 0.1644 < 10−14 < 10−13

backward-50 0.6236 -0.7010 0.9074 0.0817 < 10−7 < 10−7

backward-100 0.6482 -0.6438 0.9379 0.0545 < 10−9 < 10−9

backward-500 0.7793 -0.8475 0.8950 0.0968 < 10−9 < 10−9

Table S8. Linear regression results for backward-time simulation experiments.
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S6.1 Mixed simulation results with CoRe-PA

We obtained similar results using CoRe-PA as we did with eMPRess. There exists a negative

correlation between cophylogeny precision and average host and symbiont tree topology error.

The confidence band around the simple linear regressions were tight, indicating the data points

clustered around the regression line.

Contrary to eMPRess results, the mixed-stinkbug model condition obtained a nearly horizontal

regression line, showing that for this dataset, 15% perturbance in the tree topology did not result in

appreciable change to the cophylogenetic precision, which remained low at under 5% cophylogenetic

precision. The original annotation cophylogeny reconstructionwas estimated using eMPRess, which

predicted 5 cospeciations, 5 duplications, and 1 host switch event. On the other hand, CoRe-PA

reconstructions on the replicate simulations on average predicted 2 cospeciations and 2 duplications.

We attribute the finding to CoRe-PA’s low cophylogenetic precision, which was among the lowest

observed in our study. The topological error returned by its cophylogenetic reconstructions may

overshadow the influence of upstream estimation error and other factors.

Fig. S11. Mixed simulation datasets: precision of CoRe-PA reconciliations compared with averaged host
and symbiont tree normalized Robinson-Fould (nRF) distances. For each height scaling factor, a set of 100
replicates were simulated. Co-phylogenetic reconciliation precision was calculated as the aggregate statistic
for events found in all of the replicate cophylogeny reconstructions and their respective, original annotation
cophylogeny reconstruction.

S6.2 Backward-time simulation results with CoRe-PA

In backward-time simulations, we obtained similar results using CoRe-PA as we did with eMPRess

such that there exists a negative correlation between cophylogeny precision and average host and

symbiont tree topology error. The data points clustered around the regression line as indicated by

the tight confidence band around the simple linear regressions line.

S6.3 Forward-time simulation results with CoRe-PA

In forward-time simulations, we obtained similar results using CoRe-PA as we did with eMPRess.

We found a negative correlation between cophylogeny precision and average host and symbiont

tree topology error. The confidence band around the simple linear regressions were tight, indicating

13
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Simple Linear Regression

Model conditions intercept B coefficient R2 RSE p-value

mixed-gopher 0.3655 -1.2081 0.4621 0.0606 < 10−16

mixed-stinkbug 0.0438 0.0061 0.0022 0.0061 0.4176

mixed-primate 0.2161 -0.7561 0.3726 0.0196 < 10−16

mixed-damselfly 0.0381 -0.1989 0.0218 0.0264 < 10−5

mixed-moth 0.1056 -0.1167 0.0194 0.0225 < 10−6

mixed-bird 0.9341 -1.8328 0.1663 0.0408 < 10−5

Table S10. Linear regression results for mixed simulation experiments involving CoRe-PA.

Fig. S12. Backward-time simulation datasets: precision of CoRe-PA reconciliations compared with averaged
host and symbiont tree normalized Robinson-Fould (nRF) distances. For each height scaling factor, a set
of 100 replicates were simulated. Co-phylogenetic reconciliation precision was calculated as the aggregate
statistic for events found in all of the replicate cophylogeny reconstructions and their respective, original
annotation cophylogeny reconstruction.

Simple Linear Regression

Model conditions intercept B coefficient R2 RSE p-value

backward-10 0.4689 -1.6189 0.3565 0.1031 < 10−16

backward-50 0.4327 -0.9491 0.2813 0.0481 < 10−16

backward-100 0.4305 -2.9033 0.3227 0.0333 < 10−16

backward-500 0.5380 -1.7934 0.2201 0.0210 < 10−16

Table S11. Linear regression results for backward-time simulation experiments involving CoRe-PA.

the data points clustered around the regression line. The forward-damselfly model condition corre-

sponded with the mixed-damselfly model condition in mixed simulations, which also demonstrated
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a linear regression line slope that was smaller in magnitude in CoRe-PA results than in eMPRess

results. Similarly, forward-bird model condition corresponded with the mixed-bird model condition

in mixed simulations, and it also demonstrated a linear regression line slope that was smaller in

magnitude in CoRe-PA results than in eMPRess results. Contrary to mixed simulations, forward-

stinkbug obtained a trendline closer to model conditions mixed-stinkbug and forward-stinkbug

from eMPRess results.

Fig. S13. Forward-time simulation datasets: accuracy of CoRe-PA reconciliations compared with averaged
host and symbiont tree normalized Robinson-Fould (nRF) distances. Co-phylogenetic reconciliation accuracy
was calculated as the aggregate statistic for events found in the 100 replicate cophylogeny reconstructions
that were also found in the true coevolutionary history.

Simple Linear Regression

Model conditions intercept B coefficient R2 RSE p-value

forward-gopher 0.6913 -1.0173 0.4635 0.0707 < 10−16

forward-stinkbug 0.6470 -1.1315 0.5401 0.0641 < 10−16

forward-primate 0.4654 -0.9690 0.7348 0.0315 < 10−16

forward-damselfly 0.1813 0.0374 0.0014 0.0346 0.3090

forward-bird 0.2309 -0.4118 0.1380 0.0230 < 10−16

Table S12. Linear regression results for forward-time simulation experiments involving CoRe-PA.

S7 MULTILOCUS SIMULATION EXPERIMENT WITH TALE

TALE [19] is a new, multilocus, probabilistic DTL-based cophylogenetic reconstruction method.

We conducted an experiment using multilocus data simulations to assess how reproducible TALE’s

cophylogenetic reconciliations are in the presence of phylogenetic uncertainty.

Experimental design. The model host and symbiont species trees and true MSA for gopher-lice

match that of our main manuscript’s mixed-gopher model condition summary statistics. From

an empirical MSA obtained from [14], we reconstructed host and symbiont species trees using

maximum likelihood estimation under the GTRGAMMA model implemented in RAxML v8.2.12
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[30]. We simulated 100 gene trees under the model symbiont species tree using SimPhy [18]. We

followed the SimPhy simulation procedure from [21], where the height of the SimPhy input tree

was adjusted to 2 million generations tall, and used the same SimPhy parameters as [21] (Table

S13.)

Parameter Description Value

rl Number of locus per replicate 100

rg Number of gene trees per locus tree 1

sp Population size n 200,000

su Global substitution rate 1,000,000

hs Species branch rate heterogeneity modifiers Log normal (1.5,1)

hl Locus rate heterogeneity modifiers Log normal (1.2,1)

hg Gene-tree-branch rate heterogeneity modifiers Log normal (1.4,1)

cs Seed for random number generator 22

Table S13. SimPhy parameters used in to simulate gene trees under the three-tree model.

Cophylogenetic reconstruction with TALE. TALE’s input consisted of the host species tree, sym-

biont species tree, the set of 100 simulated gene trees, host-symbiont mapping, and symbiont-gene

mapping. We used TALE to perform cophylogenetic reconstruction under its sequential heuristic

algorithm, which was shown by the original authors to provide similar recall and precision as the

more theoretically more robust Monte Carlo algorithm [19].

Experimental replication. We repeated the procedure to obtain 10 replicates.

Phylogenetic and cophylogenetic reconstruction and assessment. The phylogenetic inference meth-

ods matched that of the simulation study in the main manuscript. The TALE reconciliations on

each replicate dataset were compared against the reference TALE reconciliation. We followed the

main manuscript and assessed phylogenetic uncertainty alongside of cophylogenetic reconciliation

precision using linear regression. Note that we calculated the tree topology error by comparing the

species trees as specified by TALE to correspond to each of its output reconciliations.

Results and discussion. In this experiment (Figure S14), we observe similar correlation between

species tree topology uncertainty and cophylogenetic reconciliation precision, compared to the

experiments described in the main manuscript. Similar to parsimony-based cophylogenetic recon-

struction methods, TALE’s cophylogenetic reconstruction accuracy is impacted by phylogenetic

estimation error. The experiment therefore confirms the main finding in our study.

A secondary finding was that TALE returned lower cophylogenetic reconstruction precision

in this simulation experiment compared to eMPRess in the main simulation study, as well as in

our own testing of TALE using datasets from the study of Menet et al. [19] (results not shown).

Several factors help to explain the discrepancy. First, we note that TALE only partially accounts for

phylogenetic estimation error on the symbiont side (since symbiont gene trees are assumed to be

correct) and not at all on the host side (since host species trees are wholly assumed to be correct).

Phylogenetic estimation error is present in our simulation experiment and in real-world practice,

and its presence conflicts with common simplifying assumptions about input tree correctness.

Another key difference is that Menet et al. [19]’s simulation experiments utilized true species trees

and true gene trees as input to TALE while our simulation experiments utilized TALE inputs that

included some phylogenetic estimation error. Finally, TALE, eMPRess, and other state-of-the-art

cophylogenetic reconstruction methods do not explicitly account for genetic drift and incomplete
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BBtools version 37.62 [7] was invoked to run BBMap, BBDuk, and Reformat. The following BBDuk

command was used to filter and trim Illumina short reads to reduce artifacts and contaminants.

# run if lanes 1 and 2 are separate files

bbduk.sh in1={lane1 reads} in2={lane2 reads} out1={paired reads 1}

out2={paired reads 2} ref=bbmap_adaptor.fa forcetrimleft=5 minlen=90

# run if you have interleaved reads

bbduk.sh in={interleaved reads} out1={lane1 reads} out2={lane2 reads}

reformat.sh in1={lane1 reads} in2={lane2 reads} out1={paired reads 1}

out2={paired reads 2} ref=bbmap_adaptor.fa forcetrimleft=5 minlen=90

# produce summary statistics for assembly

statswrapper.sh {assembly} format=4 >> {out file}

SPAdes version 3.15.5 [3] was used to assemble paired short reads.

spades.py -k 21,33,55,77,99,127 -o {directory} -1 {paired reads 1}

-2 {paired reads 2} -t 16

BUSCO version 5.3.2 [29] was used to assess the completeness of the assemblies.

busco -i $fungi -l burkholderiales_odb10 -o {out directory} -m genome -c 4

--force #bacteria

busco -i $endobac -l mucoromycota_odb10 -o {out directory} -m genome -c 4

--force #fungi

CANU version 2.2 [16] was used to assemble PacBio long reads.

canu -p {assembly prefix} -d {directory} genomeSize={size in bases} -pacbio {pacbio reads}

BLAST+ version 2.2.31 was used to queryMortierella spp. and endobacterial assembled contigs from

their respective de novo assemblies. Seqtk version 1.3 was used to extract contigs from assembly

using the blasted bed file to produce fasta format contigs.

blastn -query {assembly} -outfmt 6 -max_target_seqs 200 -db {reference} -out {blast file}

awk '!_[$1]++' {blast file} > {bed file}

seqtk subseq -l 60 {blast file} {bed file} > {fasta file}

MUMmer version 3.23 [11] was used to variant call the extracted Mortierella spp. and endobacterial

contigs against their respective reference genomes. SAMtools version 1.15 was used to index and

retrieve the VCF file.

nucmer --prefix={prefix name} {blasted contigs} {reference genome}

show-snps -Clr -x 1 -T {SNPs prefix}.delta > {SNPs prefix}.snps

MUMmerSNPs2VCF.py {SNPs prefix}.snps {SNPs prefix}.vcf

bgzip -c {SNPs prefix}.vcf > {SNPs prefix}.vcf.gz

tabix -p vcf {SNPs prefix}.vcf.gz

Barrnap version 0.9 [27] was used to extract rRNA genes from Mortierella spp. assembly.

barrnap --kingdom euk --threads 8 -o {out directory} < {assembly} > {extract rRNA genes}

PROKKA version 1.14.6 [26] was used to extract rRNA genes from Mortierella’s endobacterial

assembly.

prokka {assembly} --centre X --compliant --force

RAxML version 8.2.12 [30] was used to reconstruct phylogenies under specified software (GTR,

HKY85, JC69, and K80).

18



Supplementary Online Materials:
The Impact of Species Tree Estimation Error
on Cophylogenetic Reconstruction BCB ’23, September 3–6, 2023, Houston, TX, USA

raxmlHPC -m GTRGAMMA -s {unrooted tree} --{software} -p {random number}

-n {out file suffix}

RAxML version 8.2.12 [30] was used to bootstrap alignments.

raxmlHPC -f j -b {random number} -# {number of samples} -m GTRGAMMA

-s {alignment} -n {out file suffix}

RAxML version 8.2.12 [30] was used to midpoint root the phylogenies.

raxmlHPC -f I -m GTRCAT -t {unrooted tree} -n {rooted tree file suffix}

-p {random number}

PAUP* 4.0 [31] was used to reconstruct phylogenies under NJ, UPGMA, and SVDquartet.

paup4a168_centos64

exe {alignment file}

{lower case model name}

savetree file={out tree file} brlen=yes

quit

Linear regression was performed using base R version 4.2.2 with the following code.

lm(precision ∼ avg_nRF, df)

S10 COMMANDS USED IN SIMULATION EXPERIMENTS

Note that texts inside curly brackets {} indicate files and inputs the user passes into the software,

thus they are not part of the command.

MAFFT v7.490 [15] was used to align sequences in empirical datasets that provided unaligned

sequence data.

mafft {unaligned sequence file} > {alignment file}

Seq-Gen v1.3.4 [24] was used to simulate gap-less alignments under model species trees from

parameters obtained from running RAxML v8.2.12 [30] on the original empirical alignments.

seq-gen -mGTR -r{GTR rate parameters} -z {random number} -or

-l{simulated alignment length} -f{nucleotide frequencies}

< {model species tree file} > {simulated alignment file}

Seq-Gen v1.3.4 [24] was used to simulate gap-less alignments under model species trees from

parameters obtained from running RAxML v8.2.12 [30] on the original empirical alignments.

RAxML version 8.2.12 [30] was used to reconstruct phylogenies under the GTR model.

raxmlHPC -m GTRGAMMA -s {alignment file} -p {random number} -n {tree file suffix}

RAxML version 8.2.12 [30] was used to midpoint root the phylogenies.

raxmlHPC -f I -m GTRCAT -t {unrooted tree} -n {rooted tree file suffix}

-p {random number}

INDELible version 1.03 [13] was used to simulate n-taxa trees that serve as input to reverse-time

simulator originally from [2]. To run INDELible, use the following command in the same folder as

a INDELible control file called "control.txt".

indelible

We used the following code in INDELible control file to sample an =-taxa tree topology under a

birth-death model with birth rate 2.4, death rate 1.1, sampling fraction 0.2566, and mutation rate

0.34.

[TYPE] NUCLEOTIDE 1

[TREE] tree1
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[unrooted] 10 2.4 1.1 0.2566 0.34

We used the following code in INDELible control file to assign branch lengths using the GTR

parameter rates and nucleotide frequencies from the original annotation of the empirical dataset

[10] on avian feather lice.

[TYPE] NUCLEOTIDE 1

[MODEL] GTRmodel

[submodel] GTR 1.475477 4.831617 1.410614 1.732842 7.069432

[statefreq] 0.319 0.192 0.223 0.266

[TREE] tree1 {newick format tree topology from previous INDELible step}

[branchlengths] NON-ULTRAMETRIC

[PARTITIONS] taxapartition

[tree1 GTRmodel 1000]

[EVOLVE] taxapartition 1 species_tree

Relative variable importance was calculated using randomForest package in R version 4.2.2 with

the following code. Linear regression was performed using base R version 4.2.2 with the following

code.

randomForest(study ∼ .,data=df,ntree=1000,importance=TRUE)

Linear regression was performed using base R version 4.2.2 with the following code.

lm(precision ∼ avg_nRF, df)

S11 COMMANDS TO RUN SIMULATOR SOFTWARE

A modified version of the reverse-time nested coalescent simulator by [2] was used to simulate host

tree, symbiont tree, and output the true coevolutionary history. To the best of our knowledge, this

simulator was not published under copyleft license, therefore we could not include the modified

scripts used in this performance study. The following command was used to run the original

reverse-time cophylogeny simulator.

python nestedCoalescent.py {rooted host tree file} 0.8 0.3 0.4 {symbiont tree file}

Treeducken v1.1.0 [12] R software was used to simulate the host tree, the symbiont tree, and the

extant species associations. We modified Treeducken data structures to additionally output the true

coevolutionary history for the pair of trees in the next section. The following R code was used to

run Treeducken v1.1.0 software.

library(treeducken)

lambda_H <- {see Treeducken parameters table}

mu_H <- {see Treeducken parameters table}

lambda_C <- {see Treeducken parameters table}

lambda_S <- {see Treeducken parameters table}

mu_S <- {see Treeducken parameters table}

time <- {see Treeducken parameters table}

cophy_obj <- sim_cophylo_bdp(hbr = lambda_H,

hdr = mu_H,

sbr = lambda_S,

sdr = mu_S,

cosp_rate =lambda_C,

host_exp_rate = 0.0,

time_to_sim = time,

numbsim = 1)
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S12 MODIFIED TREEDUCKEN CODE

The following R code was used to modify Treeducken’s data structures post simulation to rename

coevolution events and output the desired format trees with internal node labeling as well as the

true, coevolutionary history.

library(treeducken)

library(ape)

library(geiger)

# Run Treeducken as normal

lambda_H <- {see Treeducken parameters table}

mu_H <- {see Treeducken parameters table}

lambda_C <- {see Treeducken parameters table}

lambda_S <- {see Treeducken parameters table}

mu_S <- {see Treeducken parameters table}

time <- {see Treeducken parameters table}

cophy_obj <- sim_cophylo_bdp(hbr = lambda_H,

hdr = mu_H,

sbr = lambda_S,

sdr = mu_S,

cosp_rate =lambda_C,

host_exp_rate = 0.0,

time_to_sim = time,

numbsim = 1)

# Start modifying phylo and associations data objects

# to output the coevolutionary history with the event types we want

### label internal nodes ###

label_internal_nodes <- function(tree){ #where tree is a phylo object

tot_internal_nodes<-tree$Nnode # total number of nodes

start_internal_nodes<-length(tree$tip.label)+1

end_internal_nodes<-start_internal_nodes+tot_internal_nodes-1

labels<-list()

for (i in start_internal_nodes:end_internal_nodes){

# nodes start incrementing from number of tips

name<-paste(tips(tree,i),collapse = "_")

labels <- append(labels, name)

}

tree$node.label <- labels

new_tree <- write.tree(tree)

return(new_tree)

}

output_unlabeled_tree<-function(tree){

print(tree)

new_tree <- write.tree(tree)

return(new_tree)

}
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#host

write.table(output_unlabeled_tree(cophy_obj[[1]]$host_tree), file_host,

append = FALSE, sep = " ",

row.names = FALSE, col.names = FALSE,

quote=FALSE)

write.table(label_internal_nodes(cophy_obj[[1]]$host_tree), file_host_labeled,

append = FALSE, sep = " ",

row.names = FALSE, col.names = FALSE,

quote=FALSE)

#symb

write.table(output_unlabeled_tree(cophy_obj[[1]]$symb_tree), file_symb,

append = FALSE, sep = " ",

row.names = FALSE, col.names = FALSE,

quote=FALSE)

write.table(label_internal_nodes(cophy_obj[[1]]$symb_tree), file_symb_labeled,

append = FALSE, sep = " ",

row.names = FALSE, col.names = FALSE,

quote=FALSE)

### relabel event history to format: event host_node symb_node) ###

#where tree is a phylo object

relabel_treeducken_event_history <- function(event_history, hosttree, symbtree){

#host trees

tot_internal_nodes_h<-hosttree$Nnode # total number of nodes

num_leaf_host<-length(hosttree$tip.label)

start_internal_nodes_h<-num_leaf_host+1

end_internal_nodes_h<-start_internal_nodes_h+tot_internal_nodes_h-1

labels_host<-list()

for (i in start_internal_nodes_h:end_internal_nodes_h){

# nodes start incrementing from number of tips

name<-paste(tips(hosttree,i),collapse = "_")

labels_host <- c(labels_host, name)

}

hosttree$node.label <- labels_host

#symb trees

tot_internal_nodes_s<-symbtree$Nnode # total number of nodes

num_leaf_symb<-length(symbtree$tip.label)

start_internal_nodes_s<-num_leaf_symb+1

end_internal_nodes_s<-start_internal_nodes_s+tot_internal_nodes_s-1

labels_symb<-list()

for (i in start_internal_nodes_s:end_internal_nodes_s){

# nodes start incrementing from number of tips

name<-paste(tips(symbtree,i),collapse = "_")

labels_symb <- c(labels_symb, name)

}

symbtree$node.label <- labels_symb

num_events<-nrow(event_history)

events<-c()
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hosts<-c()

symbs<-c()

prefix_host<-"H" # H for host, S for symb

prefix_symb<-"S"

# update event names in Treeducken to the known 4 events that works with cophy software

# https://github.com/wadedismukes/treeducken/blob/main/src/Simulator.cpp#L682

treeducken_events=c("SX", "HX", "SSP", "HSP", "AG", "AL", "CSP", "DISP","EXTP", "SHE", "SHS")

known_events=c("loss", "loss", "duplication", "host_switch",

"duplication", "loss", "cospeciation", "cospeciation",

"loss", "host_switch","host_Switch")

event_renaming=data.frame(treeducken_events, known_events)

# mapping to known format event history

for (i in 1:num_events){

print(i)

if (event_history$Event_Type[i] == "I"){

print("Initialized")

#skip this one, "I" stands for initialize event vector.

next

}

else{

new_event<-event_renaming$known_events[event_renaming$treeducken_events

==event_history$Event_Type[i]]

events <- c(events, new_event) # events

}

if (event_history$Host_Index[i] > num_leaf_host){ #hosts

hosts <- c(hosts, labels_host[event_history$Host_Index[i]-num_leaf_host])

}

else{

hosts <- c(hosts, paste0(prefix_host,event_history$Host_Index[i]))

}

if (event_history$Symbiont_Index[i] > num_leaf_symb){ #symbs

symbs <- c(symbs, labels_symb[event_history$Symbiont_Index[i]-num_leaf_symb])

}

else{

symbs <- c(symbs, paste0(prefix_symb,event_history$Symbiont_Index[i]))

}

}

new_event_history<-data.frame(events, paste(hosts, sep=" "),

data.frame("symbs" = paste(symbs, sep=" ")))

colnames(new_event_history) <- c("events", "hosts", "symbs")

print(new_event_history)

return(new_event_history)

}

new_event_history<-relabel_treeducken_event_history(cophy_obj[[1]]$event_history,

cophy_obj[[1]]$host_tree, cophy_obj[[1]]$symb_tree)

write.table(new_event_history, file_event_history,

append = FALSE, sep = " ",
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row.names = FALSE, col.names = FALSE,

quote=FALSE)

### output nexus and empress association links ###

Which.names <- function(DF, value, file_empress_link, file_nexus_link){

ind <- as.data.frame(which(DF==value, arr.ind=TRUE, useNames =TRUE))

print(ind)

num_links<-length(colnames(DF))

links_empress<-""

links_nexus<-""

for (i in 1:num_links){

symb<-colnames(association_mat)[ind$col[i]]

host<-rownames(association_mat)[ind$row[i]]

links_empress<-paste(links_empress,paste(symb, host ,sep=":"), sep="\n")

links_nexus<-paste(links_nexus,paste0("'",symb,"':'",host,"',",collapse=""), sep="\n")

}

links_empress<-sub(".", "", links_empress) # remove first character \n

links_nexus<-sub(".", "", links_nexus)

cat(links_empress)

links_nexus <- gsub(".{1}$", ";",links_nexus) # replace last character with ";"

cat(links_nexus)

write(links_empress, file_empress_link)

write(links_nexus, file_nexus_link)

}

association_mat<-cophy_obj[[1]]$association_mat

# where cell value is 1 means association exists

Which.names(association_mat, 1, links_empress, links_nexus)

cophy_obj[[1]]$host_tree$Nnode

cophy_obj[[1]]$symb_tree$Nnode

length(new_event_history$events)

sum(new_event_history$events=="cospeciation")

sum(new_event_history$events=="duplication")

sum(new_event_history$events=="host_switch")

num_links<-length(colnames(association_mat))

ind <- as.data.frame(which(association_mat==1, arr.ind=TRUE, useNames =TRUE))

all_symb=c()

# the following only matters if the cophylogenetic software doesn't allow

# a symbiont to associate with multiple hosts. eMPRess and CoRe-PA don't mind.

for (i in 1:num_links){

symb<-colnames(association_mat)[ind$col[i]]

if(sum(all_symb==symb) < 1){

all_symb<-append(all_symb,symb)

}

else{

print("symb lineage on multiple hosts.")

break

}

}
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