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Abstract

We performed a numerical study of the efficiency of mixing by alternating horizontal
and vertical shear “wedge” flows on the two-dimensional torus. Our results suggest that
except in cases where each individual flow is applied for only a short time, these flows
produce exponentially fast mixing. The observed mixing rates are higher when the
individual flow times are shorter (but not too short), and randomizing either the flow
times or phase shifts of the flows does not appear to enhance mixing (again when the
flow times are not too short). In fact, the latter surprisingly seems to inhibit it slightly.

1 Introduction and Motivation

The study of mixing of substances by incompressible flows has practical applications as
well as connections to multiple branches of mathematics and science. The simplest mathe-
matical model of the process of mixing in the absence of diffusion is the transport PDE

pt+U’vp:O, (11)

where p represents concentration of the mixed substance with some initial value p(-,0) = po,
and u is the (prescribed and divergence-free) velocity of the mixing flow. We will consider
here p € L>(T?x[0, 00)), so the physical domain will be the two-dimensional torus. Moreover,
since addition of a constant does not affect the dynamic of (1.1) and the spatial average
Jp2 p(z,t)dx = [, po(z)dz of solutions is conserved, we can restrict our analysis to mean-
zero solutions without loss. We also stress that our interest is in mixing by divergence-free
fluid flows acting on T? (= [0, 1)? with identified sides) continuously in time, as opposed to
general measure-preserving maps T : T? - T? (which represent the discrete-time version of
the problem but may not result from real-world advective stirring). Also, due to practical
considerations and ease of implementation, of particular interest are time-periodic flows,
possibly up to some simple transformations.

Two important questions about (1.1) concern optimal mixing rates of solutions, given
certain natural constraints on the mixing flows u (see the Section 2 for related definitions and
further details), and which flows achieve these rates. Addressing the first question, Crippa



and De Lellis essentially showed in [7] that one cannot achieve faster than exponential-in-time
mixing, thus also proving a modified version of Bressan’s rearrangement cost conjecture [5,6].
That this exponential rate is indeed achievable was shown by Yao and Zlatos [19], who found
flows exponentially mixing any given initial data py (including on domains with boundaries),
as well as by Alberti, Crippa, and Mazzucato [2], whose results only apply to a special class
of initial data on T? but also to a larger set of flow constraints. These results therefore
established optimality of exponential mixing and also found flows that achieve it.

Unfortunately, the flows constructed in [2,19] are quite complicated, far from time peri-
odic, and heavily depend on the initial data. All these facts have obvious practical limita-
tions. These issues were remedied by Elgindi and Zlatos [9], who constructed much simpler
and time-periodic almost universal exponential mixers — po-independent flows that mix ex-
ponentially all initial data that have at least some degree of regularity (the construction also
extends to domains with boundaries and, unlike [2,19], to all spatial dimensions). These
flows even mix all initial data asymptotically as ¢t — oo, so they are universal mizers, but
it was shown in [9, Theorem 1(ii)] that no universal mixer can have a mixing rate (expo-
nential or otherwise) that is uniform in all bounded mean-zero pg, even if one allows for a
po-dependent initial delay before this rate is realized.

The construction in [9] nevertheless still has one limitation. While the constructed flows
are Holder continuous in space, they are not Lipschitz and their flow maps are discontinuous.
(The flows in [19] share this limitation; those in [2] apply to solutions taking only two values,
so they can be modified arbitrarily on each of the two level sets without changing the
solution dynamics, which allows one to avoid potential singularities in their construction.)
Also, Bedrossian, Blumenthal, and Punshon-Smith [3] showed that generic solutions u to the
2D Navier-Stokes equations with certain stochastic forcings are almost universal exponential
mixers, which is of obvious practical interest. On the other hand, these flows are again quite
complicated and not time-periodic, as well as not deterministic, and they only satisfy the
required constraints on average in time rather than pointwise. It is therefore still an open
question whether (time-periodic) smooth or at least Lipschitz continuous almost universal
exponential mixers (or even just universal mixers) exist on T? or other domains.

One candidate for such flows on T? was proposed by Pierrechumbert [14,15], and this
suggestion is quite simple although not time-periodic. It is almost every realization of the
random vector field taking values (sin(27xs + w,),0) and (0,bsin(27x; + w,)) (with b € R
some constant) on time intervals (n-1,n - 3] and (n - 3,n] (for n € N), respectively. Here
w, are independent random variables uniformly distributed over T; note also that while
these flows are not continuous in time, this is easily remedied by a simple reparametrization
described in [19].

These flows are a representative of a wider class of alternatively horizontal and vertical
shear flows. Heuristically, they appear to have very good mixing properties in many cases,
but we are not aware of any rigorous proofs. The goal of the present work is to demonstrate
numerically that such flows can indeed yield exponential mixing of passive scalars advected
by them. We will consider random flows, with randomness in phase and/or flow time (the
latter will replace the amplitude b above), as well as deterministic time-periodic ones.

One difficulty with a computational approach to (1.1) is that when mixing is fast, so-
lutions quickly become very rough, which poses a challenge from the numerical standpoint.
This may be further amplified when one considers non-smooth initial data, which we will do



here because
Po = X[0,1/2)x[0,1) ~ X[1/2,1)x[0,1) (1.2)

(considered also in, e.g., [2,5]) is a natural choice of a “minimally premixed” initial datum;
of course, pg is smooth away from the line x; = %

This problem can be somewhat remedied by adding a smoothing diffusion term to (1.1),
but we do not wish to take this route and will instead address the issue by using a setup
in which we can minimize the resulting complications. We will use the approach from the
advection step of Pierrehumbert’s lattice method [15] (but with no diffusion step), where the
solution is approximated by a linear combination of characteristic functions of 22V squares
of size 27V x 27N from a fine grid into which T? is split (with N € N). These squares are
then moved according to the prescribed shear flow, with each shift rounded to be an integer
multiple of the grid scale 2=V, This results in a specific permutation of these squares in
each advective step. Of course, one can equivalently represent each square by its “lower left”
vertex, and these vertices are then the grid points from

1 v_1)?
GN:={O 2 }g’ﬂ‘?, (1.3)

TN N

whose coordinates are integer multiples of 2=. We will do so and thus have p(-,t) € L= (Gy).
Moreover, we will avoid having to round the shifts by considering the horizontal and
vertical “wedge” flows

u? (21, 25) = (dyp(w2,w),0) and u) (z1,12) := (0, dr(21,w)) (1.4)
instead of the sine flows from [14], with

dr(z,y) = min{|z - y|,1 -]z -y}

the distance on T (so dr(z,y) € [0,1]) and w € T some phase shift. If w is an integer multiple
of 27NV and either of these flows is applied for an integer length of time 7 € Z, then the
resulting time-7 flow maps

H] (z1,29) = (1 + 7dp(x2,w), x2) and V7 (z1,29) := (x1, 29 + Tdp(x1,w))  (1.5)
acting on T? keep Gy invariant. These then transform functions f e L*(T?) via

Holf](1,22) = f (21 - 7dr(22,w),22)  and  V[f](@1,22) := f (21,22 - Tdp(z1,0)) .

(1.6)
Since we want our flows to satisfy time-uniform constraints, 7 € Z will represent the length
of time during which the particular shear flow is acting rather than the flow amplitude, and
we will refer to it as flow time. For instance, the solution to (1.1) with u = ul is given
by p(-,7) = HL[p(-,0)] (see Figure 1.1). We note that while these flows with a fairly simple
geometry are only Lipschitz, which nevertheless still guarantees continuity of their flow maps,
this comes with an additional advantage over the sine flows from [14] and smooth flows in
general. Since they do not have “flat” spots (such as at the maxima and minima of the sines
where their derivatives vanish), where less mixing is happening due to much less advective
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Figure 1.1: Action of horizontal wedge flows on pg from (1.2) (values 1 and —1 are represented
by blue and yellow colors, respectively).

stretching in those regions, they should be better candidates for efficient mixers, at least on
the quantitative level.

The above setup means that we will consider here functions pg, p1,--- € L*(Gy), with
pr+1 being either HL[pr] or Vi[pk], where w € {O,QLN,--~,%} is the phase shift of the
either horizontal or vertical wedge flow that acts during the integer-length time interval that
contains [k, k+1). We will study four cases here, with both w and 7 fixed as well as random.
When both are fixed, the resulting flow is 27-periodic in time (one could fix separate values
of 7 for the horizontal and vertical flows but we will not do this here). In the random case, we
will randomly choose new w and/or T each time we switch the direction of the flow between
horizontal and vertical (see Section 2 below for details). In Figure 1.2 we demonstrate the
action of alternating wedge flows, with both phase shift and flow time fixed, on the initial
datum py from (1.2). In the rest of this paper, we restrict p and pg to G € T? with N = 15,
where each point from Gy represents its adjacent 27V x 2=V grid square.
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Figure 1.2: Action of alternating wedge flows with fixed 7 and w (the monochromatic lines
in the top left and bottom right of the pictures are due to 7 = 2, see Subsection 3.2).

Our results support the conjecture that all the flows studied here are indeed exponential
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mixers for pg, except possibly some of those with |7| < 2. Although we only consider the
single initial datum (1.2), the fact that it is “minimally premixed” and that it appears to
be mixed exponentially quickly regardless of the choice of the phase shifts and flow times,
suggest that results for other initial data would be similar, and therefore these flows could
in fact be almost universal exponential mixers.

Let us now turn to the specifics of our work. We discuss the details of our setup and the
definition of mixing scales that we will use here in Section 2. We then present our results
in Section 3, the main one being numerical evidence of exponential mixing by alternating
wedge flows, summarized in the table in Figure 3.1.

Acknowledgements. AZ thanks Gautam Iyer and Jean-Luc Thiffeault for illuminating
discussions. LTC acknowledges partial support by NSF grant DMS-1913144. FR and KYJW
were supported in part by Division of Physical Sciences Undergraduate Summer Research
Awards and TRELS Awards from UC San Diego. AZ acknowledges partial support by NSF
grant DMS-1900943 and by a Simons Fellowship.

2 Definition of Mixing Scales and the Modeled Flows

2.1 Mixing Scales of Bounded Functions

In order to be able to study mixing efficiency of flows, we need to adapt a relevant
definition of mixing scales of solutions p to (1.1) with initial data pg. Following [5,19], one
option is to say that p(-,t) is k-mixed to scale € > 0 (for some « € (0,1)) when

x,t)dx
‘][Bs(y) p( )

holds for each y € T? (note that ||p||e = ||0|cc ). The mixing scale of p(-,t) is then the infimum
of all £ > 0 such that p(-,t) is mixed to scale e. This is also called the geometric mizing scale
in [19], and was recently used in various other works including [1,2,7-9]. Other alternatives
are the functional mizing scale |p(-,t)| g |p(-, )|k for some s > 0 (particularly s € {1,1}),
used for instance in [2,3,8-12,16] and closely related to the geometric mixing scale (see [19]),
as well as the Wasserstein distance of the positive and negative parts of p(-,t) [4,13,16,17].
We note that there is also a large literature on the interaction between mixing and diffusion,
as well as alternative definitions of mixing in the diffusive setting, but we will not attempt to
provide an overview here and instead refer the reader to the review [18] (which also concerns
the diffusion-less case (1.1)) and references therein.

We will consider here a version of the geometric mixing scale above, which is most suited
to our setting, but with further adjustments. In the discrete setting of the grid Gy that we
will consider here, averaging the solution over discs may be problematic as the number of
points from Gy inside the disc B.(y) is not a constant multiple of 2. Moreover, finding
averages over all discs of a particular radius centered at points from G is unnecessarily
computationally intensive, while restricting this to only points from some sub-grid would
mean that not all points from G are equally represented in the mixing scale computation.

< ]| poffo (2.1)




It is therefore both more reasonable and better suited to our setup to consider only € = 277
for n=0,1,... and replace the discs B.(y) in (2.1) by all 22 squares

Gi oo [L i+1)x[i j+l)
" on’ on 2n’ 9n

with 4,5 € {0,1,...,2" = 1}. One can easily show (see the proof of Lemma 2.7 in [9]) that
the resulting definition of the mixing scale (which will always be a power of %) is essentially
equivalent to the above definition of geometric mixing scale when it comes to the study of
asymptotic mixing rates (ratio of one with any x € (0,1) and the other with any ' < & is
bounded above by a constant depending only on s — k/; as a result, mixing to arbitrarily
small scales as ¢ — oo happens at the same rate in both senses, up to constant factors).
As mentioned in the introduction, we will also have pg,p1,--- € L*(Gy) instead of p €
L>(T? x[0,00)), so the averages over these squares will be just the averages over the points
from G contained in them. Of course, this means that the minimal possible mixing scale
will be 21N (unless f = 0). The choice of k € (0,1) does not affect the exponential mixing
rates as t — oo (in the continuous space setting as well as in the NV > ¢ regime in the discrete
setting) but will have some effect on finite time intervals. We choose r := 5 as in [5], which
finally yields the following definition.

Definition 1. We say that a mean-zero function f: Gy — R is mized to scale 27" for some
ne{0,1,...,N} if for each pair i,j€{0,1,...,2" =1} we have

9-2(N-n) Z f(2) S%,

xeSf;jnG’N 3
The mizing scale of f is the smallest such 27™.

Note that in our setting we will always have ||px[e = [ 0] e = 1 for all k € Ny.

2.2 The Modeled Flow Types

As discussed in the introduction, we will consider here four basic flow types, all alternating
wedge flows. Two will have fixed phase shifts (chosen randomly at the start) and two will
have their phase shifts chosen randomly each time we switch the flow direction. Two will
have fixed flow times and two will have their flow times chosen randomly each time we switch
the flow direction. We will use the discretized framework described in the introduction with
N =15 (so grid scale will be 2715), modeling the flow dynamic via the mappings from (1.6)
applied to the initial data (1.2) on the domain (1.3). The specific details are as follows.

Fixed Shift Fixed Time (FSFT): We choose randomly phase shifts w,w’ € {0, 5, -+, 2t
(with uniform joint distribution), then fix these and some flow time 7€ {2,...,10}, and let

| HLlpk] K€ [257,(25 +1)7) for some j € Ny,
PEUEAWL ] ke [(2)+ )7, (25 +2)7) for some j € No,

for k = 0,1,.... Since one should expect different behavior for different 7 (which we do
confirm), we model these cases separately. The phase shifts w,w’ are not expected to have a
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significant effect on the mixing rates (which we also confirm), although they will have some
effect on the computed mixing scales at individual times k. This is clear for the horizontal
shift w’ of the vertical flow uY, because different shifts align differently with po. The vertical
shift w would have no effect on the mixing scales if we were to include in Definition 1 all
the 27 x 27" squares with vertices in Gy rather than just the squares S&’ (which have
vertices in G,,). We do not do this in order to shorten the required computing time, and our
simulations show that the effect on the obtained mixing rates would also be negligible. We
run the simulation 100 times (i.e., with 100 random choices of (w,w’)) for each 7.

Random Shift Fixed Time (RSFT): Here the phase shifts are i.i.d. random variables
Wo, Wh, w1, wy, - € {0, 2%\,, e % (with uniform distribution) and the flow time 7 € {2,...,10}
is again fixed, so we have

~[HL k] Kk e[2j7, (2] + 1)) for some j € Ny,
Phet = Vi)l ke[(25+1)7,(2j+2)7) for some j € Ny,

for k = 0,1,.... Contrasting the results in this case with those for FSF'T allows one to
see whether in the latter case the mappings V!, o H! (which generate the FSFT dynamic,
and coincide for all (w,w’) up to translation) may involve structures that slow down or
accelerate mixing, since such structures would not persist in the RSFT case. We perform
100 simulations for each 7.

Fixed Shift Random Time (FSRT): Here the phase shifts are randomly chosen at the
start and then kept fixed as in FSF'T, but the flow time is chosen randomly at each direction
switch to see whether this can improve mixing. Since our FSF'T and RSFT results show that
the mixing rate depends nontrivially on the flow time when the latter is fixed, decreasing
as T increases from 3 or 4 to higher values, it makes sense to limit the randomness in the
flow time to small intervals. We therefore let the flow times be i.i.d. random variables
T0, T T15 Ty, - € {7 = 1, 7,7+ 1} (with uniform distribution) for some fixed 7€ {2,...,10}, so

| HLIpk] ke[t t;+7;) for some j e Ny,
Pt ny[l)k] ke [t;+T7j,t;) for some j e Ny,

for k=0,1,..., with ¢; := Z{:Ol(n +7/). We perform 100 simulations for each 7.

Random Shift Random Time (RSRT'): Here the phase shifts wy, w, wr,wy, ... are chosen
as in RSFT and flow times 79, 7),71,7{,... as in FSRT, so now

H [pk] ket t;+7;) for some j € N,
Phet = V8 [pr]  ke[tj+7),t51) for some j e Ny,
J

for k=0,1,..., with ¢; := 2{2_01(7[ +7/). We perform 100 simulations for each 7€ {2,...,10}.

Of course, the formula for pg,; in the RSRT case also applies in the other cases, but with
(wj,w?) = (w,w") for all j € Ny and/or (7;,7) == (7,7) for all j € Ny.



2.3 Computation of Exponential Mixing Rates

In each of the four cases above and for each 7 € {2,...,10}, we performed 100 simulations.
In every simulation we found the mixing scale 27 of the solution p at each time k € Ny
via Definition 1. We then used these mixing scales to find an exponential mixing rate of the
flow in each individual run via linear regression over a relevant time interval (see below) and
finally averaged these rates over the 100 runs.

The computed mixing scales can never reach the grid scale 2=V, and they typically
plateaued around 24~ in our simulations with N =15 (see Figure 2.1) as well as for other
values of N (since the square Sj{ﬂ;3 has 64 points from Gy, reaching mixing scale 23~V re-
quires it to contain between 22 and 42 points of either color for each (i,j)). In order to
suppress this grid scale effect, we chose the end of the time interval for computation of the
mixing rate to be the first time when the mixing scale reached 25-~. For N =15 this is 2710,
and we denote this time 77y below.

Our simulations also showed that there is an initial time interval where the mixing scale
may display somewhat irregular behavior. An example of this is in Figure 2.1, which contains
means and standard deviation error bars of the binary logarithms —n; of the mixing scales
at different times k for the 100 simulations in two flow cases, the RSFT case with 7 =3 and
the FSRT case with 7 = 7. One can observe near-plateaus of the averaged mixing scales in
the time interval [3, 7] (roughly while these scales are between 27! and 2-2), likely due to an
interaction of the initial data with different phase shifts, before they start an almost constant
rate descent (until they plateau around 27!!). A similar pattern appears before time 8 in
most of the other cases of flows with 7 > 3 (which are the ones providing efficient mixing,
see Section 3 below), more so for smaller values of 7. None is more pronounced than on the
left of Figure 2.1, and therefore their effect on the computed mixing rates would be very
small. Nevertheless, in the interest of obtaining the most accurate approximations of the
actual asymptotic mixing rates, we suppressed it by choosing the start of the time interval
for computation of the mixing rates to be 8. (We note that in almost all cases with 7 > 3,
the first time when the averaged mixing scales dropped below 272 was either 7 or 8. The
exceptions were FSRT and RSRT with 7 = 3, when this time was 9; these are however also
somewhat exceptional, see Subsection 3.1 below.)

So with N = 15, we considered the time interval [8,7}] for each individual simulation
(with T3 being simulation-dependent). We then found the corresponding exponential mixing
rate as the negative of the slope of the line that best (in terms of least squares) fits the
computed binary logarithms —n; of mixing scales at all the integer times within this time
interval (so this is then a base-2 exponential rate). We also computed the R-squared value of
the fitting line (its proximity to 1 indicates a good fit and hence a near-uniform exponential
decay of the mixing scales), as well as averages and standard deviations of the mixing rates
and the R-squared values for the 100 runs for each flow type and each 7.

Remark. Besides the simulations described above, we also performed more limited simu-
lations (in the cases FSFT and RSFT with 7 = 3) with other initial data, namely with values
1 and —1 attained first on the two sides of a diagonal of [0,1)?, and then according to a 2 x 2
checkerboard pattern. We did this to confirm that our observations are not due to the specific
choice of initial data, and indeed in both cases the obtained mean exponential mixing rates
were within 2% of the corresponding ones in Figure 3.1 below. We also performed limited
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Figure 2.1: Means and standard deviation error bars of the binary logarithms of the mixing
scales for the 100 simulations with N = 15 in the RSFT case with 7 = 3 (left) and in the
FSRT case with 7 = 7 (right). The (mean) mixing scales have a near-uniform exponential
decay before eventually plateauing around 2711,

simulations (again for FSFT and RSFT with 7 = 3) involving the functional mixing scale,
which were considerably more computationally demanding. The differences from Figure 3.1
were slightly larger in this case, owing to the different methodology applied on a finite time
interval (these always become relatively negligible as the mixing scales decay to 0) but the
evidence for exponential mixing was equally clear as the one presented in the next section.

3 Main Results and Discussion

In this section, we first present the results of the simulations described in Section 2.
These constitute numerical evidence that the alternating wedge flows from Subsection 2.2
indeed exhibit exponential mixing, except in some cases with small 7, and we also identify
the apparently most efficient mixers among these flows. We then discuss the cases with
small 7, when mixing rates are lower and mixing can even be algebraic, as well as the related
existence of structures fixed by the mixing dynamic.

3.1 Evidence of Exponential Mixing

The table in Figure 3.1 contains averages of the base-2 exponential mixing rates for all
four flow types and all 7€ {2,...,10}, computed as described in Subsection 2.3 (with N =15
and 100 runs in each case). It suggests that the most efficient mixing by the alternating
wedge flows considered here happens when each individual wedge flow acts for the same
time, which is either 3 or 4, and the phase shifts of the flows are not varied during each run.

It also shows that flows with 7 = 2 are much worse mixers than those with 7 > 3; this is
even more pronounced for 7 = 1, which is why we did not include that case in our simulations.
We discuss these issues in Subsection 3.2 below, so will now concentrate on the cases with
7 > 3. We note that in all 32 of them, the means of the R-squared values were at least 0.9660



and their standard deviations were no more than 0.0109, which is why we do not report these
here (we note that even the 3200 individual R-squared values were all no less than 0.9290).
These numbers indicate an excellent fit and near-uniform exponential decay in all cases.

| 7 | FSFT | RSFT | FSRT | RSRT |
2 [ — [02137]0.1279 [ 0.1220
3 10.3954 | 0.3781 | 0.3560 | 0.3430
4 [0.3955 | 0.3726 | 0.3723 | 0.3595
5 ]0.3542 [ 0.3342 | 0.3560 | 0.3429
6 | 0.3409 | 0.3258 | 0.3293 | 0.3195
7 [0.3121 | 0.3046 | 0.3125 | 0.3070
8 10.2959 | 0.2891 | 0.2946 | 0.2861
9 10.2789 | 0.2723 | 0.2788 | 0.2714
10 ] 0.2631 | 0.2595 | 0.2620 | 0.2556

Figure 3.1: Mean (base-2) exponential mixing rates.

For flow types FSFT and RSF'T, the largest mixing rates were obtained for 7 = 3 and 7 = 4;
those for 7 > 5 are noticeably lower, and steadily decrease as 7 grows. This phenomenon can
be explained by noticing that mixing scales for time-independent shear flows decrease no
faster than O(¢7!), and exponential mixing therefore results from alternation of horizontal
and vertical flows. This alternation cannot be too fast (as the cases 7 = 1,2 show), but once
each individual flow acts for a long enough time (which our simulations suggest to be 3 or
4), switching the flow direction becomes more beneficial for fast mixing than keeping it. The
reason for smaller mixing rates in the cases FSRT and RSRT with 7 = 3 vs. 7 = 4 is the
fact that the set {r—1,7,7+ 1}, from which we randomly chose the flow times, contains the
less-conducive-to-mixing value 2. Moreover, the best mixing was obtained by FSFT flows
with 7 = 3,4, which are time-periodic and hence most convenient in potential applications.

Randomizing the phase shift each time the direction of the flow switches seems to have a
(slight but consistent) negative effect on the mixing rates for all 7 > 3, so mixing in these cases
appears to be solely a result of stretching by the individual wedge flows. Note that this effect
is smaller for larger 7, but in those cases there were also fewer additional random choices
made during each run (besides the initial randomly chosen vertical and horizontal phase
shifts). While it need not be surprising that this randomness does not increase mixing, the
strictly lower mixing rates in the RSXT cases vs. their FSXT counterparts are unexpected.
We do not know what is the underlying reason, and further study of this phenomenon could
be of interest.

We note that this could also suggest that the phase shift randomization proposed by
Pierrehumbert in [14,15] might have a positive effect on mixing only when the flow direction
switching is too frequent. Moreover, in that case it might be more beneficial to increase
flow times rather than randomize the phases, which could also be more easily implemented
in real world situations. Nevertheless, the sine flows in [14,15] have a different geometry
from our wedge flows due to decreased stretching near the lines where their velocities are
extremal (and hence their derivatives vanish), so simulations with these flows will be needed
to determine whether the above conclusions also apply in this case.
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The effect of randomizing the flow times is more difficult to discern. Comparing the
corresponding XSRT and XSFT cases suggests that it is negligible for 7 > 7, but this may
not be unexpected since the variation in the flow times is small relative to the mean flow
time 7. For 7 =4,6, one can observe some decrease of mixing rates when the flow times are
randomized, but this reverses for 7 =5 (the XSRT cases with 7 = 3 are again special because
2e{r-1,7,7+1}). However, in the cases 7 = 4,5 these differences can be explained at least
in part by noticeably slower mixing when the (fixed) flow time is 7 = 5 vs. 7 = 4, meaning
that randomizing the flow time should slow down mixing for 7 = 4 but speed it up for 7 =5.
In fact, in order to exclude effects of both values 2 and 5, we also made 100 runs of each of
the XSRT cases with flow times uniformly distributed in {3,4}; the obtained average mixing
rates were much closer to the corresponding XSFT cases with 7 = 3,4, namely 0.3905 in the
FSRT case and 0.3778 in the RSRT case. Hence no clear pattern seems to emerge here.

| 7 | FSFT | RSFT | FSRT | RSRT |
2 [ — ]0.0234]0.0569 | 0.0508
3 10.0115 | 0.0168 | 0.0301 | 0.0250
4 [0.0136 | 0.0170 | 0.0144 | 0.0175
5 [0.0096 | 0.0161 | 0.0189 | 0.0193
6 | 0.0105 [ 0.0135 | 0.0146 | 0.0155
7 10.0105 | 0.0113 | 0.0135 | 0.0168
8 10.0102 [ 0.0101 | 0.0126 | 0.0149
9 0.0123 [ 0.0139 | 0.0124 | 0.0154
10 [ 0.0125 [ 0.0129 | 0.0139 | 0.0146

Figure 3.2: Standard deviations of (base-2) exponential mixing rates.

Let us also discuss variations in the data that yielded the average rates in Figure 3.1,
since one may wonder whether individual runs of our simulation exhibited mixing rates
that are close enough to these averages. Figure 3.2 shows the standard deviations of the 100
individual base-2 mixing rates in each case, demonstrating that the averages in Figure 3.1 are
also good approximations of the mixing rates of most individual runs. Indeed, the standard
deviations were no more than 0.0193 in all cases with 7 > 3 except for the cases FSRT and
RSRT with 7 = 3, where the variation of mixing rates was magnified due to 2 € {7-1,7,7+1}.
For instance, the largest difference between the mixing rate for an individual run with 7 > 3
and the average mixing rate in the corresponding flow case was 0.1020 in the FSRT case
with 7 = 3; that run included a number of consecutive flow times 2 (and fixed phase shifts),
a setup that leads to much slower mixing (see the next subsection).

Finally, for completeness, we list the means and standard deviations of T3y in Figure 3.3.

We also mention that there is no need to compare our simulations with distinct values of N
because there are no errors or rounding involved in the transformations from Subsection 2.2,
and hence the observed mixing scales will only diverge once they approach too close to the
grid scale of the coarser grid simulation (i.e., mixing scale approximately 24-V).
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| 7 [ FSFT [ RSFT | FSRT [ RSRT | | 7 [ FSFT [ RSFT | FSRT [ RSRT |
2 [ — [4813 [ 7273 ] 75.86 2 [ — [ 367 [18.95 ] 17.66
3 | 27.58 [ 28.88 [ 30.09 | 30.80 31064 [ 083 [ 217 | 1.87
4 [26.73 | 28.00 [ 28.26 | 28.77 41049 | 111 [ 084 | 1.05
5 [ 2822 | 29.48 | 28.56 | 29.46 5[ 105 | 1.08 [ 113 | 1.08
6 [ 29.41 | 30.46 | 30.52 | 31.07 6 [ 1.54 | 118 [ 1.37 | 1.30
7 [ 31.28 [ 32.00 [ 31.79 | 31.86 7] 119 | 103 [ 111 | 121
8 | 33.89 [ 34.23 [ 34.01 | 34.30 8 [ 065 | 045 [ 1.04 | 121
9 | 34.90 [ 35.93 [ 34.92 | 35.92 9 [ 147 | 157 [ 1.19 | 155
10 | 35.73 | 36.49 | 36.12 | 36.83 10] 132 [ 1.66 | 149 | 1.68

Figure 3.3: Means (left) and standard deviations (right) of T7.

3.2 Fixed Structures and Grid Scale Effects

Let us now turn to flow times 7 = 1, 2, starting with 7 = 2. The tables above are all missing
data in the case FSFT with 7 = 2, which is because one can easily show that these flows do
not produce exponential mixing (hence we did not run our simulations in this case). The

segments {(s,s+32)[s € (0,1)} and {(s,s+1)|s € (3,3)} are fixed by (V2oH2)?, and mapped
onto each other by V2o H2. The same is true about the segments {(s,2 - s)|se(3,2)} and
{(s,5-5)|s€(3,1)}. Obviously, (w’,w)-shifts of these segments have the same relationship
to V2, 0 H2. Moreover, locally at any point on these segments, (V2 o H2)? is represented by

the matrix
-3 4
-4 5|’

which is similar to the 2 x 2 Jordan block with diagonal elements 1 (the eigenspace for this
eigenvalue is generated by (1,1)). It is easy to see from this that one can at best hope for
algebraic-in-time mixing in this case. Figure 1.2 in fact shows how mixing is inhibited near
the above segments, as well as that it is faster elsewhere in the domain.

These structures of course do not survive the randomization in the RSFT, FSRT, and
RSRT cases with 7 = 2, but they show that flow time 7 = 2 does not provide enough stretching
and layering for the most efficient mixing. This is compounded by flow times 1 occurring in
the FSRT and RSRT cases, as data in Figure 3.1 demonstrates (while the RSFT entry does
show a decent mixing rate in that case, it is still well below the cases with 7> 3).

The cases with 7 = 1 were even slower mixers and we therefore did not perform their full
simulations. In the FSFT case, one can again easily identify a fixed structure of the mapping
VioHM}. Indeed the segments {(s,s+3)|s€(0,3)}, {(3,5)|s€(0,3)}, and {(s,3)]s € (3,1)}
form a 3-cycle for this mapping and each is fixed by (V5 oH})?. The latter mapping is locally

represented by matrices
3 -2 q -1 2
2 -1 an —2 3

on the two sides of the segment {(s,s+3)|s € (0,3)}, and both are again similar to the 2x 2
Jordan block with diagonal elements 1 (the eigenspace in both cases is again generated by
(1,1)). Thus there is no exponential mixing in this case either.
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Figure 3.4: Means and standard deviation error bars of the binary logarithms of the mixing
scales for the 100 simulations with N =15 in the FSFT (left) and RSFT (right) cases with
7 =8, over an extended time interval.

Finally, we mention here a curious phenomenon that we observed for the FSF'T and RSFT
cases with 7 = 8. In both cases, after the mixing scale ~ 2711 was reached and the observed
exponential decrease stopped, the computed scale rebounded to ~ 27 for some time (as if
some unmizing were happening there). This was then followed by a time interval (fairly
long one, particularly in the FSFT case) where the mixing scale equaled 2719 for each of the
100 simulations, before it stopped having this surprisingly uniform behavior and settled into
a slightly more varied dynamic with values near 2710 and 2-!'. Figure 3.4 contains means
and standard deviation error bars of the binary logarithms —n; of the mixing scales in these
two flow cases. We ran our simulations with a larger grid scale as well, and this behavior
persisted in that case, albeit clearly at larger mixing scales.

These observations are of course completely irrelevant to the mixing theory, since they
involve behavior on time intervals where the simulation cannot anymore capture the mixing
dynamic due to the mixing scales being too close to the grid scale 2715, Nevertheless, we did
not observe it or something similar for other values of 7 (as well as in the XSRT cases where
T varies over time), so it may point to some special feature of the discrete grid dynamic for
flow time 7 = 8. At the same time, the fact that this behavior is observed in the RSFT case
as well, where the randomness in phase shifts would destroy any potential special structures
present in the FSF'T dynamic, is quite curious. We do not currently have a candidate for
the possible reason behind this phenomenon, and do not know why 7 = 8 is the only flow
time out of those we studied for which it occurs.
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