
OPTIMAL ESTIMATES ON THE PROPAGATION OF REACTIONS

WITH FRACTIONAL DIFFUSION

YUMING PAUL ZHANG AND ANDREJ ZLATOŠ

Abstract. We study the reaction-fractional-diffusion equation ut + (−∆)su = f(u) with
ignition and monostable reactions f , and s ∈ (0, 1). We obtain the first optimal bounds
on the propagation of front-like solutions in the cases where no traveling fronts exist. Our
results cover most of these cases, and also apply to propagation from localized initial data.

1. Introduction

In this paper we consider the Cauchy problem for the reaction-fractional-diffusion equation

ut + (−∆)su = f(u), (1.1)

with (t, x) ∈ [0,∞) × R
d and f a Lipschitz reaction function. One frequently assumes that

f(0) = f(1) = 0 and considers solutions 0 ≤ u ≤ 1 that model transitions between two
equilibrium states (i.e., u ≡ 0 and u ≡ 1), driven by the interplay of the two physical
processes involved: reaction and diffusion. Our goal is to obtain optimal estimates on the
speed of invasion of one equilibrium (u ≡ 0) by the other (u ≡ 1), so we will study the speeds
of propagation of solutions with front-like (see (1.10) below) and localized initial data. Note
that the comparison principle shows that in the case of front-like initial data, it suffices to
consider (1.1) in one spatial dimension d = 1, that is,

ut + (−∂xx)su = f(u) (1.2)

on [0,∞)×R. We will do so here when we discuss such initial data, while for localized data
we will consider (1.1) with d ≥ 1. The distinction between these two cases is marginal when
s = 1, but this is not anymore the case when s ∈ (0, 1) and diffusion has long range kernels.

The classical diffusion case s = 1 goes back to pioneering works by Kolmogorov, Petrovskii,
and Piskunov [28], and Fisher [19], and it is now well-known that solutions with both types
of initial data propagate ballistically for all reaction functions of interest — monostable,
ignition, as well as (unbalanced) bistable [4].

We will therefore concentrate here on the fractional diffusion case s ∈ (0, 1), with the
fractional Laplacian given by

(−∆)su(x) = cs,d p.v.

ˆ

Rd

u(x)− u(y)

|x− y|d+2s
dy, (1.3)

where cs,d := cs

(

´

Rd−1(1 + h2)−
d
2
−sdh

)−1

and cs = cs,1 > 0 is an appropriate constant. Then

(1.1) models reactive processes subject to non-local diffusion, mediated by Lévy stochastic
processes with jumps (see, e.g., [33] and references therein), and the question of propagation
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of solutions turns out to be much more complicated. Its study was initiated by Cabré and
Roquejoffre in [10], who considered (1.1) with Fisher-KPP reactions (specifically, concave
ones with f ′(0) > f(0) = 0 = f(1) > f ′(1)), which are a special case of 1-monostable
reactions from Definition 1.1 below. They proved that solutions to (1.2) with front-like initial
data propagate exponentially, in the sense that u(t, ·) → 1 uniformly on {x ≤ eσt} for each

σ < f ′(0)
2s

, while u(t, ·) → 0 uniformly on {x ≥ eσt} for each σ > f ′(0)
2s

. They also considered
localized (non-zero non-negative fast-decaying) initial data for (1.1) and showed that in that

case one has u(t, ·) → 1 uniformly on {|x| ≤ eσt} for each σ < f ′(0)
d+2s

, while u(t, ·) → 0 uniformly

on {|x| ≥ eσt} for each σ > f ′(0)
d+2s

. We note that prior to [10], exponential propagation for
Fisher-KPP reactions and continuous diffusion kernels with algebraically decreasing tails
(from compactly supported initial data in one dimension) was established by Garnier [20].
While there are many other papers studying such questions for various diffusion operators
(see, e.g., [2, 8] and references therein), we will restrict our presentation here to (1.1).

The exponential propagation rates for Fisher-KPP reactions and s < 1 are due to interac-
tion between the long range kernels of the fractional diffusion and a strong hair-trigger effect
of the reaction. They contrast with the case s = 1, when level sets of solutions are located
in an o(t) neighborhood of the point x = ct (for front-like data) resp. the sphere ∂Bct(0) (for
localized data), with the spreading speed c depending only on f (for all the above types of
reactions [4]). It turns out that they are in fact a special feature of 1-monostable reactions,
and the situation is very different for all the other reaction types. Let us now define these.

Definition 1.1. Let f : [0, 1] → R be a Lipschitz continuous function with f(0) = f(1) = 0.

(i) If there is θ0 ∈ (0, 1) such that f(u) = 0 for all u ∈ (0, θ0] and f(u) > 0 for all
u ∈ (θ0, 1), then f is an ignition reaction and θ0 is the ignition temperature.

(ii) If f(u) > 0 for all u ∈ (0, 1), then f is a monostable reaction. If also

γuα ≤ f(u) ≤ γ′uα for all u ∈ (0, θ0], (1.4)

where α ≥ 1, θ0 ∈ (0, 1), and γ, γ′ > 0, we say that f is an α-monostable reaction.
(iii) If there is θ0 ∈ (0, 1) such that f(u) < 0 for all u ∈ (0, θ0) and f(u) > 0 for all

u ∈ (θ0, 1), as well as
´ 1

0
f(u)du > 0, then f is an (unbalanced) bistable reaction.

Ignition reactions are used to model combustive processes, while monostable reactions
model phenomena such as chemical kinetics and population dynamics [6,18,22,34]. Bistable
reactions are used in models of phase transitions and nerve pulse propagation [3, 5, 31], and

the unbalanced condition
´ 1

0
f(u)du > 0 guarantees at least ballistic propagation for all non-

negative solutions that are initially larger than θ (for any θ > θ0) on some large-enough ball
(of θ-dependent radius). This is also the case for all ignition and monostable reactions (with
θ > 0 in the latter case).

In particular, the following holds for all the reactions from Definition 1.1. If 0 ≤ u ≤ 1
is a solution to (1.2) with either lim infx→−∞ u(0, x) > θ0 for ignition and bistable f , or
lim infx→−∞ u(0, x) > 0 for monostable f , then for any λ ∈ (0, 1) we have

lim inf
t→∞

xλ(t; u)

t
> 0, (1.5)
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where for t ≥ 0 we let
xλ(t; u) := inf

{

x ∈ R
∣

∣u(t, x) ≤ λ
}

(1.6)

be the left end of the λ-level set of u(t, ·). If we instead let

xλ(t; u) := inf
{

|x|
∣

∣u(t, x) ≤ λ
}

, (1.7)

this claim also extends to solutions to (1.1) in any dimension and with inf |x|≤Rθ
u(0, x) ≥ θ,

where θ must satisfy either θ > θ0 for ignition and bistable f , or θ > 0 for monostable f (and
Rθ also depends on s, f, d). Both these claims easily follow from the proof of the last claim
in Lemma 2.6 below. (We note that when f is sufficiently small near u = 0, solutions with
small enough initial data may be quenched in the sense that limt→∞ ‖u(t, ·)‖∞ = 0.)

Ballistic propagation for u is therefore equivalent to

lim sup
t→∞

xλ(t; u)

t
<∞

for all λ ∈ (0, 1), where for front-like data and (1.2) we let

xλ(t; u) := sup
{

x ∈ R
∣

∣u(t, x) ≥ λ
}

(≥ xλ(t; u)) (1.8)

be the right end of the λ-level set of u(t, ·), and for localized data and (1.1) we let

xλ(t; u) := sup
{

|x|
∣

∣u(t, x) ≥ λ
}

(≥ xλ(t; u)). (1.9)

Comparison principle shows that this holds whenever we have either u(0, ·) ≤ θχ(−∞,R) or
u(0, ·) ≤ θχBR(0) for some θ < 1 and R ∈ R, provided (1.2) has a traveling front. The latter is
a solution of the form ũ(t, x) = U(x−ct), with limx→−∞ U(x) = 1 and limx→∞ U(x) = 0 (i.e.,
U must satisfy −cUx + (−∂xx)sU = f(U)). In fact, it suffices to have u(0, ·) ≤ χ(−∞,R) or

u(0, ·) ≤ χBR(0) as long as a traveling front exists for (1.2) with some f̃ ≥ f in place of f , such

that f̃(1+δ) = 0 and f̃ > 0 on [1, 1+δ) for some δ > 0 (then of course limx→−∞ U(x) = 1+δ,
and one only needs u(0, ·) to be dominated by some shift of U). Hence in the rest of this
discussion we will assume that

θχ(−∞,0) ≤ u(0, ·) ≤ χ(−∞,R) (1.10)

for front-like data and
θχBR′ (0) ≤ u(0, ·) ≤ χBR(0) (1.11)

for localized data, with some θ, R,R′ > 0 (and θ > θ0 when f is ignition or bistable).
Proving existence of traveling fronts for (1.2), and hence ballistic propagation of solutions,

requires one to solve only a (non-local) ODE, and this was indeed achieved in a number of
cases. These include all the above reactions with s = 1 [4, 5], where diffusion is local, as
well as all C2 bistable reactions with any s ∈ (0, 1) [1,14,24], where the negative values of f
near u = 0 suppress the effects of long range dispersal. The cases of ignition and monostable
reactions with s ∈ (0, 1) are more delicate, and depend intimately on the interplay of the
long range diffusion and the strength of f near u = 0. Nevertheless, Mellet, Roquejoffre,
and Sire proved that traveling fronts still exist for ignition reactions with f ′(1) < 0 when
s > 1

2
[30], while Gui and Huan later showed that they do not exist when s ≤ 1

2
, as well

as that they exist for α-monostable reactions (and s ∈ (0, 1)) precisely when s ≥ α
2(α−1)

[23]
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(f was assumed to satisfy additional hypotheses in [23] when s > 1
2
). We note that since

the comparison principle can be used to estimate propagation of solutions for monostable
reactions that lie between multiples of two distinct powers of u near u = 0, it makes sense to
concentrate only on α-monostable reactions among the monostable ones; we will do so here.

This leaves one with an expectation of super-ballistic (i.e., accelerating) propagation in the
cases of ignition reactions with s ≤ 1

2
and α-monostable reactions with s < min{ α

2(α−1)
, 1}.

For front-like initial data and (1.2), this has indeed been confirmed in all these cases except
for ignition reactions with s = 1

2
. The result for concave Fisher-KPP reactions in [10] immedi-

ately yields exponential propagation for all 1-monostable reactions and s ∈ (0, 1), albeit with

the lower and upper exponential rates being γ
2s

and γ′

2s
, respectively. More recently, Coville,

Gui, znd Zhao [15] proved for α-monostable reactions with α > 1 and s < min{ α
2(α−1)

, 1}
that

0 < lim inf
t→∞

t−
max{α−1,1}

2s(α−1) xλ(t; u) and lim sup
t→∞

t−
α

2s(α−1) xλ(t; u) <∞

for all λ ∈ (0, 1) (assuming in addition that f is C1 and f ′(1) < 0), which then also yields
for ignition reactions with s ∈ (0, 1

2
] that

lim sup
t→∞

t−
1
2s

−ε xλ(t; u) <∞ (1.12)

for all ε > 0 and λ ∈ (0, 1). We note that while [15, Theorem 1.3] may appear to also imply

lim inft→∞ t−
1
2s xλ(t; u) > 0 for ignition reactions and all λ ∈ (0, 1), Proposition 3.1 in its

proof in fact assumes f to be monostable. Nevertheless, we still have (1.5) in this case.
While these results cover all the cases of interest in which traveling fronts do not exist,

in all of them there is a gap between the powers of time resp. exponential rates in the best
available lower and upper bounds on the dynamic: an infinitesimal one for concave Fisher-
KPP reactions and for ignition reactions with s = 1

2
, and a positive one in all the other cases.

In the following first main result of the present paper, we fully close this gap in all the latter

cases, proving that xλ(t; u) and xλ(t; u) both have the exact power behavior O(t
α

2s(α−1) ) in

time for all α-monostable reactions with α > 1, and O(t
1
2s ) for all ignition reactions (so we

improve both the lower and upper bounds in the ignition case). We do so for all the values
of s for which traveling fronts do not exist, except for ignition reactions with s = 1

2
, where

almost-ballistic propagation (which follows from (1.5) and (1.12)), remains the best result.

Theorem 1.2. Let 0 ≤ u ≤ 1 be a solution to (1.2) such that (1.10) holds for some θ, R > 0,
and let xλ(t; u) and xλ(t; u) be from (1.6) and (1.8).

(i) If f is an ignition reaction with ignition temperature θ0 ∈ (0, θ) and s ∈ (0, 1
2
), then

for each λ ∈ (0, 1) we have

0 < lim inf
t→∞

t−
1
2s xλ(t; u) ≤ lim sup

t→∞
t−

1
2s xλ(t; u) <∞

(ii) If f is an α-monostable reaction for some α > 1 and s ∈ (0,min{ α
2(α−1)

, 1}), then for

each λ ∈ (0, 1) we have

0 < lim inf
t→∞

t−
α

2s(α−1) xλ(t; u) ≤ lim sup
t→∞

t−
α

2s(α−1) xλ(t; u) <∞
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Remarks. 1. The leading orders of the propagation rates in both (i) and (ii) only depend
on s and the qualitative behavior of f near 0, and in (ii) they are independent of γ, γ′ from
(1.4). In contrast, for Fisher-KPP reactions they also depend on f ′(0) [10], and so their
dependence on f for general 1-monostable reactions will be much more sensitive.

2. As Theorem 3.4 below shows, (i) extends to the case when u(0, ·) ≤ χ(−∞,R) is replaced
by lim supx→∞ x−2su(0, x) < ∞. The supersolutions constructed in [15] show that in (ii) we

can instead allow lim supx→∞ x−
2s
α u(0, x) <∞.

3. One-sided bounds in (1.4) obviously yield one-sided bounds in (ii).

4. For any s ∈ (0, 1
2
), (i) can be regarded as the α → ∞ limit of (ii).

To the best of our knowledge, these are the first qualitatively optimal propagation results
for front-like solutions in situations where no traveling fronts exist.

When it comes to localized initial data and (1.1), the corresponding Fisher-KPP result
from [10] was improved by Coulon and Yangari in [16]. They proved for each λ ∈ (0, 1) that

0 < lim inf
t→∞

e−
f ′(0)
d+2s

t xλ(t; u) ≤ lim sup
t→∞

e−
f ′(0)
d+2s

t xλ(t; u) <∞

for solutions with fast-decaying initial data when s ∈ (0, 1) and f is any C1 1-monostable
reaction with f(u) − f ′(0)u = O(u1+δ) (for some δ > 0). This also implies exponential
propagation for general 1-monostable reactions, albeit with the lower and upper exponential
rates being γ

d+2s
and γ′

d+2s
, respectively.

An interesting feature of the results in [10,16] is that, for Fisher-KPP reactions and s < 1,
the exponential propagation rates for localized initial data differ from those for front-like
data, and they also depend on the dimension. These phenomena happen neither when s = 1
(for any reaction), because the diffusion kernel is short range, nor for bistable reactions and
s ∈ (0, 1), when ballistic propagation from localized data at the same speed as from front-like
data follows from existence of traveling fronts.

It is therefore not obvious which propagation rates one should expect for ignition and α-
monostable reactions with α > 1 when s ∈ (0, 1) and initial data are localized. One obviously
has the ballistic lower bound (1.5), and the same upper bounds as for front-like data (which
follow immediately by comparison). However, we are not aware of other relevant prior results
for (1.1) in this setting. Our second main theorem therefore appears to provide the first non-
trivial such result, and is again also qualitatively optimal. It shows that in all the cases from
Theorem 1.2, propagation rates for localized data do coincide with those for front-like data.
In particular, unlike for 1-monostable reactions, they do not depend on the dimension.

Theorem 1.3. Let 0 ≤ u ≤ 1 be a solution to (1.1) such that (1.11) holds for some θ, R > 0
and large enough R′ (depending on f, s, θ), and let xλ(t; u) and xλ(t; u) be from (1.7) and
(1.9). Then both parts of Theorem 1.2 hold.

Remark. We can obviously again replace u(0, ·) ≤ χBR(0) by lim sup|x|→∞ |x|−2su(0, x) <∞
in (i), and by lim sup|x|→∞ |x|− 2s

α u(0, x) <∞ in (ii).
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The proofs of Theorems 1.2 and 1.3 rest on finding appropriate sub- and supersolutions Φ
satisfying xλ(t; Φ) = O(tβ) = xλ(t; Φ), with β = 1

2s
for ignition reactions and β = α

2s(α−1)
for

α-monostable reactions. Since these will accelerate in time, one cannot use the traveling front
ansatz Φ(t, x) ∼ ϕ(x− ct) in their construction, because then their transition regions (where
they decrease from values close to 1 to those close to 0) would only travel with constant
speed c. One might instead hope to have Φ(t, x) ∼ ϕ(x − ctβ), which does travel with the
right speed O(tβ−1). However, it turns out that the acceleration of propagation also forces
sub- and supersolutions to have transition regions that stretch in time (see also [21]).

We will therefore construct localized subsolutions of the form Φ(t, x) ∼ ϕ(ct−
1
2sx) in the

proof of Theorems 1.2(i) and 1.3(i). Such functions propagate with speeds O(t
1
2s

−1) but also

“flatten” in space, having transition regions of widths O(t
1
2s ) (so the latter stretch with roughly

the same speeds O(t
1
2s

−1)). This will be sufficient for subsolutions, but we will have to employ
a much more complicated construction for front-like supersolutions. Their propagation speeds
will again be O(t

1
2s

−1), but we will need their stretching speeds to also depend on the value

of Φ, and they will in fact grow from O(t
1
2s

−2) where Φ ≥ θ0 to O(t
1
2s

−1) where Φ ∼ 0. Of
course, this stretching will then accumulate over time to transition regions between different
values of Φ having lengths from O(t

1
2s

−1) to O(t
1
2s ), meaning that these supersolutions will

be flattened in a spatially non-uniform manner. This approach, which seems to be necessary
in the hunt for qualitatively optimal supersolutions in the ignition case (and hence optimal
upper bounds in Theorems 1.2(i) and 1.3(i)), makes this effort significantly more challenging
and explains the complexity in our construction in Section 3 below.

This type of construction appears to be new, as all previous ones that we are aware of
involve spatially uniform stretching rates. In particular, the supersolutions for α-monostable

reactions with α > 1 constructed in [15], which propagate with optimal speeds O(t
α

2s(α−1)
−1),

have transition regions that stretch with speeds O(t
α

2s(α−1)
−2). The subsolutions we construct

below in this case will have the same propagation and stretching speeds. However, unlike
for ignition reactions, we are only able to achieve these optimal speeds with localized but
not compactly supported subsolutions. This, and the fact that we need to find them in all
dimensions d ≥ 1, further complicate this part of our work.

Finally, we note that smoothing properties of the fractional parabolic dynamic of (1.1)
mean that the sense in which our functions solve the PDE is not consequential here. While
we consider below mild solutions with uniformly continuous initial data, Theorem 2.5 shows
that these immediately become classical. This is also true for bounded weak solutions, via
an argument as in the proof of Theorem 2.5 (based on the regularity results in [17, 27]),
so these three notions of solutions coincide here. This means that our propagation results
hold as well for not necessarily uniformly continuous initial data, due to the comparison
principle. Since we were not able to locate a suitable version of the latter in the literature,
we prove it in Theorem 2.4 below (which is hence of independent interest). We in fact state
it for distributional sub- and supersolutions (see Definition 2.3) because the supersolutions
we construct here will only be Lipschitz continuous.
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We also highlight here Lemma 2.6 below, which constructs compactly supported station-
ary subsolutions to (1.1). These then provide initially compactly supported time-increasing
solutions, which can be very convenient in the analysis of long-time dynamics of solutions
(and specifically, construction of subsolutions in Section 4). We are not aware of such a result
for (1.1) with s ∈ (0, 1) prior to our work, although its s = 1 version is well known, and in [9]
it was also obtained for diffusion operators with integrable kernels.

Remark. Shortly before we finished writing this paper in May 2021, we informed E. Bouin,
J. Coville, and G. Legendre about it. They posted the preprints [7, 8] on arXiv immediately
afterwards, just days before we posted ours. The main results claimed in [7,8] correspond to
the first inequalities in Theorem 1.2(i,ii), respectively, which are our optimal lower bounds for
front-like initial data (both [7,8] consider more general diffusion kernels in one dimension, with
x−1−2s decay at ±∞). Unlike our constructions in Sections 4 and 5 below, the subsolution
candidate functions presented in [7,8] are front-like, so they would not yield localized initial
data results such as Theorem 1.3 (even when d = 1 because the diffusion kernels are long
range for all s ∈ (0, 1)). However, the 23-page May 2021 version of [8] is incomplete, and
was replaced in July 2022 by a 45-page version with a much longer proof containing many
changes and additions. Moreover, the May 2021 version of [7] is clearly very preliminary and
no other version seemed to be available at the time the present paper went into press in July
2023. Neither preprint appears to have been peer reviewed by that time either.

Organization of the Paper and Acknowledgements. In Section 2 we collect various
preliminary results, including a comparison principle for (1.1). We then prove parts (i) of
Theorems 1.2 and 1.3 in Sections 3 and 4, and parts (ii) in Section 5 (these three sections
are completely independent and can be read in any order).

AZ acknowledges partial support by NSF grant DMS-1900943 and by a Simons Fellowship.

2. Well-posedness and a Comparison Principle

In this section we collect some basic well-posedness and regularity results for (1.1). We
also prove two important (and to the best of our knowledge new) results here. The first
is a comparison principle, Theorem 2.4, which removes certain restrictive hypotheses from
previous results (see the paragraph before Definition 2.3). The second is Lemma 2.6, which
constructs initially compactly supported time-increasing solutions to (1.1) for ignition (and
therefore also for α-monostable) reactions and all s ∈ (0, 1).

We start with the notion of mild solutions, defined via Duhamel’s formula (see [10, 32]).
We use Cb,u(X) to denote the space of bounded uniformly continuous functions on X (with
the supremum norm), and St to denote the semigroup generated by (−∆)s on R

d.

Definition 2.1. We say that u ∈ C([0, T );Cb,u(R
d)) is a mild solution to (1.1) (and that it

is global if T = ∞) if for each t ∈ [0, T ) we have

u(t, ·) = St[u(0, ·)] +
ˆ t

0

St−τ [f(u(τ, ·))]dτ.

Remark. Notice that if u ∈ C([T0, T1];Cb,u(R
d)) for some T0 < T1, then it is also uniformly

continuous in time on [T0, T1] and it follows that in fact u ∈ Cb,u([T0, T1]× R
d).
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We now have the following global well-posedness result.

Theorem 2.2. If s ∈ (0, 1) and f is Lipschitz continuous, then for any u0 ∈ Cb,u(R
d), there

is a unique global mild solution u to (1.1) with u(0, ·) = u0.

Remark. Theorem 2.2 can be proved via a standard fixed point argument using that

N [u](t, ·) := St[u(0, ·)] +
ˆ t

0

St−τ [f(u(τ, ·))]dτ

defines a contraction mapping N on the subspace of u ∈ C([0, T ];Cb,u(R
d)) with u(0, ·) = u0

when T is sufficiently small, see for instance [10,29] (both these papers concern more general
diffusion operators than (−∆)s). We note that although f ′ ∈ Cb,u(R) is assumed in [10,
Sections 2.3 and 2.4], this can easily be relaxed to f being Lipschitz (we prefer to consider
here this case instead of f ∈ C1([0, 1])). We also mention that a viscosity-solutions-based
approach to well-posedness, via maximum principles for general non-local nonlinear PDEs
and Perron’s method, was used in [11,13,25].

We next turn to a comparison principle for (1.1), and the related definition of sub- and
supersolutions. We were not able to use in this work comparison principles that we found
in the literature, as these do not quite apply to the Lipschitz continuous sub- and super-
solutions we construct below (mild solutions have better regularity, see Theorem 2.5). For
instance [10, Proposition 2.8] only applies to classical sub- and supersolutions that satisfy an
extra hypothesis on their order as |x| → ∞ at all times t ≥ 0, while [10, Proposition 2.11]
only applies to mild solutions to ut + (−∆)su = h(t, x) with uniformly continuous h. We
therefore prove here a comparison principle without extra hypotheses and in the more general
distributional sense, which then also applies to mild solutions due to Remark 2 below.

Definition 2.3. We say that u ∈ C((T0, T1);Cb,u(R
d)) is a subsolution (supersolution) to

(1.1) if for each 0 ≤ ϕ ∈ C∞
c ((T0, T1)× R

d) we have
ˆ T1

T0

ˆ

Rd

[−u(t, x)ϕt(t, x) + u(t, x)(−∆)sϕ(t, x)− f(u(t, x))ϕ(t, x)] dxdt ≤ 0 (≥ 0).

Remarks. 1. Note that when s ∈ (0, 1
2
), any bounded Lipschitz continuous function u has

bounded (−∆)su; and if it satisfies ut + (−∆)su − f(u) ≤ 0 (≥ 0) for a.e. (t, x), then it is
clearly a subsolution (supersolution) to (1.1).

2. It is easy to show that a mild solution u to (1.1) on time interval [0, T ) is both a sub- and
a supersolution on time interval (0, T ). Indeed, let uε := φε ∗u, with φε a smooth space-time
mollifier as in the following proof. Then uε is a classical solution to ut + (−∆)su = fε(t, x)
on time interval (T0 + ε, T1 − ε), where fε := φε ∗ (f ◦ u). Since uε → u, and fε → f ◦ u
uniformly on [t0, t1]× R

d for any [t0, t1] ⊆ (T0, T1) (see the remark after Definition 2.1), this
yields the claim.

Theorem 2.4. Let s ∈ (0, 1) and f be Lipschitz continuous. If u, v ∈ C([0, T );Cb,u(R
d)) are,

respectively, a subsolution and a supersolution to (1.1) on time interval (0, T ) and satisfy
u(0, ·) ≤ v(0, ·) on R

d, then u ≤ v on [0, T )× R
d.
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Proof. It suffices to prove that u ≤ v on [0, T ′]× R
d for any T ′ < T , so we can assume that

T <∞ and u, v ∈ C([0, T ];Cb,u(R
d)). Let K := max{‖f ′‖∞, ‖u‖∞, ‖v‖∞}, and then let

ũ(t, x) := eKtu(t, x), ṽ(t, x) := eKtv(t, x), g(t, u) := Ku+ eKtf(e−Ktu).

Then ũ and ṽ are, respectively, a subsolution and a supersolution to (1.1) with f(u) replaced
by g(t, u), on time interval (0, T ). Moreover, max{‖ũ‖∞, ‖ṽ‖∞} ≤ KeKT , and if we let
S := [0, T ]× [−KeKT , KeKT ], then for all (t, u) ∈ S we have

0 ≤ gu(t, u) ≤ 2K and |gt(t, u)| ≤ KeKT‖f |[−K,K]‖∞ +K3 =: K ′. (2.1)

Finally, we have ũ(0, ·) ≤ ṽ(0, ·), and proving u ≤ v is equivalent to proving ũ ≤ ṽ. We will
therefore slightly abuse notation, and write below u, v instead of ũ, ṽ.

For any small ε ∈ (0, 1), fix a smooth mollifier φε ≥ 0 with suppφε ⊆ Bε(0) ⊆ R
d+1 and

´

Rd+1 φε(t, x)d(t, x) = 1. Then for (t, x) ∈ [0, T − 2ε]× R
d let

uε(t, x) := (φε ∗ u)(t+ ε, x) and vε(t, x) := (φε ∗ v)(t+ ε, x)

(the ε-shifts in time allow us to define uε, vε at t = 0). The remark after Definition 2.1 shows
that there is ωε ≥ 0 such that limε→0+ ωε = 0 and

sup
(t,x),(τ,y)∈[0,T ]×Rd,
max{|t−τ |,|x−y|}≤2ε

max{|u(t, x)− u(τ, y)|, |v(t, x)− v(τ, y)|} ≤ ωε. (2.2)

Then on [0, T − 2ε]× R
d we have

max{|uε − u|, |vε − v|} ≤ ωε. (2.3)

Now consider any (t, x) ∈ [0, T − 2ε] × R
d. If there is (t′, x′) ∈ Bε(t + ε, x) such that

u(t′, x′) ≤ v(t′, x′), then it follows from (2.1) and (2.2) that

(φε ∗ [g(·, u(·, ·))− g(·, v(·, ·))]) (t+ ε, x)

≤ g(t′, u(t′, x′))− g(t′, v(t′, x′)) + 4ε‖gt|S‖∞ + 2ωε‖gu|S‖∞
≤ 4εK ′ + 4Kωε.

If instead u ≥ v on Bε(t+ ε, x), then gu ≤ 2K yields

(φε ∗ [g(·, u(·, ·))− g(·, v(·, ·))]) (t+ ε, x) ≤ 2K(φε ∗ (u− v))(t+ ε, x) ≤ 2K(uε(t, x)− vε(t, x)).

From these estimates, and from u and v being, respectively, a sub- and a supersolution, we
get for wε := uε − vε and ω′

ε := 4εK ′ + 4Kωε (→ 0 as ε→ 0) that

hε := (wε)t + (−∆)swε ≤ (φε ∗ [g(·, u(·, ·))− g(·, v(·, ·))]) (·+ ε, ·) ≤ max{2Kwε, ω′
ε}.

Duhamel’s principle for smooth solutions to the linear PDE

wt + (−∆)sw = h(t, x)

(see [10, 29,32]) now yields

wε(t, x) ≤ St[wε(0, ·)](x) +
ˆ t

0

St−τ [max{2Kwε(τ, ·), ω′
ε}](x) dτ
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for all (t, x) ∈ [0, T − 2ε]×R
d. Since St preserves order and St[1] ≡ 1, we have St[wε(0, ·)] ≤

2ωε on R
d (by u(0, ·) ≤ v(0, ·) and (2.3)), and if we let ξ(t) := max{supx∈Rd wε(t, x), 0}, then

ξ(t) ≤ 2ωε + Tω′
ε +

ˆ t

0

2Kξ(τ) dτ

for each t ∈ [0, T − 2ε]. Grönwall’s inequality now yields

ξ(t) ≤ (2ωε + Tω′
ε) e

2KT

for t ∈ [0, T − 2ε], hence
lim sup
ε→0

sup
(t,x)∈[0,T−2ε]×Rd

wε(t, x) = 0.

This shows that u ≤ v on [0, T ]× R
d, finishing the proof. �

Similarly to parabolic PDE with classical diffusion, the dynamics of (1.1) provides certain
smoothing, which is the basis of relevant regularity results. The following theorem, in which
we suppress dependence of all constants on d in the notation, is consequence of results
from [17,27] (we also refer the reader to [12, 13,26] for the viscosity solutions setting).

Theorem 2.5. Let s ∈ (0, 1) and f be Lipschitz continuous, and let u ∈ C([0, T );Cb,u(R
d))

be a bounded mild solution to (1.1). There is σ = σ(s) > 0 such that for any τ ∈ (0, T ) there
is C = C(s, f, ‖u‖∞, τ) > 0 such that

‖u‖C1+σ/2s,2s+σ([τ,T )×Rd) ≤ C.

In particular, u is a classical solution to (1.1).

Proof. For any ε ∈ (0, τ
4
), let φε be the space-time mollifier from the proof of Theorem 2.4.

If fε := φε ∗ (f ◦ u), then uε := φε ∗ u satisfies in the classical sense the linear PDE

(uε)t + (−∆)suε = fε(t, x) (2.4)

on ( τ
4
, T − ε)× R

d. Since ‖u‖∞ <∞, we have

max{‖uε‖∞, ‖fε‖∞} ≤ C1 := |f(0)|+ (1 + ‖f ′‖∞)(1 + ‖u‖∞).

The interior Hölder estimate [27, Theorem 1.1] now yields σ = σ(s) ∈ (0,min{1, 2s}) and
C2 = C2(s, C1, τ) > 0 such that

‖uε‖Cσ/2s,σ([τ/2,T−ε)×Rd) ≤ C2.

Since uε → u uniformly on [ τ
2
, T − δ]× R

d for any δ > 0 by the remark after Definition 2.1,
taking ε→ 0 shows that

‖u‖Cσ/2s,σ([τ/2,T )×Rd) ≤ C2.

This and Lipschitz continuity of f yield C3 = C3(C1, C2) > 0 such that

‖fε‖Cσ/2s,σ([τ/2,T−ε)×Rd) ≤ C3

for all ε ∈ (0, τ
4
). It now follows from (2.4) and [17, Theorem 1.1] that

‖uε‖C1+σ/2s,2s+σ([τ,T−ε)×Rd) ≤ C4

for these ε, with C4 = C4(s, C1, C2, τ) > 0. Taking ε→ 0 finishes the proof. �
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Finally, to obtain the lower bounds in Theorems 1.2 and 1.3, we will need to use certain
non-trivial initial data u0 : R

d → [0, 1] satisfying

− (−∆)su0 + f(u0) ≥ 0 (2.5)

(note that the comparison principle then shows that solutions to (1.1) with such initial
data are time-increasing). The following lemma, whose proof we postpone to the appendix,
provides such functions for ignition reactions (see the remark below for monostable reactions).

Lemma 2.6. Let f be an ignition reaction with ignition temperature θ0 ∈ (0, 1), and let
s ∈ (0, 1). For θ ∈ (θ0, 1), there are Rθ ≥ 1 and a non-increasing smooth function uθ on R

(both depending also on s, f, d) such that

θχ(−∞,0] ≤ uθ ≤ θχ(−∞,Rθ], (2.6)

inf
x∈R

[−(−∂xx)suθ(x) + f(uθ(x))] ≥ 0, (2.7)

inf
x≤Rθ

[−(−∂xx)suθ(x) + f(uθ(x))] > 0, (2.8)

and the function ūθ(x) := uθ(|x|) on R
d satisfies

inf
x∈Rd

[−(−∆)sūθ(x) + f(ūθ(x))] ≥ 0, (2.9)

inf
|x|≤Rθ

[−(−∆)sūθ(x) + f(ūθ(x))] > 0. (2.10)

Moreover, if 0 ≤ u ≤ 1 is a global mild solution to (1.1) and u(0, ·) ≥ ūθ(· − x0) for some
x0 ∈ R

d, then u(t, ·) → 1 locally uniformly on R
d as t→ ∞.

Remark. Since for each monostable reaction f and each θ ∈ (0, 1), there is an ignition
reaction g ≤ f with ignition temperature smaller than θ, the lemma extends to such f, θ.

3. Supersolutions for Ignition Reactions

In this section we prove the upper bound in Theorem 1.2(i), which then automatically
provides the same bound in Theorem 1.3(i) via the comparison principle. The main step is

construction of a family of supersolutions Φ to (1.2) that satisfy xλ(t; Φ) = O(t
1
2s ).

We start with a simple fractional Laplacian estimate. For A1 < A2 and θ ∈ (0, 1), let

ψA1,A2,θ(x) :=















1 if x ≤ A1,

1− (1− θ)
x− A1

A2 − A1

if x ∈ (A1, A2],

θ if x > A2.

Note that s < 1
2

and Lipschitz continuity of ψA1,A2,θ show that (−∂xx)sψA1,A2,θ is bounded.

Lemma 3.1. Let s ∈ (0, 1
2
), Cα := max{ cs

2s(1−2s)
, 1}, A1 < A2, and θ ∈ (0, 1). If ϕ ≤ ψA1,A2,θ

and ϕ(x) = ψA1,A2,θ(x) for some x ∈ R, then

(−∂xx)sϕ(x) ≥ −Cs(1− θ)(A2 − A1)
−2s.
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Proof. By (1.3), it suffices to assume that ϕ ≡ ψA1,A2,θ. Then

ϕ(x)− ϕ(x+ h) ≥ ϕ(A2)− ϕ(A2 + h)

for each h ∈ R, so it suffices to assume that x = A2. Now a direct computation yields

(−∂xx)sϕ(A2) = −cs(1− θ)

ˆ A1−A2

−∞

|h|−1−2sdh− cs(1− θ)

A2 − A1

ˆ 0

A1−A2

|h|−2sdh

= −cs(1− θ)
(

(2s)−1 + (1− 2s)−1
)

(A2 − A1)
−2s,

finishing the proof. �

We will now construct an infinite family of supersolutions to (1.2) indexed by k ∈ N (see

(3.6) below), each defined on a finite time interval of length ee
O(k)

and obtained by gluing
together k + 3 separate pieces (all but one of them linear in space). See the introduction for
a discussion of the reasons for such a complicated construction.

Let us take any k ∈ N, and for any n ∈ Nk := {0, 1, ..., k} let

αkn := Σn
j=1(k − n+ j)(2s)j−1 and βkn := 2−α

k
n ,

where
∑0

j=1 aj := 0 (so αk0 = 0 and βk0 = 1). We then have αkk ≤
∑∞

j=1 j(2s)
j−1 = 1

(1−2s)2
, so

βkk ≥ 2
− 1

(1−2s)2 . (3.1)

(In fact, αkk−n is increasing in k for each fixed n ≥ 0 and converges to 1
(1−2s)2

+ n
1−2s

.) Also,

from αkn ≥ k − n+ 1 we have

Σk
n=1β

k
n ≤ 1, (3.2)

and a simple computation yields

βkn = 2−k+n−1(βkn−1)
2s. (3.3)

We also have the following simple lemma.

Lemma 3.2. If t ≥ 2
k

1−2s , then for any n ∈ Nk \ {0},

βknt
1
2s

−(2s)n ≥ 2βkn−1t
1
2s

−(2s)n−1

. (3.4)

Proof. A direct computation shows that (3.4) is equivalent to

t(2s)
n−1−(2s)n ≥ 2k(2s)

n−1−Σn−1
j=1 (2s)

j−1

.

This is equivalent to

t1−2s ≥ 2k−((2s)1−n−1)/(1−2s),

which clearly holds by the hypothesis. �

In the rest of this section, and in the next section, we will assume the following.

(I) Let f be an ignition reaction with ignition temperature θ0 ∈ (0, 1), and let s ∈ (0, 1
2
).
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Let us now define θ∗ :=
θ0
2
. For n ∈ Nk we let

θkn := (1− 2−k+n−1)θ∗ and θk−1 := 1,

and then for t ≥ 1

lkn(t) := Σn
j=0β

k
j t

1
2s

−(2s)j and lk−1(t) := 0

as well as

Lkn(t, x) := θkn−1 − (θkn−1 − θkn)
x− lkn−1(t)

lkn(t)− lkn−1(t)
.

Therefore, the function

L̂k(t, x) := Lkn(t, x) when x ∈ (lkn−1(t), l
k
n(t)] for some n ∈ Nk

is continuous on its domain
{

(t, x) ∈ R
2 | t ≥ 1 and x ∈ (0, lkk(t)]

}

, and piecewise linear in x
for each fixed t ≥ 1.

Finally, with Cs from Lemma 3.1, let

c∗ := max
{

Cs + 2‖f‖∞, (Csγ0)
1
s , (Csγ0γ

2s
1 )2

}

, (3.5)

where

γ0 := (4θ−1
∗ )

1
s and γ1 := 2

1+ 1
(1−2s)2 ,

and define the Lipschitz continuous function

Φk(t, x) :=



















1 x ≤ c∗t
1
2s ,

L̂k(t, x− c∗t
1
2s ) x ∈ (c∗t

1
2s , c∗t

1
2s + lkk(t)],

[

(θkk)
− 1

2s + c
− 1

2
∗ t−

1
2s

(

x− c∗t
1
2s − lkk(t)

)]−2s

x > c∗t
1
2s + lkk(t).

(3.6)

We now show that Φk is a supersolution to (1.2) on some (long for large k) time interval.

Theorem 3.3. Let f and s satisfy (I), and let Φk be from (3.6) for each k ∈ N. Then Φk is

a supersolution to (1.2) on the time interval (2
k

1−2s , 2(2s)
−k
).

Proof. We write Φ = Φk for simplicity. Let Tk := 2(2s)
−k

and fix any t ∈ [2
k

1−2s , Tk]. At any

x < c∗t
1
2s we clearly have Φt = 0 ≤ (−∂xx)sΦ, and so Φt + (−∂xx)sΦ − f(Φ) ≥ 0 because

f(1) = 0. By Remark 1 after Definition 2.3, it suffices to extend this claim to a.e. x > c∗t
1
2s .

Next we claim that Φ(t, ·) is convex on [c∗t
1
2s ,∞). The slope of Lkn(t, ·) for n ∈ Nk \ {0} is

− θkn−1 − θkn
lkn(t)− lkn−1(t)

= − 2−k+n−2θ∗

βkn t
1
2s

−(2s)n
,

while for n = 0 it is −(1−θk0)t1−
1
2s . Since t ≥ 2

k
1−2s and t1−2s ≥ 1 ≥ θ∗

2(1−θ∗)
, Lemma 3.2 shows

that Φ(t, ·) is convex on [c∗t
1
2s , c∗t

1
2s + lkk(t)]. It is clearly also convex on [c∗t

1
2s + lkk(t),∞), so

we only need to check one-sided derivatives at y := c∗t
1
2s + lkk(t). We have

lim
x→y+

Φx(t, x) = −2s(θkk)
1+ 1

2s c
− 1

2
∗ t−

1
2s = −2s(2−1θ∗)

1+ 1
2s c

− 1
2

∗ t−
1
2s , (3.7)
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as well as (using also (3.2))

lim
x→y−

Φx(t, x) = − θkk−1 − θkk
lkk(t)− lkk−1(t)

= −θ∗
4
(βkk )

−1 t−
1
2s

+(2s)k ≤ −θ∗
4
t−

1
2s ,

which is no more than (3.7) because s < 1
2

and so c∗ ≥ 1 ≥ 16s2(2−1θ∗)
1
s . The claim follows.

Next consider any x ∈ (c∗t
1
2s , c∗t

1
2s + lk0(t)). It follows from the definition of Φ that

Φt(t, x) = (1− θk0)(c∗ + (1− 2s)(2s)−1xt−
1
2s ) ≥ c∗(1− θk0).

Lemma 3.1 with A1 := c∗t
1
2s , A2 := c∗t

1
2s + lk0(t), θ := θk0 , together with c∗ ≥ Cs + 2‖f‖∞,

show that at such x we have

Φt + (−∂xx)sΦ− f(Φ) ≥ c∗(1− θk0)− Cs(1− θk0)t
−1+2s − ‖f‖∞ ≥ 0.

Convexity of Φ(t, ·) on [c∗t
1
2 ,∞) shows that for any n ∈ Nk \ {0} and any x ∈ (c∗t

1
2s +

lkn−1(t), c∗t
1
2s + lkn(t)) we have

Φ(t, ·) ≤ ψc∗t1/2s,x,Φ(t,x)

on R, and thus Lemma 3.1 and the definition of lkn−1(t) yield

(−∂xx)sΦ(t, x) ≥ −Cs(1− θkn)(x− c∗t
1
2s )−2s ≥ −Cs(βkn−1)

−2s t−1+(2s)n . (3.8)

Since lkn−1(t) is increasing in t ≥ 1 and βkn ≤ 1 by (3.2), we obtain

Φt(t, x) =
d

dt
Lkn(t, x− c∗t

1
2s )

≥ 2−k+n−2θ∗(β
k
n)

−1
[

−t− 1
2s

+(2s)n∂t(−c∗t
1
2s )− (x− c∗t

1
2s − lkn−1(t))∂t(t

− 1
2s

+(2s)n)
]

≥ 2−k+n−2θ∗(β
k
n)

−1c∗(2s)
−1t−1+(2s)n .

From this, (3.8), (3.3), and c∗ ≥ 4sCs

θ∗
(due to c∗ ≥ (Csγ0)

1
s and Cs ≥ 1), we obtain Φt +

(−∂xx)sΦ ≥ 0 at the x in question (notice that f(Φ(t, x)) = 0 for all x ≥ c∗t
1
2s + lk0(t)).

Finally we need to consider any x > c∗t
1
2s + lkk(t), and this is the region where we will use

that t ≤ Tk. Since lkk(t) is increasing in t ≥ 1, with yt,x := x− c∗t
1
2s − lkk(t) we have

Φt(t, x) ≥
[

(θkk)
− 1

2s + c
− 1

2
∗ t−

1
2syt,x

]−1−2s (

c
− 1

2
∗ t−

1
2s

−1yt,x + c
1
2
∗ t

−1
)

.

Thus if c
− 1

2
∗ t−

1
2syt,x ≤ 1, then (θkk)

− 1
2s + 1 ≤ 2( θ∗

2
)−

1
2s and so by s < 1

2
we have

Φt(t, x) ≥ 2−
(1+2s)2

2s θ
1+2s
2s

∗ c
1
2
∗ t

−1 ≥ γ−1
0 c

1
2
∗ t

−1. (3.9)

And if c
− 1

2
∗ t−

1
2syt,x ≥ 1, we obtain

Φt(t, x) ≥
[

(θkk)
− 1

2s + 1
]−1−2s (

c
− 1

2
∗ t−

1
2syt,x

)−1−2s

c
− 1

2
∗ t−

1
2s

−1yt,x ≥ γ−1
0 cs∗y

−2s
t,x . (3.10)

Since Φ(t, ·) is convex on [c∗t
1
2s ,∞), Lemma 3.1 shows that

(−∂xx)sΦ(t, x) ≥ −Cs(x− c∗t
1
2s )−2s. (3.11)
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Therefore, at all x > c∗t
1
2s + lkk(t) such that c

− 1
2

∗ t−
1
2syt,x ≥ 1 we have

Φt + (−∂xx)sΦ ≥ (γ−1
0 cs∗ − Cs)y

−2s
t,x ≥ 0

by (3.10) and (3.5). If instead c
− 1

2
∗ t−

1
2syt,x ≤ 1, we note that t ≤ Tk implies t(2s)

k ≤ 2, so

lkk(t) ≥ βkk t
1
2s

−(2s)k ≥ 2
− 1

(1−2s)2
−1
t

1
2s = γ−1

1 t
1
2s

by (3.1). Hence (3.11) yields

(−∂xx)sΦ(t, x) ≥ −Cslkk(t)−2s ≥ −Csγ2s1 t−1,

and then (3.9) and (3.5) again show that Φt+(−∂xx)sΦ ≥ 0 at such x. Therefore, Φ is indeed

a supersolution to (1.2) on the time interval (2
k

1−2s , Tk). �

We can now use the supersolutions from Theorem 3.3 to obtain an upper bound for general
solutions to (1.2).

Theorem 3.4. Let f and s satisfy (I), and let 0 ≤ u ≤ 1 solve (1.2). If

u(0, x) ≤ Ax−2s

for some A ≥ 1 and all x > 0, then for each λ ∈ (0, 1) there is Cλ,A > 0 (depending also on
s, f) such that for all t ≥ 0 we have

xλ(t; u) ≤ Cλ,A(1 + t)
1
2s .

Remark. It is easy to see from this that one also has xλ(t; u) ≤ Cλt
1
2s for t ≥ τλ,A, with

some τλ,A = τλ,A(s, f) but Cλ = Cλ(s, f) independent of A.

Proof. Let k0 be the smallest positive integer such that (2s)−k ≥ k+1
1−2s

+ 1 for all k ≥ k0.
Then we have

⋃

k≥k0

[

2
k

1−2s , 2(2s)
−k − 2

k
1−2s

]

= [2
k0

1−2s ,∞). (3.12)

Next let k1 ≥ k0 be such that

2
k1

1−2s

(

2
1
2s θ

− 1
2s

∗ c−1
∗ + c

− 1
2

∗

)−2s

≥ A.

It follows from (3.12) that for any T ≥ 2
k1

1−2s , there is k ≥ k1 such that

2
k

1−2s ≤ T ≤ 2(2s)
−k − 2

k
1−2s .

Fix this T and k, and let Φk be from (3.6). Then Φk(2
k

1−2s , ·) ≡ 1 on (−∞, c∗2
k

(1−2s)2s ], while

Φk being non-increasing and θkk =
θ∗
2

show that for x > c∗2
k

(1−2s)2s we have

Φk(2
k

1−2s , x) ≥ Φk(2
k

1−2s , x+ lkk(2
k

1−2s )) ≥
(

2
1
2s θ

− 1
2s

∗ + c
− 1

2
∗ 2−

k
(1−2s)2sx

)−2s

≥ Ax−2s.

Therefore we have Φk(2
k

1−2s , ·) ≥ u(0, ·) on R. So if we let ϕ(t, ·) := Φk(t+2
k

1−2s , ·), then ϕ is
a supersolution to (1.2) on the time interval [0, T ] with ϕ(0, ·) ≥ u(0, ·). It now follows from
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the comparison principle (Theorem 2.4; see also Remark 2 after Definition 2.3) that u ≤ φ
on [0, T ]× R.

Since lkk(t) ≤ 2t
1
2s by (3.2), from (3.6) we obtain for any λ ∈ (0, θ∗

2
),

xλ(t; Φ
k) ≤ c∗t

1
2s + lkk(t) +

(

λ−
1
2s − (θkk)

− 1
2s

)

c
1
2
∗ t

1
2s ≤

(

c∗ + 2 +
√
c∗λ

− 1
2s

)

t
1
2s

for all t ≥ 1. This and T ≥ 2
k

1−2s show that for all t ∈ [0, T ] we have

xλ(T ; u) ≤ xλ(T + 2
k

1−2s ; Φk) ≤
(

c∗ + 2 +
√
c∗λ

− 1
2s

)

2
1
2sT

1
2s .

Since T ≥ 2
k1

1−2s was arbitrary, the result now clearly follows for any λ ∈ (0, 1), with Cλ,A
depending also on s,K, θ0 (since c∗ and k0 depend on them). �

4. Subsolutions for Ignition Reactions

In this section we prove the lower bound in Theorem 1.3(i), which then automatically
provides the same bound in Theorem 1.2(i) via the comparison principle. We do so by
constructing appropriate subsolutions to (1.1) in the following counterpart to Theorem 3.4.

Theorem 4.1. Let f and s satisfy (I), and let 0 ≤ u ≤ 1 solve (1.1). If

u(0, ·) ≥ θχBRθ
(0)

for some θ > θ0 and Rθ from Lemma 2.6, then for each λ ∈ (0, 1) there are Cλ, τλ,θ > 0
(depending also on s, f, d) such that for all t ≥ τλ,θ we have

xλ(t; u) ≥ Cλ t
1
2s .

Proof. The comparison principle and Lemma 2.6 show that it suffices to prove the result with
Cλ also depending on θ, which we will do.

Let uθ, ūθ be from Lemma 2.6, and let L := ‖u′θ‖∞ < ∞ and suppuθ = (−∞, a] (so
a ∈ (0, Rθ]). By (2.10), there is ε > 0 such that for all x ≤ a we have

(−∆)sūθ(x)− f(ūθ(x)) ≤ −ε. (4.1)

Next let

b := ((2sε)−1La)
1
2s and Ψ(t, x) := ūθ(bt

− 1
2sx).

Since Ψ(t, ·) ≥ 0 vanishes on Bb−1at1/2s(0) for each t > 0, we have

Ψt(t, ·) + (−∆)sΨ(t, ·)− f(Ψ(t, ·)) ≤ 0

there. From (4.1) and f ≥ 0 we obtain for any t ≥ b2s and |x| ≤ b−1at
1
2s ,

Ψt(t, x)+(−∆)sΨ(t, x)− f(Ψ(t, x))

≤ (2s)−1bt−
1
2s

−1|x| ‖u′θ‖∞ + b2st−1
[

(−∆)sūθ(bt
− 1

2sx)− f
(

ūθ(bt
− 1

2sx)
)]

≤
(

(2s)−1La− b2sε
)

t−1,

which is ≤ 0 by the definition of b. Hence Ψ is a subsolution to (1.1) on time interval (b2s,∞).
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Since clearly u(0, ·) ≥ ūθ = Ψ(b2s, ·), the comparison principle (Theorem 2.4) yields

u(t, ·) ≥ Ψ(t+ b2s, ·)
for all t ≥ 0. Hence for each λ ∈ (0, θ) and t ≥ 0 we have

xλ(t; u) ≥ xλ(t; Ψ(·+ b2s, ·)) = Cλ,θb
−1(t+ b2s)

1
2s , (4.2)

where Cλ,θ ∈ (0, Rθ) is such that uθ(Cλ,θ) = λ. The claim now follows for each λ ∈ (0, θ).
Moreover, it follows from (4.2) that there are τ ′, C ′ > 0 such that for all t ≥ τ ′ we have

inf
|x|≤C′t1/2s

u(t, x) ≥ θ + θ0
2

Then the last claim in Lemma 2.6 shows that for any λ ∈ [θ, 1) there is τ > 0 such that

inf
|x|≤C′t1/2s

u(t+ τ, x) ≥ λ

for all t ≥ τ ′. It follows that for all t ≥ τ + τ ′ we have

xλ(t; u) ≥ C ′(t− τ)
1
2s

(with C ′, τ ′, τ depending on s, f, d, λ, θ), which proves the claim for λ ∈ [θ, 1). �

5. Subsolutions for Monostable Reactions

In this section we prove Theorems 1.2(ii) and 1.3(ii), so we will assume the following.

(M) Let f be an α-monostable reaction for some α > 1, and let s ∈ (0, α
2(α−1)

).

The relevant upper bound on xλ(t; u) for front-like data was already obtained in [15] (for

α-monostable reactions f̃ that are also C1 and have f̃ ′(1) < 0, but there always exists such

f̃ ≥ f , so the same bound for f follows by the comparison principle). This immediately
provides the bounds in Theorems 1.2(ii) and 1.3(ii) via the comparison principle.

Hence it remains to show that for any λ ∈ (0, 1) and all large t we have

xλ(t; u) ≥ Ct
α

2s(α−1) . (5.1)

It suffices to do this in the setting of Theorem 1.3(ii), because then the same bound in Theo-
rem 1.2(ii) follows via the comparison principle. We will do this by constructing appropriate
subsolutions to (1.1).

Let α, θ0, γ be from Definition 1.1(ii) for f , and let

β := (d+ 2s)(α− 1) and κ :=
βα

2s(α− 1)
(> β)

(with the inequality due to (M)). Fix any θ ∈ (0, 1), let

θ1 := min

{

θ0,
θ

2

}

and θ2 :=
1 + θ

2
.

Then let

ν := α− 1 and τ := min

{

τ0,
c∗

2(d+2s)/βC∗θ1

}

, (5.2)
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where τ0, c∗, C∗ are from Lemma 5.1 below with β, ν, θ1 as above (so τ0, c∗, C∗ are independent
from a, b in the lemma). Next let

δ := inf
u∈[τθ1,θ]

f(u) > 0,

define

a3 := min

{

1,
(α− 1)γ

2κ− 1
,
(α− 1)δ

4κθα2

}

, (5.3)

and then

a1 :=

(

(α− 1)c∗
21+(d+2s)/β(2κ− 1)

)
β
2s

a
d
2s
3 and a2 := a1a3. (5.4)

Now let φθ : [0, 1] → [0, θ] be smooth and such that

φθ(y) = y on [0, θ1] and φθ(y) = θ on [θ2, 1], (5.5)

as well as for some Cθ > 0 we have

0 ≤ φ′
θ ≤ 1 and − Cθ ≤ φ′′

θ ≤ 0. (5.6)

Finally define

ψθ(t, r) := (a−1
1 t1−κ(rβ − a2t

κ))−
1

α−1 . (5.7)

for t > 0 and r > (a2t
κ)

1
β , and then let

Ψθ(t, x) :=

{

φθ (ψθ(t, |x|)) |x| ≥ (θ1−α2 a1t
κ−1 + a2t

κ)
1
β ,

θ otherwise.

For any u ∈ (0, θ2] let also

Xt(u) := (u1−αa1t
κ−1 + a2t

κ)
1
β

(hence ψθ(t,Xt(u)) = u). This construction shows that Ψθ is a smooth function. We will
now show that it is also a subsolution to (1.1) at all large times. We note that since we may
have s > 1

2
here, this would be difficult if graphs of Ψθ(t, ·) (as functions of x) had “concave”

corners, which is the reason for the introduction of the function φθ above.
We start with a technical lemma, whose proof is easy when d = 1, but somewhat more

involved when d > 1. We postpone the proof to the appendix.

Lemma 5.1. Let θ1 ∈ (0, 1] and β > ν > 0 be such that β
ν
≥ d − 2. Let 0 < a ≤ 1 ≤ b, let

X(u) := (a−1(u−ν + b))
1
β for u > 0, and let ϕ : Rd → [0, 1] be smooth and such that

ϕ(x) = (a|x|β − b)−
1
ν when |x| ≥ X(θ1)

as well as ϕ(x) ≥ θ1 when |x| ≤ X(θ1). Then for any s ∈ (0, 1), there are c∗, C∗ > 0 and
τ0 ∈ (0, 1

4
] (depending only on s, β, ν, θ1, d) such that for all |x| ≥ X(τ0θ1) we have

(−∆)sϕ(x) ≤ −c∗X(θ1)
d|x|−d−2s + C∗|x|−2sϕ(x).

We are now ready to construct a localized subsolution for (1.1) with monostable f .

Theorem 5.2. Let f and s satisfy (M). Then for any θ ∈ (0, 1), there is Tθ ≥ 1 such that
Ψθ above is a subsolution to (1.1) on the time interval [Tθ,∞).
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Proof. We drop θ from φθ, ψθ,Ψθ, Tθ, Cθ in the proof. The desired T we obtain here will
depend on the various constants in the above setup, and we will always assume that t ≥ T ≥ 1.

Let us start with estimating |ψr| from above. Since ψrr > 0 > ψr, we see that for all
r ≥ Xt(θ2) we have

|ψr(t, r)| ≤ −ψr(t,Xt(θ2)) =
β

α− 1
a−1
1 t1−κθα2Xt(θ2)

β−1

When β < 1, from θ2 < 1 and a1 ≥ a2 we obtain

−ψr(t,Xt(θ2)) ≤
β

α− 1
a−1
1 t1−κ(a2t

κ)
β−1
β ≤ β

α− 1
a
− 1

β

2 t
β−κ
β .

When β ≥ 1, we again use θ2 < 1 to get

θα2Xt(θ2)
β−1 = θ

α−1+β
β

2 (a1t
κ−1 + θα−1

2 a2t
κ)

β−1
β ≤ (a1t

κ−1 + a2t
κ)

β−1
β ≤ (a1t

κ−1)
β−1
β + (a2t

κ)
β−1
β ,

so then a2 ≤ a1 and t ≥ 1 yield

−ψr(t,Xt(θ2)) ≤
β

α− 1

(

a
− 1

β

1 t
1−κ
β + a−1

1 a
β−1
β

2 t
β−κ
β

)

≤ 2β

α− 1
a
− 1

β

2 t
β−κ
β .

It follows that if T is such that 2β
α−1

a
− 1

β

2 T
β−κ
β ≤ 1 (recall that κ > β) and XT (θ2) ≥ 1, then

(5.6) and ψrr > 0 yield for any e ∈ S
d−1 and ρt :=

2β
α−1

a
− 1

β

2 t
β−κ
β ≤ 1,

D2
eeΨ(t, x) =

(x · e)2
|x|2 φ′′

(

ψ(t, |x|)
)

|ψr(t, |x|)|2 +
(x · e)2
|x|2 φ′

(

ψ(t, |x|)
)

ψrr(t, |x|)

+ φ′
(

ψ(t, |x|)
)

ψr(t, |x|)
|x|2 − (x · e)2

|x|3 ≥ −Cρ2t − ρt ≥ −(C + 1)ρt,

where we also used that φ′(ψ(t, |x|)) = 0 when |x| ≤ 1 (due to Xt(θ2) ≥ 1). From this, θ < 1,
and s ∈ (0, 1) we obtain (with ωd be the surface area of Sd−1)

sup
x∈Rd

(−∆)sΨ(t, x) ≤ cs,d
2

ˆ

|h|≤ρ
−1/2
t

2Ψ(t, x)−Ψ(t, x+ h)−Ψ(t, x− h)

|h|d+2s
dh

+ cs,d

ˆ

|h|>ρ
−1/2
t

Ψ(t, x)−Ψ(t, x+ h)

|h|d+2s
dh

≤ cs,d
2

ˆ

|h|≤ρ
−1/2
t

(C + 1)ρt
|h|d−2+2s

dh+ cs,d

ˆ

|h|>ρ
−1/2
t

θ

|h|d+2s
dh

≤ cs,dωd(C + 1)ρst
2s(1− s)

=: C ′ρst .

(5.8)

We will need another estimate for (t, x) such that Ψ(t, x) is small. When Ψ(t, x) ≤ τθ1
(then Ψ(t, x) = ψ(t, x) because τ ≤ τ0 ≤ 1), we can apply Lemma 5.1 with ϕ(·) = Ψ(t, ·) and
β, ν, θ1 as above, provided T is large enough so that a := a−1

1 t1−κ < 1 and b := a2a
−1
1 t ≥ 1.

So when Ψ(t, x) ≤ τθ1, then we have

(−∆)sΨ(t, x) ≤ −c∗|x|−d−2sXt(θ1)
d + C∗|x|−2sψ(t, x). (5.9)
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Finally, we also note that Ψt(t, x) = 0 when |x| ≤ Xt(θ2), while for |x| > Xt(θ2) we have

Ψt(t, x) = φ′(ψ(t, x))
ψ(t, x)αa−1

1

α− 1

(

(κ− 1)t−κ|x|β + a2
)

≤ ψ(t, x)αa−1
1

α− 1

(

(κ− 1)a1t
−1ψ(t, x)1−α + κa2

)

=
κ− 1

α− 1

ψ(t, x)

t
+

a2κ

a1(α− 1)
ψ(t, x)α.

(5.10)

We are now ready to show that Ψt + (−∆)sΨ − f(Ψ) ≤ 0 at all (t, x) with t ≥ T (if T
is large enough). When |x| ≤ Xt(θ2), then (5.8) and f(Ψ(t, x)) = f(θ) ≥ δ show that this
follows from C ′ρst ≤ δ, which holds if T is large. Since (5.4) and (5.3) also yield

max

{

κ− 1

α− 1

θ2
t
,

a2κ

a1(α− 1)
θα2 , C

′ρst

}

≤ δ

3

if T is large, and since for |x| ∈ (Xt(θ2), Xt(τθ1)] we still have f(Ψ(t, x)) ≥ δ, it follows from
(5.8) and (5.10) that for these x we again have

Ψt(t, x) + (−∆)sΨ(t, x)− f(Ψ(t, x)) ≤ κ− 1

α− 1

θ2
t
+

a2κ

a1(α− 1)
θα2 + C ′ρst − δ ≤ 0.

It therefore remains to consider |x| > Xt(τθ1) (when Ψ(t, x) = ψ(t, x) because τ ≤ 1).

If also tΨ(t, x)α−1 ≤ a1
a2

, it follows from (5.9), (5.10), |x| = (ψ(t, x)1−αa1t
κ−1 + a2t

κ)−
1
β , and

Xt(θ1) ≥ (a2t
κ)

1
β that (we drop (t, x) from the notation for simplicity)

Ψt + (−∆)sΨ− f(Ψ) ≤ κ− 1

α− 1

ψ

t
+

a2κ

a1(α− 1)
ψα − c∗|x|−d−2sXt(θ1)

d + C∗|x|−2sψ

≤ 2κ− 1

α− 1

ψ

t
− c∗(2ψ

1−αa1t
κ−1)−

d+2s
β (a2t

κ)
d
β + C∗(ψ

1−αa1t
κ−1)−

2s
β ψ

=
2κ− 1

α− 1

ψ

t
− c∗(2a1)

− d+2s
β a

d
β

2

ψ

t
+ C∗a

− 2s
β

1 t−
(κ−1)2s

β ψ1+
(α−1)2s

β .

Using again tψα−1 ≤ a1
a2

, we obtain

t−
(κ−1)2s

β ψ1+
(α−1)2s

β = t
2s
β ψ

(α−1)2s
β t−

α
α−1ψ ≤ (a1a

−1
2 )

2s
β t−

1
α−1

ψ

t
.

Therefore Ψt + (−∆)sΨ− f(Ψ) ≤ 0 by (5.4) if T is large enough.
When instead |x| > Xt(τθ1) and tΨ(t, x)α−1 > a1

a2
, then

(a2t
κ)

1
β ≤ |x| = (ψ(t, x)1−αa1t

κ−1 + a2t
κ)−

1
β ≤ (2a2t

κ)
1
β ,

so (5.9), Xt(θ1) ≥ (a2t
κ)

1
β , ψ(t, x) ≤ τθ1 (due to |x| > Xt(τθ1)), and (5.2) show that

(−∆)sΨ ≤ −c∗(2a2tκ)−
d+2s

β (a2t
κ)

d
β + C∗(a2t

κ)−
2s
β ψ ≤

(

C∗τθ1 − c∗2
− d+2s

β

)

a
− 2s

β

2 t−
2sκ
β ≤ 0.
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This, (5.10), ψ(t,x)
t

< a2
a1
ψ(t, x)α, and (M) show that

Ψt + (−∆)sΨ− f(Ψ) ≤ a2(2κ− 1)

a1(α− 1)
ψα − γψα

which is again ≤ 0 due to (5.3). This finishes the proof. �

We can now use the constructed subsolutions to prove (5.1).

Theorem 5.3. Let f and s satisfy (M), and let 0 ≤ u ≤ 1 solve (1.1). If

u(0, ·) ≥ θχBRθ
(0)

for some θ > 0 and Rθ from Lemma 2.6, then for each λ ∈ (0, 1) there are Cλ, τλ,θ > 0
(depending also on s, f, d) such that for all t ≥ τλ,θ we have

xλ(t; u) ≥ Cλt
α

2s(α−1) .

Proof. The comparison principle and Lemma 2.6 show that it suffices to prove the result with
Cλ also depending on θ, which we will do.

Let ūθ be from Lemma 2.6 (see the remark after that lemma), let ū be the solution to
(1.1) with initial data ūθ, and let t0 be such that ū(t0, ·) ≥ θχB1(0). Since u0 ≥ ūθ, we have
u(t0, ·) ≥ ū(t0, ·) by the comparison principle (Theorem 2.4), and then comparison principle
shows that it suffices to consider u0 = ū(t0, ·) without loss. The proof of Lemma 2.6 now
shows that u is time increasing.

Similarly to [15, Theorem 3.1], since u dominates the solution to vt + (−∂xx)sv = 0 with

initial data θχB1(0), there is C > 0 (depending only on s, d) such that if t ≥ 1 and |x| ≥ t
1
2s +1,

then

u(t, x) ≥ Cθ

ˆ

B1(x)

t−
d
2s (1 + |t− 1

2sy|d+2s)−1dy ≥ Cθωd
2d

t(|x|+ 1)−d−2s ≥ c t|x|−d−2s,

where ωd

d
is the volume of B1(0) and c := 2−d−2s−1d−1Cθωd.

Now let Ψθ, Tθ be from Theorem 5.2 and let T := 1 + c−1a
1

α−1

1 T
κ−1
α−1

θ . If |x| is large enough,
we then have u(T, x) ≥ Ψθ(Tθ, x), which then yields u(t, x) ≥ Ψθ(Tθ, x) for all these x and all
t ≥ T because u increases in time. But we also have u(t, x) ≥ Ψθ(Tθ, x) for all the other x and
some t by the last claim in Lemma 2.6. Hence there is T ′ ≥ T such that u(T ′, ·) ≥ Ψθ(Tθ, ·).
Comparison principle now yields

u(t+ T ′, ·) ≥ Ψθ(t+ Tθ, ·)

for all t ≥ 0, so for any λ ∈ (0, θ) and t ≥ T ′ we have

xλ(t; u) ≥ xλ(t− T ′ + Tθ; Ψθ) ≥ Cλ,θ(t− T ′ + Tθ)
α

2s(α−1)

for some time-independent Cλ,θ > 0. This proves the claim for each λ ∈ (0, θ), and for
λ ∈ [θ, 1) it now follows as at the end of the proof of Theorem 4.1. �
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Appendix A. Proof of Lemma 2.6

We will first show that it suffices to obtain existence of Rθ, uθ satisfying (2.6) and (2.8)
(note that (2.7) then follows from uθ = 0 on (Rθ,∞)). Let us assume this is the case, and
for any R ≥ 0 and all x ∈ R let vR(x) := uθ(|x| − 2R). Then vR ≡ 0 on B2R+Rθ

(0)c, so on
this set we have −(−∆)svR ≥ 0. Since vR = uθ(| · | − 2R) on BR(x) when |x| ∈ [R, 2R+Rθ]
(so as R → ∞, uniformly in these x we have local uniform (in y) convergence of vR(y + x)
to uθ(y · x

|x|
+ |x| − 2R) in C2), and vR ≡ θ on BR(x) when |x| ≤ R, the strict inequality in

(2.8) and f(θ) > 0 guarantee that for any large enough R we have

inf
|x|≤2R+Rθ

[−(−∆)svR(x) + f(vR(x))] > 0.

(Recall also that cs,d = cs,1(
´

Rd−1(1 + h2)−
d
2
−sdh)−1.) By symmetry this also holds with

|x| ≤ Rθ + R under the inf, so (2.9) and (2.10) hold for ūθ := vR when R is large enough
(and we then replace Rθ, uθ by 2R +Rθ, uθ(· − 2R)).

Hence to prove the first claim, it remains to find Rθ, uθ satisfying (2.6) and (2.8). Let us
now assume that there is Lipschitz continuous, piecewise smooth (and linear on both sides
of each point where it is not smooth), non-increasing ϕ : R → [0, θ] and R′ > 0 such that

(1) ϕ = θ on (−∞, 0] and ϕ = 0 on [R′,∞);

(2) −(−∂xx)sϕ > 0 on the set {x ∈ R |ϕ(x) ≤ θ′0}, where θ′0 :=
3θ0+θ

4
(∈ (θ0, θ));

(3) C := supx∈R (−∂xx)sϕ(x) <∞.

Here −(−∂xx)sϕ is allowed to be ∞ at the (finitely many) points where ϕ is not smooth
(when s ≥ 1

2
). If Rθ := rR′ and uθ(x) := ϕ(x

r
) for some r > 0, then for any x such that

uθ(x) ≤ θ′0 we have

−(−∂xx)suθ(x) + f(uθ(x)) ≥ −(−∂xx)suθ(x) = −r−2s(−∂xx)sϕ(xr−1) > 0.

If we let δ := infu∈[θ′0,θ] f(u) > 0 and r := (2C/δ)
1
2s (with C from (3)), then for any x such

that uθ(x) ≥ θ′0 we have

−(−∂xx)suθ(x) + f(uθ(x)) ≥ −Cr−2s + δ > 0.

Continuity of the left-hand side in x (as a function with values in R∪{∞}) now yields (2.8),
and (2.6) is obvious. Finally a mollification of uθ provides the desired smooth function thanks
to the sharp inequality in (2.8).

So the it remains to construct ϕ. Consider a smooth non-decreasing ψ : R → R such that

ψ(y) = y on

(

−∞,
θ + θ′0

2

]

and ψ(y) = θ on [θ,∞) (A.1)

(it will play the same role as φθ in Section 5, preventing concave corners on the graph of ϕ).
Let N ≥ 1 be the smallest integer such that θ − θ′0 ≥ 2−Nθ, and let us first assume that
N = 1. Set

l0(x) := θ − (θ − θ′0)x, k1 :=
θ − θ′0

2
, b1 :=

θ + θ′0
2

, l1(x) := b1 − k1x,
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and define ϕ1 : R → [0, 1] via

ϕ1(x) :=

{

max{ψ(l0(x)), l1(x), 0} for x ≥ 0,

θ for x ≤ 0.

Then ϕ1 is clearly Lipschitz continuous and non-increasing, and from l1 < ψ ◦ l0 on (−1, 1)

(note that l1 < θ = ψ ◦ l0 on (−1, 0], while l1 < min{l0, θ+θ
′
0

2
} ≤ ψ ◦ l0 on (0, 1)) we have

ϕ1 = ψ ◦ l0 on [−1, 1], ϕ1(1) = θ′0, ϕ1 = l1 on

[

1,
b1
k1

]

, ϕ1

(

b1
k1

)

= 0.

Since ϕ1 is convex on [1
2
,∞), and ψ is smooth and satisfies (A.1), we have supx∈R(ϕ1)xx(x) >

−∞. Hence a computation similar to (5.8) proves (3) for ϕ1.
From N = 1 we see that θ′0 ≤ θ

2
, and so l1(1) ≤ θ

2
and b1

k1
≤ 3. Hence for any x ∈ [1, b1

k1
]

we have 2x + 1 ≥ b1
k1

and l1(x) ≤ θ
2
, which together with ϕ1 > l1 on (−1, 1) and l1 ≥ θ on

(−∞,−1] yields

−(−∂xx)sϕ1(x) = cs

ˆ ∞

0

ϕ1(x+ h) + ϕ1(x− h)− 2ϕ1(x)

h1+2s
dh

> cs

ˆ x+1

0

l1(x+ h) + l1(x− h)− 2l1(x)

h1+2s
dh+ cs

ˆ ∞

x+1

θ − 2l1(x)

h1+2s
dh ≥ 0.

For x ≥ b1
k1

, we obviously have −(−∂xx)sϕ1(x) > 0 because ϕ1(x) = 0 ≤ ϕ1. Therefore

−(−∂xx)sϕ1 > 0 on [1,∞), hence (1)–(3) follows with ϕ := ϕ1 and R′ := b1
k1

.

Next assume that N ≥ 2, and let ψ, k1, b1, l0, l1 be as above. Since now θ′0 − (2θ′0 − θ) ≤
θ−(2θ′0−θ)

2
(in fact, equality holds here), the above argument applies to the function

ϕ̃1(x) :=

{

max{ψ(l0(x)), l1(x), 2θ′0 − θ} for x ≥ 0,

θ for x ≤ 0,

which is equal to ϕ1 above on (−∞, 3] and to 2θ′0− θ on [3,∞) (because l1(3) = 2θ′0− θ > 0).
Hence −(−∂xx)sϕ̃1 > 0 on [1,∞). We will now change ϕ1 to l2(x) := b2 − k2x on [x2,

b2
k2
],

where

x2 := 3, b2 := k2x2 + 2θ′0 − θ,

and k2 ∈ (0, k1) is to be determined (notice that l2(x2) = 2θ′0− θ = l1(x2), and hence k2 < k1
shows that b2 = l2(0) < l1(0) < θ). So we let

ϕ2(x) :=

{

max{ψ(l0(x)), l1(x), l2(x), 0} for x ≥ 0,

θ for x ≤ 0.

Since ϕ2 → ϕ̃1 locally uniformly on R as k2 → 0, there is k2 ∈ (0, k1) such that −(−∂xx)sϕ2 >
0 on [1, x2]. Fix one such k2 and the corresponding ϕ2 (which again satisfies (3) as above).

If now N = 2, consider any x ∈ [x2,
b2
k2
]. From l2(

b2−θ
k2

) = θ and l2(x2) = 2θ′0 − θ ≤ θ
2

we see that l2 < ϕ2 on ( b2−θ
k2
, x2), and b2

k2
≤ 2x2 +

θ−b2
k2

. Hence for any x ∈ [x2,
b2
k2
] we have
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2x+ θ−b2
k2

≥ b2
k2

and l2(x) ≤ θ
2
, and so

−(−∂xx)sϕ2(x) = cs

ˆ ∞

0

ϕ2(x+ h) + ϕ2(x− h)− 2ϕ2(x)

h1+2s
dh

> cs

ˆ x+
θ−b2
k2

0

l2(x+ h) + l2(x− h)− 2l2(x)

h1+2s
dh+ cs

ˆ ∞

x+
θ−b2
k2

θ − 2l2(x)

h1+2s
dh ≥ 0.

(Note that this is the same argument as for N = 1, but with −1 and 1 replaced by b2−θ
k2

and x2.) For x ≥ b2
k2

, we again have −(−∂xx)sϕ2(x) > 0 because ϕ2(x) = 0 ≤ ϕ2. Therefore

−(−∂xx)sϕ2 > 0 on [1,∞), which yields (1)–(3) with ϕ := ϕ2 and R′ := b2
k2

.
If N ≥ 3, the above argument instead applies to

ϕ̃2(x) :=

{

max{ψ(l0(x)), l1(x), l2(x), 4θ′0 − 3θ} for x ≥ 0,

θ for x ≤ 0,

which is equal to ϕ2 on (−∞, 2x2 +
θ−b2
k2

] and to 4θ′0 − 3θ on [2x2 +
θ−b2
k2
,∞) (because now

l2(2x2 +
θ−b2
k2

) = 2(2θ′0 − θ) − θ = 4θ′0 − 3θ > 0). Hence again −(−∂xx)sϕ̃2 > 0 on [1,∞).
Similarly to the case N ≥ 2, we let

x3 := 2x2 +
θ − b2
k2

, b3 := k3x3 + 4θ′0 − 3θ, l3(x) := b3 − k3x,

with k3 ∈ (0, k2) small enough so that

ϕ3(x) :=

{

max{ψ(l0(x)), l1(x), l2(x), l3(x), 0} for x ≥ 0,

θ for x ≤ 0.

satisfies −(−∂xx)sϕ3 > 0 on [1, x3]. If N = 3, we can use l3(x3) = 4θ′0 − 3θ ≤ θ
2

and k3 < k2
to again show as above that (1)–(3) hold with ϕ := ϕ3 and R′ := b3

k3
.

If N ≥ 4, this argument can be repeated finitely many times until we obtain a function
ϕN and bN , kN > 0 such that (1)–(3) hold with ϕ := ϕN and R′ := bN

kN
.

Finally, let us prove the last claim. Without loss, we can assume that x0 = 0; the com-
parison principle (Theorem 2.4) then shows that it suffices to consider u(0, ·) = ūθ. We now
have u(t, ·) ≥ ūθ = u(0, ·) for all t ≥ 0 by (2.5) and the comparison principle, so applying the
comparison principle to u and its time shifts now shows that u is non-decreasing in time. If
we let v(x) := limt→∞ u(t, x) ≤ 1, Theorem 2.5 implies that v ∈ C2s+σ(Rd) for some σ > 0,
and −(−∆)sv+ f(v) = 0 holds in the classical sense. Since v ≥ ūθ, (2.10) shows that v > ūθ
on BRθ

(0). But then u(τ, ·) ≥ sup|y|≤r ūθ(· − y) for some τ, r > 0. By iterating this argument
we obtain u(nτ, ·) ≥ sup|y|≤nr ūθ(· − y) for all n ∈ N, so v ≥ θ. Since f > 0 on [θ, 1), it is
easy to show that the only stationary classical solution to (1.1) taking values in [θ, 1] is v ≡ 1
(note that Theorem 2.5 shows that all such solutions are uniformly bounded in C2s+σ(Rd)),
and the claim follows.
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Appendix B. Proof of Lemma 5.1

Let us fix any x ∈ R
d such that |x| ≥ X(τ0θ1), with τ0 ∈ (0, 1

4
] to be determined. Then

c−1
s,d(−∆)sϕ(x) ≤

ˆ

|h|≤|x|−X(θ1)

ϕ(x)− ϕ(x+ h)

|h|d+2s
dh+

ˆ

|x|−X(θ1)≤|h|≤|x|

ϕ(x)− ϕ̃(x+ h)

|h|d+2s
dh

+

ˆ

|h|≤|x|& |x+h|≤X(θ1)

ϕ(x)− 2−1θ1
|h|d+2s

dh+

ˆ

|h|≥|x|

ϕ(x)

|h|d+2s
dh =: I1 + I2 + I3 + I4,

where I1 is a principal value integral and

ϕ̃(·) := ϕ(·)− 2−1θ1χBX(θ1)
(0)(·) ≥ 2−1θ1χBX(θ1)

(0)(·).

Since ϕ(x) ≤ τ0θ1 ≤ 1
4
θ1 and |x| ≥ X(θ1), there is µd > 0 (only depending on d) such that

I3 ≤ −
ˆ

|h|≤|x|& |x+h|≤X(θ1)

θ1
4|h|d+2s

dh ≤ −µdX(θ1)
dθ1|x|−d−2s.

We now let c∗ := cs,dµdθ1, which means that it remains to show that

I1 + I2 + I4 ≤ c−1
s,dC∗|x|−2sϕ(x),

with C∗ to be determined.

If now g(l) := (alβ − b)−
1
ν for l > (a−1b)

1
β (then g(|y|) := ϕ(y) for |y| ≥ X(θ1) > (a−1b)

1
β ),

then using g(l)−ν ≤ alβ yields

g′′(l) +
d− 1

l
g′(l) = ν−2(1 + ν)g(l)1+2νa2β2l2β−2 − ν−1g(l)1+νaβ(β + d− 2)lβ−2

≥ ν−2g(l)1+2νa2βl2β−2(β − ν(d− 2)).

This is ≥ 0 due to β
ν
≥ d− 2, so ϕ is subharmonic on

(

BX(θ1)(0)
)c ⊇ B|x|−X(θ1)(x). Hence for

any r ∈ (0, |x| −X(θ1)) we have −
´

∂Br(x)
ϕ(y)dσ(y) ≥ ϕ(x), and so I1 ≤ 0. We also have

I4 = ϕ(x)

ˆ

|h|≥|x|

|h|d+2sdh ≤ µ′
d|x|−2sϕ(x)

for some µ′
d > 0 only depending on d. It therefore remains to estimate I2.

When d = 1, we get I2 ≤ 0 because ϕ(x) − ϕ̃(x + h) is no more than θ1
4
− θ1

2
= − θ1

4
for

h ∈ [0, X(θ1)] and no more than θ1
4

for h ∈ [2x−X(θ1), 2x] (this is when x > 0; when x < 0,
these two intervals must be reflected across 0). This finishes the proof when d = 1.

We will need to work a little harder when d ≥ 2. Let ε1 := |x|−1X(θ1) (which is < 1

because |x| ≥ X(τ0θ1)) and τ := ϕ(x)
θ1

≤ τ0. Let us first consider the case when ε1 >
2
3
, so

that ρ1 := 1 − ε1 <
1
3

(and then |x| − X(θ1) = ρ1|x|). There is cd > 0 such that for all
r ∈ [2ρ1|x|, |x|] we have,

Hd−1
({

h
∣

∣ |h| = r& |h+ x| ≤ X(θ1)
})

≥ cdHd−1
({

h
∣

∣ |h| = r
})

,
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with Hd−1 the (d − 1)-dimensional measure. If τ0 ≤ cd
4
, then this, ϕ̃ ≥ θ1

2
on BX(θ1)(0), and

ϕ(x) ≤ τ0θ1 ≤ θ1
4

yield (with ωd the surface area of Sd−1)

ˆ

|h|=r

[ϕ(x)− ϕ̃(x+ h)]dσ(h) ≤
ˆ

|h|=r

τ0θ1dσ(h)−
ˆ

|h|=r&|h+x|≤X(θ1)

2−1θ1dσ(h)

≤ −4−1cdωdθ1r
d−1.

From this we obtain

I2 ≤
ˆ

ρ1|x|≤|h|≤3ρ1|x|

ϕ(x)− ϕ̃(x+ h)

|h|d+2s
dh

≤ −
ˆ 3ρ1|x|

2ρ1|x|

cdωdθ1r
d−1

4rd+2s
dr +

ˆ

ρ1|x|≤|h|≤2ρ1|x|

ϕ(x)

|h|d+2s
dh

≤ −cdωdθ1
8s

(2−2s − 3−2s)(ρ1|x|)−2s +
τ0ωdθ1
2s

(1− 2−2s)(ρ1|x|)−2s

which is ≤ 0 provided τ0 ≤ cd(4
−s−9−s)

4(1−4−s)
.

Finally, we are left with the case ε1 ≤ 2
3

(and so ρ1 ≥ 1
3
). Let

Ax :=
{

h
∣

∣ |x| −Xt(θ1) ≤ |h| ≤ |x|& |x+ h| ≥ X(θ1)
}

,

and let

e := |x|−1x and ε2 := |x|−1(a−1b)
1
β .

Then εβ1 − εβ2 = |x|−βa−1θ−ν1 ≥ 0. By again using that ϕ̃ ≥ θ1
2
≥ ϕ(x) on BX(θ1)(0) and then

changing variables via h = |x|z, we obtain

I2 ≤
ˆ

Ax

ϕ(x)− ϕ(x+ h)

|h|d+2s
dh

= |x|−2s

ˆ

ρ1≤|z|≤1& |e+z|≥ε1

(a|x|β − b)−
1
ν − (a|e+ z|β|x|β − b)−

1
ν

|z|d+2s
dz

= |x|−2sϕ(x)

ˆ

ρ1≤|z|≤1& |e+z|≥ε1

(|e+ z|β − εβ2 )
1
ν − (1− εβ2 )

1
ν

(|e+ z|β − εβ2 )
1
ν |z|d+2s

dz.

So it remains to show that

I ′2 :=

ˆ

ρ1≤|z|≤1& |e+z|≥ε1

(|e+ z|β − εβ2 )
1
ν − (1− εβ2 )

1
ν

(|e+ z|β − εβ2 )
1
ν |z|d+2s

dz

is uniformly bounded above for ρ1 ∈ [1
3
, 1], 0 ≤ ε2 ≤ ε1 ≤ 2

3
, and e ∈ S

d−1, by a constant
depending on s, β, ν, d. But when |e+ z| ≥ 1, the integrand is clearly bounded above by such
a constant; and when |e+ z| < 1, then it is negative. This therefore concludes the proof.
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