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ABSTRACT. We study the reaction-fractional-diffusion equation u; + (—A)*u = f(u) with
ignition and monostable reactions f, and s € (0,1). We obtain the first optimal bounds
on the propagation of front-like solutions in the cases where no traveling fronts exist. Our
results cover most of these cases, and also apply to propagation from localized initial data.

1. INTRODUCTION

In this paper we consider the Cauchy problem for the reaction-fractional-diffusion equation
u + (—A)°u = f(u), (1.1)

with (¢t,7) € [0,00) x R? and f a Lipschitz reaction function. One frequently assumes that
f(0) = f(1) = 0 and considers solutions 0 < u < 1 that model transitions between two
equilibrium states (i.e., v = 0 and u = 1), driven by the interplay of the two physical
processes involved: reaction and diffusion. Our goal is to obtain optimal estimates on the
speed of invasion of one equilibrium (u = 0) by the other (u = 1), so we will study the speeds
of propagation of solutions with front-like (see (1.10) below) and localized initial data. Note
that the comparison principle shows that in the case of front-like initial data, it suffices to
consider (1.1) in one spatial dimension d = 1, that is,

g + (—0p)’u = f(u) (1.2)

on [0,00) x R. We will do so here when we discuss such initial data, while for localized data
we will consider (1.1) with d > 1. The distinction between these two cases is marginal when
s =1, but this is not anymore the case when s € (0,1) and diffusion has long range kernels.

The classical diffusion case s = 1 goes back to pioneering works by Kolmogorov, Petrovskii,
and Piskunov [28], and Fisher [19], and it is now well-known that solutions with both types
of initial data propagate ballistically for all reaction functions of interest — monostable,
ignition, as well as (unbalanced) bistable [4].

We will therefore concentrate here on the fractional diffusion case s € (0,1), with the
fractional Laplacian given by

ol u(z) — u(y)

(=A)*u(x) = csa p.v. /Rd Wd% (1.3)
-1

where ¢ 4 1= ¢ (fRd,l(l + h2)_%_5dh> and c¢s = ¢51 > 0 is an appropriate constant. Then

(1.1) models reactive processes subject to non-local diffusion, mediated by Lévy stochastic

processes with jumps (see, e.g., [33] and references therein), and the question of propagation
1
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of solutions turns out to be much more complicated. Its study was initiated by Cabré and
Roquejoffre in [10], who considered (1.1) with Fisher-KPP reactions (specifically, concave
ones with f’(0) > f(0) = 0 = f(1) > f’(1)), which are a special case of 1-monostable
reactions from Definition 1.1 below. They proved that solutions to (1.2) with front-like initial
data propagate exponentially, in the sense that u(¢,-) — 1 uniformly on {z < e} for each

f(0) f7(0)

o < 5, while u(t,-) — 0 uniformly on {z > e”*} for each ¢ > 55 =. They also considered

localized (non-zero non-negative fast-decaying) initial data for (1.1) and showed that in that
1(0)

case one has u(t, -) — 1 uniformly on {|z| < 7'} for each o < 757, while u(t,-) — 0 uniformly

on {|z| > e?'} for each o > ﬂgi We note that prior to [10], exponential propagation for
Fisher-KPP reactions and continuous diffusion kernels with algebraically decreasing tails
(from compactly supported initial data in one dimension) was established by Garnier [20].
While there are many other papers studying such questions for various diffusion operators
(see, e.g., [2,8] and references therein), we will restrict our presentation here to (1.1).

The exponential propagation rates for Fisher-KPP reactions and s < 1 are due to interac-
tion between the long range kernels of the fractional diffusion and a strong hair-trigger effect
of the reaction. They contrast with the case s = 1, when level sets of solutions are located
in an o(t) neighborhood of the point = ¢t (for front-like data) resp. the sphere 0B(0) (for
localized data), with the spreading speed ¢ depending only on f (for all the above types of
reactions [4]). It turns out that they are in fact a special feature of 1-monostable reactions,
and the situation is very different for all the other reaction types. Let us now define these.

Definition 1.1. Let f : [0,1] — R be a Lipschitz continuous function with f(0) = f(1) = 0.
(i) If there is 0y € (0,1) such that f(u) = 0 for all u € (0,6y] and f(u) > 0 for all
u € (6o, 1), then f is an ignition reaction and 6y is the ignition temperature.
(i) If f(u) >0 for all w € (0,1), then f is a monostable reaction. If also
yu® < fu) < y'u® for all u € (0, 6], (1.4)
where oo > 1, 6y € (0,1), and ~,~" > 0, we say that f is an a-monostable reaction.
(iii) If there is 6y € (0,1) such that f(u) < 0 for all u € (0,6y) and f(u) > 0 for all
u € (6o, 1), as well as fol f(u)du > 0, then f is an (unbalanced) bistable reaction.

Ignition reactions are used to model combustive processes, while monostable reactions
model phenomena such as chemical kinetics and population dynamics [6,18,22,34]|. Bistable
reactions are used in models of phase transitions and nerve pulse propagation [3,5,31], and
the unbalanced condition fol f(u)du > 0 guarantees at least ballistic propagation for all non-
negative solutions that are initially larger than € (for any 6 > 6;) on some large-enough ball
(of #-dependent radius). This is also the case for all ignition and monostable reactions (with
6 > 0 in the latter case).

In particular, the following holds for all the reactions from Definition 1.1. If 0 < u <1
is a solution to (1.2) with either liminf, , . u(0,2) > 6, for ignition and bistable f, or
liminf, , . u(0,2) > 0 for monostable f, then for any A € (0,1) we have

lim inf _a:—/\(t; v)
t—00

> 0, (1.5)
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where for ¢ > 0 we let

z,(t;u) == inf {z € R|u(t,z) < A} (1.6)
be the left end of the A-level set of u(t,-). If we instead let
z,(t;u) := inf {|z] | u(t, z) < A}, (1.7)

this claim also extends to solutions to (1.1) in any dimension and with inf|y<pg, u(0,2) > 6,

where 6 must satisfy either § > 6 for ignition and bistable f, or # > 0 for monostable f (and

Ry also depends on s, f,d). Both these claims easily follow from the proof of the last claim

in Lemma 2.6 below. (We note that when f is sufficiently small near u = 0, solutions with

small enough initial data may be quenched in the sense that lim, . ||u(t, )|l = 0.)
Ballistic propagation for u is therefore equivalent to

lim sup GG < 00
t—00
for all A € (0,1), where for front-like data and (1.2) we let
Ta(t;u) == sup {z € R|u(t,z) > \} (> z,(t;u)) (1.8)
be the right end of the A-level set of u(t, -), and for localized data and (1.1) we let
Ta(t;u) = sup {Jz| [u(t,z) > A} (> z\(Gw). (1.9)

Comparison principle shows that this holds whenever we have either w(0,-) < 0x(—c,r) Or
u(0, ) < Oxpy(o) for some § < 1 and R € R, provided (1.2) has a traveling front. The latter is
a solution of the form u(t,z) = U(x —ct), with lim,, ., U(z) = 1 and lim, . U(z) =0 (i.e.,
U must satisfy —cU, + (=0.)°U = f(U)). In fact, it suffices to have u(0,-) < X(—c0,r) OF

u(0,-) < XBg(0) as long as a traveling front exists for (1.2) with some f > fin place of f, such

that f(1+6) = 0and f > 0on [1,1+4) for some § > 0 (then of course lim,_, o, U(z) = 140,
and one only needs u(0, ) to be dominated by some shift of U). Hence in the rest of this
discussion we will assume that

QX(—OO,O) < U(O, ) < X (—o0,R) (110)
for front-like data and
QXBR’(O) < U(O, ) < XBg(0) (1'11)
for localized data, with some 6, R, R’ > 0 (and 6 > 6, when f is ignition or bistable).
Proving existence of traveling fronts for (1.2), and hence ballistic propagation of solutions,
requires one to solve only a (non-local) ODE, and this was indeed achieved in a number of
cases. These include all the above reactions with s = 1 [4,5], where diffusion is local, as
well as all C? bistable reactions with any s € (0,1) |1,14,24], where the negative values of f
near u = 0 suppress the effects of long range dispersal. The cases of ignition and monostable
reactions with s € (0,1) are more delicate, and depend intimately on the interplay of the
long range diffusion and the strength of f near u = 0. Nevertheless, Mellet, Roquejofire,
and Sire proved that traveling fronts still exist for ignition reactions with f’(1) < 0 when

s > £ [30], while Gui and Huan later showed that they do not exist when s < %, as well

2
as that they exist for a-monostable reactions (and s € (0, 1)) precisely when s > P ] [23]
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(f was assumed to satisfy additional hypotheses in [23] when s > %) We note that since
the comparison principle can be used to estimate propagation of solutions for monostable
reactions that lie between multiples of two distinct powers of u near u = 0, it makes sense to
concentrate only on a-monostable reactions among the monostable ones; we will do so here.

This leaves one with an expectation of super-ballistic (i.e., accelerating) propagation in the
cases of ignition reactions with s < 1 and a-monostable reactions with s < min{ﬁ, 1}.
For front-like initial data and (1.2), this has indeed been confirmed in all these cases except
for ignition reactions with s = 3. The result for concave Fisher-KPP reactions in [10] immedi-
ately yields exponential propagation for all 1-monostable reactions and s € (0, 1), albeit with
the lower and upper exponential rates being 5~ and ;—;, respectively. More recently, Coville,
Gui, znd Zhao [15] proved for a-monostable reactions with o > 1 and s < min{ﬁ, 1}
that N .

0 < liminft™ "=6=D" 7,(t;u) and limsupt 010 T, (t;u) < 0o
t—o0 t—o00

for all A € (0,1) (assuming in addition that f is C' and f’(1) < 0), which then also yields
for ignition reactions with s € (0, 3] that

lim sup ¢~ 2~ Ty (t; u) < 0o (1.12)

t—o0

for all e > 0 and X € (0,1). We note that while [15, Theorem 1.3] may appear to also imply
lim inf,_,o £~ 2 Tp(f;u) > 0 for ignition reactions and all A € (0,1), Proposition 3.1 in its
proof in fact assumes f to be monostable. Nevertheless, we still have (1.5) in this case.

While these results cover all the cases of interest in which traveling fronts do not exist,
in all of them there is a gap between the powers of time resp. exponential rates in the best
available lower and upper bounds on the dynamic: an infinitesimal one for concave Fisher-
KPP reactions and for ignition reactions with s = %, and a positive one in all the other cases.
In the following first main result of the present paper, we fully close this gap in all the latter
cases, proving that z,(¢;u) and T (t;u) both have the exact power behavior O(t%@-1) in
time for all a-monostable reactions with a > 1, and O(t2:) for all ignition reactions (so we
improve both the lower and upper bounds in the ignition case). We do so for all the values
of s for which traveling fronts do not exist, except for ignition reactions with s = %, where
almost-ballistic propagation (which follows from (1.5) and (1.12)), remains the best result.

Theorem 1.2. Let 0 < u < 1 be a solution to (1.2) such that (1.10) holds for some 6, R > 0,
and let x,(t;u) and T(t;u) be from (1.6) and (1.8).
(i) If [ is an ignition reaction with ignition temperature 6y € (0,0) and s € (0,3), then
for each X € (0,1) we have
0 < liminft 2 z,(t;u) < lim sup ¢~ 2 Za(t;u) < 0o
t—00 t—00
(11) If f is an a-monostable reaction for some o > 1 and s € (0, min{ﬁ, 1}), then for
each A € (0,1) we have

0 < liminf ¢ @0 gz, (t;u) < limsupt =@ 7, (£ u) < 0o
t—00 t—o0
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Remarks. 1. The leading orders of the propagation rates in both (i) and (ii) only depend
on s and the qualitative behavior of f near 0, and in (ii) they are independent of ~,~' from
(1.4). In contrast, for Fisher-KPP reactions they also depend on f/(0) [10], and so their
dependence on f for general 1-monostable reactions will be much more sensitive.

2. As Theorem 3.4 below shows, (i) extends to the case when (0, ) < X(—c,r) is replaced
by limsup, .. 27%u(0,z) < co. The supersolutions constructed in [15] show that in (ii) we
can instead allow limsup, , 2~ & u(0,z) < co.

3. One-sided bounds in (1.4) obviously yield one-sided bounds in (ii).
4. For any s € (0, 3), (i) can be regarded as the av — oo limit of (ii).

To the best of our knowledge, these are the first qualitatively optimal propagation results
for front-like solutions in situations where no traveling fronts exist.

When it comes to localized initial data and (1.1), the corresponding Fisher-KPP result

from [10] was improved by Coulon and Yangari in [16|. They proved for each A € (0,1) that

P i ()W . _foy

0 < liminfe™@t2" z, (t;u) < limsup e 2" T (t;u) < 00

t—o0 t—o00
for solutions with fast-decaying initial data when s € (0,1) and f is any C' 1-monostable
reaction with f(u) — f'(0)u = O(u'*?) (for some § > 0). This also implies exponential
propagation for general 1-monostable reactions, albeit with the lower and upper exponential
rates being 5~ and #;37 respectively.

An interesting feature of the results in [10,16] is that, for Fisher-KPP reactions and s < 1,
the exponential propagation rates for localized initial data differ from those for front-like
data, and they also depend on the dimension. These phenomena happen neither when s =1
(for any reaction), because the diffusion kernel is short range, nor for bistable reactions and
s € (0, 1), when ballistic propagation from localized data at the same speed as from front-like
data follows from existence of traveling fronts.

It is therefore not obvious which propagation rates one should expect for ignition and a-
monostable reactions with o > 1 when s € (0, 1) and initial data are localized. One obviously
has the ballistic lower bound (1.5), and the same upper bounds as for front-like data (which
follow immediately by comparison). However, we are not aware of other relevant prior results
for (1.1) in this setting. Our second main theorem therefore appears to provide the first non-
trivial such result, and is again also qualitatively optimal. It shows that in all the cases from
Theorem 1.2, propagation rates for localized data do coincide with those for front-like data.
In particular, unlike for 1-monostable reactions, they do not depend on the dimension.

Theorem 1.3. Let 0 < u <1 be a solution to (1.1) such that (1.11) holds for some 6, R > 0
and large enough R' (depending on f,s,0), and let x,(t;u) and T)(t;u) be from (1.7) and
(1.9). Then both parts of Theorem 1.2 hold.

Remark. We can obviously again replace u(0, -) < Xy (0) by limsup;, ., [#]7**u(0,z) < oo

in (i), and by limsupy,_,« 2|~ % u(0, ) < oo in (ii).
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The proofs of Theorems 1.2 and 1.3 rest on finding appropriate sub- and supersolutions ¢
satisfying z, (; ®) = O(t") = T,(t; @), with 3 = - for ignition reactions and § = e Lor
a-monostable reactions. Since these will accelerate in time, one cannot use the traveling front
ansatz ®(t,z) ~ ¢(x — ct) in their construction, because then their transition regions (where
they decrease from values close to 1 to those close to 0) would only travel with constant
speed c¢. One might instead hope to have ®(¢,x) ~ ¢(z — ct?), which does travel with the
right speed O(t#~!). However, it turns out that the acceleration of propagation also forces
sub- and supersolutions to have transition regions that stretch in time (see also [21]).

We will therefore construct localized subsolutions of the form ®(t,z) ~ @(ct™2z) in the
proof of Theorems 1.2(i) and 1.3(i). Such functions propagate with speeds O(tz 1) but also
“flatten” in space, having transition regions of widths O(ti) (so the latter stretch with roughly
the same speeds O(tfls_l)). This will be sufficient for subsolutions, but we will have to employ
a much more complicated construction for front-like supersolutions. Their propagation speeds
will again be O(tﬁ_l), but we will need their stretching speeds to also depend on the value
of ®, and they will in fact grow from O(¢2~2) where ® > 6, to O(t2 ') where ® ~ 0. Of
course, this stretching will then accumulate over time to transition regions between different
values of ® having lengths from O(¢2 ') to O(t2s), meaning that these supersolutions will
be flattened in a spatially non-uniform manner. This approach, which seems to be necessary
in the hunt for qualitatively optimal supersolutions in the ignition case (and hence optimal
upper bounds in Theorems 1.2(i) and 1.3(i)), makes this effort significantly more challenging
and explains the complexity in our construction in Section 3 below.

This type of construction appears to be new, as all previous ones that we are aware of
involve spatially uniform stretching rates. In particular, the supersolutions for a-monostable
reactions with o > 1 constructed in [15], which propagate with optimal speeds O(tm_l),
have transition regions that stretch with speeds O(tmd). The subsolutions we construct
below in this case will have the same propagation and stretching speeds. However, unlike
for ignition reactions, we are only able to achieve these optimal speeds with localized but
not compactly supported subsolutions. This, and the fact that we need to find them in all
dimensions d > 1, further complicate this part of our work.

Finally, we note that smoothing properties of the fractional parabolic dynamic of (1.1)
mean that the sense in which our functions solve the PDE is not consequential here. While
we consider below mild solutions with uniformly continuous initial data, Theorem 2.5 shows
that these immediately become classical. This is also true for bounded weak solutions, via
an argument as in the proof of Theorem 2.5 (based on the regularity results in [17,27]),
so these three notions of solutions coincide here. This means that our propagation results
hold as well for not necessarily uniformly continuous initial data, due to the comparison
principle. Since we were not able to locate a suitable version of the latter in the literature,
we prove it in Theorem 2.4 below (which is hence of independent interest). We in fact state
it for distributional sub- and supersolutions (see Definition 2.3) because the supersolutions
we construct here will only be Lipschitz continuous.
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We also highlight here Lemma 2.6 below, which constructs compactly supported station-
ary subsolutions to (1.1). These then provide initially compactly supported time-increasing
solutions, which can be very convenient in the analysis of long-time dynamics of solutions
(and specifically, construction of subsolutions in Section 4). We are not aware of such a result
for (1.1) with s € (0, 1) prior to our work, although its s = 1 version is well known, and in [9]
it was also obtained for diffusion operators with integrable kernels.

Remark. Shortly before we finished writing this paper in May 2021, we informed E. Bouin,
J. Coville, and G. Legendre about it. They posted the preprints [7,8] on arXiv immediately
afterwards, just days before we posted ours. The main results claimed in |7, 8] correspond to
the first inequalities in Theorem 1.2(i,ii), respectively, which are our optimal lower bounds for
front-like initial data (both |7,8] consider more general diffusion kernels in one dimension, with
7172 decay at 4+00). Unlike our constructions in Sections 4 and 5 below, the subsolution
candidate functions presented in [7,8| are front-like, so they would not yield localized initial
data results such as Theorem 1.3 (even when d = 1 because the diffusion kernels are long
range for all s € (0,1)). However, the 23-page May 2021 version of [8] is incomplete, and
was replaced in July 2022 by a 45-page version with a much longer proof containing many
changes and additions. Moreover, the May 2021 version of [7] is clearly very preliminary and
no other version seemed to be available at the time the present paper went into press in July
2023. Neither preprint appears to have been peer reviewed by that time either.

Organization of the Paper and Acknowledgements. In Section 2 we collect various
preliminary results, including a comparison principle for (1.1). We then prove parts (i) of
Theorems 1.2 and 1.3 in Sections 3 and 4, and parts (ii) in Section 5 (these three sections
are completely independent and can be read in any order).

A7 acknowledges partial support by NSF grant DMS-1900943 and by a Simons Fellowship.

2. WELL-POSEDNESS AND A COMPARISON PRINCIPLE

In this section we collect some basic well-posedness and regularity results for (1.1). We
also prove two important (and to the best of our knowledge new) results here. The first
is a comparison principle, Theorem 2.4, which removes certain restrictive hypotheses from
previous results (see the paragraph before Definition 2.3). The second is Lemma 2.6, which
constructs initially compactly supported time-increasing solutions to (1.1) for ignition (and
therefore also for a-monostable) reactions and all s € (0, 1).

We start with the notion of mild solutions, defined via Duhamel’s formula (see [10, 32]).
We use Cy,,(X) to denote the space of bounded uniformly continuous functions on X (with
the supremum norm), and S; to denote the semigroup generated by (—A)* on R?,

Definition 2.1. We say that v € C([0,7); G, (R?)) is a mild solution to (1.1) (and that it
is global if T' = o0) if for each ¢ € [0,7) we have

ult, ) = Siu(0, )] + / S f (ulr, D).

Remark. Notice that if u € C([Tp, T1]; Cp.o(R?)) for some Ty < T, then it is also uniformly
continuous in time on [Ty, T3] and it follows that in fact u € Gy, ([Ty, T1] x RY).
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We now have the following global well-posedness result.

Theorem 2.2. If s € (0,1) and f is Lipschitz continuous, then for any ug € Cy,(RY), there
is a unique global mild solution u to (1.1) with u(0,-) = .

Remark. Theorem 2.2 can be proved via a standard fixed point argument using that

Nl = 00,9 + [ Secolp(atr. s

defines a contraction mapping N on the subspace of u € C([0, T]; Cy.(R?)) with u(0, ) = g
when T is sufficiently small, see for instance [10,29] (both these papers concern more general
diffusion operators than (—A)®). We note that although f" € C,,(R) is assumed in [10,
Sections 2.3 and 2.4], this can easily be relaxed to f being Lipschitz (we prefer to consider
here this case instead of f € C'([0,1])). We also mention that a viscosity-solutions-based
approach to well-posedness, via maximum principles for general non-local nonlinear PDEs
and Perron’s method, was used in [11,13,25].

We next turn to a comparison principle for (1.1), and the related definition of sub- and
supersolutions. We were not able to use in this work comparison principles that we found
in the literature, as these do not quite apply to the Lipschitz continuous sub- and super-
solutions we construct below (mild solutions have better regularity, see Theorem 2.5). For
instance [10, Proposition 2.8 only applies to classical sub- and supersolutions that satisfy an
extra hypothesis on their order as |x| — oo at all times ¢ > 0, while [10, Proposition 2.11]
only applies to mild solutions to u; + (—A)*u = h(t,z) with uniformly continuous h. We
therefore prove here a comparison principle without extra hypotheses and in the more general
distributional sense, which then also applies to mild solutions due to Remark 2 below.

Definition 2.3. We say that u € C((Ty, T1); Cpu(R?)) is a subsolution (supersolution) to
(1.1) if for each 0 < ¢ € C>®((Tp, T1) x R?) we have

/ /R w(t, D)on(t, ) + ult, ) (A o(t 7) — Flult, )t )] dedt <0 (> 0).

Remarks. 1. Note that when s € (0, ) any bounded Lipschitz continuous function u has
bounded (—A)*u; and if it satisfies u, —|— (=A)*u — f(u) <0 (> 0) for a.e. (t,z), then it is
clearly a subsolution (supersolution) to (1.1).

2. It is easy to show that a mild solution u to (1.1) on time interval [0, T) is both a sub- and
a supersolution on time interval (0,7"). Indeed, let u. := ¢. * u, with ¢. a smooth space-time
mollifier as in the following proof. Then u. is a classical solution to w; + (—A)*u = f.(t, )
on time interval (Ty + €,77 — €), where f. := ¢. % (f ou). Since u. — u, and f. — fou
uniformly on [tg, t1] x R? for any [to,t1] C (Ty, T) (see the remark after Definition 2.1), this
yields the claim.

Theorem 2.4. Let s € (0,1) and f be Lipschitz continuous. If u,v € C([0,T); Cy.(R?)) are,
respectively, a subsolution and a supersolution to (1.1) on time interval (0,T) and satisfy

u(0,+) < v(0,-) on RY, then u < v on [0,T) x RY.
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Proof. Tt suffices to prove that u < v on [0,7"] x R? for any 7" < T, so we can assume that
T < oo and u,v € C([0,T]; Cpo(RY)). Let K := max{|| f'|lco, [[tt]lcos [|V]|oc }, and then let
a(t, z) := eXtu(t, ), o(t,x) == eMu(t, x), g(t,u) = Ku + & f(e ).

Then @ and v are, respectively, a subsolution and a supersolution to (1.1) with f(u) replaced
by g(t,u), on time interval (0,7). Moreover, max{||i|/so, [|7]lcc} < Ke&T, and if we let
S :=1[0,T] x [-KeXT, KeXT], then for all (t,u) € S we have

0 < gu(t,u) <2K and lg:(t,u)| < KeKTHfh_K,K]Hoo + K? = K. (2.1)

Finally, we have @(0,-) < (0, -), and proving u < v is equivalent to proving @ < 0. We will
therefore slightly abuse notation, and write below u, v instead of u, v.
For any small ¢ € (0,1), fix a smooth mollifier ¢, > 0 with supp ¢. C B.(0) C R¥*! and
Jgarr @=(t,2)d(t, x) = 1. Then for (t,z) € [0,T — 2¢] x R? let
us(t,x) := (¢ * u)(t + &, ) and Ve(t, ) := (¢ xv)(t + €, 7)

(the e-shifts in time allow us to define u., v. at ¢ = 0). The remark after Definition 2.1 shows
that there is w. > 0 such that lim._,¢g+ w. = 0 and

sup max{|u(t,z) — u(r,y)|, |v(t, z) —v(1,y)|} < w.. (2.2)

(t,2),(1,9)€[0,T]xR%,
max{[t—|,Jz—y|} <2e

Then on [0,T — 2¢] x RY we have
max{|u. — ul, [ve — v|} < we. (2.3)

Now consider any (t,z) € [0,T — 2¢] x R%. If there is (¢,2') € B.(t + ¢,2) such that
u(t',x') < wo(t', '), then it follows from (2.1) and (2.2) that

(¢e * [g(ul--)) — g v( )] (t+e,2)
< gt ut',2) — gt v(t', 7)) + 4ellgelsllco + 2wellguls|loo
<4eK' + 4K w..
If instead w > v on B.(t 4 ¢, ), then g, < 2K yields
(@ *[g(uls) =g v(,)]) (F+e,2) < 2K (¢e x (u—v))(t +e,2) < 2K (ue(t, v) — ve(t, 7).

From these estimates, and from u and v being, respectively, a sub- and a supersolution, we
get for w, :=u. — v, and w. := 4eK' + 4Kw. (— 0 as € — 0) that

he = (we)s + (=A)*w: < (¢ * [g(,u(-,-)) — g(- v(-)]) (- +¢,-) < max{2Kw., w;}.
Duhamel’s principle for smooth solutions to the linear PDE
wy + (—A)*w = h(t, )
(see [10,29,32]) now yields

we(t, ) < Si{w.(0,-)](x) —i—/o Sy [max{2Kw.(t,-),w. }](z) dr
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for all (¢,z) € [0,T — 2¢] x R%. Since S; preserves order and S;[1] = 1, we have S;[w.(0, )] <
2w, on R? (by u(0,-) < v(0,-) and (2.3)), and if we let £(¢) := max{sup,cga we (¢, x),0}, then

E(t) < 2w, + Tw!. + /t 2KE&(T)dr
0

for each t € [0,T — 2¢]. Gronwall’s inequality now yields
E(t) < (2w + Tuw!) KT

for t € [0, T — 2¢], hence

lim sup sup we(t, x) = 0.
e—=0  (t,2)€[0,T—2¢]xRd

This shows that « < v on [0, 7] x R?, finishing the proof. O
Similarly to parabolic PDE with classical diffusion, the dynamics of (1.1) provides certain
smoothing, which is the basis of relevant regularity results. The following theorem, in which

we suppress dependence of all constants on d in the notation, is consequence of results
from [17,27] (we also refer the reader to [12,13,26] for the viscosity solutions setting).

Theorem 2.5. Let s € (0,1) and f be Lipschitz continuous, and let u € C([0,T); Cy . (R?))
be a bounded mild solution to (1.1). There is 0 = o(s) > 0 such that for any T € (0,T) there
is C'= C(s, f,||t]|cc; 7) > 0 such that

Hu||Cl+ﬂ/2s,2s+a([T’T)><Rd) < C.
In particular, u is a classical solution to (1.1).

Proof. For any € € (0, }), let ¢. be the space-time mollifier from the proof of Theorem 2.4.
If f.:= ¢+ (f ou), then u, := ¢, * u satisfies in the classical sense the linear PDE

(us)t + (_A)sus = fE(t7 SL’) (24)
on (4,7 —¢) x R% Since |Jul|s < 0o, we have
max{|[ueloo; [[felloo} < C1 = [F(O)] + (1 4[|/ loc) (1 + [[]|c)-
The interior Holder estimate [27, Theorem 1.1] now yields o = o(s) € (0,min{1,2s}) and
Cy = Cy(s,Cy, 1) > 0 such that
[tel|orzeo (ir jo 7y xray < Coa.
Since u. — w uniformly on [F,T — §] x R? for any § > 0 by the remark after Definition 2.1,
taking ¢ — 0 shows that
||u||C"7/2S"’([T/2,T)><Rd) < Cs.
This and Lipschitz continuity of f yield C3 = C5(Cy, Cy) > 0 such that
Hf€HC”/%J([T/Z,T—S)X]Rd) < CS
for all € € (0, %). It now follows from (2.4) and [17, Theorem 1.1] that

HUEHClﬂ’/stQSH’([T,TfE)XRd) < C4
for these e, with Cy = Cy(s,C1,Co,7) > 0. Taking ¢ — 0 finishes the proof. O
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Finally, to obtain the lower bounds in Theorems 1.2 and 1.3, we will need to use certain
non-trivial initial data ug : R — [0, 1] satisfying

— (=A)%up + f(uog) 20 (2.5)

(note that the comparison principle then shows that solutions to (1.1) with such initial
data are time-increasing). The following lemma, whose proof we postpone to the appendix,
provides such functions for ignition reactions (see the remark below for monostable reactions).

Lemma 2.6. Let [ be an ignition reaction with ignition temperature 6y € (0,1), and let
s € (0,1). For 6 € (0y,1), there are Ry > 1 and a non-increasing smooth function ug on R
(both depending also on s, f,d) such that

HX(—oo,O] <ug < 9X(—ong]a (2.6)
nf [—(=0u)uo(2) + f(ug(2))] 2 0,
Jof [=(=0u) ug () + f(ue(2))] > 0, (2.8)

and the function tig(x) == ug(|z|) on R satisfies

nf [(=4)"(x) + f (@s(2))] 2 0, (2.9)
R [=(=A)%ug(x) + f(ug(x))] > 0. (2.10)

Moreover, if 0 < u < 1 is a global mild solution to (1.1) and u(0,-) > ug(- — zo) for some
1o € RY, then u(t, ) — 1 locally uniformly on R as t — oo.

Remark. Since for each monostable reaction f and each § € (0, 1), there is an ignition
reaction g < f with ignition temperature smaller than 6, the lemma extends to such f, 0.

3. SUPERSOLUTIONS FOR IGNITION REACTIONS

In this section we prove the upper bound in Theorem 1.2(i), which then automatically
provides the same bound in Theorem 1.3(i) via the comparison principle. The main step is
construction of a family of supersolutions ® to (1.2) that satisfy Ty (t; ®) = O(t2).

We start with a simple fractional Laplacian estimate. For A; < Ay and 6 € (0,1), let

1 if v < Aq,
r— A .
Q/JA17A279(IL‘) = 1— (1 — H)H ifx e (Al,Ag],
0 if v > A,.

Note that s < % and Lipschitz continuity of 14, 4, ¢ show that (—0..)%1a, 4, is bounded.

Lemma 3.1. Let s € (0, %), C, = max{m, 1}, A < A, and 0 € (0,1). If o < 1ha, a,0
and () = Y4, a,0(x) for some x € R, then

(=0a) () > —Ci(1 = 0)(Az — Ay) ™™
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Proof. By (1.3), it suffices to assume that ¢ = 14, 4,¢. Then
p(r) =z +h) > p(As) — (A2 + h)
for each h € R, so it suffices to assume that z = Ay. Now a direct computation yields
A1—As (1 9) 0
(—00)*0(As) = —cs(1— 0) / |25 dh — / (|2 dh
oo Ay — Ay —As
=—cs(1—0) ((25) '+ (1 —25)7") (A — A1) 7%,

finishing the proof. U

We will now construct an infinite family of supersolutions to (1.2) indexed by k € N (see
(3.6) below), each defined on a finite time interval of length " and obtained by gluing
together k + 3 separate pieces (all but one of them linear in space). See the introduction for
a discussion of the reasons for such a complicated construction.

Let us take any k € N, and for any n € Ny, := {0, 1, ..., k} let

o = ¥ (k—n +7)(2s)77! and BE =27,

where Zgzl a;:=0 (so ak =0 and 8% = 1). We then have af < > j(2s) 7t = m, SO
1
By > 27 027, (3.1)
(In fact, af_, is increasing in k for each fixed n > 0 and converges to m + 75;.) Also,
from af >k —n + 1 we have
VA (3.2)
and a simple computation yields
By =27 (B )™ (3.3)
We also have the following simple lemma.
Lemma 3.2. Ift > 21_7'237 then for any n € N \ {0},
Bitas =" > ok 4a—(29)" 7" (3.4)
Proof. A direct computation shows that (3.4) is equivalent to
$2)" T (29" 2k(25)"*1—27;11(2s)j*1
This is equivalent to
$1-2s > 2k—((25)1*"—1)/(1—25)’
which clearly holds by the hypothesis. O

In the rest of this section, and in the next section, we will assume the following.

(I) Let f be an ignition reaction with ignition temperature 6, € (0,1), and let s € (0, 3).
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Let us now define 6, := %. For n € N, we let

oF .= (1 —27""1p, and 0 =1,
and then for t > 1

B(t) =50 B and  1F(1):=0
as well as

— (1)
LE(tz) =08, — (95, — )2 1)
n( 71:) n—1 ( n—1 n)lfl(t) . lﬁ,l(t)

Therefore, the function
LE(t, ) .= LF(t,2) when x € (I¥_,(¢),1%(t)] for some n € Ny,

is continuous on its domain {(t,z) € R*|¢ > 1 and z € (0,1§(t)]}, and piecewise linear in z
for each fixed ¢ > 1.
Finally, with C, from Lemma 3.1, let

c. = max { O + 21| e, (Ci0)

1
s

(CooE) (3.5)

where )
1
= (4071 and 4y c=2EER,
and define the Lipschitz continuous function

1 T < c*t%,
Ok (1, z) = d LF(t, 2 — cut) v € (catm, ctx + (1], (3.6)
[(e’g)*fi +e <x et - z,’g(z))]% v > et + 15 ().
We now show that ®* is a supersolution to (1.2) on some (long for large k) time interval.
Theorem 3.3. Let f and s satisfy (1), and let ®* be from (3.6) for each k € N. Then ®F is

a supersolution to (1.2) on the time interval (Qﬁ, 2(25)7")

Proof. We write ® = ®* for simplicity. Let T}, := 297" and fix any ¢ € [21—7’38 Tk]. At any
© < cytzs we clearly have &, = 0 < (—0,,)*®, and so ®; + (—0,,)°® — f(®) > 0 because
f(1) = 0. By Remark 1 after Definition 2.3, it suffices to extend this claim to a.e. z > Ctzs
Next we claim that ®(¢, ) is convex on [c,t3, 00). The slope of LE(¢,-) for n € Ny \ {0} is
95_1 _ 92 2—k+n—29
O -G e

while for n = 0 it is —(1—6%)¢*~ 2. Since t > 275 = and 172 > 1 > ( 73> Lemma 3.2 shows

that ®(¢,-) is convex on [c*t2s,c*t2s + I¥(t)]. Tt is clearly also convex on [c*tﬁ + 1§ (1), 00), s0
we only need to check one-sided derivatives at y := etz + I¥(t). We have

lim @, (t,2) = —25(68) FF s 2% = —25(2710,) FH el 2, (3.7)

r—y+
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as well as (using also (3.2))

lim P, (,z) Ocs — O
m ¢, (,2) = ———77——=
Toy= ) — (1)

which is no more than (3.7) because s < 1 and so ¢, > 1 > 1652(2_19*)5. The claim follows.
Next consider any x € (c,t2s, ¢,t3 + I5(¢)). It follows from the definition of ® that
Oy(t,z) = (1 —08)(c, + (1 —25)(25) 't~ 2s) > c,(1—06F).

Lemma 3.1 with Ay := ¢, 20, Ay = e b2 + [5(t), 0 := 0%, together with ¢, > Cy + 2||f]/oo,
show that at such z we have

®; + (=050)"® — f(®) > (1 = 05) — Cs(1 = 05)t 7 — || flloc > 0.

0,
+(2s)* __*t—*s
(/Bk‘) 4 2 ?

Convexity of ®(¢,-) on [c,t2,00) shows that for any n € N; \ {0} and any = € (¢t +
Ik (1), eutzs + 15(1)) we have
q)(ta ) < wc*tl/%,m,@(t,x)
on R, and thus Lemma 3.1 and the definition of I*¥ ,(¢) yield
(=) ®(t,2) > —Ci(1 = 08) (w — cut:) ™ > —C(Bh_y) > 71T, (3.8)
Since ¥ (1) is increasing in ¢ > 1 and ¥ < 1 by (3.2), we obtain
d
Oy(t,x) = ELI:L(t’ xr — c*t%)
> 2—k+n—20*(ﬁﬁ)—1 _t—%s—&—(%)"at(_c*t%) _ (l’ _ C*tils o lﬁ_l(t))at(t—%s—&-(%)n)

> 27k+n726* (52)7lc*<28)71t71+(25)”.

From this, (3.8), (3.3), and ¢, > % (due to ¢, > (Cyy)s and Cy > 1), we obtain @, +
(=0 )*® > 0 at the z in question (notice that f(®(¢,z)) = 0 for all z > c,t2s + I5(t)).
Finally we need to consider any x > etz + I¥(t), and this is the region where we will use
that ¢ < Ty. Since [f(t) is increasing in t > 1, with y, , := 2 — c,t2: — [¥(t) we have
1

1 1 1 —1-2s _ 1 1
u(tx) > [+t (),

1
Thus if ¢, Qt_Tlsytvx <1, then (0’“)_% +1< 2(9—*)_§ and so by s < 1 we have

142s 1
®,(t,x) > et >t Hs (3.9)
_1
And if ¢, 225_%?/,5@ > 1, we obtain
1 -1-2s , _1 1 —1-2s _ 1 1
Dy (t, ) > [(95)_% + 1] <c* 2t‘%yt,x> Gt e >0y (3.10)

Since ®(t, -) is convex on [¢,t%, 00), Lemma 3.1 shows that

(=020 ®(t, 2) > —Cy(m — c,t2e) 72, (3.11)



PROPAGATION OF REACTIONS WITH FRACTIONAL DIFFUSION 15

1
Therefore, at all 2 > ¢,t2 + [5(t) such that ¢, 2t~ 2y, , > 1 we have
Dy + (—0p0)°® > ('Vo_lci —C )yt 2 >0
1

by (3.10) and (3.5). If instead c, Qt_%ym < 1, we note that ¢ < T}, implies t2" < 2. so

() > Bl 39" > o T TN = e
by (3.1). Hence (3.11) yields

(—00a)*®(t, ) > —Cilp(t) 7> > —Cyyi*t ™",

and then (3.9) and (3.5) again show that ®; 4 (—0,,)*® > 0 at such x. Therefore, ® is indeed
a supersolution to (1.2) on the time interval (21—725, Tk). d

We can now use the supersolutions from Theorem 3.3 to obtain an upper bound for general
solutions to (1.2).

Theorem 3.4. Let f and s satisfy (1), and let 0 < u <1 solve (1.2). If
u(0,7) < Ax~?*

for some A >1 and all x > 0, then for each A € (0,1) there is Cy 4 > 0 (depending also on
s, f) such that for allt > 0 we have

Ta(t;u) < Coa(l+ )2

Remark. It is easy to see from this that one also has T (t;u) < C’,\t?i for t > 7y 4, with
some Ty 4 = Taa(s, f) but C\ = C\(s, f) independent of A.

Proof. Let ko be the smallest positive integer such that (2s)~* > 7 k“ + 1 for all £ > k.

Then we have .
U [2177’“257 o(25)7F _ Qﬁ] _ [21770257 00). (3.12)
k>ko

Next let k; > ko be such that
kq —2s
21-2s (2259 e + C* ) > A.

It follows from (3.12) that for any 7' > 2157123, there is £ > k; such that
Lk kK
21-2s < T < 2(25) — 27325,
Fix this 7 and k, and let ®* be from (3.6). Then @k(21—7k25, )=1on (—o0, c*2<1—53>23], while

Tk
®* being non-increasing and 0 = * show that for x > ¢,20-292s we have

—2s

k(2% 1) > DF (2w g + [F(21m ) > <2ig*’i + 62%2_7(1—&)23‘7;) > Azp2.

Therefore we have @k(Zlfkﬁ, ) > u(0,-) on R. So if we let ¢(t, ) := OF(t + 215 -), then ¢ is
a supersolution to (1.2) on the time interval [0, 7] with ¢(0,-) > (0, -). It now follows from
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the comparison principle (Theorem 2.4; see also Remark 2 after Definition 2.3) that u < ¢
on [0,7] x R.
Since [¥(t) < 2tz by (3.2), from (3.6) we obtain for any \ € (0, &),
1 1 1 L 1 1
Ta(t; %) < et 4+ 15(1) + (xx - (e',:>w) It < <c* Y24 \/axa) 35
for all # > 1. This and 7' > 2% show that for all € [0, 7] we have

ZA(T;u) < TA(T + 207 3F) < (c* +2+ \/c—*xi) 2% %

k
Since T > 27-% was arbitrary, the result now clearly follows for any A € (0,1), with C) 4
depending also on s, K, 0y (since ¢, and ko depend on them). O
4. SUBSOLUTIONS FOR IGNITION REACTIONS

In this section we prove the lower bound in Theorem 1.3(i), which then automatically
provides the same bound in Theorem 1.2(i) via the comparison principle. We do so by
constructing appropriate subsolutions to (1.1) in the following counterpart to Theorem 3.4.

Theorem 4.1. Let f and s satisfy (I), and let 0 < u <1 solve (1.1). If
U(Oa ) > QXBRg(D)

for some 0 > 6y and Ry from Lemma 2.6, then for each A € (0,1) there are Cx,Trg > 0
(depending also on s, f,d) such that for all t > T\ we have

z,\(tu) > Oy 2.

Proof. The comparison principle and Lemma 2.6 show that it suffices to prove the result with
C) also depending on #, which we will do.

Let ug,up be from Lemma 2.6, and let L := |luplloc < oo and suppuy = (—00,a] (so
a € (0, Ry]). By (2.10), there is € > 0 such that for all z < a we have
(=A)ug(x) — f(ug(2)) < —e. (4.1)
Next let

b:= ((235)_1La)2% and U(t,x) = ﬂ@(bt_il‘).
Since ¥(t,) > 0 vanishes on By-141/2:(0) for each ¢t > 0, we have
Wyt ) + (=A)"W(t, ) = f(¥(t,-) <0
there. From (4.1) and f > 0 we obtain for any ¢ > b2 and |z| < b~at2s,
Wit 2)+(=A)V(t,x) — f(Y(t x))
< (28) 710t 3 | |l oo + B2 [ (—A) T (bt T a) — f (ﬂg(bt’flsm)ﬂ
< ((2s)"'La—be) t 7,

which is < 0 by the definition of b. Hence W is a subsolution to (1.1) on time interval (b**, c0).
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Since clearly u(0,-) > up = ¥(b%,-),
u(t,") > W(t+b>,)
for all t > 0. Hence for each A € (0,6) and ¢ > 0 we have

2y () > 2y (U +1%,0)) = Crgb™ ! (t+ b))%, (4.2)

where C) g € (0, Ry) is such that us(C) ) = A. The claim now follows for each A € (0, 6).
Moreover, it follows from (4.2) that there are 7/, C’ > 0 such that for all ¢ > 7" we have

0+ 0,

the comparison principle (Theorem 2.4) yields

inf  w(t,xz) >
lz|<Crtl/2s (tz) 2

Then the last claim in Lemma 2.6 shows that for any A € [0, 1) there is 7 > 0 such that

inf  w(t+7,2)>A
|x|§C”t1/25

for all ¢t > 7. It follows that for all ¢ > 7 + 7" we have
zy(tu) > C'(t =)
(with C", 7', 7 depending on s, f,d, A, #), which proves the claim for A € [0, 1). O

5. SUBSOLUTIONS FOR MONOSTABLE REACTIONS

In this section we prove Theorems 1.2(ii) and 1.3(ii), so we will assume the following.

(M) Let f be an a-monostable reaction for some o > 1, and let s € (0, ﬁ)

The relevant upper bound on Z,(¢; u) for front-like data was already obtained in [15] (for
a-monostable reactions f that are also C' and have f’ (1) < 0, but there always exists such
f > f, so the same bound for f follows by the comparison principle). This immediately
provides the bounds in Theorems 1.2(ii) and 1.3(ii) via the comparison principle.

Hence it remains to show that for any A € (0, 1) and all large ¢ we have

2, (tu) > Otz (5.1)

It suffices to do this in the setting of Theorem 1.3(ii), because then the same bound in Theo-
rem 1.2(ii) follows via the comparison principle. We will do this by constructing appropriate
subsolutions to (1.1).

Let «, 6y, be from Definition 1.1(ii) for f, and let

._ __ Pa
B = (d+2s)(a—1) and K= 25(a—1) (> 5)
(with the inequality due to (M)). Fix any 6 € (0,1), let
: 0 1+6
91 = 1min {(90, 5} and 92 = T

Then let

: Ci
vi=a—1 and 7 := min {7’0, m} : (5.2)
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where 79, ¢,, C, are from Lemma 5.1 below with 3, v, 0; as above (so 79, ¢, C, are independent
from a,b in the lemma). Next let

d:= inf f(u) >0,

u€[r01,0]

define
az := min {1, ((;zﬁ—_l)l’y’ (a4;9?5} : (5.3)
and then
(21+ dgs_/ﬁl;/: — 1)) N a:,?% and as 1= ajas. (5.4)
Now let ¢y : [0,1] — [0, 6] be smooth and such that
Po(y) =y on [0,61]  and  dy(y) =0 on [0,1], (5.5)
as well as for some Cy > 0 we have
0<¢y <1  and —Cy < ¢y <0. (5.6)
Finally define
Wo(t,r) == (ap " (1r® — apt®)) T, (5.7)

fort >0 and r > (agt”)%, and then let

qu(ul’) = {?9 (we(ta |LE’)> |I’| Z (8;7040112%—1 _'_a2t,@>%’

otherwise.

For any u € (0, 65] let also
1
Xt(u) = (Uliaaltﬁil + agt”)ﬂ
(hence ¥p(t, X;(u)) = w). This construction shows that Wy is a smooth function. We will
now show that it is also a subsolution to (1.1) at all large times. We note that since we may
have s > 1 here, this would be difficult if graphs of Wy(t,-) (as functions of z) had “concave”
corners, which is the reason for the introduction of the function ¢y above.
We start with a technical lemma, whose proof is easy when d = 1, but somewhat more
involved when d > 1. We postpone the proof to the appendix.
Lemma 5.1. Let 6, € (0,1] and B > v > 0 be such that £ > d —2. Let 0 < a <1 <b, let
X(u) = (a ' (u™ + b))% foru >0, and let o : R* — [0,1] be smooth and such that
o(@) = (alzl” —b)7  when || > X(61)
as well as p(x) > 6, when |x| < X(01). Then for any s € (0,1), there are c,,Cy > 0 and
70 € (0, 1] (depending only on s, 3,v,61,d) such that for all |z| > X (1061) we have
(—A)"p(x) < =X (01) |7 + Cla| ™ ¢(x).
We are now ready to construct a localized subsolution for (1.1) with monostable f.

Theorem 5.2. Let f and s satisfy (M). Then for any 6 € (0,1), there is Ty > 1 such that
Uy above is a subsolution to (1.1) on the time interval [Ty, o0).
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Proof. We drop 0 from ¢y, 19, Vg, Ty, Cy in the proof. The desired T we obtain here will
depend on the various constants in the above setup, and we will always assume that ¢t > 7" > 1.

Let us start with estimating |¢),| from above. Since v, > 0 > ., we see that for all
r > X;(02) we have

9, (t,7)] < =1, (t, X (0a)) = ay 't 05 X, (6,)7

When g < 1, from 6, < 1 and a; > ay we obtain

(6, Xl02)) <

When § > 1, we again use 6 < 1 to get

B—1 a=5te ~1 ~1 L ~1 1 N 1L
05 X(6:)°~ =6, (at™ " + 05 ast™) 7 < (at" " +agt®) T < (agt" ) F + (aqt") F
so then as < a; and t > 1 yield

-1 1—k B-1 — Kk
_wT(t7Xt(92>) < % (a]_ 5tT +a;1a2ﬁ tBﬁ ) S

B b

a—1

al—ltl—l-@(a2t)€) % S

It follows that if 7" is such that —&2 5T <1 (recall that k > ) and X7(62) > 1, then
(5.6) and ), > 0 yield for any e € S*! and p; := ﬂ% ¢ <1,

D2w(t,) = L0 (0t ) o s P+ 20 (o) 1 )

2 ()2
& ({2l (1, |x|>% > _Cpt—p = —(C+ Dp,

where we also used that ¢/(¢(¢, |z])) = 0 when |z| < 1 (due to X;(f2) > 1). From this, § < 1,
and s € (0,1) we obtain (with wy be the surface area of S¥1)

Cs,

20 (¢t — Ut h)—V(t.x —h
sup (- w(t.) < 5 (o)~ Wt 4 ) = Wlw = B) g,
zER |h|<p / |h’ s
U(t,z) — Utz + h)
+ ¢, / dh
d |h|>p_1/2 |h|d+28

Csd (O + 1)Pt / 0
< 2 ~———~—dh . ———dh
=7 /|h|<p1/2 | [d—2+2s + Cod e

< cs7dwd(C’+ )

25(1 — s)

We will need another estimate for (¢, x) such that U(¢,z) is small. When V(¢,z) < 76,

(then U(t,z) = (¢, x) because 7 < 79 < 1), we can apply Lemma 5.1 with ¢(-) = ¥(t, ) and

B,v,0; as above, provided T is large enough so that a := a;'t'™ < 1 and b := aza; 't > 1.
So when (¢, xz) < 76, then we have

(=AY U(t, 1) < —c,|o| "2 X,(0)) 4 Culz|"%9(t, z). (5.9)

Pr_, C'pi.
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Finally, we also note that W;(¢,z) = 0 when |z| < X;(0,), while for |z| > X;(02) we have

v(t, x)%a; !
—— (s~

U, (t, ) = ¢'(W(t,x)) Dt "|z|” + as)

< POV (1)t (0, )10 + ) (.10
k=1 (L, ) agk
N o — 1 t al(oz 1) ( ) .

is large enough). When |z| < X;(0,), then (5.8) and f(W(¢, )) f(0) > ¢ show that this
follows from C’p; < ¢, which holds if 7" is large. Since (5.4)

a
max{ﬁ_le2 @ HS,C’ }
a—1¢t" (

if T is large, and since for |z| € (X¢(0s), X¢(761)] we still have f(¥(¢,z)) > 4, it follows from
(5.8) and (5.10) that for these = we again have

We are now ready to show that U, + (—A)*¥ — f(¥) < 0 at all (¢,z) with ¢t > T (if T
( nd

3) also yield

(5.
5
3

Kk — 106 ask

Wit 7) + (AUt 2) — f(U(E2) < Ty T

0% + C'ps — 6 < 0.

It therefore remains to consider |z| > X;(76;) (when VU(¢,z) = ¢(t,z) because 7 < 1).

1

If also tW(t,2)*~" < 2 it follows from (5.9), (5.10), [z = ((t, )" *a1t" " + aat™) "7, and
X (6y) > (agt”)% that (we drop (¢, ) from the notation for simplicity)

i ok —d—2 d -2
\\J AU — f(T) < - Y — ¢, X (0 C, s
t+(=4) f()_a—1t+aﬂa—nw ¢ | 1(01)" + Cula| ™0
2k — 1 s
< BV et ) () O )y
a —
2k — 19 d+2 dqfy 25 _ (k=1)2s (a—1)2s
:a—l?_c*@al) af?—i—Cal gt
Using again t1)*~! < % we obtain
t_(n_ﬁl)%?ﬂl-ir(a = — t%sw(a_ﬁl)%t_ﬁw < (alagl)%t_ﬁy'

t

Therefore U, + (—A)*W — f(¥) <0 by (5.4) if T' is large enough.
When instead |z| > X;(76;) and ¢ (¢, x)*~! > 2 then

< 2] = (bt 1) it + agt®)F < (2a9t")7,

=

(agt"™)

0 (5.9), X;(61) > (ast")

=

, U(t,x) < 76y (due to |z| > Xi(76;)), and (5.2) show that

+23

s o\ _2s
(=AU < —c,(2a9t") (agt“)% + C*(agt”)_%w < (0*7'(91 - C*Q_dtf ) ay “t” 5 < 0.
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This, (5.10), @ < 2¢(t,x)*, and (M) show that

as(2k — 1)
v —APU — f(¥) < ——=9% —
t+< ) f( >_CL1(Oé—]_>¢ ’ﬂb
which is again < 0 due to (5.3). This finishes the proof. O

We can now use the constructed subsolutions to prove (5.1).
Theorem 5.3. Let f and s satisfy (M), and let 0 < u < 1 solve (1.1). If
U(O’ ) > QXBRG(O)

for some 6 > 0 and Ry from Lemma 2.6, then for each A € (0,1) there are Cy,Trg > 0
(depending also on s, f,d) such that for all t > T\ we have

zy(tu) > Ot e,

Proof. The comparison principle and Lemma 2.6 show that it suffices to prove the result with
C) also depending on #, which we will do.

Let uy be from Lemma 2.6 (see the remark after that lemma), let @ be the solution to
(1.1) with initial data g, and let ¢, be such that @(to, ) > Oxp, ). Since ug > @y, we have
u(to,-) > u(to, ) by the comparison principle (Theorem 2.4), and then comparison principle
shows that it suffices to consider uy = u(ty,-) without loss. The proof of Lemma 2.6 now
shows that u is time increasing.

Similarly to [15, Theorem 3.1], since u dominates the solution to v; + (—0,,)%v = 0 with
initial data 0y p, (o), there is C' > 0 (depending only on s, d) such that if ¢ > 1 and |z| > t2s +1,
then

> C’Gwd

d+28)_1dy t(u‘ + 1)—d—25 2 Ct|$’_d_2s,

u(t, ) > 09/ 73 (1 + |t 2y

Bi(x)

where “4 is the volume of By(0) and ¢ := 2-%"271d~1Chw,.

1 k=1
Now let Wy, Ty be from Theorem 5.2 and let T := 1+ c‘laf‘jTeﬁ. If |z| is large enough,
we then have u(T, z) > Wy(Tp, x), which then yields u(t, z) > Uy(Tp, x) for all these x and all
t > T because u increases in time. But we also have u(t, z) > Wy(Tp, ) for all the other = and
some t by the last claim in Lemma 2.6. Hence there is 77 > T such that w(7",-) > Wy(Tp, ).
Comparison principle now yields

u(t+ 1) 2 Uyt + T, -)
for all ¢ > 0, so for any A € (0,6) and ¢ > T" we have
zy(tyu) > 2y (t — T+ Tp; W) > Chg(t — T + Tp) (=1

for some time-independent C,p > 0. This proves the claim for each A € (0,6), and for
A € [6,1) it now follows as at the end of the proof of Theorem 4.1. O
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APPENDIX A. PROOF OF LEMMA 2.6

We will first show that it suffices to obtain existence of Ry, uy satisfying (2.6) and (2.8)
(note that (2.7) then follows from uy = 0 on (Ry,00)). Let us assume this is the case, and
for any R > 0 and all € R let vg(z) := up(Jz| — 2R). Then vg = 0 on Bygig,(0)¢, so on
this set we have —(—A)*vg > 0. Since vg = uyp(| - | — 2R) on Bgr(z) when |z| € [R,2R + Ry]
(so as R — oo, uniformly in these x we have local uniform (in y) convergence of vg(y + x)
to ug(y - 7 + |2] — 2R) in C?), and vg = 6 on Bg(z) when |z| < R, the strict inequality in
(2.8) and f(0) > 0 guarantee that for any large enough R we have

inf [—(=A)° :
A vnle) + Flunl))] >0
(Recall also that c,q = ¢o1(fgan(1 + h?)~2=dh)~1.) By symmetry this also holds with
|z] < Ry + R under the inf, so (2.9) and (2.10) hold for #y := vg when R is large enough
(and we then replace Ry, up by 2R + Ry, ug(- — 2R)).

Hence to prove the first claim, it remains to find Ry, uy satisfying (2.6) and (2.8). Let us
now assume that there is Lipschitz continuous, piecewise smooth (and linear on both sides
of each point where it is not smooth), non-increasing ¢ : R — [0,6] and R’ > 0 such that

(1) ¢ =60 on (—o0,0] and ¢ = 0 on [R', 00);

(2) —(—0uz)%p > 0 on the set {zx € R|¢(z) < 0)}, where 0) := 228 (€ (6, 0));

(3) € = sup,ep (—0:)"p(x) < 0.
Here —(—0,.)%p is allowed to be oo at the (finitely many) points where ¢ is not smooth
(when s > 1). If Ry := rR’ and ug(z) := (%) for some r > 0, then for any z such that
up(z) < 0 we have

—(=0u0) g () + f(up(2)) 2 —(=0ua) up(x) = =1 (=0sa)*p(ar ™) > 0.

If we let § := infy,cjg 9 f(u) > 0 and r := (2C/6)2 (with C from (3)), then for any  such
that ug(z) > 6} we have

—(=0ss)’ug(x) + flup(z)) > —Cr=>°+6 > 0.

Continuity of the left-hand side in z (as a function with values in RU{oco}) now yields (2.8),
and (2.6) is obvious. Finally a mollification of uy provides the desired smooth function thanks
to the sharp inequality in (2.8).

So the it remains to construct ¢. Consider a smooth non-decreasing ¢/ : R — R such that

6 + 6y,
2

¥(y) =y on <—oo, and  ¢(y) =6 on [0, 00) (A.1)

(it will play the same role as ¢y in Section 5, preventing concave corners on the graph of ).
Let N > 1 be the smallest integer such that § — 6} > 276, and let us first assume that
N =1. Set

0 — 6, 0 + 0y

lo(z) :=6— (0 —6))x, ki : 5 : 5

ll(ilf) = bl — ]{'1$,
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and define ¢; : R — [0, 1] via
_ max{¢(lo(z)), l1(z),0} for x > 0,
() = 0 for x < 0.

Then ¢ is clearly Lipschitz continuous and non-increasing, and from [y < @ oly on (—1,1)
(note that Iy < 0 = oly on (—1,0], while ;; < min{ly, 2%} < ¢ 0 ly on (0,1)) we have

b b
o1 =1oly on [—17 1]7 901(1) = 967 w1 =10 on - ¥1 1) =
/{;1 ky

Since ¢ is convex on [1,00), and 1 is smooth and satisfies (A.1), we have sup,cg (¢1)ss(7) >
—o00. Hence a computation similar to (5.8) proves (3) for ;.

From N = 1 we see that 6], < Q, and so [;(1) < % and bl < 3. Hence for any x € [1, %]

we have 2r + 1 > Zi and [;(z) < 5, which together with gpl > [y on (—1,1) and I; > 6 on
(—o00, —1] yields
. i@+ h) + iz — h) — 201 ()
_(_azz> 901(x> = Cs/ov 71425 dh
(24 h) + (v — h) — 2 () > f —2ly(x)
> CS/ i+2s dh + Cs/ Wdh > 0.
0 z+1

For =z > %, we obviously have —(—0,.)%p1(z) > 0 because ¢y(z) = O < ¢1. Therefore
—(—0zz)%p1 > 0 on [1,00), hence (1)—(3) follows with ¢ := ¢y and R :=

Next assume that N > 2, and let 1, ki, by, [y, [; be as above. Since now 9’ (20 — 0) <
9(2# (in fact, equality holds here), the above argument applies to the function

&1 (x) = {max{zﬁ(lo(x)), h(z), 200 -0} forz >0,

0 for x <0,

which is equal to ¢, above on (—o0, 3] and to 26; — 0 on [3, 00) (because [, (3) = 26, —6 > 0).
Hence —(—0,:)*%1 > 0 on [1,00). We will now change ¢ to ls(z) := by — kex on [z, 22]
where

Ty =3, by := koxo + 260} — 0,

and ko € (0, ky) is to be determined (notice that ly(z2) = 26{ — 6 = l1(x2), and hence ks < k;
shows that by = 13(0) < 11(0) < #). So we let

o) = {maX{¢(lo(x)), li(z),la(x),0} for x > 0,

0 for x < 0.

Since 3 — @1 locally uniformly on R as ko — 0, there is ko € (0, k1) such that —(—0,,)%p2 >

0 on [1,xs]. Fix one such ks and the corresponding ¢ (which again satisfies (3) as above).
If now N = 2, consider any x € [z, Z?] From 12(1’2]%9) = 0 and ly(z5) = 26 — 6 < &
bo

we see that Iy < @y on (ka 0 x5), and bz < 2x9 + 9;2”2. Hence for any = € [z, 2

2] we have
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2r + % > Z—z and lr(z) < £, and so

~(~0s)pa(x) = / Ve ) s =) = 2le)

0
> Cs/ P harbrhis ol 2lQ(I)dh + Cs/ QQ—ZQ(I)dh =0
0

h1+28 9—1)2 h1+25
Ty

(Note that this is the same argument as for N = 1, but with —1 and 1 replaced by %
and xo.) For x > Z—z, we again have —(—0,;)%p2(z) > 0 because pa(z) = 0 < ,. Therefore
—(—=0xz)®p2 > 0 on [1,00), which yields (1)—(3) with ¢ := @9 and R := Z—i.

If N > 3, the above argument instead applies to

3 [ max{y(lo()), (), l2(2), 46, — 30} for z > 0,
Pa(w) 1= {0 for x <0,

which is equal to ¢y on (—o0, 2x9 + %] and to 46, — 30 on [2x9 + '9;:2,00) (because now

lo(229 + %) = 2(20, — 0) — 0 = 46 — 30 > 0). Hence again —(—0,,)°@2 > 0 on [1,00).
Similarly to the case N > 2, we let
6 — by

ky
with k3 € (0, k) small enough so that

[ max{¥(lo(x)), li(x), l2(x), l3(2), 0} for x > 0,
pal(v) = {8 for x < 0.

T3 ‘= 21’2 + bg = k?gl’g + 406 - 39, l3(£L‘) = bg - k’gl‘,

satisfies —(—0,2)%p3 > 0 on [1,23]. If N = 3, we can use l3(z3) = 46 — 30 < g and ks < ko
to again show as above that (1)—(3) hold with ¢ := ¢3 and R’ := Z—i
If N > 4, this argument can be repeated finitely many times until we obtain a function

on and by, ky > 0 such that (1)—(3) hold with ¢ := ¢y and R’ := Z—x.

Finally, let us prove the last claim. Without loss, we can assume that xo = 0; the com-
parison principle (Theorem 2.4) then shows that it suffices to consider u(0,-) = uy. We now
have u(t,-) > ug = u(0,-) for all t > 0 by (2.5) and the comparison principle, so applying the
comparison principle to u and its time shifts now shows that u is non-decreasing in time. If
we let v(x) := lim;_,o u(t,2) < 1, Theorem 2.5 implies that v € C?**7(R%) for some o > 0,
and —(—A)*v+ f(v) = 0 holds in the classical sense. Since v > 1y, (2.10) shows that v > 1y
on Bg,(0). But then u(r,-) > supy, <, (- — y) for some 7,7 > 0. By iterating this argument
we obtain u(nt,-) > supj, <, (- — y) for all n € N, so v > 6. Since f > 0 on [0,1), it is
casy to show that the only stationary classical solution to (1.1) taking valuesin [0, 1] isv =1
(note that Theorem 2.5 shows that all such solutions are uniformly bounded in C?*7(R%)),
and the claim follows.
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APPENDIX B. PROOF OF LEMMA 5.1

Let us fix any = € R? such that |z| > X (7o6:), with 70 € (0, 1] to be determined. Then

_ — ¢z +h) o(x) — @(x + h)
cM=A ‘o(x §/ plz) — el dh+/ dh
sl =8)(7) Ih|< |z~ X (61) | |42 2|~ X (602)<|h|<z] |h| 42

o(x) — 2716, / o(x)
+/ P2 T 4 RASIRT R Ay Ay
Ihi<|z| & lethl<x (o) |PTT? >z [P|4T28

where [; is a principal value integral and
P() = ¢() — 27161XBX(91)(0)(') 2 27191XBX(91)(0)<')'

Since p(z) < 1061 < 36, and |z| > X(6,), there is y1g > 0 (only depending on d) such that

th
I< - / dh < —paX (01)6 2] 2.
IhI<le & o thi<x(0y) 4R[4T

We now let ¢, := ¢ 4ptq6h, which means that it remains to show that
L+L+1, < C;CllC*|x|*2sgp(x),

with C, to be determined. ) )
If now g(1) := (al® —b)~v for I > (a=*b)? (then g(|y|) := o(y) for [y| > X (6;) > (a~'b)7),
then using g(1)™" < al? yields

g"() + u9’(5) =v (1 +v)g(1) T a® B2 — v g() M aB(B + d — 2)177

l
> v ()BT (B — v(d ~ 2)).

This is > 0 due to 'g > d—2, so ¢ is subharmonic on (Bx(g,)(0)) 2 Bju-x(a,)(z). Hence for
any r € (0, |z| — X (61)) we have JfaB,«(m) o(y)do(y) > ¢(x), and so I; < 0. We also have

I = o) /|h| B < gl )
>z

for some g, > 0 only depending on d. It therefore remains to estimate Io.

When d = 1, we get I, < 0 because ¢(z) — @(z + h) is no more than % — &4 = —& for
h € [0, X(6;)] and no more than & for h € [22 — X (61), 22] (this is when z > 0; when a < 0,
these two intervals must be reflected across 0). This finishes the proof when d = 1.

We will need to work a little harder when d > 2. Let & := |z|7'X(6;) (which is < 1
because |z| > X(190)) and 7 := %f) < 79. Let us first consider the case when e, > 2, so
that p; := 1 —e; < 3 (and then |z| — X(61) = pi|z|). There is ¢; > 0 such that for all
r € [2p1|z], |z|] we have,

M ({h | bl = r &b+ o] < X(0)}) 2 et ({]1n]=r})
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with #4~! the (d — 1)-dimensional measure. If 7o < <, then this, ¢ > % on Bx,)(0), and
p(z) < 1ofy < & yield (with wy the surface area of S1)

/ lo(z) — Gz + W)]do(h) < / robhdo(h) — / 2-10,do(h)
|h|=r |h|=r |h|=r&|h+z|<X(01)
< —47 Yeqwgbhird

From this we obtain

hg/a M@_ig+hhh
prlz|<Ih|<3p1 2] |h|dt2s

< Spael dedelefld o(r) dh
= Ay-d+2s T+ | h|d+28
2 p1l@|<|h|<2p1 ]

p1lz|
(1 —27%)(pa]]) >

~ Cawgbh
- 8s

Towqb1

2—23 3—25 —2s
cacaby or a2+ T
which is < 0 provided 7y < %-

Finally, we are left with the case ¢ < % (and so p; > %) Let
= {h||z] — Xe(61) < |h| < |z| &z +h| > X(61)},

and let

e = |z| and g9 := |x\’1(a’1b)%.

Then ¢ — & = |2|"%a~107” > 0. By again using that ¢ > % > o(z) on Bx(g,)(0) and then
changing variables via h = |z|z, we obtain

hg/'ﬂ@—¢®+hmh

’h’d+2s

_1 _1
:@r%/‘ (alz|” — b)~v — (ale + 2||z|” — b)~>
p1<|z|<1 & |e+z|>e1 |Z|d+28
BBy (1 -8y
— ’l" 2590(1,)/ (|€+Z’ € ) ( 52) dz
pld<ielersze  (le+ 2]f — &f)v |24+

dz

So it remains to show that
1 1
b | oo~ )t — -t
2 Dl Z
peligleraize (e + 2|8 — €5)v|z]dves
is uniformly bounded above for p; € [%, 1], 0 < ey < g < 2 % and e € S !, by a constant

depending on s, 8, v,d. But when |e+ z| > 1, the integrand is clearly bounded above by such
a constant; and when |e + z| < 1, then it is negative. This therefore concludes the proof.
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