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Abstract9

The discovery of materials with improved properties can be accelerated by models with the ability

to combine data from multiple experimental information sources. A recurring task in the toolbox of

practitioners is to map input physical descriptors to output properties of interest. Typically, both the12

outputs and many of the inputs are experimentally measured and, thus, noisy. Probabilistic regression

methods, e.g., Gaussian process regression, can easily deal with noisy outputs, even if the noise is input-

dependent. However, most regression methods cannot process noisy inputs. Ignoring input uncertainty15

leads to inaccurate predictive uncertainty, a crucial ingredient for the sequential design of experiments.

The objective of this paper is to develop a regression methodology that can deal with input uncertainty

when one wishes to correlate an inexpensive experimental measurement (e.g., hardness) to an expen-18

sive one (e.g., yield strength). Our hierarchical Bayesian approach uses two Gaussian processes. The

first one maps noiseless physical descriptors to the inexpensive experimental measurement. The second

Gaussian process maps noiseless physical descriptors and the inexpensive experimental measurement to21

the expensive experimental measurement. The two Gaussian processes form a nested model that is not

analytically tractable. To overcome this issue, we propose semi-analytical approximations to both the

marginal likelihood and the posterior predictive distribution. The result is a model that is practical24

to train and use. We demonstrate the merits of the proposed method through a synthetic dataset in

which we control all the uncertainties. The statistical tests clearly show that standard Gaussian process

regression cannot cope with input uncertainty whereas our proposed method consistently yields better27

predictive distributions. Finally, we apply the method to the task of predicting the yield strength of high

entropy alloys from hardness on an exhaustive dataset compiled from the available literature.

Keywords: Noisy inputs; Input uncertainty; Hierarchical Gaussian process regression; High entropy al-30

loys; Yield strength prediction; Hardness.
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1 Introduction

High entropy alloys (HEAs) formed by mixing relatively equal proportions of four or more elements are33

drawing the interests of researchers after their introduction in 2004 [1, 2]. These alloys have promising

oxidation resistance, strength performance at high temperatures and ductility at low temperatures making

them promising candidates for structural material applications [3, 4, 5, 6, 7]. Predicting the properties of these36

alloys using experimental techniques is costly and time consuming. Therefore, data-driven techniques such

as machine learning (ML) are being utilized to predict the mechanical properties of new HEAs [8, 9, 10, 11].

Typically, some of the inputs and outputs used in building ML models for HEAs are experimental39

quantities and, thus, noisy. For example, in the strength prediction of HEA alloys using hardness as an

input, both the output strength data and input hardness data are experimentally measured quantities.

Data uncertainty is not taken into account by common regression techniques like kernel ridge regression [12]42

and neural networks [13]. Whereas statistical regression techniques like Bayesian linear regression [14, 15],

Gaussian process regression (GPR)[16, 15] and Bayesian neural networks (BNNs) [17, 18, 19], do account for

output uncertainty even when the noise is input-dependent (heteroscedasticity [20, 21, 22]). However, these45

methods rely on the assumption that the inputs are noise-free, which is not valid in many material science

applications. Ignoring this input uncertainty may a↵ect the quality of the model, resulting in an inaccurate

predictive distribution. It is important to capture predictive mean and uncertainty estimates accurately48

as they are key ingredients for the sequential design of experiments using methods like Bayesian global

optimization [23]. Hence, the objective of this paper is to develop a regression methodology that is capable

of dealing with input uncertainty when one wishes to correlate an inexpensive experimental measurement51

(hardness) to an expensive one (yield strength). In [11], authors correlated oxidation sti↵ness available via ab

initio simulations to expensive melting temperature using random-forest based surrogate models, however,

these models account for uncertainty in a non-Bayesian way.54

There are several examples of regression methods that can deal with input uncertainty. The authors

of [24] employ a modified least-squares method in which they modify the loss of the regression problem to

account for errors due to noise on the outputs as well as the inputs. Several researchers have put forth various57

ways of building GPR models from uncertain inputs. Specifically, in [25] the authors proposed a modified

Gaussian process model in which the covariance function has been corrected to account for noise variance in

the input. In [26] uncertain inputs are assumed to follow a Gaussian distribution with known variance and60

a covariance matrix is constructed by marginalizing over the uncertain inputs. The authors of [27] proposed

a noisy input GPR method in which they treat the input data as though they were deterministic and they

amplify the corresponding output variance to account for the input noise. On the neural network front, the63

authors in [28] proposed an extension of BNN to deal with noisy inputs, but the drawback of this approach is

that the estimation of the predictive distribution requires sampling by Markov chain Monte Carlo (MCMC)

methods [15, 29] which is computationally intensive.66

The majority of the approaches mentioned above are based on the idea of integrating out the uncertain

inputs and coming up with di↵erent approximations of intractable integrals. This is absolutely necessary

when the inputs are independent and noisy. However, in the typical materials application of interest here,69

we encounter a slightly di↵erent situation. Namely, we have some available noise-free physical descriptors

that correlate with the noisy input of interest. This allows us to develop an approach similar to [30], in

which one explicitly builds a regression model that connects the noise-free physical descriptors to the noisy72

input. This approach has two advantages. First, it is much more tractable than integrating over all input

uncertainty. Second, it produces as a byproduct a de-noised version of the noisy inputs, which may be of
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interest independently.75

We di↵er from [30] in the sense that we follow a hierarchical Bayesian approach [31]. In particular,

we use two Gaussian processes: (i) one that connects the noiseless physical descriptors to the inexpensive

experimental measurement, and (ii) a second one that maps the noiseless physical descriptors and the78

inexpensive experimental measurement to the expensive experimental measurement. To deal with this nested

and analytically intractable model, we derive semi-analytical approximations of the marginal likelihood

and the posterior predictive distribution. We call our method hierarchical Gaussian process regression81

(HGPR). We compare HGPR with standard GPR (SGPR) on synthetic examples in which we control all

the uncertainties. Finally, we apply HGPR to the problem of predicting the yield strength of high entropy

alloys from hardness data using a dataset compiled from the available literature.84

The rest of the paper is structured as follows. In Sec. 2 we present our methodology. We start in Sec. 2.1

by defining our problem mathematically. Then, we discuss the SGPR method in Sec. 2.2 and our proposed

method in Sec. 2.3. In Sec. 2.4, we describe the diagnostics used for the model validation. We present our87

results in Sec. 3. Specifically, in Sec. 3.1 we compare methods SGPR with HGPR on synthetic data and in

Sec. 3.2, we illustrate the e↵ectiveness of our method in yield strength prediction of high entropy alloys from

hardness measurements. We present our concluding remarks in Sec. 4.90

2 Methodology

2.1 Problem definition

We are interested in predicting a physical quantity of interest y 2 R that is available through relatively93

expensive experiments. Each experiment is described by a vector of noise-free physical descriptors x 2 Rd.

In our running example of high-entropy alloys, the physical quantity of interest y is the yield strength and

the physical descriptors x include 25 quantities estimated from the properties of elements in the alloy and96

the phase information of the alloy (see Appendix A.1). Unfortunately, one can have only a handful of y

measurements as they are expensive. Therefore, since x is high-dimensional, it is impossible to learn the

map from physical descriptors to the physical quantity of interest.99

Now consider the following scenario in which we have access to inexpensive experimental measurements of

another physical quantity, z 2 R, which correlates with y. In our running example, the physical quantity z is

the hardness. The typical approach is to learn the map f from x and z to y via the SGPR method using the102

data Df =
Ä
(Xf , zf ),yf

ä
, where Xf = (xf,1, . . . , xf,Nf ), zf = (zf,1, . . . , zf,Nf ), and yf = (yf,1, . . . , yf,Nf )

are Nf observations of all relevant quantities. Notice that here both the inputs zf and the outputs yf are

noisy as they are experimentally measured, but SGPR assumes that only the outputs are noisy. Disregarding105

the uncertainty in zf leads to inaccurate predictive distributions. So we developed a regression method HGPR

that solves this problem by accounting for all the uncertainties in an hierarchical manner by first conducting

enough inexpensive z experiments to learn the map g from x to z using the data Dg = (Xg, zg), where108

Xg = (xg,1, . . . , xg,Ng ), and zg = (zg,1, . . . , zg,Ng ), and then use this learned de-noised input for learning the

required map f . Note that Dg should include all observations of z in Df .

From now on we denote all the data from expensive experiments and inexpensive experiments as D =111

(Dg,Df ). Next, in Sec. 2.2 and Sec. 2.3 we describe in detail how the required map f is learnt using both

SGPR and our HGPR methods, followed by the overall Algorithm 1 depicting the model building process

using the HGPR method.114
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2.2 Standard Gaussian process regression

Given a dataset Df , we can learn the map f using SGPR method as shown in many previous works

[32, 33, 34, 35]. In SGPR (see Fig. 1a), the input data zf in Df is assumed to be noiseless and the noise in117

the output data yf is approximated by Gaussian noise with constant variance �2
y :

yf |f,Xf , zf , �y ⇠ N (f(Xf , zf ), �
2
yI).

One puts a prior over the space of functions f :120

f ⇠ GP(0, kf ),

which encodes the beliefs about regularity and length-scales of f . These beliefs are encoded using a mean

function typically chosen to be zero and a covariance function kf with parameters �f . Then, one finds123

the parameters �f and �y by maximizing the marginal likelihood of the data p(yf |Xf , zf ,�f , �y), which is

Gaussian and given by:

p(yf |Xf , zf ,�f , �y) = N (yf |0,Kf + �2
yI),126

where Kf is the covariance matrix constructed using the covariance function kf between every pair of inputs

in Df .

Having identified the model parameters �f , one conditions the prior measure on the available data. This129

way, one obtains a posterior probability measure over the space of f ’s, which is another Gaussian process

[16]. This posterior Gaussian process can be used to derive the (point) posterior predictive distribution which

predicts the output on an arbitrary inputs x⇤ and z⇤. The posterior predictive distribution is a univariate132

Gaussian and comes in two versions. The first version, which includes only the epistemic uncertainty, predicts

the noiseless output f⇤:

f⇤|Df , x⇤, z⇤ ⇠ N (µ̃f (x⇤, z⇤), �̃
2
f (x⇤, z⇤)), (1)135

where, µ̃f (x⇤, z⇤) = kf ((x⇤, z⇤), (Xf , zf ))
T (Kf + �2

yI)
�1yf ,

�̃2
f (x⇤, z⇤) = kf ((x⇤, z⇤), (x⇤, z⇤))� kf ((x⇤, z⇤), (Xf , zf ))

T (Kf + �2
yI)

�1kf ((x⇤, z⇤), (Xf , zf )),

and kf ((x⇤, z⇤), (Xf , zf )) = [kf ((x⇤, z⇤), (xf,1, zf,1)) . . . kf ((x⇤, z⇤), (xf,Nf , zf,Nf ))]
T is the cross covariance138

vector between the arbitrary inputs and the inputs in Df . The second version, which includes both epistemic

and aleatory uncertainty, predicts the measured output y⇤:

y⇤|Df , x⇤, z⇤ ⇠ N (µ̃f (x⇤, z⇤), �̃
2
f (x⇤, z⇤) + �2

y). (2)141

2.3 Hierarchical Gaussian processes regression

The SGPR method described above completely disregards the measurement uncertainty in the input

data zf by assuming it to be noiseless. The zf data, collected from experiments could be very noisy and144

since it is substantially correlated with the requisite output data yf , the resulting SGPR predictions will

have inaccurate mean and uncertainty estimates.

To circumvent this problem, in our HGPR method we account for all the uncertainties in the dataset147

Df in a hierarchical manner (see Fig. 1b). Firstly, we learn a map g from x to z using the data Dg so that

we can de-noise the input data zf . For learning this map g, the noise in the data zg is approximated by
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Gaussian noise with constant variance �2
z :150

zg|g,Xg, �z ⇠ N (g(Xg), �
2
zI).

We begin with placing a Gaussian process prior over the space of functions g:

g ⇠ GP(0, kg),153

with a covariance function kg with parameters �g encodes the beliefs about regularity and length-scales of

the inexpensive physical quantity. Then, we find the parameters �g and �z by maximizing the marginal

likelihood of the data,156

p(zg|Xg,�g, �z) = N (zg|0,Kg + �2
zI), (3)

where Kg is the covariance matrix constructed using the covariance function kg between every pair of inputs

in Dg.159

Having identified the model parameters �g, we can get the the analytically available Gaussian posterior

probability measure [16] for g. Using this posterior Gaussian process, we estimate the two versions of the

(point) posterior predictive distribution of inexpensive quantity at arbitrary inputs x⇤, the version with only162

epistemic uncertainty, and the other version, which includes both epistemic and aleatoric uncertainty, as

follows:
g⇤|Dg, x⇤ ⇠ N (µ̃g(x⇤), �̃

2
g(x⇤)),

z⇤|Dg, x⇤ ⇠ N (µ̃g(x⇤), �̃
2
g(x⇤) + �2

z ),
(4)165

where, µ̃g(x⇤) = kg(x⇤,Xg)
T (Kg + �2

zI)
�1yg,

�̃2
g(x⇤) = kg(x⇤, x⇤)� kg(x⇤,Xg)

T (Kg + �2
zI)

�1kg(x⇤,Xg),

and kg(x⇤,Xg) = [kg(x⇤, xg,1) · · · kg(x⇤, xg,Ng )]
T is the cross covariance vector between the arbitrary input168

and the inputs in Dg.

Also, note that while we use noiseless descriptors x to learn the de-noised map g of the noisy input,

however in principle, we could also use a completely di↵erent set of inputs to learn this map (e.g., a subset171

of descriptors in x to learn g) depending on what z depends on.

Following the learning of this map g, we learn a second map f from x and g(x) to y, using the data D.

The noise in the data yf is approximated by Gaussian noise with constant variance �2
y :174

yf |f, g,Xf , �y ⇠ N (f(Xf , g(Xf )), �
2
yI).

We place a Gaussian process prior over the space of functions f :

f |g ⇠ GP(0, kf ),177

with zero mean function and a covariance function kf defined on the inputs x and g(x). kf encodes the

beliefs about regularity and length-scales of the expensive physical quantity and has parameters �f . The

Gaussian process f (i.e., f(x, g(x))) is a deep GP [36], hence the marginal likelihood,180

p(yf |Xf ,Dg,�f , �y) =

Z
p(yf |Xf , g(Xf ),�f , �y)p(g(Xf )|Dg)dg(Xf ), (5)
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and the posterior predictive distribution at arbitrary input x⇤,

p(f⇤|D, x⇤) =

ZZ
p(f⇤|yf ,Xf , g(Xf ), x⇤, g(x⇤))p(g(Xf ), g(x⇤)|Dg, x⇤)dg(Xf )dg(x⇤), (6)183

are no longer Gaussian and analytically available, posing significant computational challenges. To overcome

these computational challenges, we derive a semi-analytical approximations.

Think of the term p(yf |Xf , g(Xf ),�f , �y) in Eq. (5) as a function h(g(Xf )). Then Eq. (5) reduces to,186

p(yf |Xf ,Dg,�f , �y) =

Z
h(g(Xf ))p(g(Xf )|Dg)dg(Xf ). (7)

Expand h(g(Xf )) in a first-order Taylor series around the predictive mean µ̃g(Xf ) from Eq. (4) gives,

h(g(Xf )) ⇡ h(µ̃g(Xf )) +rh(µ̃g(Xf ))
⇥
g(Xf )� µ̃g(Xf )

⇤
.189

Substituting this expansion in Eq. (7) gives,

p(yf |Xf ,Dg,�f , �y) ⇡
Z h

h(µ̃g(Xf )) +rh(µ̃g(Xf ))(g(Xf )� µ̃g(Xf ))
i
p(g(Xf )|Dg)dg(Xf )

= h(µ̃g(Xf ))

Z
p(g(Xf )|Dg)dg(Xf ) +rh(µ̃g(Xf ))

Z
(g(Xf )� µ̃g(Xf ))p(g(Xf )|Dg)dg(Xf )

= h(µ̃g(Xf )) · 1 +rh(µ̃g(Xf ))(µ̃g(Xf )� µ̃g(Xf ) · 1)

= h(µ̃g(Xf )).

Therefore:192

p(yf |Xf ,Dg,�f , �y) ⇡ p(yf |Xf , g(Xf ) = µ̃g(Xf ),�f , �y) = N (yf |0, K̃f + �2
yI) (8)

where K̃f is the covariance matrix defined between every pair of inputs in (Xf , µ̃g(Xf )) using the covariance

function kf .195

We approximate the required posterior predictive distribution with epistemic uncertainty at arbitrary

input x⇤ using Monte Carlo method [37, 38] by iteratively sampling from the posterior predictive distribution

of g⇤ as follows:198

p(f⇤|D, x⇤) =

ZZ
p(f⇤|yf ,Xf , g(Xf ), x⇤, g(x⇤))p(g(Xf ), g(x⇤)|Dg, x⇤)dg(Xf )dg(x⇤)

⇡
ZZ

p(f⇤|yf ,Xf , g(Xf ), x⇤, g(x⇤))p(g(Xf )|Dg)p(g(x⇤)|Dg, x⇤)dg(Xf )dg(x⇤)

=

Z h Z
p(f⇤|yf ,Xf , g(Xf ), x⇤, g(x⇤))p(g(Xf )|Dg)dg(Xf )

i
p(g(x⇤)|Dg, x⇤)dg(x⇤) (9)

Now let the term in the square parentheses be ‘L’ and p(f⇤|yf ,Xf , g(Xf ), x⇤, g(x⇤)) be a function w(g(Xf )).

Then ‘L’ reduces to,201

L =

Z
w(g(Xf ))p(g(Xf )|Dg)dg(Xf ),

Similar to before, expanding w(g(Xf )) in first-order Taylor series around predictive mean µ̃g(Xf ) from

Eq. (4) would give,204

L ⇡ w(µ̃g(Xf )) = p(f |yf ,Xf , µ̃g(Xf ), x⇤, g(x⇤)).
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Substituting this ‘L’ in Eq. (9) gives,

p(f⇤|D, x⇤) ⇡
Z

p(f⇤|yf ,Xf , µ̃g(Xf ), x⇤, g(x⇤))p(g(x⇤)|Dg, x⇤)dg(x⇤)

=

Z
p(f⇤|yf ,Xf , µ̃g(Xf ), x⇤, g⇤)p(g⇤|Dg, x⇤)dg⇤

⇡ 1

N

NX

i=1

p(f |yf ,Xf , µ̃g(Xf ), x⇤, g
(i)
⇤ ),

=
1

N

NX

i=1

N (µ̃f (x⇤, g
(i)
⇤ ), �̃2

f (x⇤, g
(i)
⇤ )), (10)207

where, g(i)⇤ are independent samples from the predictive distribution of inexpensive quantity in Eq. (4) and

µ̃f (x⇤, g
(i)
⇤ ) = kf

⇣
(x⇤, g

(i)
⇤ ), (Xf , µ̃g(Xf ))

⌘T
(K̃f + �2

yI)
�1yf ,

�̃2
f (x⇤, g

(i)
⇤ ) = kf ((x⇤, g

(i)
⇤ ), (x⇤, g

(i)
⇤ ))

� kf

⇣
(x⇤, g

(i)
⇤ ), (Xf , µ̃g(Xf ))

⌘T
(K̃f + �2

yI)
�1kf

⇣
(x⇤, g

(i)
⇤ ), (Xf , µ̃g(Xf ))

⌘
,

where,210

kf

⇣
(x⇤, g

(i)
⇤ ), (Xf , µ̃g(Xf ))

⌘
= [kf ((x⇤, g

(i)
⇤ ), (xf,1, µ̃g(xf,1))) · · · kf ((x⇤, g

(i)
⇤ ), (xf,Nf , µ̃g(xf,Nf )))]

T .

Following similar approach, the (point) posterior predictive distribution of expensive quantity with epis-

temic and aleatory uncertainty reduces to,213

p(y⇤|D, x⇤) ⇡
1

N

NX

i=1

p(y⇤|yf ,Xf , µ̃g(Xf ), x⇤, g
(i)
⇤ ),

=
1

N

NX

i=1

N (µ̃f (x⇤, g
(i)
⇤ ), �̃2

f (x⇤, g
(i)
⇤ ) + �2

y), (11)

where g(i)⇤ ⇠ g⇤|Dg, x⇤ (see Eq. (4)).

Algorithm 1 Hierarchical Gaussian process regression (HGPR)

Require: Training datasets Dg = (Xg, zg) and Df = ((Xf , zf ),yf )
1: To learn the de-noised response of the noisy input, train the Gaussian process g with Dg by maximizing

the marginal likelihood in Eq. (3).
2: Estimate the mean of the response map g at Xf as µ̃g(Xf ) using Eq. (4).
3: Train the Gaussian process f with D = (Dg,Df ) by maximizing the marginal likelihood in Eq. (8)

using µ̃g(Xf ). Estimate the two versions of posterior predictive distribution as in Eq. (10) and Eq. (11)
respectively.
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(a)
(b)

Figure 1: 1a corresponds to the schematic view of the model in SGPR method, where the response surface f is
trained on the dataset Df . 1b corresponds to the schematic view of the model in HGPR method, where
the response surface g and f are trained on the datasets Dg and D respectively.

2.4 Evaluation metrics216

Let Dv = ((Xv, zv),yv), be the validation data used to compare the models learned from the two methods,

SGPR and HGPR, where Xv = (xv,1, . . . , xv,Nv ), zv = (zv,1, . . . , zv,Nv ), and yv = (yv,1, . . . , yv,Nv ) are the

Nv observations of all the relevant quantities.219

We evaluate the mean absolute error between the validation data and the mean of the predictive distri-

bution as follows:

MAE =
1

Nv

NvX

i=1

����yv,i � E
h
f⇤|D, x⇤ = xv,i, z⇤ = zv,i

i���� , (12)222

but note that this metric is not reliable when the validation data are very noisy. In instances where noiseless

validation data is available, we evaluate the absolute error in Eq. (12) with respect to the noiseless validation

data and we refer to this metric as MAEtruth.225

Both MAE and MAEtruth are only point-based metrics and they do not validate the complete predictive

distribution of the models. Being able to capture the predictive distribution correctly is important for

designing active learning schemes that can explore the input space. To validate the full predictive distribution228

of the models, we employ statistical tests. In SGPR method, we do this by checking whether standardized

errors (as in [39]) follow a standard normal distribution. But we cannot utilize this statistical test here

because the predictive distribution from the HGPR method is no longer Gaussian.231

We developed a di↵erent statistical test based on probability integral transform principle (see [40]). The

principle states that if T is a random variable with cumulative distribution function (CDF) FT (T ), then the

random variable R defined as R = FT (T ) has a uniform distribution. Based on this idea, we validate the234

model by checking whether the CDF of our predictive model evaluated at the validation data follows the

uniform distribution. That is, we test if

ki = F
h
y⇤ = yv,i|D, x⇤ = xv,i, z⇤ = zv,i

i
⇠ U(0, 1), (13)237

where, F [y⇤|D, x⇤, z⇤] is the empirical cumulative distribution function (ECDF) of the predictive model

estimated from the samples of the predictive distribution. In other words, Eq. (13) lets us test whether

validation data is arising from the predictive distribution given by our model.240

We check this diagnostic in two ways - 1) Using Kolmogorov–Smirnov test statistic (KS test statistic)

[41, 42]; This statistic quantifies the distance between the ECDF of the sample ki’s and the CDF of the

uniform distribution. When k1:Nv follows a perfect uniform distribution then the KS test statistic should243

be zero. 2) Using the quantile-quantile plot (Q-Q plot) [43]; Here we compare the empirical quantiles of the

ki’s to those of the uniform quantiles. When k1:Nv follows uniform distribution, the q-q plot falls on the 45�

line that crosses the axes.246
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3 Results

In this section, we validate our approach using a synthetic example and a realistic material science application.

For all the cases, we present the results from employing our HGPR method as well as SGPR method for249

comparison and validation.

The examples considered here were chosen in order to highlight the benefits of using our hierarchical

approach and its e↵ectiveness in building a model by fusing information from di↵erent sources along with252

accounting for the input uncertainty as well as output uncertainty. Throughout all the examples we use the

squared exponential kernel function [16] with automatic relevance determination (ARD) of weights [16, 15].

ARD of weights corresponds to di↵erent length-scales for each dimension in the input and thereby letting255

method to detect which input variables have more e↵ect on the predictive distribution. All models are

implemented using the open source library GPy [44].

3.1 Example 1: Pedagogical example258

Consider the case where the true responses governing the inexpensive and expensive physical quantities, g

and f , respectively, follow these equations:

g(x) = sin(8⇡x),

f(x) = f(x, g(x)) = (x�
p
2)g(x)2,

(14)261

where response g is chosen to be a sinusoidal wave with four periods and response f is obtained by trans-

forming g non-linearly. See Fig. 2 for an illustration. Assume that we have access only to a finite number

of noisy observations of g and f . In particular, we obtain the observations of z and y in Df by randomly264

sampling the true responses g and f with additive Gaussian noise of variances �2
z = 0.252 and �2

y = 0.22,

respectively at Nf = 25 points. Similarly, we generate dataset Dg of inexpensive observations by randomly

sampling the true responses g with additive Gaussian noise of variance �2
z at Ng = 65 points. Note that,267

while sampling we ensure that Dg includes all observations of z in Df . Now, given the availability of these

datasets Dg and Df , the goal is to learn the true response f governing the expensive physical quantity as

accurately as possible. Also, since we have access to the true responses here, we generate noiseless validation270

data of Nv = 150 points by randomly sampling in the domain [0, 1] to compare the results from the two

approaches.
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Figure 2: Example 1 - Left and the right plots corresponds to noisy data of inexpensive and expensive physical
quantities respectively obtained by randomly sampling.

The first approach is to learn the required map f following the SGPR method discussed in Sec. (2.2)273

using dataset Df (but note that this method assumes input data zf in Df to be noiseless). We assumed that

the noise variance �y is known. As seen in Fig. 3, this approach does not provide a reasonable reconstruction

of f ; the mean response is inaccurate and noisy, and also the uncertainty is overestimated. Note that,276

SGPR method does not utilize the extra inexpensive measurements available in zg for learning the expensive

quantity response.

Figure 3: Example 1 - Predictive distribution from the SGPR method. Green line corresponds to mean response
and shaded region corresponds to 1.96 standard deviation band of f (MAEtruth = 0.25, KS test statistic
= 0.26).

Next, we present the result using our proposed HGPR method discussed in Sec. (2.3). We begin by first279

learning a response map g using Dg. Then we use this learned de-noised input data g(Xf ) in the place of

zf for learning the required map f . It is assumed that the noise variances �z and �y are known. As seen in

Fig. 4, this approach provides an accurate reconstruction of f , i.e., mean response and uncertainty estimates282

are sensible. This can be evidently seen from the low values of our validation metrics (see Sec. (2.4)), i.e.,

the MAEtruth and KS test statistic using HGPR method compared to the SGPR method in Tab. 1. Also,
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from Fig. 5b it is evident that Q-Q plot of k1:Nv from the HGPR method follows a 45� line compared to the285

Q-Q plot of k1:Nv from the SGPR (Fig. 5a) method validating the predictive distribution.

(a) (b)

Figure 4: Example 1 - Predictive distributions from the HGPR method. Left plot orange line corresponds to mean
response and shaded region corresponds to 1.96 standard deviation band of g and in the right plot green
line corresponds to mean response and the shaded region corresponds to the 1.96 standard deviation band
of f (MAEtruth = 0.12, KS test statistic = 0.11).

(a) (b)

Figure 5: Example 1 - Left plot and right plot corresponds to Q-Q plot of k1:Nv using SGPR and HGPR methods
respectively.

Table 1: Example 1 - Comparison of the validation metrics from the two methods.

MAEtruth KS test statistic

SGPR 0.25 0.26
HGPR 0.12 0.11

11



3.2 Example 2: Yield strength prediction of HEA alloys using hardness mea-

surements288

In this example, we want to predict the expensive experimental quantity yield strength y of HEA alloy

using inexpensive experimental Vickers hardness z. For doing this, we collected literature data [45]. Of

the collected data, 383 HEA alloys have hardness information and 158 HEA alloys have both hardness and291

strength information. Using this information, the training datasets Dg = (Xg, zg) with Ng = 351 hardness

points and Df = ((Xf , zf ),yf ) with Nf = 126 hardness and strength points are constructed by keeping

aside Nv = 32 hardness and strength points for validation. Note here, x corresponds to 25 noise-free physical294

descriptors (see Appendix A.1). For the sake of comparison, we built a strength model following the SGPR

method utilizing the dataset Df . Recall that this approach assumes experimental hardness data zf to be

noiseless. Now following our HGPR approach, we first built a hardness model g using the data Dg and then297

from this model we estimate the de-noised hardness response g(Xf ). Using this de-noised hardness response

in the place of zf in Df , we learned the strength response f following the procedure outlined in Sec. (2.3).

The strength predictions and q-q plots of k1:Nv from SGPR and HGPR methods are shown in Fig. 6300

and Fig. 7, respectively. HGPR has lower MAE than SGPR. However, it is worth noting that, since the

validation dataset is noisy, MAE is an unreliable measure of validation. HGPR also has better q-q plot than

SGPR and the test KS test statistic is improved.303

From Fig. 7a, we see that the hardness predictions at test points has room for improvement. Therefore,

we decided to increase the hardness training dataset to the maximum possible size and test if this would

lead to improved strength predictions. The results are shown in Fig. 8. We see a further improvement in306

MAE, Q-Q plots and KS test statistic. Tab. 2 shows the comparison of metrics from both the methods.

(a) (b)

Figure 6: Example 2 - Left and right plots correspond to the predicted response and the Q-Q plot for k1:Nv of strength
using the SGPR method, respectively. On the right plot error bars corresponds to 1.96 standard deviation
band of f (MAE = 383.02, KS test statistic = 0.36).
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(a)

(b) (c)

Figure 7: Example 2 - Fig. 7a and Fig. 7b correspond to the predicted response of hardness and strength from map
g and f in the HGPR method, here the error bars corresponds to 1.96 standard deviation band. Fig. 7c is
the the Q-Q plot for k1:Nv of strength (MAE = 355.48, KS test statistic = 0.26).
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(a)

(b) (c)

Figure 8: Example 2 - Fig. 8a correspond to the predicted hardness response from map g after further updating g with
validation hardness data. Fig. 8b is the predicted strength from map f . Here the error bars corresponds
to 1.96 standard deviation band. Fig. 8c is the Q-Q plot for k1:Nv of strength (MAE = 323.65, KS test
statistic = 0.20).

Table 2: Example 2 - Comparison of the validation metrics from the two methods.

MAE KS test statistic

SGPR 383.02 0.36
HGPR 355.48 0.26

HGPR (updated with validation hardness data) 323.65 0.20

4 Conclusion

We presented a regression method denoted HGPR, that is capable of dealing with noisy inputs when one309

wants to correlate an inexpensive experimental measurement to an expensive one. To deal with noisy

inputs, our method employs a nested model with two Gaussian processes, one going from the noiseless
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physical descriptors to the inexpensive experimental measurement and other going from the noiseless physical312

descriptors and the inexpensive experimental measurement to the expensive experimental measurement.

Towards this end, as this nested model is analytically intractable we proposed semi-analytical approximations

to both the marginal likelihood and the posterior predictive distribution. We compared our method against315

SGPR method on a pedagogical example that demonstrates the issues of noisy inputs. Then, we applied our

method to a material science application where we predict the yield strength of HEA alloys from hardness

measurements. In all the cases, our HGPR method showed consistently superior performance than the318

conventional SGPR method. In particular, our method results in predictive distributions that better match

the statistics of the data, a feature of particular importance in active learning applications.

Data availability321

Data and the code to reproduce these findings will be made available upon publication of the article.
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A Appendix411

A.1 Noiseless features employed in the construction of HEA predictive models:

There are 25 noise-free physical descriptors ‘x’ that were chosen based on the domain expertise in building

the HEA predictive models in Sec. 3.2. The descriptors are shown in the Tab. 3 below, where ci is the atomic414

percentage of the ith element, subscript i corresponds to ith element property in the alloy. Of these, the first

set of descriptors were calculated based on the rule of mixtures. The next set of descriptors are estimated

based on the di↵erence between the maximum and minimum property values of the corresponding elements417

in the alloy. The last set of descriptors encodes the phase information of the alloy as one-hot encoding.

Table 3: Noiseless features used in the construction of HEA predictive models

Symbol Formalism Description
⇢ ⌃N

i=1 ci⇢i Avg. Density
Y ⌃N

i=1 ciYi Avg. Young’s Modulii
Tm ⌃N

i=1 ciTm,i Avg. Melting Temp.
rat ⌃N

i=1 cirat,i Avg. Atomic Radii
G ⌃N

i=1 ciGi Avg. Shear Modulii
K ⌃N

i=1 ciKi Avg. Bulk Modulii
V EC ⌃N

i=1 ciV ECi Avg. Valence e� Conc
�Smix ⌃N

i=1 ci�Smix,i Avg. Entropy of Mixing.
�⇢ ⇢i,max � ⇢i,min Range of Density
�Y Yi,max � Yi,min Range of Young’s Modulii
�Tm Tm,i,max � Tm,i,min Range of Melting Temp.
�rat rat,i,max � rat,i,min Range of Atomic Radii
�G Gi,max �Gi,min Range of Shear Modulii
�K Ki,max �Ki,min Range of Bulk Modulii
�V EC V ECi,max � V ECi,min Range of Valence e� Conc.

�rat
»

⌃N
i=1ci(1�

rat,i

rat
)2 Asymmetry of Atomic Radii

Vmisfit ⌃N
i=1�V 2

i || �V = V � Vi Atomic Volume Misfit
[1, 0, 0, 0, 0, 0, 0, 0]/[0, 1, 0, 0, 0, 0, 0, 0] etc. Reduced Phase One-Hot-Encoding (O.H.E.)
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