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Abstract

The discovery of materials with improved properties can be accelerated by models with the ability
to combine data from multiple experimental information sources. A recurring task in the toolbox of
practitioners is to map input physical descriptors to output properties of interest. Typically, both the
outputs and many of the inputs are experimentally measured and, thus, noisy. Probabilistic regression
methods, e.g., Gaussian process regression, can easily deal with noisy outputs, even if the noise is input-
dependent. However, most regression methods cannot process noisy inputs. Ignoring input uncertainty
leads to inaccurate predictive uncertainty, a crucial ingredient for the sequential design of experiments.
The objective of this paper is to develop a regression methodology that can deal with input uncertainty
when one wishes to correlate an inexpensive experimental measurement (e.g., hardness) to an expen-
sive one (e.g., yield strength). Our hierarchical Bayesian approach uses two Gaussian processes. The
first one maps noiseless physical descriptors to the inexpensive experimental measurement. The second
Gaussian process maps noiseless physical descriptors and the inexpensive experimental measurement to
the expensive experimental measurement. The two Gaussian processes form a nested model that is not
analytically tractable. To overcome this issue, we propose semi-analytical approximations to both the
marginal likelihood and the posterior predictive distribution. The result is a model that is practical
to train and use. We demonstrate the merits of the proposed method through a synthetic dataset in
which we control all the uncertainties. The statistical tests clearly show that standard Gaussian process
regression cannot cope with input uncertainty whereas our proposed method consistently yields better
predictive distributions. Finally, we apply the method to the task of predicting the yield strength of high
entropy alloys from hardness on an exhaustive dataset compiled from the available literature.
Keywords: Noisy inputs; Input uncertainty; Hierarchical Gaussian process regression; High entropy al-

loys; Yield strength prediction; Hardness.
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1 Introduction

High entropy alloys (HEASs) formed by mixing relatively equal proportions of four or more elements are
drawing the interests of researchers after their introduction in 2004 [1, 2]. These alloys have promising
oxidation resistance, strength performance at high temperatures and ductility at low temperatures making
them promising candidates for structural material applications [3, 4, 5, 6, 7]. Predicting the properties of these
alloys using experimental techniques is costly and time consuming. Therefore, data-driven techniques such
as machine learning (ML) are being utilized to predict the mechanical properties of new HEAs [8, 9, 10, 11].

Typically, some of the inputs and outputs used in building ML models for HEAs are experimental
quantities and, thus, noisy. For example, in the strength prediction of HEA alloys using hardness as an
input, both the output strength data and input hardness data are experimentally measured quantities.
Data uncertainty is not taken into account by common regression techniques like kernel ridge regression [12]
and neural networks [13]. Whereas statistical regression techniques like Bayesian linear regression [14, 15],
Gaussian process regression (GPR)[16, 15] and Bayesian neural networks (BNNs) [17, 18, 19], do account for
output uncertainty even when the noise is input-dependent (heteroscedasticity [20, 21, 22]). However, these
methods rely on the assumption that the inputs are noise-free, which is not valid in many material science
applications. Ignoring this input uncertainty may affect the quality of the model, resulting in an inaccurate
predictive distribution. It is important to capture predictive mean and uncertainty estimates accurately
as they are key ingredients for the sequential design of experiments using methods like Bayesian global
optimization [23]. Hence, the objective of this paper is to develop a regression methodology that is capable
of dealing with input uncertainty when one wishes to correlate an inexpensive experimental measurement
(hardness) to an expensive one (yield strength). In [11], authors correlated oxidation stiffness available via ab
initio simulations to expensive melting temperature using random-forest based surrogate models, however,
these models account for uncertainty in a non-Bayesian way.

There are several examples of regression methods that can deal with input uncertainty. The authors
of [24] employ a modified least-squares method in which they modify the loss of the regression problem to
account for errors due to noise on the outputs as well as the inputs. Several researchers have put forth various
ways of building GPR models from uncertain inputs. Specifically, in [25] the authors proposed a modified
Gaussian process model in which the covariance function has been corrected to account for noise variance in
the input. In [26] uncertain inputs are assumed to follow a Gaussian distribution with known variance and
a covariance matrix is constructed by marginalizing over the uncertain inputs. The authors of [27] proposed
a noisy input GPR method in which they treat the input data as though they were deterministic and they
amplify the corresponding output variance to account for the input noise. On the neural network front, the
authors in [28] proposed an extension of BNN to deal with noisy inputs, but the drawback of this approach is
that the estimation of the predictive distribution requires sampling by Markov chain Monte Carlo (MCMCQ)
methods [15, 29] which is computationally intensive.

The majority of the approaches mentioned above are based on the idea of integrating out the uncertain
inputs and coming up with different approximations of intractable integrals. This is absolutely necessary
when the inputs are independent and noisy. However, in the typical materials application of interest here,
we encounter a slightly different situation. Namely, we have some available noise-free physical descriptors
that correlate with the noisy input of interest. This allows us to develop an approach similar to [30], in
which one explicitly builds a regression model that connects the noise-free physical descriptors to the noisy
input. This approach has two advantages. First, it is much more tractable than integrating over all input

uncertainty. Second, it produces as a byproduct a de-noised version of the noisy inputs, which may be of
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interest independently.

We differ from [30] in the sense that we follow a hierarchical Bayesian approach [31]. In particular,
we use two Gaussian processes: (i) one that connects the noiseless physical descriptors to the inexpensive
experimental measurement, and (ii) a second one that maps the noiseless physical descriptors and the
inexpensive experimental measurement to the expensive experimental measurement. To deal with this nested
and analytically intractable model, we derive semi-analytical approximations of the marginal likelihood
and the posterior predictive distribution. We call our method hierarchical Gaussian process regression
(HGPR). We compare HGPR with standard GPR (SGPR) on synthetic examples in which we control all
the uncertainties. Finally, we apply HGPR to the problem of predicting the yield strength of high entropy
alloys from hardness data using a dataset compiled from the available literature.

The rest of the paper is structured as follows. In Sec. 2 we present our methodology. We start in Sec. 2.1
by defining our problem mathematically. Then, we discuss the SGPR method in Sec. 2.2 and our proposed
method in Sec. 2.3. In Sec. 2.4, we describe the diagnostics used for the model validation. We present our
results in Sec. 3. Specifically, in Sec. 3.1 we compare methods SGPR with HGPR on synthetic data and in
Sec. 3.2, we illustrate the effectiveness of our method in yield strength prediction of high entropy alloys from

hardness measurements. We present our concluding remarks in Sec. 4.

2 Methodology

2.1 Problem definition

We are interested in predicting a physical quantity of interest y € R that is available through relatively
expensive experiments. Each experiment is described by a vector of noise-free physical descriptors 2 € R
In our running example of high-entropy alloys, the physical quantity of interest y is the yield strength and
the physical descriptors = include 25 quantities estimated from the properties of elements in the alloy and
the phase information of the alloy (see Appendix A.1). Unfortunately, one can have only a handful of y
measurements as they are expensive. Therefore, since x is high-dimensional, it is impossible to learn the
map from physical descriptors to the physical quantity of interest.

Now consider the following scenario in which we have access to inexpensive experimental measurements of
another physical quantity, z € R, which correlates with y. In our running example, the physical quantity z is
the hardness. The typical approach is to learn the map f from x and z to y via the SGPR method using the
data Dy = ((Xf,zf),yf> , where Xy = (zp1,..., 2N, ), 2f = (24155 2fN,), and Y = (Yr.1,-- -, Yr.N,)
are Ny observations of all relevant quantities. Notice that here both the inputs z¢ and the outputs y, are
noisy as they are experimentally measured, but SGPR assumes that only the outputs are noisy. Disregarding
the uncertainty in z ¢ leads to inaccurate predictive distributions. So we developed a regression method HGPR
that solves this problem by accounting for all the uncertainties in an hierarchical manner by first conducting
enough inexpensive z experiments to learn the map ¢ from z to z using the data D, = (X,,2,), where
Xy = (2g1,...,%gnN,), and zg = (24,1, .- ., 2g,N, ), and then use this learned de-noised input for learning the
required map f. Note that D, should include all observations of z in Dy.

From now on we denote all the data from expensive experiments and inexpensive experiments as D =
(Dy,Dy). Next, in Sec. 2.2 and Sec. 2.3 we describe in detail how the required map f is learnt using both
SGPR and our HGPR methods, followed by the overall Algorithm 1 depicting the model building process
using the HGPR method.
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2.2 Standard Gaussian process regression

Given a dataset Dy, we can learn the map f using SGPR method as shown in many previous works
[32, 33, 34, 35]. In SGPR (see Fig. 1a), the input data z; in Dy is assumed to be noiseless and the noise in

the output data y; is approximated by Gaussian noise with constant variance 75:

Yf‘fa Xfazfar}/y ~ ./\/'(f(Xf,Zf)7'Y§I)

One puts a prior over the space of functions f:
f~GP(0,ky),

which encodes the beliefs about regularity and length-scales of f. These beliefs are encoded using a mean
function typically chosen to be zero and a covariance function k; with parameters ¢¢. Then, one finds
the parameters ¢; and 7, by maximizing the marginal likelihood of the data p(y ;|Xy,zy, ¢y,7,), which is
Gaussian and given by:

Py Xs.25,5.7) = Ny 10, Ky + 7D,

where Ky is the covariance matrix constructed using the covariance function k; between every pair of inputs
in Dy.

Having identified the model parameters ¢, one conditions the prior measure on the available data. This
way, one obtains a posterior probability measure over the space of f’s, which is another Gaussian process
[16]. This posterior Gaussian process can be used to derive the (point) posterior predictive distribution which
predicts the output on an arbitrary inputs x, and z,. The posterior predictive distribution is a univariate
Gaussian and comes in two versions. The first version, which includes only the epistemic uncertainty, predicts
the noiseless output f,:

LD s 20~ N (g, ), 63 (@0, 22)), W

Where, ﬂf(ﬂ?*72*) = kf((x*,z*), (Xfazf))T(Kf +FY§ )71yf’
(e 22) = iy (e, 22), (@0, 20)) = Ky (@0 2), (Xg,20) T (K g + 4207k (0, 22), (X1, 2)),

and ky (@4, 24), (Xy,25)) = [kf((2s,22), (g1, 281)) - kp((@ss 24), (@p,n, 25,8,))]T is the cross covariance
vector between the arbitrary inputs and the inputs in Dy. The second version, which includes both epistemic

and aleatory uncertainty, predicts the measured output y,:
y*IDf,l‘*,Z* NN(ﬂf(Z‘*,Z*),&]%(J?*,Z*)—l—’}/g) (2)

2.3 Hierarchical Gaussian processes regression

The SGPR method described above completely disregards the measurement uncertainty in the input
data z; by assuming it to be noiseless. The z; data, collected from experiments could be very noisy and
since it is substantially correlated with the requisite output data y, the resulting SGPR predictions will
have inaccurate mean and uncertainty estimates.

To circumvent this problem, in our HGPR method we account for all the uncertainties in the dataset
Dy in a hierarchical manner (see Fig. 1b). Firstly, we learn a map g from x to z using the data D, so that

we can de-noise the input data zy. For learning this map g, the noise in the data z, is approximated by
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Gaussian noise with constant variance v2:
zg|9,Xg, 7z ~ N(Q(Xg)»731)~
We begin with placing a Gaussian process prior over the space of functions g:
g~ GP(0,kg),

with a covariance function k, with parameters ¢, encodes the beliefs about regularity and length-scales of
the inexpensive physical quantity. Then, we find the parameters ¢, and 7, by maximizing the marginal
likelihood of the data,

p(2g|Xyg, dg,72) = N(24[0, Ky + 721), (3)

where K is the covariance matrix constructed using the covariance function k, between every pair of inputs
in D,,.

Having identified the model parameters ¢4, we can get the the analytically available Gaussian posterior
probability measure [16] for g. Using this posterior Gaussian process, we estimate the two versions of the
(point) posterior predictive distribution of inexpensive quantity at arbitrary inputs ., the version with only
epistemic uncertainty, and the other version, which includes both epistemic and aleatoric uncertainty, as
follows:

g«|Dyg, T ~ N(ﬂg(x*)ﬁg(ff*))»

(4)
2| Dy, s ~ N(fig(24),62(2.) +72),

where, fig(z.) = kq(z+, XQ)T(KQ + fyfI)*lyg,
53(9”*) = kg (s, 24) — Ko (24, XQ)T(KQ + ’YEI)_lkg(x*ng)v

and Ky (4, Xg) = [kg(s, 2g,1) - kg(2s, 29 n,)]" is the cross covariance vector between the arbitrary input
and the inputs in D,.

Also, note that while we use noiseless descriptors x to learn the de-noised map g of the noisy input,
however in principle, we could also use a completely different set of inputs to learn this map (e.g., a subset
of descriptors in z to learn g) depending on what z depends on.

Following the learning of this map g, we learn a second map f from = and g(x) to y, using the data D.

The noise in the data y; is approximated by Gaussian noise with constant variance ’yi:
Yilfs 9, Xy ~ N(f(Xp, 9(X5)), 1)
We place a Gaussian process prior over the space of functions f:
flg ~ GP(0, ky),

with zero mean function and a covariance function k; defined on the inputs « and g(z). ks encodes the
beliefs about regularity and length-scales of the expensive physical quantity and has parameters ¢¢. The
Gaussian process f (i.e., f(z,g(x))) is a deep GP [36], hence the marginal likelihood,

p(y;1Xf, Dy, b5,7y) = /p(Yf|Xf>g(Xf)a(bfv'Yy)p(g(Xf)‘Dg)dg(Xf)v (5)
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and the posterior predictive distribution at arbitrary input x.,

p(fID,x.) = / / pFly 12 X, 9(Xg), 20 () p(9(X ). g(a02)| Dy ) dg (X ;g (), (6)

are no longer Gaussian and analytically available, posing significant computational challenges. To overcome
these computational challenges, we derive a semi-analytical approximations.
Think of the term p(y ;| Xy, 9(Xy),¢r,7y) in Eq. (5) as a function h(g(Xy)). Then Eq. (5) reduces to,

p(551X5. Dy 01.7) = [ ha(X7)(a(X)[D,)dg(Xy). ()
Expand h(g(X,)) in a first-order Taylor series around the predictive mean fiy(X ) from Eq. (4) gives,
Ba(Xp) ~ h(fig(X ) + Vh(y(X ) [9(X ) — fig(X)]
Substituting this expansion in Eq. (7) gives,
X5,y 07.7) % [ [17(X0)) + VA (X)) 6X7) = 1y (K1) 9 (XPID g X, )

= h(ﬂg(Xf))/p(g(Xf)\Dg)dg(Xf) +Vh(ﬂg(Xf))/(g(Xf) = ig(X1))p(9(X5)|Dy)dg(Xy)

= h(/lg(Xf)) -1+ Vh(ﬁg(xf))(/lg(xf) - ﬂg(xf) : 1)
= h(/lg(xf))
Therefore:
p(y 51X 5Dy b5:1) = p(y 51X 5, 9(X5) = 1g(X5), b, 7) = N(y|0, Ks + 1) (8)

where K is the covariance matrix defined between every pair of inputs in (X, fiy(X¢)) using the covariance
function k.

We approximate the required posterior predictive distribution with epistemic uncertainty at arbitrary
input z, using Monte Carlo method [37, 38] by iteratively sampling from the posterior predictive distribution

of g, as follows:

p(fID,z.) = / / Ly 12 X g(Xp), 20 g(2))p(g(X ), 9(202)| Dy ) dg (X g ()
~ / / DUl X 1 9K ), s 9(22))P(9 (X 1) Dy (92| Dy 2 ) dg (X ) g (1)

= [ [ 01y X5, 920,90 pla (X ID) A9 (X ) [plg ) Dy 2. )g() (9)

Now let the term in the square parentheses be ‘L’ and p(f«|y;, Xz, 9(Xy), Z«, g(x«)) be a function w(g(Xy)).

Then ‘L’ reduces to,

L= / w(g(X1))p(g(Xy)IDy)dg(X ),

Similar to before, expanding w(g(Xy)) in first-order Taylor series around predictive mean fi4,(Xys) from
Eq. (4) would give,



Substituting this ‘L’ in Eq. (9) gives,

p(felDswi) = | p(fuly X, fig(Xg), @, 9(24))p(9(24) [ Dy, ) dg (@)

P(fely s Xis fig(Xp)s Ty G4 )P(gs | Dy, 74 )dgic

— —

1

~
~

=

N
Zp(ﬂyﬂXf’ﬁg(Xf)vx*7gil))7
=1

207 -

N (fif (2., ), 6% (2, 6)), (10)

2=
1=

s
Il
-

where, gf) are independent samples from the predictive distribution of inexpensive quantity in Eq. (4) and

. P ~ T B
i (e 87) = Ky (s 0), (Xp 19(Xg))) - (R +920) 1y,
63 @, gt) = (@2, g17), (@2, g)

iy (o), (X g (X)) Ry 9207y (), (X3 (X)))

210 Where,

ks (20, 9), (X2 7ig(X1))) = (s 087, (1,0, g (21.00)) -+ g (@ 687, (0 g (g0, D)

Following similar approach, the (point) posterior predictive distribution of expensive quantity with epis-

a3 temic and aleatory uncertainty reduces to,

(@

p(y*|D,x*)% p(y*|Yf7Xf7/]g(Xf)7x*7g* )a

=z
1=

1

-
Il

Ny (e, 99), 53 (20, g0) +42), (11)

I
2| =
M-

=1

where g\ ~ 9«|Dg, x+ (see Eq. (4)).

Algorithm 1 Hierarchical Gaussian process regression (HGPR)

Require: Training datasets D, = (X,,2,) and Dy = ((Xy,25),y)
1: To learn the de-noised response of the noisy input, train the Gaussian process g with D, by maximizing
the marginal likelihood in Eq. (3).
2: Estimate the mean of the response map g at Xy as fiy(Xy) using Eq. (4).
3: Train the Gaussian process f with D = (D,, Dy) by maximizing the marginal likelihood in Eq. (8)
using fiys(X ). Estimate the two versions of posterior predictive distribution as in Eq. (10) and Eq. (11)
respectively.
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Figure 1: la corresponds to the schematic view of the model in SGPR method, where the response surface f is
trained on the dataset Dy. 1b corresponds to the schematic view of the model in HGPR method, where
the response surface g and f are trained on the datasets D, and D respectively.

2.4 Evaluation metrics

Let D, = ((Xy,2v),¥,), be the validation data used to compare the models learned from the two methods,
SGPR and HGPR, where X, = (2y,1,...,Zu,N,);, Zv = (Zu,1,--+, 20N, ), a0d ¥, = (Yu 1, ., Yu,N,) are the
N, observations of all the relevant quantities.

We evaluate the mean absolute error between the validation data and the mean of the predictive distri-

bution as follows: N

1
MAE:FZ

Yoi=1

; (12)

Yov,i — E{f*ﬂ), Tx = Ty,iy Zx — Zv,i:|

but note that this metric is not reliable when the validation data are very noisy. In instances where noiseless
validation data is available, we evaluate the absolute error in Eq. (12) with respect to the noiseless validation
data and we refer to this metric as MAE uth-

Both MAE and MAEy, ., are only point-based metrics and they do not validate the complete predictive
distribution of the models. Being able to capture the predictive distribution correctly is important for
designing active learning schemes that can explore the input space. To validate the full predictive distribution
of the models, we employ statistical tests. In SGPR method, we do this by checking whether standardized
errors (as in [39]) follow a standard normal distribution. But we cannot utilize this statistical test here
because the predictive distribution from the HGPR method is no longer Gaussian.

We developed a different statistical test based on probability integral transform principle (see [40]). The
principle states that if 7" is a random variable with cumulative distribution function (CDF) Fr(T), then the
random variable R defined as R = Fr(T) has a uniform distribution. Based on this idea, we validate the
model by checking whether the CDF of our predictive model evaluated at the validation data follows the

uniform distribution. That is, we test if
ki = F[y* - y1)7i|Da$* = Ty,iy Zx = Rui| ™~ U(Oa 1)7 (13)

where, Fly.|D, ., 2] is the empirical cumulative distribution function (ECDF) of the predictive model
estimated from the samples of the predictive distribution. In other words, Eq. (13) lets us test whether
validation data is arising from the predictive distribution given by our model.

We check this diagnostic in two ways - 1) Using Kolmogorov—Smirnov test statistic (KS test statistic)
[41, 42]; This statistic quantifies the distance between the ECDF of the sample k;’s and the CDF of the
uniform distribution. When k;.n, follows a perfect uniform distribution then the KS test statistic should
be zero. 2) Using the quantile-quantile plot (Q-Q plot) [43]; Here we compare the empirical quantiles of the
ki’s to those of the uniform quantiles. When k;.y, follows uniform distribution, the g-q plot falls on the 45°

line that crosses the axes.
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3 Results

In this section, we validate our approach using a synthetic example and a realistic material science application.
For all the cases, we present the results from employing our HGPR method as well as SGPR method for
comparison and validation.

The examples considered here were chosen in order to highlight the benefits of using our hierarchical
approach and its effectiveness in building a model by fusing information from different sources along with
accounting for the input uncertainty as well as output uncertainty. Throughout all the examples we use the
squared exponential kernel function [16] with automatic relevance determination (ARD) of weights [16, 15].
ARD of weights corresponds to different length-scales for each dimension in the input and thereby letting
method to detect which input variables have more effect on the predictive distribution. All models are
implemented using the open source library GPy [44].

3.1 Example 1: Pedagogical example

Consider the case where the true responses governing the inexpensive and expensive physical quantities, g

and f, respectively, follow these equations:

g(z) = sin(87x),

14
f(@) = f(z,9(x)) = (x — V2)g(x)?, ()

where response ¢ is chosen to be a sinusoidal wave with four periods and response f is obtained by trans-
forming g non-linearly. See Fig. 2 for an illustration. Assume that we have access only to a finite number
of noisy observations of g and f. In particular, we obtain the observations of z and y in Dy by randomly
sampling the true responses g and f with additive Gaussian noise of variances v2 = 0.252 and 75 = 0.22,
respectively at Ny = 25 points. Similarly, we generate dataset D, of inexpensive observations by randomly
sampling the true responses g with additive Gaussian noise of variance 2 at N, = 65 points. Note that,
while sampling we ensure that D, includes all observations of z in Dy. Now, given the availability of these
datasets Dy and Dy, the goal is to learn the true response f governing the expensive physical quantity as
accurately as possible. Also, since we have access to the true responses here, we generate noiseless validation
data of N, = 150 points by randomly sampling in the domain [0, 1] to compare the results from the two

approaches.
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Figure 2: Example 1 - Left and the right plots corresponds to noisy data of inexpensive and expensive physical
quantities respectively obtained by randomly sampling.

The first approach is to learn the required map f following the SGPR method discussed in Sec. (2.2)
using dataset Dy (but note that this method assumes input data z; in Dy to be noiseless). We assumed that
the noise variance v, is known. As seen in Fig. 3, this approach does not provide a reasonable reconstruction
of f; the mean response is inaccurate and noisy, and also the uncertainty is overestimated. Note that,
SGPR method does not utilize the extra inexpensive measurements available in z, for learning the expensive
quantity response.

SGPR
1.5 1
X  Datayr
1.0 1 —— Prediction f
—— True response f
0.5
0.0 1
-0.5
_10 .
_15 .
X
-2.0
0.0 02 04 06 08 10

Figure 3: Example 1 - Predictive distribution from the SGPR method. Green line corresponds to mean response
and shaded region corresponds to 1.96 standard deviation band of f (MAEun = 0.25, KS test statistic
= 0.26).

Next, we present the result using our proposed HGPR method discussed in Sec. (2.3). We begin by first
learning a response map ¢ using D,. Then we use this learned de-noised input data g(Xy) in the place of
z for learning the required map f. It is assumed that the noise variances v, and ~, are known. As seen in
Fig. 4, this approach provides an accurate reconstruction of f, i.e., mean response and uncertainty estimates
are sensible. This can be evidently seen from the low values of our validation metrics (see Sec. (2.4)), i.e.,

the MAE;,n and KS test statistic using HGPR method compared to the SGPR method in Tab. 1. Also,

10



s from Fig. 5b it is evident that Q-Q plot of k1., from the HGPR method follows a 45° line compared to the
Q-Q plot of k1.n, from the SGPR (Fig. 5a) method validating the predictive distribution.
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Figure 4: Example 1 - Predictive distributions from the HGPR method. Left plot orange line corresponds to mean
response and shaded region corresponds to 1.96 standard deviation band of g and in the right plot green
line corresponds to mean response and the shaded region corresponds to the 1.96 standard deviation band
of f (MAEuh = 0.12, KS test statistic = 0.11).
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Figure 5: Example 1 - Left plot and right plot corresponds to Q-Q plot of ki.n, using SGPR and HGPR methods
respectively.

Table 1: Example 1 - Comparison of the validation metrics from the two methods.

] | MAEq;um | KS test statistic |

SGPR 0.25 0.26
HGPR 0.12 0.11

11
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3.2 Example 2: Yield strength prediction of HEA alloys using hardness mea-

surements

In this example, we want to predict the expensive experimental quantity yield strength y of HEA alloy
using inexpensive experimental Vickers hardness z. For doing this, we collected literature data [45]. Of
the collected data, 383 HEA alloys have hardness information and 158 HEA alloys have both hardness and
strength information. Using this information, the training datasets Dy, = (X,4,2,) with N, = 351 hardness
points and Dy = ((Xy,zs),y;) with Ny = 126 hardness and strength points are constructed by keeping
aside N, = 32 hardness and strength points for validation. Note here,  corresponds to 25 noise-free physical
descriptors (see Appendix A.1). For the sake of comparison, we built a strength model following the SGPR
method utilizing the dataset Dy. Recall that this approach assumes experimental hardness data z; to be
noiseless. Now following our HGPR approach, we first built a hardness model g using the data D, and then
from this model we estimate the de-noised hardness response g(Xy). Using this de-noised hardness response
in the place of z; in Dy, we learned the strength response f following the procedure outlined in Sec. (2.3).

The strength predictions and g-q plots of ki.n, from SGPR and HGPR methods are shown in Fig. 6
and Fig. 7, respectively. HGPR has lower MAE than SGPR. However, it is worth noting that, since the
validation dataset is noisy, MAE is an unreliable measure of validation. HGPR also has better g-q plot than
SGPR and the test KS test statistic is improved.

From Fig. 7a, we see that the hardness predictions at test points has room for improvement. Therefore,
we decided to increase the hardness training dataset to the maximum possible size and test if this would
lead to improved strength predictions. The results are shown in Fig. 8. We see a further improvement in
MAE, Q-Q plots and KS test statistic. Tab. 2 shows the comparison of metrics from both the methods.
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Figure 6: Example 2 - Left and right plots correspond to the predicted response and the Q-Q plot for ki1.n, of strength
using the SGPR method, respectively. On the right plot error bars corresponds to 1.96 standard deviation
band of f (MAE = 383.02, KS test statistic = 0.36).
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Predicted strength

Figure 7: Example 2 - Fig. 7a and Fig. 7b correspond to the predicted response of hardness and strength from map
g and f in the HGPR method, here the error bars corresponds to 1.96 standard deviation band. Fig. 7c is
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the the Q-Q plot for k1.n, of strength (MAE = 355.48, KS test statistic = 0.26).
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Example 2 - Fig. 8a correspond to the predicted hardness response from map g after further updating g with
validation hardness data. Fig. 8b is the predicted strength from map f. Here the error bars corresponds
to 1.96 standard deviation band. Fig. 8c is the Q-Q plot for ki.n, of strength (MAE = 323.65, KS test

statistic = 0.20).

Table 2: Example 2 - Comparison of the validation metrics from the two methods.

H MAE \ KS test statistic

SGPR 383.02 0.36
HGPR 355.48 0.26
HGPR (updated with validation hardness data) || 323.65 0.20

4 Conclusion

w0 We presented a regression method denoted HGPR, that is capable of dealing with noisy inputs when one

wants to correlate an inexpensive experimental measurement to an expensive one.

To deal with noisy

inputs, our method employs a nested model with two Gaussian processes, one going from the noiseless
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physical descriptors to the inexpensive experimental measurement and other going from the noiseless physical
descriptors and the inexpensive experimental measurement to the expensive experimental measurement.
Towards this end, as this nested model is analytically intractable we proposed semi-analytical approximations
to both the marginal likelihood and the posterior predictive distribution. We compared our method against
SGPR method on a pedagogical example that demonstrates the issues of noisy inputs. Then, we applied our
method to a material science application where we predict the yield strength of HEA alloys from hardness
measurements. In all the cases, our HGPR method showed consistently superior performance than the
conventional SGPR method. In particular, our method results in predictive distributions that better match

the statistics of the data, a feature of particular importance in active learning applications.

Data availability

Data and the code to reproduce these findings will be made available upon publication of the article.
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« A Appendix

A.1 Noiseless features employed in the construction of HEA predictive models:

There are 25 noise-free physical descriptors ‘x’ that were chosen based on the domain expertise in building

as the HEA predictive models in Sec. 3.2. The descriptors are shown in the Tab. 3 below, where ¢; is the atomic
percentage of the ith element, subscript ¢ corresponds to ith element property in the alloy. Of these, the first

set of descriptors were calculated based on the rule of mixtures. The next set of descriptors are estimated

a7 based on the difference between the maximum and minimum property values of the corresponding elements

in the alloy. The last set of descriptors encodes the phase information of the alloy as one-hot encoding.

Table 3: Noiseless features used in the construction of HEA predictive models

Symbol Formalism Description
p SN cpi Avg. Density
Y N aY Avg. Young’s Modulii
T SN eiTm Avg. Melting Temp.
Tat SN cirari Avg. Atomic Radii
G 2N aG Avg. Shear Modulii
K vV 6K, Avg. Bulk Modulii
VEC Ef\il cVEC; Avg. Valence e~ Conc
ASiz SN ciASpmisi Avg. Entropy of Mixing.
Ap Piymaz = Pi,min Range of Density
AY Y maz — Yimin Range of Young’s Modulii
ATy, T i;maz — Tmi,min Range of Melting Temp.
Argy Tat,i,max — Tat,i,min Range of Atomic Radii
AG Gimaz — Gimin Range of Shear Modulii
AK K maz — Ki min Range of Bulk Modulii
AVEC VEC; maz — VEC; min Range of Valence e~ Conc.
0T at \/Eﬁvzlci(l - Tf—‘;)Q Asymmetry of Atomic Radii
Vimisfit SN AVZ AV =V -V Atomic Volume Misfit
[1, 0,0, 0,0, 0,0,0]/[0, 1, 0, 0, 0, 0, 0, 0] etc. Reduced Phase One-Hot-Encoding (O.H.E.)
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