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MEASURING SEGREGATION VIA ANALYSIS ON GRAPHS\ast 
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Abstract. In this paper, we use analysis on graphs to study quantitative measures of segregation.
We focus on a classical statistic from the geography and urban sociology literature known as Moran's
I, which in our language is a score associated to a real-valued function on a graph, computed with
respect to a spatial weight matrix such as the adjacency matrix associated to the geographic units
that tile a city. Our results characterizing the extremal behavior of I illustrate the important role
of the underlying graph structure, especially the degree distribution, in interpreting the score. In
addition to the standard spatial weight matrices encoding unit adjacency, we consider the Laplacian
L and a doubly-stochastic approximation M . These alternatives allow us to connect I to ideas from
Fourier analysis and random walks. We offer illustrations of our theoretical results with a mix of
stylized synthetic examples and real geographic/demographic data.
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1. Introduction. A central question for geographers, urban sociologists, and de-
mographers is to identify and measure levels of spatial correlation for a social statistic
that is associated to geographic units. When the topic is the human geography of a
population subgroup, the presence of strong correlation between number and place
goes by the general name of segregation.

In recent decades, researchers have made increasing use of network structure to
model the relationship between the geographical units that make up an area under
study. The nodes might stand for individual people or for geographical units like
census blocks or counties. Network topology can be given by simple adjacency of units,
or by proximity (placing edges between units that are within a threshold distance
apart).

Figure 1 shows the basic motivating example: a square lattice graph is first dec-
orated with a checkerboard pattern and then with a clustered pattern. The central
question under consideration in this paper is the design of a numerical indicator that
detects the intermixing of types on the checkerboard, in contrast to the separation
of types on the clustered grid---and that lets us know, on the other hand, when no
pattern is present at all.

While there is no shortage of proposed metrics to quantify segregation (see sec-
tion 2.3), the go-to choice in spatial statistics is Moran's I, formally defined below
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MEASURING SEGREGATION VIA ANALYSIS ON GRAPHS 81

Fig. 1. In these images, green and purple represent two different numerical values, say 0 and 1.
On the left, they are arranged in a checkerboard pattern; on the right, a clustered pattern. Moran's
I returns a low value of  - 1 for the checkerboard and a high value of nearly 1 for the clusters.

in Definition 2.1. Introduced in the mid-20th century by P.A.P. Moran [28], this
score is so prominent in the study of spatial structure in numerical data that it is
almost synonymous with the concept of spatial autocorrelation . Over the years, social
scientists have developed multiscale generalizations and extensive statistical frame-
works that allow for hypothesis tests in which the null hypothesis is of the form ``this
population is not segregated on this network"" [13]. Despite the widespread currency
of I in the field of geography, authors have articulated concerns about the feasibil-
ity of reducing a complex social phenomenon such as segregation to a simple score
[26]. Basic questions about how to make comparisons using Moran's I---both to com-
pare populations on a common network and to compare across networks---are wide
open.

1.1. Summary of contributions. Broadly, this paper seeks to describe fea-
tures and properties of Moran's I as it is commonly used, and to propose related
alternatives that have improved properties.

First, after introducing notation and definitions (section 2), we provide a spec-
tral graph theory description of Moran's I (with respect to a spatial weight matrix
W ) that we then use to derive basic properties and to consider the standard claims
pertaining to its use in spatial statistics (section 3). For various choices of W closely
related to a graph, we show that the graph topology (degree distribution, cut lengths)
controls the range of attainable values (section 4), which impacts our ability to in-
terpret I within and especially across localities. Then, in section 5, we consider al-
ternatives to the standard choices of spatial weight matrix (classically, the adjacency
matrix A and its row-standardization P ). We particularly focus on the Laplacian
L and a doubly-stochastic alternative we call M , which offer connections to other
rich mathematical concepts. We derive a relationship between I(\sansv ;L) and Dirich-
let energies (section 6) that connects quantitative ``smoothness"" on a graph, from
the point of view of harmonic analysis, to qualitative notions of segregation. Next,
we develop a random-walk interpretation of I(\sansv ;M) in section 7 that offers the ver-
sion of Moran's I that seems most promising for bounds and comparisons of any yet
proposed.

Finally, supported by a mix of theoretical and empirical work, we make con-
crete recommendations for the practical use of network-based segregation metrics in
geography (section 8).
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82 MOON DUCHIN, JAMES M. MURPHY, AND THOMAS WEIGHILL

Fig. 2. The dual graphs of the partition of Georgia into 291,086 census blocks (left), 5,533 block
groups (middle), and 159 counties (right). The Census Bureau's geographical hierarchy is nested:
each of these can be seen as a quotient of the previous one, collapsing several smaller units into
each larger one. All are shown with centroidal embedding. Features of the underlying graphs (like
the degree distribution and spectrum) will be shown to provide bounds on the range of I values that
are achievable.

2. Background.

2.1. Notation and basic definitions. Suppose we have n geographic units
indexed by 1, 2, . . . , n with adjacency data A \in Rn\times n. The matrix A has entries
Aij = 1 if the ith and jth units are adjacent and Aij = 0 if not, with the convention
that Aii = 0 for all i. For example, the units may be census tracts, with Aij = 1
if tracts i and j have a shared boundary of positive length (but not if they meet
at a corner). Mathematically, A is the (symmetric) adjacency matrix for a graph
with nodes corresponding to the geographic units, which we will call the dual graph
\scrG . We will use P \in Rn\times n to denote the row-standardized adjacency matrix, i.e.,
the matrix with entries Pij = Aij/

\sum n
k=1 Aik. By construction, P is row-stochastic

and has real eigenvalues because P = D - 1A is conjugate to the symmetric matrix
D - 1/2AD - 1/2 where D is the diagonal matrix with Dii =

\sum n
k=1 Aik. It achieves a

largest eigenvalue of 1 and has all eigenvalues greater than or equal to  - 1, which is
achieved iff the graph is bipartite [11]. Examples using real census data are shown in
Figure 2; the Supplementary Materials (SIAM Supplement.pdf [local/web 1.02MB])
include a histogram of vertex degrees.

Consider a function \sansv : V (\scrG ) \rightarrow R on the graph nodes, which we will treat as a
column vector \sansv = (v1, v2, . . . , vn)

\top \in Rn\times 1. For example, vi may be the percentage
of residents in tract i who are identified as belonging to a particular demographic
(e.g., Hispanic) by the U.S. Census Bureau. Figure 3 shows real examples drawn
from Chicago, IL. Let \=v = 1

n

\sum n
i=1 vi be the average of the entries of \sansv . We will write

\sanszero , \sansone for the vectors (of length n) whose entries are all zero or all one, respectively.

Definition 2.1 (Moran's I). With notation as above, let W \in Rn\times n be a matrix
that is not the zero matrix, and let w =

\sum n
i,j=1 | Wij | . Moran's I with respect to W is

a functional I( \cdot ;W ) : Rn \rightarrow R defined by

I(\sansv ;W ) :=

\left(  n
n\sum 

i,j=1

Wij(vi  - \=v)(vj  - \=v)

\right)  \bigg/ \Biggl( 
w

n\sum 
i=1

(vi  - \=v)2

\Biggr) 
=

n

w

\biggl( 
\sansx \top W \sansx 

\sansx \top \sansx 

\biggr) 
,

where \sansx = \sansv  - \=v\sansone .

The most common choices of W in geography are W = A and W = P [5]. We
shall refer to any n \times n matrix that is not identically 0 as a weight matrix ; when it
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MEASURING SEGREGATION VIA ANALYSIS ON GRAPHS 83

Fig. 3. Hispanic and Black population data in the 2010 census tracts of Chicago, colored by
proportion with white corresponding to 0\% and black corresponding to 100\%. In the scatterplots,
each dot is positioned according to the share (proportion) or count (total number) of the subgroup
in that tract (x-axis) and its neighboring tracts (y-axis). Here, Moran's I is calculated with respect
to the row-standardized adjacency matrix P . (Color available online.)

is associated to geographic features (as A and P are) we will call it a spatial weight
matrix. The usual interpretation in the geography community, dating to Moran's
original work, is that for either standard choice of adjacency weights, or for weights
based on geographic distance, I(\sansv ;W ) takes higher positive values when the vi are
``spatially correlated"" in the sense that neighboring/nearby units tend to have similar
values [28]. Conversely, the standard understanding is that I is negative when neigh-
boring units tend to have very different values, and near zero when there is little or
no relationship between the values of neighboring units. The precise notion of spa-
tial correlation is therefore graph-dependent. In short, large values of I are taken to
indicate segregation and small or negative values of I indicate a lack of segregation.
This article clarifies this intuition in a precise mathematical sense through the lens of
analysis on graphs. A glossary of notation can be found in Table 1.

Remark 2.2 (Zero-centering and rescaling). It suffices to consider I on vectors
with \ell 2-norm 1 and mean 0. Let X := \{ \sansx \in Rn| \sansx \cdot \sansone = 0\} = \sansone \bot be the subspace of
vectors with mean 0. For an arbitrary \sansv \in Rn with mean value \=v, we let \sansx = \sansv  - \=v\sansone 
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84 MOON DUCHIN, JAMES M. MURPHY, AND THOMAS WEIGHILL

Table 1
Notation used throughout the paper.

Notation Definition

\scrG simple, undirected graph with n nodes

\sansv = (v1, v2, . . . , vn)
\top function on graph \scrG , denoted as a column vector

\=v mean of \sansv values

\| \sansv \| 2 Euclidean norm of \sansv 
\sanszero , \sansone vector of all 0's and 1's, respectively

\sansx = (x1, x2, . . . , xn)
\top arbitrary mean-0 vector

X = \sansone \bot space of all mean-0 vectors

\Pi orthogonal projection onto X

W arbitrary weight matrix, not identically zero
Q arbitrary bistochastic matrix (rows and columns sum to one)

A graph adjacency matrix associated to \scrG 
D diagonal vertex degree matrix associated to \scrG 
P row-standardized adjacency matrix associated to \scrG 
L Laplacian matrix associated to \scrG 
M bistochastic Metropolis--Hastings matrix associated to \scrG 
I(\sansv ;W ) Moran's I applied to vector \sansv with respect to matrix W

I(X;W ) range of all possible I values for weight matrix W

\{ (\lambda i,\Phi i)\} ni=1 eigenvalues and eigenvectors of arbitrary W
\{ (\mu i,\Psi i)\} ni=1 Laplacian eigenvalues and eigenvectors

\sansd = (d1, d2, . . . , dn) vector of W -degrees di =
\sum n

j=1 | Wij | 
d\mathrm{m}\mathrm{i}\mathrm{n}, d\mathrm{m}\mathrm{a}\mathrm{x}, d\mathrm{a}\mathrm{v}\mathrm{g} minimum, maximum, and average W -degree over i = 1, . . . , n
\{ \alpha i\} ni=1 coefficients in some orthonormal basis

\scrE Dirichlet energy functional on the graph

Tm = [0, 2\pi ]m m-dimensional torus with periodic boundaries

denote its orthogonal projection onto X. Then we immediately see for any \sansv and W
that I(\sansv ;W ) = I(\sansx ;W ) and that I(\alpha \sansv ;W ) = I(\sansv ;W ) and I(\sansv ;\alpha W ) = I(\sansv ;W ) for all
scalars \alpha \not = 0.

We will refer to the ith rowsum di =
\sum n

j=1 | Wij | as the W -degree of node i; when
W = A, this is the standard degree counting the number of edges ending at node i,
which we will call either the A-degree or simply the vertex degree, to distinguish it
from the W -weighted versions. Define davg := 1

n

\sum n
i=1 di = w/n to be the average

W -degree of the graph; note that if W = P , then di is identically 1, so davg = 1. We
have

I(\sansv ;W ) = I(\sansx ;W ) =

1
w

n\sum 
i,j=1

Wijxixj

1
n

n\sum 
i=1

x2
i

=

n\sum 
i,j=1

Wijxixj

davg

n\sum 
i=1

x2
i

.

Remark 2.3 (Pairs versus singletons). From the function \sansv , the zero-centered
\sansx records deviations above and below the mean. The score I(\sansx ;W ) measures the
patterns in these deviation values. From the second-to-last expression above, we find
an appealing interpretation of I as comparing the product of values at related nodes
(xixj) to the squared values at individual nodes (x2

i ). The pair average is spatially
weighted by the coefficients Wij . In particular, when W = A, the score I is precisely
one-half the ratio of the average product across an edge to the average squared value
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MEASURING SEGREGATION VIA ANALYSIS ON GRAPHS 85

at a vertex. When W = P , it is a different ratio: the sum of the products across
edges versus the sum of squared node values. These have subtly different properties,
as we will see below.

2.2. Moran scatter plots and linear regression. Luc Anselin, a scholar of
geography and spatial statistics, is credited with the fundamental observation that
when W is row-stochastic, such as for the row-standardized adjacency matrix P , the
definition of Moran's I can be rearranged so that it contains a regression coefficient
[5]. Let \sansu be defined coordinatewise as ui :=

\sum n
j=1 Wijvj , and denote the mean of \sansu 

by \=u. In the W = P case, this is the average of the function values at the neighbors
of i; if W encodes proximity along some dimension, then this is a weighted average.
For this reason, u is often called the (spatially) lagged variable, by analogy with
autocorrelation for time series. Moran's I then reduces to the slope of a regression of
the lagged variable (ui) on the original variable (vi), as follows:

I(\sansv ;W ) =

n\sum 
i=1

(vi  - \=v)
n\sum 

j=1

Wij(vj  - \=v)

n\sum 
i=1

(vi  - \=v)2
=

n\sum 
i=1

(vi  - \=v) \cdot (ui  - \=v)

n\sum 
i=1

(vi  - \=v)2
=

n\sum 
i=1

(vi  - \=v) \cdot (ui  - \=u)

n\sum 
i=1

(vi  - \=v)2
,

where we use the fact that
\sum n

i,j=1 Wij = 1 and
\sum n

i=1(vi  - \=v)\=v =
\sum n

i=1(vi  - \=v)\=u = 0.
We recognize the final expression as the slope of a regression of \sansu on \sansv .

A scatterplot of \sansu (spatially lagged variable) versus \sansv (original variable) has been
called a Moran scatterplot [5]. Figure 3 shows such a plot for the Hispanic and Black
populations of Chicago by census tract. Moran's I is just the slope of the best fit
line---shown in green in each plot. The positive correlation, and thus positive value
of Moran's I, is easily observable in these cases. Indeed, as the figure shows, the
Hispanic and Black populations in Chicago are both very clustered. The connection
between segregation, clustering, and graph geometry is developed in section 6.

2.3. Brief summary of prior work. We consider several related methods of
quantifying segregation; see the broad surveys [27, 12] for further details and the book
chapter [16] for an accessible introduction to I and related measures.

Moran's I, initially introduced by P.A.P. Moran, was brought into geography
during the rise of spatial analysis in the late 1940s. In 1969, Cliff and Ord presented
an influential conference paper [39] which introduced and argued for the use of al-
ternative spatial weight matrices for Moran's I, in particular W matrices based on
more than just contiguity (see [22] for a further discussion on spatial weight matri-
ces). A common use for Moran's I is as part of a significance test to see if data are
or are not spatially autocorrelated; in such cases, one compares an observed Moran's
I to its distribution under a random function \sansv on the nodes [2, 5, 8, 13]. One can
also test for spatial autocorrelation in the residuals of ordinary least squares models
[6]. Direct comparison of Moran's I values has sometimes been used in comparing
segregation levels between regions [37]; section 4.2 will suggest that this is a danger-
ous practice. Anselin introduced the Moran scatterplot in [5] as a way to visualize
Moran's I (see section 2.2). Moran scatterplots can also be useful in determining the
contribution of particular subregions to the overall value of Moran's I. This idea was
developed further as part of Anselin's local indicators of spatial association (LISA),
a class of methods which forms calculations based on the neighborhood of one node
in a network, including local Moran's I and local Geary's c [4]. Outside of geography
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86 MOON DUCHIN, JAMES M. MURPHY, AND THOMAS WEIGHILL

Moran's I has been applied in fields as diverse as epidemiology, urban planning, and
environmental studies [21].

Geographers have observed that I is sensitive to the modifiable areal unit problem ,
or MAUP [8]. Indeed, I depends quite heavily on the choice of geographic units used
(e.g., finer-scale census blocks or coarser-scale census tracts) to construct the asso-
ciated graph. As a prototype example of this phenomenon, a checkerboard pattern
has a Moran's I of roughly  - 1 (total anticorrelation) as in Figure 1. But if a simple
checkerboard is aggregated so that its 2\times 2 regions become the new units of analysis,
then the distribution becomes roughly uniform and Moran's I is roughly 0 (no corre-
lation). When choosing units for analysis, the scale and placement of the units will
impact all the measurable properties of the region, including the value of Moran's I.
On the other hand, there has been considerable development of multiscale graph sig-
nal processing tools [41, 34] that allow for multiscale partitions of data-driven graphs
using diffusion processes, wavelets, and neural networks; these are potentially inter-
esting tools to capture notions of segregation across spatial scales. We will address
the choice of units in real examples throughout the present paper.

The spatial statistics literature contains numerous examples interpreting Moran's
I in linear algebraic terms, as we do here. This has been used to provide a framework
for regression modeling [23, 44] and other statistical analysis [13, 43]. Linear algebra
is particularly relevant in the context of statistical testing [43] where the goal is to
understand, for a given weight matrix W and function \sansv on the nodes, whether \sansv is
more segregated in a statistically significant sense than would be expected under a
null model. That is, does I(\sansv ;W ) deviate significantly from E(I( \cdot ;W )), where the
expectation is taken over a suitable null model of vectors \sansv ? For example, under the
model of no spatial correlation in the graph, where node values are randomly sampled
independently from each other, Moran himself observed that E(I( \cdot ;W )) =  - 1/(n - 1)
[28]. Distributions around the mean are given in some cases in terms of spectral
properties of the graph [43].

In contrast to the static characterization of segregation captured by I---namely
that I \gg 0 indicates segregation---the Schelling model provides a dynamical perspec-
tive for segregation on graphs [38]. In this model, every node on a network has a
label (e.g., the membership in a demographic group), and the network evolves ran-
domly in time as nodes change their label with a propensity towards being similar to
their neighbors. The degree of homophily is a model parameter and quantifies how
much nodes want to have the same labels as their neighbors. One expects a net-
work with high homophily to converge in the limit to a more segregated pattern than
one with low homophily. The Schelling model---which bears a family resemblance
to models of ferromagnetism in statistical physics such as the Ising model [25]---has
been generalized to characterize complex segregation dynamics on extremely regular
networks (e.g., hexagonal lattices) [9, 48]. The perspective taken by this literature
is to determine the basic properties of the steady-state distribution of the dynamics
(e.g., whether large homogeneous regions emerge, depending on the homophily or re-
lated parameters) rather than how the underlying network geometry and population
distribution impact the dynamics.

Network assortativity [29, 30] was developed in network science to measure the
propensity of like nodes to connect to one another, by counting the proportion of edges
that link similarly labeled nodes and comparing that to the number expected under a
null hypothesis of no special preference. As with I, assortativity scores are influenced
by the degree distribution of the network and the underlying sizes of the populations
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MEASURING SEGREGATION VIA ANALYSIS ON GRAPHS 87

being measured [31]. Previous work by Alvarez et al. [3] has generalized this to the
setting that node properties can be real-valued rather than discrete, and the authors
construct generalized assortativity scores called clustering propensity (or capy) scores
that have linear algebra definitions similar to the ones that will be discussed in the
present paper. Based on the observation (Remark 2.2) that I is invariant under
translation and rescaling, Alvarez et al. also note that interpretations of I become
risky when comparing datasets with different variances, and that the interpretation
is particularly noisy when a population is near uniform. To give a stylized example,
consider a city where the east side is 100\% Hispanic and the west side is 0\% Hispanic
and another city where every east side tract is 51\% Hispanic while every west side
tract is 49\% Hispanic. To an observer, it would be obvious that the first city is far
more segregated than the second, but Moran's I sees no difference at all. Indeed, I
can take any value at all when node values are all between \=v  - \epsilon and \=v + \epsilon , even for
very small \epsilon . We will return to the question of scale-sensitivity in the discussion of
future directions presented in the conclusion.

3. Spectral graph interpretation. In interpreting the values taken by I, it is
essential to understand how the graph itself determines the range of achievable values.
In this section we will show that when W is symmetric, I( \cdot ;W ) achieves maximum
and minimum values at generalized eigenvectors for the pair (\Pi W\Pi ,\Pi ), i.e., solutions
to the equation \Pi W\Pi \sansv = \lambda \Pi \sansv , where \Pi is the orthogonal projection onto X. When
the weight matrix is symmetric and has constant rowsum, this reduces to a standard
eigenvalue problem.

Definition 3.1 (Rayleigh quotient). For W \in Rn\times n and \sansv \in Rn\times 1, the Rayleigh

quotient is R(\sansv ;W ) := \sansv \top W \sansv 
\sansv \top \sansv 

.

It is a standard linear algebra fact that when W is symmetric, the functions \sansv that
realize extreme values of R(\sansv ;W ) are the eigenvectors corresponding to the smallest
and largest eigenvalues of W [24]. That is, if W has eigenvalues \lambda 1 \geq \cdot \cdot \cdot \geq \lambda n and
corresponding eigenvectors \Phi 1, . . . ,\Phi n, then

min
\sansv \not =0

\sansv \top W \sansv 

\sansv \top \sansv 
= \lambda n, max

\sansv \not =0

\sansv \top W \sansv 

\sansv \top \sansv 
= \lambda 1,

and those extreme values are realized in the eigenspaces corresponding to \lambda n and \lambda 1,
respectively. This means that the \sansv realizing extreme values are determined up to
scaling when the extreme eigenvalues are simple (multiplicity one). As we will see
below, I is in general not quite a Rayleigh quotient, but close enough to allow us to
analyze it in terms of generalized eigenvalues.

3.1. Bounds with adjacency weights. When W = A, the standard adjacency
matrix of an undirected, simple (no self-loops) graph, a range of properties of the graph
can be inferred from the spectrum of A. Recall that a graph is d-regular if di = d for
all i. Equivalently, a graph \scrG is d-regular iff \sansone is an eigenvector of A with eigenvalue
d. To emphasize that eigenvalues of A (not necessarily regular) encode connectivity
facts about the graph or network \scrG , we record some standard facts from [11]. In
these statements we refer to the A-degrees of vertices, which are the standard vertex
degrees of the graph. Recall that a graph is called bipartite if there are two disjoint
sets A,B \subset V (\scrG ) such that all edges of \scrG have one endpoint in each set.

\bullet \sum n
i=1 \lambda i = 0,

\sum n
i=1 \lambda i

2 = ndavg, and
\sum n

i=1 \lambda i
3 = 6t, for t the number of

triangles in \scrG .
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88 MOON DUCHIN, JAMES M. MURPHY, AND THOMAS WEIGHILL

\bullet \lambda 1 \leq dmax := maxi di, the largest degree of any vertex, with equality iff \scrG is
regular.

\bullet | \lambda i| \leq \lambda 1 for all i, and \scrG is connected iff \lambda 2 < \lambda 1.
\bullet If \scrG is bipartite, then the eigenvalues are symmetric: \lambda i =  - \lambda n+1 - i for all i.
\bullet If \scrG is not bipartite, then | \lambda n| < \lambda 1.
These fundamental facts from spectral graph theory immediately yield bounds on

I(\cdot ;A) and I(\cdot ;P ).

Theorem 3.2 (I bounds for general graphs with adjacency weights). Let A be
the adjacency matrix of an undirected graph \scrG , with eigenvalues \lambda 1 \geq \cdot \cdot \cdot \geq \lambda n. Let
dmin, davg, dmax be the minimum, average, and maximum vertex degree (i.e., A-degree)
of \scrG , and let P be the row-standardized adjacency matrix described above.

(a) The range of possible I values satisfies I(X;A) \subseteq 
\Bigl[ 

\lambda n

d\mathrm{a}\mathrm{v}\mathrm{g}
, \lambda 1

d\mathrm{a}\mathrm{v}\mathrm{g}

\Bigr] 
\subseteq 
\Bigl[ 
 - d\mathrm{m}\mathrm{a}\mathrm{x}

d\mathrm{a}\mathrm{v}\mathrm{g}
, d\mathrm{m}\mathrm{a}\mathrm{x}

d\mathrm{a}\mathrm{v}\mathrm{g}

\Bigr] 
and I(X;P ) \subseteq 

\Bigl[ 
\lambda n

d\mathrm{m}\mathrm{i}\mathrm{n}
, \lambda 1

d\mathrm{m}\mathrm{i}\mathrm{n}

\Bigr] 
\subseteq 
\Bigl[ 
 - d\mathrm{m}\mathrm{a}\mathrm{x}

d\mathrm{m}\mathrm{i}\mathrm{n}
, d\mathrm{m}\mathrm{a}\mathrm{x}

d\mathrm{m}\mathrm{i}\mathrm{n}

\Bigr] 
. Note that the bounds for P are

still in terms of the eigenvalues and degrees of A.

(b) If \scrG is irregular and not bipartite, I(X;A) (
\Bigl( 
 - d\mathrm{m}\mathrm{a}\mathrm{x}

d\mathrm{a}\mathrm{v}\mathrm{g}
, d\mathrm{m}\mathrm{a}\mathrm{x}

d\mathrm{a}\mathrm{v}\mathrm{g}

\Bigr) 
.

Proof. To see (a), note that

\lambda n

davg
= min

\sansv \not =\sanszero 

1

davg

\sansv \top A\sansv 
\sansv \top \sansv 

\leq min
\sansx \not =\sanszero ,\sansx \bot \sansone 

1

davg

\sansx \top A\sansx 

\sansx \top \sansx 
= min I(X;A).

The upper bound is similar. To see the inclusion for I(X;P ), note that

min
\sansv \not =\sanszero 

\sansv \top P \sansv 

\sansv \top \sansv 
=min

\sansv \not =\sanszero 

\sansv \top D - 1A\sansv 

\sansv \top \sansv 
= min

\sansv \not =\sanszero 

\sansv \top D - 1/2(D - 1/2AD1/2)D - 1/2\sansv 

\sansv \top \sansv 

=min
\sansv \not =\sanszero 

(D - 1/2\sansv )
\top 
(D - 1/2AD1/2)(D - 1/2\sansv )

\sansv \top \sansv 
= min

\sansu \not =\sanszero 

\sansu \top (D - 1/2AD1/2)\sansu 

\sansu \top D\sansu 
,

where in the last equality we simply make the change of variables \sansu = D - 1/2\sansv . Now,
because D is diagonal with smallest entry dmin, we have 0 \leq dmin\sansu 

\top \sansu \leq \sansu \top D\sansu . More-
over, D - 1/2AD1/2 is symmetric and similar to A; hence it has the same eigenvalues
as A which lie in the range [ - dmax, dmax]. We conclude that

 - dmax

dmin
\leq \lambda n

dmin
\leq min

\sansv \not =\sanszero 

\sansv \top P \sansv 

\sansv \top \sansv 
\leq min

\sansx \not =\sanszero ,\sansx \bot \sansone 

\sansx \top P \sansx 

\sansx \top \sansx 
= min I(X;P ).

The upper bound is similar.
To see (b), note that the upper bound follows from (a) and observing that \lambda 1 \leq 

dmax, with equality iff \scrG is regular (in which case dmax = davg). The lower bound
follows similarly, since nonbipartiteness gives \lambda n >  - \lambda 1 >  - dmax.

We note that nonbipartiteness is easily observed visually on the graphs of interest
in geographic applications by the presence of at least one triangle, and that the real-
world graphs are never exactly regular.

While the proof of Theorem 3.2 suggests the eigenvectors \Phi 1 and \Phi n as candidate
maximizers and minimizers of I, respectively, we shall see that the projection onto
X complicates matters when the graph is not regular, and requires us to pass to
generalized eigenvectors (Theorem 3.4).

To test the sharpness of the bounds, we can look at three graphs based on real
data from Georgia: the graphs dual to blocks, block groups, and counties that are
depicted in Figure 2. Results are summarized in Table 2.
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Table 2
Values of I(\cdot ;A) and I(\cdot ;P ) achievable on Georgia dual graphs from Figure 2, to four decimal

places. We see that the degree bounds from Theorem 3.2 can be far from the eigenvalue bounds
when d\mathrm{m}\mathrm{i}\mathrm{n} \ll d\mathrm{a}\mathrm{v}\mathrm{g} \ll d\mathrm{m}\mathrm{a}\mathrm{x}. Note that there are very high-degree nodes in the block graph; these
typically occur when large blocks within bodies of water are adjacent to high numbers of coastal
blocks. The true range of achievable I values is obtained by numerically solving the generalized
eigenvalue problem for A, as in Theorem 3.4, or by the Lagrange multiplier method for P described
in Remark 3.7. The eigenvalue bounds for P are not tight because the estimate that divides by d\mathrm{m}\mathrm{i}\mathrm{n}

is far from sharp, and these graphs all have leaves (d\mathrm{m}\mathrm{i}\mathrm{n} = 1).

10 MOON DUCHIN, JAMES M. MURPHY, AND THOMAS WEIGHILL

To see (b), note that the upper bound follows from (a) and observing that \lambda 1 \leq 
dmax, with equality iff \scrG is regular (in which case dmax = davg). The lower bound
follows similarly, since non-bipartiteness gives \lambda n >  - \lambda 1 >  - dmax.

We note that non-bipartiteness is easily observed visually on the graphs of interest
in geographic applications by the presence of at least one triangle, and that the real-
world graphs are never exactly regular.

While the proof of Theorem 3.2 suggests the eigenvectors \Phi 1 and \Phi n as candidate
maximizers and minimizers of I, respectively, we shall see that the projection onto
X complicates matters when the graph is not regular, and requires us to pass to
generalized eigenvectors (Theorem 3.4).

Table 2
Values of I(\cdot ;A) and I(\cdot ;P ) achievable on Georgia dual graphs from Figure 2, to four decimal

places. We see that the degree bounds from Theorem 3.2 can be far from the eigenvalue bounds
when dmin \ll davg \ll dmax. Note that there are very high-degree nodes the block graph; these
typically occur when large blocks within bodies of water are adjacent to high numbers of coastal
blocks. The true range of achievable I values is obtained by numerically solving the generalized
eigenvalue problem for A, as in Theorem 3.4, or by the Lagrange multiplier method for P described
in Remark 3.7. The eigenvalue bounds for P are not tight because the estimate that divides by dmin

is far from sharp, and these graphs all have leaves (dmin = 1).

blocks block groups counties
\# nodes 291,086 5,533 159
\# edges 1,393,216 15,344 418

dmin < davg < dmax 1 < 9.5725 < 92 1 < 5.5464 < 16 1 < 5.2579 < 10
A P A P A P

deg. bounds ( - 9.6108, 9.6108) ( - 92, 92) ( - 2.8848, 2.8848) ( - 16, 16) ( - 1.9019, 1.9019) ( - 10, 10)

eig. bounds ( - 1.0957, 1.4486) ( - 10.4886, 13.8669) ( - 0.6978, 1.1554) ( - 3.8702, 6.4079) ( - 0.5849, 1.1151) ( - 3.0751, 5.8629)

true I range ( - 1.0957, 1.4475) ( - 1.1007, 1.2249) ( - 0.6978, 1.1526) ( - .7510, 1.0326) ( - 0.5845, 1.0763) ( - .7673, 1.0260)

To test the sharpness of the bounds, we can look at three graphs based on real
data from Georgia: the graphs dual to blocks, block groups, and counties that are
depicted in Figure 2. Results are summarized in Table 2.

This shows that it is possible for I to fall outside of the [ - 1, 1] range on a realistic
graph; later, we will see that in fact the values of I with respect to A and P can get
arbitrarily large (positive or negative) when the degree disparity is exaggerated. Note
that these examples contradict what seems to be the prevailing understanding of the
behavior of I(\cdot ;P ) in the geography community, where it is said that | I(\sansv ;P )| \leq 1
for all vectors \sansv .1 Presumably this belief can be traced to the fact that, for arbitrary
graphs \scrG , the vertices have P -degree one and the eigenvalues of P fall in [ - 1, 1],
``fixing"" the fact that the A-degrees may be non-constant and the eigenvalues of A
may be large. However, we know of no way to bound I(\cdot ;P ) in terms of the eigenvalues
of P ; our spectral analysis for P depends on the eigenvalues of A.

In contrast, the extremal behavior of I over X is straightforward when the un-
derlying graph is regular, and a statement similar to the previous theorem becomes
sharp.

Theorem 3.3 (I bounds for regular graphs with adjacency weights). Let A be
the adjacency matrix of an undirected, d-regular graph \scrG , with row-standardization
P = 1

dA. Let d = \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot \geq \lambda n be the eigenvalues of A with associated

1For instance, this is a stated reason to use W = P in the user guide material for ArcGIS [1],
the dominant spatial statistics software package, which states that ``In general, the Global Moran's
Index is bounded by  - 1.0 and 1.0. This is always the case when your weights are row standardized.""
And later: ``Row standardized weighting is often used with fixed distance neighborhoods and almost
always used for neighborhoods based on polygon contiguity. This is to mitigate bias due to features
having different numbers of neighbors.""

This shows that it is possible for I to fall outside of the [ - 1, 1] range on a realistic
graph; later, we will see that in fact the values of I with respect to A and P can get
arbitrarily large (positive or negative) when the degree disparity is exaggerated. Note
that these examples contradict what seems to be the prevailing understanding of the
behavior of I(\cdot ;P ) in the geography community, where it is said that | I(\sansv ;P )| \leq 1
for all vectors \sansv .1 Presumably this belief can be traced to the fact that, for arbitrary
graphs \scrG , the vertices have P -degree one and the eigenvalues of P fall in [ - 1, 1],
``fixing"" the fact that the A-degrees may be nonconstant and the eigenvalues of A may
be large. However, we know of no way to bound I(\cdot ;P ) in terms of the eigenvalues
of P ; our spectral analysis for P depends on the eigenvalues of A.

In contrast, the extremal behavior of I over X is straightforward when the un-
derlying graph is regular, and a statement similar to the previous theorem becomes
sharp.

Theorem 3.3 (I bounds for regular graphs with adjacency weights). Let A be
the adjacency matrix of an undirected, d-regular graph \scrG , with row-standardization
P = 1

dA. Let d = \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot \geq \lambda n be the eigenvalues of A with associated
eigenvectors \Phi 1,\Phi 2, . . . ,\Phi n. Then

(a) I(X;A) = [I(\Phi n;A), I(\Phi 2;A)] \subseteq [ - 1, 1];
(b) I(\Phi 2;A) = 1 iff \scrG is disconnected;
(c) I(\Phi n;A) =  - 1 iff \scrG is bipartite.

Since A is just a scalar multiple of P in the regular case, the same bounds and
equalities hold for I(\cdot ;P ).

Proof. Theorem 3.2 gives I(X;A) \subseteq [ - 1, 1] after noting that \lambda 1 \leq dmax and
\lambda n \geq  - \lambda 1. To finish (a), first note that if A is the adjacency matrix of a d-regular
graph, then \Phi 1 = \sansone . By the Courant--Fischer--Weyl min-max principle [24],

\Phi 2 \in argmax
\sansv \not =\sanszero ,\sansv \bot \Phi 1

\sansv \top A\sansv 

\| \sansv \| 22
= argmax

\sansv \not =\sanszero ,\sansv \bot \sansone 

\sansv \top A\sansv 

\| \sansv \| 22
= argmax

\sansv \not =0
I(\sansv ;A).

1For instance, this is a stated reason to use W = P in the user guide material for ArcGIS [1],
the dominant spatial statistics software package, which states that ``In general, the Global Moran's
Index is bounded by  - 1.0 and 1.0. This is always the case when your weights are row standardized.""
And later: ``Row standardized weighting is often used with fixed distance neighborhoods and almost
always used for neighborhoods based on polygon contiguity. This is to mitigate bias due to features
having different numbers of neighbors.""
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The other bound follows from noting that \Phi n \bot \Phi 1, giving

argmin
\sansv \not =\sanszero ,\sansv \bot \sansone 

\sansv \top A\sansv 

\| \sansv \| 22
= argmin

\sansv \not =\sanszero 

\sansv \top A\sansv 

\| \sansv \| 22
\ni \Phi n.

For (b), note that max\sansv \not =0 I(\sansv ;A) =
\lambda 2

d \leq \lambda 1

d . The Perron--Frobenius theorem gives
\lambda 2 = \lambda 1 = d iff \scrG is disconnected [24].

To see (c), we use min\sansv \not =0 I(\sansv ;A) =
\lambda n

d . Perron--Frobenius gives  - \lambda n \leq \lambda 1 = d,
with equality iff A is bipartite.

3.2. Analysis for symmetric weight matrices. In preparation for proposing
alternatives for the spatial weight matrix W , we now provide an analysis for arbitrary
symmetric matrices. When the graph is regular, its adjacency matrix A has \sansone as
the eigenvector with largest eigenvalue. This makes projection onto X = \sansone \bot interact
nicely with spectral analysis. For general graphs, we will handle the projection more
carefully.

Let \Pi = I - 1
n\sansone \sansone 

\top denote the orthogonal projection onto X, i.e., \Pi \sansv = \sansv  - \=v\sansone = \sansx .
Noting that \Pi \Pi \top = \Pi 2 = \Pi , we have

I(\sansv ;W ) =
\sansv \top \Pi W\Pi \sansv 

\sansv \top \Pi \sansv 
.

This is no longer a Rayleigh quotient, but rather a generalized Rayleigh quotient . Since
\Pi is singular, having \sansone in its kernel, I(\sansv ;W ) cannot be reduced to a standard Rayleigh
quotient via \Pi  - 1

2 . Instead, one can use the theory of generalized eigenvalues for the
matrix pair (A,B), i.e., solutions to A\sansv = \lambda B\sansv [46, 36]. In our case we will consider the
generalized spectrum \{ (\lambda i,\Phi i)\} n - 1

i=1 of nonconstant \Phi i satisfying \Pi W\Pi \Phi i = \lambda i\Pi \Phi i.
Since W and \Pi and thus A = \Pi W\Pi are symmetric and B = \Pi is positive semidefinite,
the generalized eigenvalues are real, and the eigenvectors can be chosen to satisfy
(\Pi \Phi i)

\top 
\Pi \Phi j = \Phi \top 

i \Pi \Phi j = 0, i \not = j, and (\Pi \Phi i)
\top 
\Pi \Phi i = \Phi \top 

i \Pi \Phi i = 1. This means
that the vectors are orthonormal after projection, so we will say such generalized
eigenvectors are \Pi -orthonormal . Using the fact that \sansone is orthogonal to each \Pi \Phi i, we
get the following diagonalization-style statement for I.

Theorem 3.4 (Spectral interpretation of I for symmetric weight matrices). Let
W be a symmetric n \times n weight matrix, and let \{ (\lambda i,\Phi i)\} n - 1

i=1 be \Pi -orthonormal
generalized eigenvectors for the pair (\Pi W\Pi ,\Pi ). Then for all nonzero \sansv \in Rn\times 1,

(a) \sansv =
\Bigl( \sum n - 1

i=1 \alpha i\Pi \Phi i

\Bigr) 
+ \=v\sansone for some coefficients \{ \alpha i\} n - 1

i=1 ;

(b) I(\sansv ;W ) =
\sum n - 1

i=1 \alpha 2
i\lambda i

\big/ \sum n - 1
i=1 \alpha 2

i .

Proof. The result in (a) follows immediately from the \Pi -orthogonality of \{ \Phi i\} n - 1
i=1

and the fact that \sansone generates the kernel of \Pi . Note that this could be done either
on the left or on the right in the nonsymmetric case, but is unambiguous since W is
symmetric.

To see (b), we compute

I(\sansv ;W ) =
\sansv \top \Pi W\Pi \sansv 

\sansv \top \Pi \sansv 
=

\Biggl( 
n - 1\sum 
i=1

\alpha i\Pi \Phi i + \=v\sansone 

\Biggr) \top 

\Pi W\Pi 

\Biggl( 
n - 1\sum 
i=1

\alpha i\Pi \Phi i + \=v\sansone 

\Biggr) 
\Biggl( 

n - 1\sum 
i=1

\alpha i\Pi \Phi i + \=v\sansone 

\Biggr) \top 

\Pi 

\Biggl( 
n - 1\sum 
i=1

\alpha i\Pi \Phi i + \=v\sansone 

\Biggr) 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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=

\Biggl( 
n - 1\sum 
i=1

\alpha i\Pi 
2\Phi i + \=v\Pi \sansone 

\Biggr) \top 

W

\Biggl( 
n - 1\sum 
i=1

\alpha i\Pi 
2\Phi i + \=v\Pi \sansone 

\Biggr) 
\Biggl( 

n - 1\sum 
i=1

\alpha i\Pi \Phi i + \=v\sansone 

\Biggr) \top \Biggl( n - 1\sum 
i=1

\alpha i\Pi 
2\Phi i + \=v\Pi \sansone 

\Biggr) 

=

\Biggl( 
n - 1\sum 
i=1

\alpha i\Pi \Phi i

\Biggr) \top 

W

\Biggl( 
n - 1\sum 
i=1

\alpha i\Pi \Phi i

\Biggr) 
\Biggl( 

n - 1\sum 
i=1

\alpha i\Pi \Phi i + \=v\sansone 

\Biggr) \top \Biggl( n - 1\sum 
i=1

\alpha i\Pi \Phi i

\Biggr) =

\Biggl( 
n - 1\sum 
i=1

\alpha i\Phi i

\Biggr) \top \Biggl( n - 1\sum 
i=1

\alpha i\Pi W\Pi \Phi i

\Biggr) 
\Biggl( 

n - 1\sum 
i=1

\alpha i\Phi i

\Biggr) \top \Biggl( n - 1\sum 
i=1

\alpha i\Pi \Phi i

\Biggr) 

=

\Biggl( 
n - 1\sum 
i=1

\alpha i\Phi i

\Biggr) \top \Biggl( n - 1\sum 
i=1

\alpha i\lambda i\Pi \Phi i

\Biggr) 
n - 1\sum 
i,j=1

\alpha i\alpha j\Phi 
\top 
i \Pi \Phi j

=

n - 1\sum 
i,j=1

\alpha i\alpha j\lambda i\Phi 
\top 
i \Pi \Phi j

n - 1\sum 
i,j=1

\alpha i\alpha j\Phi 
\top 
i \Pi \Phi j

=

n - 1\sum 
i=1

\alpha 2
i\lambda i

n - 1\sum 
i=1

\alpha 2
i

.

By the usual scale-invariance, Theorem 3.4 allows us to understand the behavior of
I just considering

\sum n - 1
i=1 \alpha 2

i\lambda i when
\sum n - 1

i=1 \alpha 2
i = 1. Theorem 3.4 says, in other words,

that I values are precisely the convex combinations of the generalized eigenvalues.
Since \{ \Pi \Phi i\} n - 1

i=1 is an orthonormal basis for X, this is analogous to the classical
spectral analysis of the Rayleigh quotient.

We note that the generalized eigenpairs of (\Pi W\Pi ,\Pi ) can be put in correspondence
with those of \Pi W\Pi as follows.

Lemma 3.5. Let W be a symmetric matrix.

(a) If (\lambda ,\Phi ) is an eigenpair of (\Pi W\Pi ,\Pi ), then (\lambda ,\Pi \Phi ) is an eigenpair of \Pi W\Pi .
(b) If (\lambda ,\Phi ) is an eigenpair of \Pi W\Pi , then (\lambda ,\Phi ) is an eigenpair of (\Pi W\Pi ,\Pi ).

Proof. To see (a), note that \Pi 2 = \Pi and thus \Pi W\Pi (\Pi \Phi ) = \Pi W\Pi \Phi = \lambda \Pi \Phi . To
see (b), note that \Pi W\Pi \Phi = \lambda \Phi implies \Pi 2W\Pi \Phi = \lambda \Pi \Phi . Again, \Pi 2 = \Pi and the
result follows.

Corollary 3.6 (Extreme values of I). When W is symmetric, the minimum
and maximum values of I(\cdot ;W ) are the smallest and largest generalized eigenvalues
of (\Pi W\Pi , \Pi ), respectively, and are achieved at the corresponding generalized eigen-
vectors.

Suppose additionally that W has constant rowsum k, i.e., the graph is k-regular
with respect to W -degree. Then the eigenvectors of W are equal to the generalized
eigenvectors of (\Pi W\Pi ,\Pi ). The eigenvalues agree except possibly for the eigenvalue
associated to \sansone , which is k for W and zero for the generalized problem.

Proof. The observation that I values are convex combinations establishes that
the extremes are realized at the largest and smallest generalized eigenvalues. Next,
we note that W\sansone = k\sansone while \Pi W\Pi \sansone = \sanszero , which establishes the last statement.

Now consider \sansx \in X. From Theorem 3.4, we can express \sansx in the eigenbasis
\{ (\lambda i,\Phi i)\} n - 1

i=1 that spans X, and we note that \Pi is the identity on X, so it preserves
\sansx and W \sansx . This gives us

W \sansx = \lambda \sansx \Leftarrow \Rightarrow W\Pi \sansx = \lambda \Pi \sansx \Leftarrow \Rightarrow \Pi W\Pi \sansx = \lambda \Pi \sansx ,

identifying the eigenvectors with the generalized eigenvectors, as needed.
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92 MOON DUCHIN, JAMES M. MURPHY, AND THOMAS WEIGHILL

Remark 3.7 (Extension to I(\cdot ;P )). The matrix P is not symmetric, so the
above orthogonal decomposition does not apply (in particular, the left and right
eigenvectors of P are different). However, the variational problem of minimizing

or maximizing \sansv \top \Pi P\Pi \sansv 
\sansv \top \Pi \sansv 

over the space of nonzero vectors reduces, by scale-invariance,
to the constrained optimization of \sansv \top \Pi P\Pi \sansv subject to the constraint that \sansv \top \Pi \sansv = 1.
This has associated Lagrangian function \sansv \top \Pi P\Pi \sansv + \zeta (\sansv \top \Pi \sansv  - 1) for some scalar \zeta .
The \sansv -derivative of the Lagrangian is \sansv \top \Pi (P + P\top )\Pi + \zeta (2\sansv \top \Pi ). Setting equal to

0, we see \sansv \top \Pi P\Pi \sansv 
\sansv \top \Pi \sansv 

is maximized and minimized at the generalized eigenvectors of
( 12\Pi (P + P\top )\Pi ,\Pi ) corresponding to the extreme eigenvalues.

4. Comparing I within and across graphs. Theorem 3.4 gives us tools to
study the question of what kinds of vectors \sansv 1, \sansv 2 have I(\sansv 1;W ) \approx I(\sansv 2;W ). We
consider two cases: | I| \gg 0 and | I| \approx 0. We will continue to suppose that vectors are
scaled so that \sansx = \sansv  - \=v\sansone has \ell 2-norm 1, i.e.,

\sum n - 1
i=1 \alpha 2

i = 1, and we let the generalized
eigenvalues of (\Pi W\Pi ,\Pi ) be \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot \geq \lambda n - 1.

4.1. Analysis when | I| \gg 0. We first consider I(\sansv ;W ) \gg 0. Since we can
assume

\sum n - 1
i=1 \alpha 2

i = 1, we have I(\sansv ;W ) =
\sum n - 1

i=1 \alpha 2
i\lambda i. So, I(\sansv ;W ) is large iff most of

the coefficient energy in (\alpha 1, . . . , \alpha n - 1) is localized towards the lowest-indexed values
(corresponding to largest eigenvalues).

To study large I, let us write \beta i = \alpha 2
i ; then we can express the zero-centered

vectors with I \geq \lambda as

X+(\lambda ) =

\Biggl\{ 
\sansx =

n - 1\sum 
i=1

\sqrt{} 
\beta i\Pi \Phi i

\bigm| \bigm| \bigm| \bigm| n - 1\sum 
i=1

\beta i = 1, \beta i \geq 0,
n - 1\sum 
i=1

\beta i\lambda i \geq \lambda 

\Biggr\} 
.

In the generic case that \lambda 1 is simple, we have X+(\lambda 1) = \{ \Pi \Phi 1\} . Clearly X+(\lambda ) \subseteq 
X+(\lambda \prime ) when \lambda \geq \lambda \prime and X+(\lambda ) ={\O} for \lambda > \lambda 1.

The expression for X+(\lambda ) can be understood geometrically as a portion of the
standard simplex

\sum 
\beta i = 1, \beta i > 0, to one side of the hyperplane

\sum 
\beta i\lambda i = \lambda . In

high dimensions, most of the mass of the simplex concentrates away from the vertices
[35], which implies that the volume of X+(\lambda ) is small for \lambda \approx \lambda 1. In particular, if
\lambda is large, any \sansx \in X+(\lambda ) will need to have a large portion of its coefficient energy
coming from the \Pi \Phi i with largest eigenvalues. In the case that there is a significant
spectral gap (\lambda 1 \gg \lambda 2), then the coefficient energy needs to localize on \Pi \Phi 1.

A consequence of the concentration of X+(\lambda ) for \lambda close to \lambda 1 is that distinct
\sansx , \sansx \prime \in X+(\lambda ) share certain qualitative properties when \lambda is close to \lambda 1. Indeed, under
mild assumptions (see section 6), the largest eigenvectors correspond to clustered
patterns in the data. If there is a spectral gap, then a single clustered pattern must
dominate for \lambda large enough. See Figure 4 for a visualization, showing conversely that
with a small spectral gap, many different clustered patterns can achieve the same high
I scores.

The same arguments apply to sublevel sets X - (\lambda ) when \lambda \approx \lambda n - 1. In the case
of irregular graphs, the interpretation of the eigenvectors of (\Pi W\Pi ,\Pi ) with small-
est eigenvalues is more difficult [15], but one could qualitatively comment that they
capture (localized) checkerboard patterns, as in Figure 4.

4.2. Analysis when | I| \approx 0. On the other hand, the \sansx with I(W ; \sansx ) \in ( - \epsilon , \epsilon )
need not have any meaningful qualitative properties in common, even as \epsilon \rightarrow 0+.
The constraint that I lie in ( - \epsilon , \epsilon ) does not imply that the energy of the coefficients
(\alpha 1, \alpha 2, . . . , \alpha n - 1) must localize on specific indices. If I(\sansx ;W ) \approx 0, then there must

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/2

9/
23

 to
 1

30
.6

4.
14

.1
59

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



MEASURING SEGREGATION VIA ANALYSIS ON GRAPHS 93

Fig. 4. The maximum I(\sansv ;A) value on this graph is \approx 1.1034, and there are several eigenvectors
yielding I > 1 with respect to A; in particular there is not a large spectral gap between \lambda 1 and \lambda 2.
This means that visibly different cluster patterns can realize the same I value, even when it is quite
close to the maximum. The two functions in the middle row both realize I(\sansv ;A) = 0, but they are
qualitatively rather different: the one on the left is close to spatially uncorrelated, while the one on
the right is a linear combination of a cluster pattern with a localized checkerboard. The bottom row
shows two functions with I(\sansv ;A) =  - .5, reasonably close to the minimum of  - .5983, both exhibiting
something like a ``localized checkerboard"" pattern.

be coefficients that place energy on both positive and negative eigenvalues, so that
\sansx could show some cluster structure or some localized checkerboarding, or appear
spatially uncorrelated (recall that the expected value of I(\cdot ;A) is  - 1

n - 1 under a
spatially uncorrelated random model, giving values near zero for large graphs). See
Figure 4 for two qualitatively very different functions, both with I = 0.

5. Overview of choices of \bfitW . The choice of spatial weight matrix W can
have a major impact on the interpretability of I. We now overview and compare four
choices of W for use in Moran's I.

Definition 5.1 (Alternative spatial weight matrices). Given a graph \scrG , let D
be the diagonal matrix given by Dii as the ith vertex degree. Then we will consider
the following matrices:

\bullet W = A, the standard adjacency matrix;
\bullet W = P , the row-standardization P = D - 1A;
\bullet W = L, the unnormalized graph Laplacian L = D  - A; and
\bullet W = M , the doubly-stochastic matrix defined by

Mij =

\Biggl\{ 
Aij/max(Dii, Djj), i \not = j,

1 - \sum k \not =i Mik, i = j.

The Laplacian is a ubiquitous choice of matrix associated to a graph that encodes
its geometry and topology, so it is a natural choice here. In section 7, we will motivate
M as a doubly-stochastic approximation to A, which will provide both nice numerical
properties and an appealing random-walk interpretation. To see that M is indeed
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94 MOON DUCHIN, JAMES M. MURPHY, AND THOMAS WEIGHILL

Fig. 5. These hexagonal graphs are 6-regular except on the boundary. Depending on the spatial
weight matrix, the extremizers can differ, particularly in the extent to which the lower-degree vertices
along the boundary are reflected in the pattern. (The classical eigenvectors of A are shown to the
left for comparison.) In particular, the minimizer of I(\cdot ;L) and maximizer of I(\cdot ;M) are less
impacted by low-degree nodes than the maximizer of I(\cdot ;A).

doubly-stochastic, i.e., has rows and columns summing to one, note that the off-
diagonals are defined symmetrically in i and j. Since the diagonal entries are defined
to make the rows sum to one, the columns must sum to one as well.

While A, L, and M are symmetric, P is not, but it can often be handled by
similar techniques, as we saw in Remark 3.7. Extremizing I amounts to solving a
standard eigenvalue problem on L and M , and a generalized eigenvalue problem on
A and P . (See Corollary 3.6.)

Remark 5.2 (Vertex-regular case). These spectra, and the I scores, will differ in
general across the choice of weight matrix. However, in the case of d-regular graphs,
P is symmetric, and P = M = 1

dA. The vertex degree matrix is D = d \cdot I, so that
L = d\cdot I  - A and the spectra are related by \mu i = d - \lambda i for each i. In particular,

I(\sansx ;A) =
1

d
\cdot \sansx 

\top A\sansx 
\sansx \top \sansx 

=
1

d
\cdot \sansx 

\top (dI +A - dI)\sansx 

\sansx \top \sansx 
= 1 - 1

d
\cdot \sansx 

\top L\sansx 
\sansx \top \sansx 

= 1 - 2 \cdot I(\sansx ;L),

so the I scores for A,P,M are equal and compare to L by a precise affine relationship.

Though this relationship will not be exact for general graphs, it helps translate
the conventional wisdom of anticorrelation, noncorrelation, and clustering to I(\cdot ;L)
values of roughly 1, 1/2, and 0, respectively---in particular, lower values of I are more
segregated when the spatial weight matrix is the Laplacian.

5.1. Comparison on families of graphs. In sections 6 and 7, we explore the
different mathematical connections and interpretations made possible by using L or
M instead of the more traditional A or P . First, we empirically compare I(\cdot ;W ) for
the different spatial weight matrices. We compare our four spatial weight matrices
using a common nearly regular graph: a hexagon with 16 vertices on each side, drawn
in the hex lattice. The empirical maximizers and minimizers are shown in Figure 5.

The leftmost pair of plots in Figure 5 shows the extreme eigenvectors of A, and
we see that the lower degrees on the boundary have a visible effect on the pattern.
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MEASURING SEGREGATION VIA ANALYSIS ON GRAPHS 95

Fig. 6. Ranges of possible I(\cdot ;W ) values for W = A,P, L,M . We compare graphs on 169
nodes formed within the hexagonal lattice and the square lattice, and we use random edge deletions
to interpolate between them and introduce degree variation, as explained in the text. We can observe
that L gives nonnegative I values, and that only M gives values always between  - 1 and 1.

Passing to the true A extremizer (via the generalized eigenvector) or row-normalizing
to obtain P might be thought to fix the degree effects, but this particularly fails with
the minimizer of P . It is also interesting to note that the maximizer for P takes its
strongest values on the second rung---adjacent to the vertices of lowest degree. Note
thatM and L both give the expected clustered configuration on one end of the I range,
but give two interestingly different approximations to checkerboards on the other.

Next, Figure 6 shows the numerically computed ranges of achievable I for W =
A,P, L,M on various planar graphs. First, we take a subset of the hexagonal (trian-
gular) lattice, formed as a hexagon with 8 vertices along each side (a smaller version
of the graph in Figure 5). From the square lattice, we use a square with 13 vertices
along a side, so that it agrees with the hexagon in having 169 vertices. Note that
the hexagonal lattice can also be viewed, combinatorially, as the square lattice with
diagonals added. Therefore we can produce graphs that in a sense interpolate between
the two lattices by deleting edges from the hexagonal lattice. We choose to do so at
random in order to also introduce more variation in vertex degree.2

This example makes it clear that even quite ``reasonable"" planar graphs, when
they are irregular, can realize I values outside of [ - 1, 1]. In the case when the graph
is nearly regular bipartite (such as a large square grid graph), maximal and minimal
values of Moran's I can be seen to converge to \pm 1, respectively, as the number of
nodes in the graph increases and the variance in degree converges to 0. On the other
hand, one can construct graphs that realize arbitrarily large and small I as the degree
disparity gets large.

2To be precise, we order the edges, then randomly select 10\% (or 20\%, respectively) for deletion,
rejecting the final product if it is disconnected. Over 1000 successful trials, we then report the average
of the numerical minimizer and of the numerical maximizer of I. See the Supplementary Materials
(SIAM Supplement.pdf [local/web 1.02MB]) for more information.
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96 MOON DUCHIN, JAMES M. MURPHY, AND THOMAS WEIGHILL

Fig. 7. The family of double-star graphs is depicted here to emphasize the major impact of
having very uneven vertex degrees in a graph. Letting \sansv a take the value \pm 1/a on leaves and \pm 1
on hubs, as indicated on the graph above, gives I(\sansv a;A) values approaching any arbitrary a as the
number of leaves n \rightarrow \infty . In particular, this illustrates that all real values of I(\sansv ;A) are achievable
for W = A,P and all nonnegative values are achievable for W = L. That is, passing to row-
normalized P does not mitigate the degree effect, and the problem is even more pronounced for the
Laplacian (see section 6). Only the use of the doubly-stochastic approximation M keeps I bounded
(see section 7).

To see this, consider a double-star graph (Figure 7) where each hub is connected
to n leaves. Consider a function \sansv a that takes the values \pm 1 on the hubs and \pm 1/a
on the leaves; note \sansv a has average value 0. For arbitrary fixed a \not = 0, as n gets large,
the average product across an edge is nearly 1/a while the average squared value at
a vertex is nearly 1/a2. This means that I(\sansv a;A) \rightarrow a as n \rightarrow \infty (by Remark 2.3).
This construction works for both positive and negative values of a. Interestingly,
however, putting 0 on the leaves (denoted by \sansv \infty ) gives different limiting behavior,
with I(\sansv \infty ;A) \rightarrow  - 1/4 as n \rightarrow \infty . Normalizing A to be row-stochastic does not solve
this problem; if we use P , we get I(\sansv a;P ) \rightarrow a as n \rightarrow \infty , while putting 0 on the
leaves gives I(\sansv \infty ;P ) \rightarrow 0.

This double-star example is designed to exaggerate the phenomenon that causes
I to explode, but degree effects of this kind are reflected in the real-world examples
below: when there are adjacent nodes of relatively high vertex degree, extreme values
of I can be obtained by placing positive and negative values on those nodes, and
near-zero values everywhere else (see Figure 8, lower right).

5.2. Correlation on realistic examples. Next, we confirm that, despite sig-
nificant differences observable in theory, the choices of W give outputs that are fairly
tightly correlated on real-world dual graphs \scrG and population functions \sansv . In particu-
lar, we consider the spatial weight matrices A, L, andM applied to Black and Hispanic
population in the census tracts of all 50 states. Since the underlying graphs are not
regular, we know of no theoretical relationship between the I values when we change
the matrix W . Despite this, Figure 9 shows strong correlations. The Supplemen-
tary Materials (SIAM Supplement.pdf [local/web 1.02MB]) contain a more extensive
pairwise comparison among all four choices of weight matrix.3

It is interesting to look at states for which I(\sansv ;A) and I(\sansv ;M) differ substantially.
In order to localize the source of the disparity, we employ Anselin's definition of local

3Census tract graphs for all states (based on 2010 census geography) were obtained from [14].
For tracts with zero population, we define \sansv i using the average population values (Hispanic, Black,
and total) of the neighboring tracts.
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MEASURING SEGREGATION VIA ANALYSIS ON GRAPHS 97

Fig. 8. For the (even-length) cycle graph, the lowest-frequency nontrivial eigenvector \Psi 2 of L---
called the Fiedler vector---oscillates slowly and realizes a large I value, while the highest-frequency
eigenvector \Psi n is a perfect alternating pattern and yields the extremal I =  - 1. For the grid graph,
\Psi 2 oscillates slowly. On the other hand, \Psi n oscillates very rapidly. Note that the low-frequency
eigenvector is highly clustered, while the high-frequency eigenvector is not. The right column shows
the county dual graph of North Carolina with its lowest- and highest-frequency eigenvectors. One
captures cluster structure, while the other is highly localized at a high-degree vertex.

Moran's I at the ith vertex [4], which looks just like the standard definition except
the numerator only considers neighbors of i:

Ii(\sansv ;W ) :=

\left(  n

n\sum 
j=1

Wij(vi  - \=v)(vj  - \=v)

\right)  \bigg/ \left(  w

n\sum 
j=1

(vj  - \=v)2

\right)  .

We can then study the contribution of tract i towards the difference by defining
Di(\sansv ;A,M) := | Ii(\sansv ;A)  - Ii(\sansv ;M)| , motivated by the fact that I(\sansv ;A) and I(\sansv ;M)
agree for regular graphs. Nodes with much higher \sansv values than their neighbors will
tend to have high Di(\sansv ;A,M) values since A does not have diagonal entries, while M
does. Also, nodes with low A-degrees tend to have higher diagonal entries in M , thus
higher Di. In Figure 9 a handful of states---North Dakota, Montana, and Mississippi,
especially---stand out as having a large discrepancy between I(\sansv ;A) and I(\sansv ;M) for
one or both \sansv . When we localize to the tracts that contribute most to the disparity
(Table 3), we find, as expected, nodes with low A-degree (typically 1 or 2), with
concentrations of the minority group that are typically 5--10 times greater than the
share in the state overall, and than the share in the neighboring nodes.

The definition of Di(\sansv ;A,M) was motivated by the fact that I(\sansv ;A) and I(\sansv ;M)
agree for regular graphs. We could similarly compare I(\sansv ;A) and I(\sansv ;L) using the
theoretical relationship for regular graphs given in Remark 5.2. We note that ND,
MS, and MT remain noticeable outliers in the A versus L comparisons in Figure 9.

6. Laplacian weights. As noted above, the Laplacian L is a very natural choice
for matrix-based analysis of a network. The Laplacian has been closely connected
with the topic of community detection in networks, especially when potential com-
munities are of different sizes [32, 47]. The Laplacian also has a rich theoretical
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98 MOON DUCHIN, JAMES M. MURPHY, AND THOMAS WEIGHILL

Fig. 9. Comparing I for the matrices A,L,M on 50-state census tract data for Hispanic and
Black population shares. The line y = x is shown for the A versus M comparison, and the line
y = (1  - x)/2 is shown for comparing A to L, because the data points would have to fall on these
lines if the graphs were regular. The correlation r and slope of the best fit line m are reported for
each plot, but those fit lines are not plotted; their slopes are not equal to m = 1 and m =  - 1/2,
indicating different ways of handling degree disparity.

interpretation in terms of relaxed graph cuts---which lends itself well to measure-
ments of clustering---and in terms of notions of smoothness on graphs via Dirich-
let energy functionals. Let Tm be the m-dimensional torus ([0, 2\pi ]m with opposite
boundary faces identified) and recall the L2 inner product of f, g \in L2(Tm), defined
as \langle f, g\rangle := 1

(2\pi )m

\int 
Tm f(x)g(x)dx.

6.1. High- and low-frequency eigenvectors. By construction, L is symmet-
ric and positive semidefinite, and therefore has a basis of orthonormal eigenvectors
\{ \Psi i\} ni=1 with associated real eigenvalues 0 = \mu 1 \leq \cdot \cdot \cdot \leq \mu n. Since L\sansone = \sanszero , we have
\Psi 1 = 1\surd 

n
\sansone , \mu 1 = 0. These may be interpreted in the framework of Fourier analysis,

in which the eigenvectors \{ \Psi i\} ni=1 of L are the Fourier modes on the graph \scrG with fre-
quencies \{ \mu i\} ni=1 ( [0,\infty ). In classical Fourier analysis on T1, the Laplacian operator

\scrL : f \mapsto \rightarrow  - \Delta f =  - \nabla \cdot \nabla f =  - d2

dx2 f has eigenfunctions \{ exp( - ikx)\} \infty k= - \infty with cor-
responding eigenvalues \{ k2\} \infty k= - \infty , which can be organized from low frequency (| k| 
small) to high frequency (| k| large). There is a well-developed literature interpreting
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Table 3
Examining the tracts that contribute most to differences between I(\sansv ;A) and I(\sansv ;M). We

identify the top three Di(\sansv ;A,M) values, and for those tracts we report the share of Hispanic or
Black population (\sansv i), the average share in neighboring tracts ((P \sansv )i), and the vertex degree di. For
each state, we also report the average \sansv value and the average value of Di.

State \sansv \=v avg Di Tracts with highest Di \sansv i (P \sansv )i di Di

ND Hisp 0.020 0.0004 Grafton 0.214 0.100 2 0.024

Minot Air Force Base 0.099 0.012 1 0.009

Grand Forks Air Force Base 0.100 0.024 2 0.006

MS Hisp 0.028 0.0006 Morton 0.269 0.049 1 0.061

Forest 0.268 0.044 2 0.049

Key Field Air National Guard Base 0.238 0.025 2 0.038

ND Black 0.009 0.0001 Minot Air Force Base 0.096 0.004 1 0.008

Grand Forks Air Force Base 0.095 0.006 2 0.006

Fargo 0.053 0.0013 9 0.001

MT Black 0.004 1.85e-5 Malmstrom Air Force Base 0.086 0.015 4 0.0025

Crossroads Correctional Center 0.026 0.003 1 0.0006

Yellowstone National Park 0.030 0.002 2 0.0005

the graph Laplacian L as a discretization of the continuum differential operator \scrL 
[7, 20, 19]. Using analogous language, we can say that \Psi 2 is the lowest-frequency
nonconstant eigenvector, while \Psi n is the highest-frequency eigenvector. (There is
such a large literature on \Psi 2 that it has its own name: the Fiedler vector .) As noted
in Corollary 3.6, these are the extremizers of I(\cdot ;L).

We can leverage well-known facts about the Laplacian to rephrase some of the
empirical observations in this paper. In particular, if the underlying graph has k
internally well-connected components that are weakly connected to each other, then
L will have k eigenvalues close to 0 and \mu k+1 \gg 0 [33]. This gives many qualitatively
different functions on the graph that all have a low I(\cdot ;L) indicative of clustering.

As we have seen, the case of vertex-regular graphs is one where the eigenvectors
of L provide exact solutions to the extremization problem for all four weight matrices.
These can be phrased in familiar spectral graph theory language as nodal decompo-
sitions of the graph into maximal regions where the eigenfunction does not change
sign [45]. For the lowest-frequency nonconstant eigenvector \Psi 2, this optimal partition
solves a relaxation of the combinatorial normalized cuts functional [40]. Though real-
istic graphs are not regular, Figure 8 gives an indication that configurations registering
maximal segregation are not so far from what a nodal decomposition might predict.

In lattice graphs, which are regular except for along their boundaries, the high-
frequency eigenvectors are damped checkerboard patterns, shown in Figure 5. In
highly irregular graphs, such as in Figure 8, the checkerboarding may be strongly
localized around vertices of high degree. It is clear from both this example and from
the double-star graphs in Figure 7 that L is still highly sensitive to degree dispar-
ities. In general, the largest eigenvalue may be characterized as a measure of how
close the graph is to being bipartite [15], but a corresponding characterization of the
highest-frequency eigenvectors is elusive.

6.2. Dirichlet energy functionals. With the graph Laplacian L, we can quan-
tify a kind of smoothness via a notion of Dirichlet energy on a graph.

Suppose that a vector is written as \sansv =
\sum n

i=1 \alpha i\Psi i in the orthonormal basis of
eigenvectors of L, so that \sansx =

\sum n
i=2 \alpha i\Psi i. Then \sansv \top L\sansv =

\sum n
i=1 \alpha i

2\mu i, where the
right-hand side is large when a large portion of the coefficient energy localizes on the
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100 MOON DUCHIN, JAMES M. MURPHY, AND THOMAS WEIGHILL

highest-frequency eigenvectors. In analogy with classical Dirichlet energy functionals
[17], we may define a graph Dirichlet energy for general functions \sansv on the graph,
which are not necessarily zero-centered.

Definition 6.1 (Dirichlet energy). Let \sansv =
\sum n

i=1 \alpha i\Psi i be a function on a graph
with Laplacian L and associated orthonormal eigenvectors \{ \Psi i\} ni=1. The Dirichlet
energy associated to L is given by \scrE (\sansv ) =

\sqrt{} \sum n
i=1 \alpha 

2
i\mu i =

\surd 
\sansv \top L\sansv .

Note that for any scalar \alpha > 0, \scrE (\alpha \sansv ) = \alpha \scrE (\sansv ). In particular, \scrE is not scale-
invariant, since it lacks the denominator of \sansv T \sansv used when computing I.

Compare this to the classical Dirichlet energy functional on f : Tm \rightarrow R given by

E(f) =

\int 
Tm

\| \nabla f(x)\| 22dx,

where \nabla f is interpreted in a weak sense. By Stokes' theorem, 1
(2\pi )m

\int 
Tm \| \nabla f(x)\| 22dx

= \langle  - \Delta f, f\rangle so that E(f) =
\sqrt{} 
\langle \scrL f, f\rangle , in direct analogy to Definition 6.1. To further

develop the connection between the graph definition and the classical definition, as-
sume m = 1 for simplicity. If f has Fourier expansion f(x) =

\sum \infty 
k= - \infty ck exp( - ikx),

then \nabla f(x) =  - \sum \infty 
k= - \infty ckik exp( - ikx). By Parseval's theorem,

\| f\| 22 =

\infty \sum 
k= - \infty 

ck
2, \| \nabla f\| 22 =

\infty \sum 
k= - \infty 

k2ck
2.

Noting that \{ k2\} \infty k=0 are precisely the eigenvalues of \scrL defined on L2(T1), we see that
the classical and graph definitions agree.

If
\int 
Tm \| \nabla f(x)\| 22dx is small, then f is locally smooth in the sense that \nabla f has

small magnitude in most areas. Noting again that

E(f) =

\int 
Tm

\| \nabla f(x)\| 22dx =  - 
\int 
Tm

\Delta f(x)f(x)dx = \langle \scrL f, f\rangle 

suggests that \sansx \top L\sansx , the graph discretization of \langle \scrL f, f\rangle , is a measure of local smooth-
ness of the function \sansx on the graph. This connection is elaborated in [11]. Under this
interpretation, I(\sansx ;L) is small (indicating segregation) when \sansx is mostly smooth. Im-
portantly, I(\cdot ;L) is scale-invariant, unlike \scrE (\cdot ); a note about developing scale-sensitive
measures of segregation will be discussed in section 8.

7. Random walks and I. We now consider a class of weight matrices for which
I has a random walk interpretation, namely bistochastic matrices (those with rows
and columns summing to one).

We first recall some basic facts about Markov chains and random walks. By
definition, a Markov chain on a finite state space (with states indexed 1, . . . , n) is a
random process encoded by a stochastic n \times n matrix K. The associated random
walk steps from the ith to the jth state with probability Kij . This can be visualized
as random walk on a graph with n nodes, and an edge (i, j) present when Kij or
Kji > 0. We can encode the walk by matrix multiplication if a probability vector \sansv 
is interpreted as describing a probabilistic position on the state space. Then \sansv \top K is
the new position after one step of the walk.

With this, the reader can verify that our spatial weight matrix P discussed above
has an interpretation as the simple random walk on the geography units, making all
neighboring units equally likely at each stage. As long as the graph is connected and
aperiodic (for instance, if it has any triangles), this random walk converges to a unique
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MEASURING SEGREGATION VIA ANALYSIS ON GRAPHS 101

stationary distribution in which the probability of being at any node in the long term
is proportional to its degree. When the graph encodes the tracts of a city, as in many
of our examples here, this stationary distribution for P is not very meaningful.

Given an arbitrary Markov chain K, the classical Metropolis--Hastings construc-
tion allows us to modify the random walk so that it targets a specified stationary
distribution \pi (an arbitrary probability distribution on the states 1, . . . , n). The
Metropolis--Hastings matrix M = M(K,\pi ) gives a reversible chain, meaning that
\pi (i)Mij = \pi (j)Mji for all i, j. Note that if the Metropolis--Hastings matrix is set to
target the uniform distribution, then reversibility means the matrix is symmetric and
therefore bistochastic. Next, we establish that for any bistochastic matrix Q, such as
for the uniformizing Metropolis matrix M = M(P, 1

n\sansone ), Moran's I can be interpreted
in terms of variance reduction.

Theorem 7.1 (Random walk interpretation of I). For a bistochastic matrix Q
and a column vector \sansv , consider \sansw = \sansv \top Q, the value of \sansv after one step of the Markov
chain given by Q. Let \sigma 0 and \sigma 1 be the standard deviation of the values in \sansv and \sansw ,
respectively, so that the ratio \sigma 1/\sigma 0 gives the variance reduction in one step of the
walk. Let \rho (\sansv ,\sansw ) be the correlation between the values in \sansv and \sansw . Let \sansx = \sansv  - \=v\sansone and
\sansy = \sansw  - \=w\sansone be the zero-centered vectors before and after applying Q. Then

(a) I(\sansv ;QQ\top ) =
\bigl( 
\sigma 1

\sigma 0

\bigr) 
2;

(b) I(\sansv ;Q) = \sansy \top \sansx 
\sansx \top \sansx 

= \rho (\sansv ,\sansw ) \cdot \sigma 1

\sigma 0
.

Proof. To see (a), note that because Q is bistochastic, the average values satisfy
\sansv \top Q = 1

n \cdot \sansv \top Q\sansone = 1
n \cdot \sansv \top \sansone = \sansv \top . Thus

\sigma 1
2

\sigma 0
2
=

(\sansv \top Q - \sansv \top \sansone \top )(\sansv \top Q - \sansv \top \sansone \top )
\top 

(\sansv  - \sansv \sansone )\top (\sansv  - \sansv \sansone )
=

(\sansv \top Q - \sansv \top \sansone \top Q)(\sansv \top Q - \sansv \top \sansone \top Q)
\top 

(\sansv  - \sansv \sansone )\top (\sansv  - \sansv \sansone )

=
(\sansv \top  - \sansv \top \sansone \top )QQ\top (\sansv \top  - \sansv \top \sansone \top )

\top 

(\sansv  - \sansv \sansone )\top (\sansv  - \sansv \sansone )
= I(\sansv ;QQ\top ).

A similar calculation yields (b):

I(\sansv ;Q) =
(\sansv \top  - \sansv \top \sansone \top )Q(\sansv  - \sansv \sansone )

(\sansv  - \sansv \sansone )\top (\sansv  - \sansv \sansone )
=

(\sansv \top Q - \sansv \top Q\sansone \top )(\sansv  - \sansv \sansone )

(\sansv  - \sansv \sansone )\top (\sansv  - \sansv \sansone )
=

\sansy \top \sansx 
\sansx \top \sansx 

=
(\sansv \top Q - \sansv \top Q\sansone \top )(\sansv  - \sansv \sansone )

| | \sansv \top Q - \sansv \top Q\sansone \top | | 2 \cdot | | \sansv  - \sansv \sansone | | 2
\cdot | | \sansv 

\top Q - \sansv \top Q\sansone \top | | 2
| | \sansv  - \sansv \sansone | | 2

= \rho (\sansv \top , \sansv \top Q) \cdot \sigma 1

\sigma 0
.

Note \rho (\sansv ,\sansw ) is just the one-step autocorrelation (i.e., time lag 1) for the Markov
chain Q. Part (a) of Theorem 7.1 states that I(\sansv ;QQ\top ) can be interpreted as the
factor by which the variance is reduced in two steps of evolution under the Markov
chain associated to Q. Note that a general weight matrix W admits a decomposition
W = QQ\top for such a matrix Q iff W is bistochastic, positive semidefinite, and sym-
metric. We also observe that I(\sansv ;QQ\top ) is always nonnegative. Part (b) of Theorem
7.1 states that I(\sansv ;Q) decomposes as the product of the one-step autocorrelation for
\sansv and the reduction in standard deviation after one step. To see how this plays out
in extreme cases, observe that if | I(\sansv ;Q)| \approx 1, then the standard deviation of \sansv must
remain roughly the same after one step of Q, with the value of \sansv after one step being
either highly correlated (I(\sansv ;Q) \approx 1) or anticorrelated (I(\sansv ;Q) \approx  - 1) with the initial

value of \sansv . The alternative expression I(\sansv ;Q) = \sansy \top \sansx 
\sansx \top \sansx 

makes it clear that if a step of Q
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102 MOON DUCHIN, JAMES M. MURPHY, AND THOMAS WEIGHILL

Fig. 10. The matrices P (left) and M (right) for the North Carolina county dual graph shown
in Figure 8. Darker colors indicate higher matrix entries. We see that M has some large diagonal
entries, meaning that the associated random walk is very lazy at some nodes.

changes \sansv to something near-uniform, then I will have small magnitude. Large I can
only occur when the diffusion process leaves \sansy \top \sansx \approx \sansx \top \sansx .

When we pass from the (symmetric) adjacency matrix A to the stochastic nor-
malization P , this need not be bistochastic unless the underlying graph is regular.
To take advantage of this theorem, we will use the uniformizing Metropolis--Hastings
matrix M = M(P, 1

n\sansone ), which is both symmetric and bistochastic.
In fact, M is a best symmetric bistochastic approximation to P in the sense that

it minimizes the difference
\sum 

i\not =j | Qij - Pij | among all symmetric bistochastic matrices
Q. This follows from the work of Billera and Diaconis in [10], which proves the more
general statement that the Metropolis--Hastings matrix M(K,\pi ) whose i, j term is

M(K,\pi )ij = min

\biggl( 
Kij ,

\pi (j)

\pi (i)
Kji

\biggr) 
minimizes the \pi -weighted \ell 1 distance from K to \{ Q\} . In particular, in our setting, if
the graph \scrG is regular, then P is already symmetric and bistochastic, so M = P . In
the irregular case, M can be thought of as a modification of the simple random walk;
it works by introducing a rejection step that makes the walk extremely lazy when a
low-degree vertex is next to a high-degree vertex. (See Figure 10 for an illustration.)

Using M for the spatial weighting in I succeeds where P does not in mitigating
the degree effects discussed throughout this paper. This is because M eliminates W -
degree discrepancies in both the rows and columns of A, while P standardizes only
the rows. Indeed, because M is a nonnegative stochastic matrix, its largest eigenvalue
is 1, realized by its stationary vector \sansone . (This is a well-known Markov chain property
following from the Perron--Frobenius theorem.) We recall from Corollary 3.6 that the
extreme values of I(\cdot ;M) are realized at the eigenvalues \lambda 2 and \lambda n of M .

Corollary 7.2 (The range of I with weights from M). For any graph \scrG and
any function \sansv , we have  - 1 \leq I(\sansv ;M) \leq 1.

This discussion suggests another way in which the random walk interpretation
can be fruitful. It is a standard fact in Markov chain theory that the convergence
statistics (such as mixing time) of a chain have upper and lower bounds in terms of
the spectral gap, here 1  - \lambda 2, of the associated matrices. Random walks that con-
verge more slowly correspond to smaller spectral gaps and smaller Cheeger constants
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(graphs that have relatively short cuts into large pieces). In the world of geography
dual graphs, this says that if the locality itself can be cut in half with a relatively short
cut, as in all of the realistic examples here, then I scores for M can get close to 1.
Indeed, planar graphs where the number of vertices is much greater than the largest
vertex degree are slow-mixing and have a small spectral gap [42], which ensures that
I(\cdot ;M) \approx 1 is achievable.

In sum, using M for the spatial weight matrix allows us to characterize I in
extremely intuitive language. We imagine a diffusion process that begins with the ob-
served demographic distribution in a locality and conducts a random walk of residents
that targets the uniform distribution. Over the long term, this random walk process
must reduce the variance, which is initially \| \sansx \| , to zero. Moran's I now measures how
well a uniformizing diffusion succeeds in a single step. It is quite reasonable to regard
this as a measurement of segregation: a certain group will be considered very far from
uniformly dispersed in a population if many steps through neighboring geography are
required for the group to approach uniformity.

8. Conclusions, recommendations, and future directions. Moran's I is a
valuable way to detect spatial patterns, or to test for spatial correlation in the residuals
of some models, especially when combined with a statistical significance test. However,
users must exercise caution when using Moran's I as a gradated measurement (and
not just a qualitative test) for a number of reasons. The underlying graph topology
and the choice of spatial weight matrix used in computing I both strongly impact the
range of possible I values, so using I to compare across localities remains challenging.

We summarize the findings of this paper with the following practical recommen-
dations.

(1) For a given graph \scrG and weight matrix W , use the methods here to compute
the range of achievable I values in order to decide whether a particular demo-
graphic vector \sansv has an extreme score. However, intermediate I values (say,
I = .6) remain hardest to interpret.

(2) Use circumspect language when comparing I values for different graphs \scrG and
\scrG \prime , particularly with standard choices of weight matrix like A and P . The
computation I(\sansv ;P\scrG ) > I(\sansv \prime ;P\scrG \prime ) should not be presented as a finding that
the first city is more segregated than the second.

(3) Both for within-graph and between-graph comparisons, the best-suited spatial
weight matrix is M , which makes I interpretable in terms of how the sub-
group's population diffuses in a random walk. Furthermore, with M weights,
I is actually bounded between  - 1 and 1 and for large planar graphs can
achieve I \approx 1.

(4) The discussion above suggests a novel role for Moran's I when a demographic
function \sansv is fixed on a sufficiently fine graph. Recall that the dependence
of a measurement on the choice of units is an important problem in geogra-
phy called the modifiable areal unit problem . Given \sansv , a choice of units for
which I < 0 can be interpreted as an aggregation of the underlying fine data
that captures regions that are demographically distinct---having similar de-
mographics within the unit and different demographics on neighboring units.
That is, when considering alternative choices of geographical units (like census
tracts in Chicago versus official neighborhoods maintained in city statistics),
a negative Moran's score can be interpreted as a signal that the units track
with demographic differences. From this point of view, I can facilitate a kind
of demographic community detection.
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This study suggests several interesting questions for future exploration. While
the connection between high segregation and low-frequency eigenvectors follows from
our analysis, the connection between low segregation and high-frequency eigenvectors
is more subtle. This is due to the large impact that the underlying graph geome-
try has on even the local properties of high-frequency eigenvectors (see Figure 8).
Understanding the extent to which high-frequency eigenvectors localize (i.e., have
concentrated support) on irregular graphs would be interesting in its own right, and
has potential connections to Anderson localization in the continuum setting [18].

Another useful direction of inquiry would be to modify the definition of I by
building new metrics that make use of \sansx \top W \sansx without normalizing by the denominator
\sansx \top \sansx . By creating scale-sensitive scores for the deviation in a population, we could
remediate the degeneration in the interpretation of I for low-variance distributions.

Acknowledgments. We thank Larry Guth and Eugene Henninger-Voss for en-
lightening conversations. We also thank the two anonymous referees for their helpful
comments that significantly improved the paper.
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