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K-Deep Simplex: Manifold Learning via Local
Dictionaries

Abiy Tasissa, Pranay Tankala, James M. Murphy, and Demba Ba

Abstract—We propose K-Deep Simplex (KDS) which, given a set
of data points, learns a dictionary comprising synthetic landmarks,
along with representation coefficients supported on a simplex.
KDS employs a local weighted ℓ1 penalty that encourages each
data point to represent itself as a convex combination of nearby
landmarks. We solve the proposed optimization program using
alternating minimization and design an efficient, interpretable
autoencoder using algorithm unrolling. We theoretically analyze
the proposed program by relating the weighted ℓ1 penalty in KDS
to a weighted ℓ0 program. Assuming that the data are generated
from a Delaunay triangulation, we prove the equivalence of the
weighted ℓ1 and weighted ℓ0 programs. We further show the
stability of the representation coefficients under mild geometrical
assumptions. If the representation coefficients are fixed, we
prove that the sub-problem of minimizing over the dictionary
yields a unique solution. Further, we show that low-dimensional
representations can be efficiently obtained from the covariance
of the coefficient matrix. Experiments show that the algorithm is
highly efficient and performs competitively on synthetic and real
data sets.

Index Terms—Manifold learning, dictionary learning, clustering,
structured deep learning

I. INTRODUCTION

Consider observations of the form (xi,yi)
n
i=1 with xi ∈ Rm

and yi ∈ Rd denoting predictor and response variables
respectively. We assume that yi = f(xi) + εi where εi
represents random i.i.d noise. A ubiquitous model is the
standard linear regression which first posits that f is linear and
correspondingly estimates the model parameters via different
methods (e.g., least squares). Rather than fixing a parametric
model as in linear regression, non-parametric models learn
the relation f from the data with minimal assumption on
f (e.g., smoothness). One popular class of non-parametric
models is the local linear regression model [1]–[4]. In contrast
to linear regression which assumes a global form of f , local
regression is based on approximating f locally using linear
functions. To be precise, the local linear fit at a point xi is
defined using a weight function wi that depends on distances
to all other training data points (i.e., less weight is assigned to
points far from xi). Unlike the linear regression model where
the global linear function is only needed for prediction at a
test point, the locally linear model depends on the adaptive
weight function and hence is non-parametric. One downside
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of this model is the curse of dimensionality where locality
defined via distance functions implies that the weight function
either considers nearly no neighbors or nearly all neighbors.
To circumvent this limitation, dimensionality reduction-based
approaches have been studied [5], [6]. Recent works have also
explored local regression with new regularizations and recast
it as an optimization problem over a suitably defined graph
[7]–[9].

In this paper, we consider the unsupervised learning problem
where we only have access to high-dimensional data (yi)

n
i=1

with yi ∈ Rd. This setting arises in many applications and
the raw high-dimensional representation presents challenges
for computation, visualization, and analysis. The manifold
hypothesis posits that many high-dimensional datasets can
be approximated by a low-dimensional manifold or mixture
thereof. Hereafter, a k-dimensional submanifold M is a subset
of Rd which locally is a flat k-dimensional Euclidean space
[10]. If the data lie on or near a linear subspace, principal
component analysis (PCA) can be used to obtain a low-
dimensional representation. But, PCA may fail to preserve
nonlinear structures. Nonlinear dimensionality reduction tech-
niques [11]–[15] obtain low-dimensional representations while
preserving local geometric structures of the data.

Our main motivation is to develop a model akin to local
linear regression in the unsupervised setting. In fact, one of
the critical parts of the local regression model is determining
the neighborhood radius for each point such that the linear
approximation is applied within the specified radius. We note
that if the radius is set “large”, the linear approximation is
sub-optimal. On the other hand, if the radius is set “small”,
the locally linear estimate will be poor as it will only
consider very few points. Given these extremes, determining
the neighborhood radius, referred as the bandwidth function in
the local regression literature [1], is of fundamental importance.
A similar challenge also occurs in manifold learning algorithms
in determining the number of neighbors (e.g., in locally linear
embedding (LLE) [13]).

Herein, to build our model for the unsupervised setting, we
use synthetic points for the locally linear approximation. To
be precise, rather than considering the whole data set and
considering neighboring points, we build local approximations
by employing synthetic points that are to be learned. This
approach resembles archetypal analysis [16], [17] where data
points (yi)

n
i=1 with yi ∈ Rd are expressed as a convex

combination of points a1,a2, ..., am i.e., yi =
∑m

j=1 xjaj
where xj ⩾ 0 ∀j and

∑m
j=1 xj = 1. The set of points {ai}mi=1

are known as the archetypes. In the original archetypal analysis
paper [16], an alternating least squares problem is proposed to
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solve for the archetypes and the representation coefficients. To
integrate archetypal analysis with local regression or manifold
learning, we propose to represent each data point as a convex
combination of archetypes with further regularization enforcing
that more weight is assigned to nearby archetypes. One way to
achieve this is by selecting a fixed number of nearby archetypes.
While simple, estimating the optimal number of archetypes is
challenging (as it inherently depends on the nonlinear structure
of the data) and the resulting model is not flexible. Another way
to impose locality is by enforcing that the weights are sparse for
which the well-known ℓ0 minimization is a natural regularizer.
Given that ℓ0 minimization is intractable, a widely adopted
technique is based on its convex relaxation which yields the
ℓ1 regularizer. However, since the weights are supported on
the simplex, all the feasible solutions attain the same ℓ1 norm.

In this paper, we propose K-Deep Simplex (KDS), a unified
optimization framework for local archetypal learning. In KDS,
each data point y ∈ Rd is expressed as a sparse convex
combination of m atoms. These atoms define a dictionary
A ∈ Rd×m to be learned from the data. To glean intrinsi-
cally low-dimensional manifold structure, we regularize to
encourage representing a data point using nearby atoms. The
proposed method learns a dictionary A and low-dimensional
features with a structure imposed by convexity and locality of
representation. To learn the atoms, we employ the alternating
minimization framework which alternates between updating
the atoms and updating the coefficients. The algorithm can
also easily be mapped to a neural network architecture leading
to interpretable neural networks. This mapping is along the
lines of algorithm unrolling [18]–[21], an increasingly popular
technique for structured deep learning.

A. Contributions
This paper introduces a structured dictionary learning model

based on the idea of representing data as a convex combination
of local archetypes. One immediate advantage of the method is
that it leads to an interpretable framework. Since the coefficients
are non-negative and sum to 1, they automatically enjoy a
probabilistic interpretation.

Another advantage of the proposed algorithm is its con-
nection to structured compressed sensing. We show that the
proposed locality regularizer can be interpreted as a weighted
ℓ1 relaxation for a suitably defined ℓ0 minimization. Under a
certain generative model of data, we show how the proposed
weighted ℓ1 norm exactly recovers the underlying true sparse
solution. In addition, for this generative model, we show
stability of the weighted ℓ1 norm. In contrast to the standard
compressed sensing setting which depends on coherence and
the restricted isometry property (which do not hold in our
setting), our analysis hinges on intrinsic geometric properties
of data.

The proposed locality regularizer is essentially a quadratic
form of a Laplacian over a suitably defined graph. Since we
learn a dictionary consisting of m ≪ n atoms, where m is
independent of n and depends only on intrinsic geometric
properties of the data, we show that the spectral embedding
can be computed efficiently by only considering the m×m
covariance matrix of the coefficient matrix.

We discuss the alternating minimization framework to solve
the main optimization problem. We argue that in the typical
setting where m ≪ n, the proposed algorithm is scalable. In
addition, since our KDS embedding can be computed efficiently,
this naturally leads to a scalable spectral clustering algorithm.

We also map our iterative algorithm to a structured neural
network. This mapping is along the lines of iterative algorithm
unrolling [18]–[25] to solve our optimization problem. To be
specific, we train a recurrent autoencoder with a nonlinearity
that captures the constraint that our representation coefficients
must lie on the probability simplex. To our knowledge, our
use of algorithm unrolling for manifold learning is new.

For reproducibility, we will provide the code for all the
experiments in this paper. To give a glimpse of the performance
of KDS, Figure 1 shows the atoms the autoencoder learns for
the classic two moons dataset and digits from the MNIST-5
dataset (5 digits from the MNIST dataset).

Differences from our prior work: Previous work in [26]
by a subset of the authors of the present paper defines a
weighted ℓ0 norm and shows that the weighted ℓ1 regularization
studied in this paper recovers a unique solution under a
certain generative model of data. Therein, we propose a
simple alternating minimization algorithm to learn the sparse
coefficients and the dictionary atoms and test it on two datasets.
Some key differences between the work in [26] and the current
work are summarized below:

1) Given fixed coefficients, we further consider the sub-
problem of minimizing over the dictionary. Our result is
summarized in Theorem 4.

2) The weighted ℓ0 norm defined in [26] is a useful
definition if the sparsity is fixed. If the sparsity is not
fixed, Theorem 1 in [26] is not correct and is not
applicable. To fix this issue and have a theoretical result
that does not depend on fixing the sparsity level, we
define a more general weighted ℓ0 norm in this paper
(see Definition 5).

3) We compare our method to more baselines and consider
more datasets (e.g., images of faces, hyperspectral data).

4) The main algorithm used in this paper is based on
mapping the iterative algorithm to a neural network and
departs from the previous algorithm which is based on
alternating minimization.

We also note that parts of the current work have appeared in our
previously unpublished paper [27]. In contrast to these prior
works, the current work presents new theory, comparisons
to more baselines, a detailed review of related work, and
interpretations of the proposed regularizer.

B. Notation

Lowercase and uppercase boldface letters denote column
vectors and matrices, respectively. We denote the Euclidean,
ℓ0, and ℓ1 norms of a vector x, respectively as ||x||2, ||x||0
and ||x||1. The Frobenius and operator norm of a matrix A
are respectively denoted as ||A||F and ||A||. ⟨x,y⟩ denotes
the Euclidean inner product. ⟨A ,B⟩ denotes the trace inner
product. The vector 1 denotes a vector whose entries are all 1.
∆p ≡ {z ∈ Rp :

∑p
i=1 zi = 1, z ⩾ 0} denotes the probability
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simplex. Given a matrix A, ai denotes its i-th column. The set
of m× n matrices where each column lies in the probability
simplex ∆m is denoted by S. diag(x) represents a diagonal
matrix whose entries are the vector x. Tr(A) denotes the trace
of the matrix A. The set of positive real numbers is denoted by
R+. Given a scalar xi, 1R+

(xi) denotes the indicator function
whose value is 1 if xi > 0 and is 0 otherwise. ej denotes a
vector of zeros except a 1 in the j-th position. σmax(A) and
σmin(A) denote the largest and smallest singular values of A.

II. PROPOSED METHOD: K-DEEP SIMPLEX

Let Y = [y1, . . . ,yn] ∈ Rd×n be a set of n data points
in Rd. Our approach is to approximate each data point yi

by a convex combination of m ≪ n archetypes. We define
a dictionary A which is a collection of the m archetypes,
A = [a1, . . . , am] ∈ Rd×m. For sake of presentation, we first
consider the case where the data points can be represented
exactly as a convex combination of the archetypes. This leads
to Y = AX where X = [x1, . . . ,xn] ∈ Rm×n is the
coefficient or weight matrix. The convex combination implies
(xi)j ⩾ 0 for all i and j and X⊤1 = 1. We note that this
automatically provides us with a probabilistic interpretation
of the coefficients. Next, we consider a suitable regularization
with the aim that each data point is represented as a convex
combination of its nearby archetypes. The regularization we
consider is

∑
i,j(xi)j∥yi − aj∥2 where (xi)j denotes the j-th

entry of xi. The resulting optimization program is given by

min
A∈Rd×m

X∈Rm×n

∑
i,j

(xi)j∥yi − aj∥2

subject to Y = AX∑
j

(xi)j = 1 for i = 1, 2, ..., n

(xi)j ⩾ 0, for all i, j.

(1)

A. KDS interpretations

Below, we further explore the objective in the optimization
program in (1) by discussing various interpretations. Note that,
we focus on the locality regularization and do not consider
the constraint Y = AX.

Graph matching: For a fixed A, the objective in (1) can
be related to graph matching. Consider a bipartite graph where
the nodes are the data points and atoms. We consider matching
the data points with the atoms using the coefficients to derive
a cost matrix. Formally, we have the following

min
X∈S

∑
i,j

(xi)j∥yi − aj∥2 = min
X∈S

Tr(XTC) = min
X∈S

⟨X ,C⟩,

where C ∈ Rm×n
+ denotes a cost matrix defined as Cij =

||yi − aj ||22. The resulting problem is similar to the one to
many graph matching problem [28].

Optimal transport: Given the set of points Y and A,
we define empirical measures µy = 1

n

∑
i=1 δyi and µa =

1
m

∑m
i=1 δai

with δ denoting a Dirac measure. The squared

Wasserstein-2 distance between the probability measures µy

and µa is defined as

W2(µy, µa) = min
γ∈Π(µy,µa)

√√√√ n∑
i=1

m∑
j=1

||yi − aj ||22γij ,

where γ is a joint probability measure over {y1, ...yn} ×
{a1, ..., am} and Π(µy, µa) = {γ ∈ Rn×m|γ1 = 1

n1, γ
T1 =

1
m1}. If we let X = nγT , the squared Wasserstein distance
is equivalent to minimizing ⟨X ,C⟩ over the set {X ∈
Rn×m

+ |XT1 = 1,X1 = n
m1}. In contrast to the standard

regularizer which has a one-sided constraint (sum to 1 constraint
as a result of convex combination), this new formulation further
restricts the sum of coefficients across rows placing a hard limit
on how often a given atom is used to represent data points.

K-means: Given data Y = [y1, . . . ,yn] ∈ Rd×n, the K-
means problem seeks to simultaneously find m clusters with
centers A = {a1, ..., am} and assign each data point to one
of the m clusters. The optimization problem is

min
C∈Rn×m,{ai}m

i=1

m∑
j=1

n∑
i=1

Cij ||yi − aj ||22,

where C ∈ {0, 1}n×m is a binary matrix satisfying
∀i,
∑m

j=1 Cij = 1. The above minimization problem re-
sembles the objective in (1). In fact, given (X∗,A∗) =

argmin
A∈Rd×m X∈S

∑
i,j(xi)j∥yi − aj∥2, if each data point has a

unique nearest atom in A∗, it can be shown that each each
column of X∗ is one-sparse i.e., X∗ is a binary assignment
matrix.

Laplacian smoothness: We first define a set of vertices
by combining the data points and atoms. The coordinate
representation of the combined vertices is denoted by R =
[Y A] ∈ Rd×(n+m). From this, we define a bipartite graph
where edges only exist between data points and atoms i.e., in
which an edge of weight (xi)j connects the vertex yi and the
vertex aj . The weight matrix W ∈ R(n+m)×(n+m) is

W =

(
0 XT

X 0

)
. (2)

The graph Laplacian is now defined as L = D −W where
the diagonal degree matrix D ∈ R(n+m)×(n+m) is defined as
Dii =

∑n+m
j=1 Wij . We now show how the locality regularizer

is connected to the quadratic form of the Laplacian.

Proposition 1. Let R = [Y A] ∈ Rd×(n+m). Then,

n∑
i=1

m∑
j=1

(xi)j ||yi − aj ||22 = Tr(RLRT ).
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Fig. 1. (a-c) Training from a random initialization of atoms on the two moons data set. (d) A subset of the randomly initialized atoms for MNIST-5 (digits 0,
3, 4, 6, 7) before training (black and white) and after training and clustering (color). The number of data points is n ≈ 35000 and the number of atoms is
m = 500. (e) Degrees of vertices in the learned similarity graph. Despite being very sparse (most digits are represented using at most 5 atoms), the learned
similarity graph retains enough information about the original data set that spectral clustering recovers these digits with 99% accuracy.

Proof.
n∑

i=1

m∑
j=1

(xi)j ||yi − aj ||22

=

n∑
i=1

yT
i yi

m∑
j=1

(xi)j +

n∑
j=1

aTj aj

n∑
i=1

(xi)j − 2
∑
i,j

(xi)jy
T
i aj

=

n∑
i=1

yT
i yi +

n∑
j=1

aTj aj (X1)j − 2
∑
i,j

(xi)jy
T
i aj

= Tr(YTYI) + Tr(ATAdiag(X1))− Tr(RTRW)

= Tr

([
YTY YTA
ATY ATA

] [
I 0
0 diag(X1)

])
− Tr(RTRW)

= Tr(RTRD)− Tr(RTRW)

= Tr(RTR(D−W)) = Tr(RLRT )

Hence, the summation
∑n

i=1

∑m
j=1(xi)j ||yi − aj ||22 is

precisely the Laplacian quadratic form of the graph whose
vertices are the data points and atoms where the weight function
is the representation coefficients.

III. RELATED WORKS

One of the goals of the proposed model is to combine
manifold learning with sparse coding/dictionary learning. To
our knowledge, the first work that integrates sparse coding,
manifold learning, and slow feature analysis is the sparse
manifold transform framework proposed in [29]. Therein, non-
linear sparse coding using a learned dictionary is first used
to map the data into a high-dimensional space. The next step

extracts low-dimensional representations employing a matrix
learned using a framework known as functional embedding [29].
In this paper, the aim is a combination of linear sparse coding
and dictionary learning. In addition, our analysis focuses on
structured dictionaries coming from triangulation of a set of
points. Below, we review related works in dictionary learning,
manifold learning, and non-negative matrix factorization.

A. Locality constrained dictionary learning

Our work connects with sparse coding [30] and dictionary
learning. In sparse coding, given a fixed dictionary A ∈ Rd×m

of m atoms, a data point y ∈ Rd is represented as a linear
combination of at most k ≪ m columns of A. The dictionary A
can be predefined [31] (e.g., Fourier bases, wavelets, curvelets)
or adaptively learned from the data [32]–[35]. The latter setting
where the dictionary is simultaneously estimated with the sparse
coefficients is the standard dictionary learning problem. We
consider the prototypical form of the optimization objective for
dictionary learning

∑n
i=1

1
2 ||yi−Axi||22+R(xi,A,yi) where

R(xi,yi,A) is a regularization term on the representation
coefficients, the dictionary atoms and the data points.

In Table I, we review related works in graph regularized
coding and locality constrained coding. The main idea in these
works is to employ a Laplacian smoothness regularization such
that if two data points are close, the regularization encourages
their coefficients to be similar [36], [37]. A few remarks are in
order in how KDS compares to these methods. First, in KDS
regularization, the underlying graph is not fixed but iteratively
updated since the weights of the graph depend on the sparse
representation coefficients. This is in contrast to methods that
consider trace(XLXT ) where L is a priori fixed based on
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TABLE I
RELATED WORK

Work R(X,Y,A) Notes on constraints
[45] trace(XLXT ) + λ||X||1 Sparse X and ||ai||22 ⩽ c

L priori fixed
[46] None Simplex constraints on X

[38] trace(XLXT ) L priori fixed

[40]
∑

i,j(xi)
2
j exp

( ||yi−aj ||
σ

)
XT 1 = 1 and ||ai||22 ⩽ c

[47]
∑

i,j(xi)
2
j ||yi − aj ||2 + λ||X||2F XT 1 = 1, (xi)j set to zero

based on neighborhood
[48] trace(XLXT ) + λ||X||0 Sparse X, L priori fixed
[39]

∑
i,j |(xi)j | ||yi − aj ||1+p XT 1 = 1.

[49] trace(XTLX) ||ai||2 = 1. An additional
SVM regularization

[43]
∑

i,j(xi)j ||yi − yj ||2 + ||X||2F Simplex constraints,
diag(X) = 0 No dictionary learning

[41]
∑

i,j Qij(xi)j XT 1 = 1
Q ≡ proximity regularizer

similarity of the data points. In Table I, the closest methods to
KDS are [38]–[41]. However, the coefficients in these methods
do not lie on the simplex and the regularizers are based on
(xi)

2
j or |(xi)j |. The implication of these choices is that the

sparse coding step in [38], [40] yields a unique solution. This
departs from our setup where the sparse coding step in general
does not have a unique solution. In addition, the aforementioned
works lack theoretical analysis that shows that the sparse coding
step provably results a sparse solution. The sparse manifold
clustering and embedding algorithm (SMCE) [41] employs
proximity regularization that promotes representation using
local dictionaries. A drawback of SMCE is its computational
inefficiency since the dictionary is essentially all the data
points. Focusing on the problem of clustering, the work in
[42] introduces an optimization framework aimed at jointly
learning a union-of-subspace representation and performing
clustering. In this manuscript, the optimization objective retains
a broad scope, learning representations that are not tailored
to a specific end task. Finally, the work in [43] proposes a
similar regularization to ours with the authors referring to it as
“adaptive distance regularization”. However, the methodology
therein is based on using the data matrix as a dictionary and
lacks theoretical analysis. Finally, we refer the reader to [44] to
find a comprehensive overview of nonlinear manifold clustering
algorithms.

B. Manifold learning

Our setup is along the lines of methods that learn local
or global features of data using neighborhood analysis. For
instance, locally linear embedding (LLE) [13] provides a low
dimensional embedding using weights that are defined as the
reconstruction coefficients of data points from their neighbors.
The choice of the optimal neighborhood size is important for
LLE as it determines the features obtained and subsequently the
performance of downstream tasks. Geometric multiresolution
analysis (GMRA) is a fast and efficient algorithm that learns
multiscale representations of the data based on local tangent
space estimations [34], [35]. Since the dictionary elements used
to reconstruct are defined locally, GMRA is not immediately
useful for global downstream tasks, e.g., clustering. We also

note that the work in [50] develops a theoretical framework
for regression on low-dimensional sets embedded in high
dimensions. The regression is done via local polynomial fitting
which resembles local convex approximation in KDS albeit
the former method is applied to the supervised setting.

C. Scalable manifold learning via landmarks

For large datasets, the embedding step in manifold learning
techniques which typically involves a spectral problem can be
costly. One approach to circumvent the computational challenge
is based on finding an approximate solution by first identifying
a subset of points designated as landmarks or exemplars. For
instance, the works in [51], [52] propose landmark isometric
feature mapping (Isomap) and landmark multidimensional
scaling (MDS) which are respectively scalable versions of
Isomap [12] and classical MDS [53]–[55]. The work in [56] first
considers sparse coding (assuming pre-computed m landmarks)
of all data points to obtain a sparse representation matrix
Z ∈ Rm×n. It then obtains spectral embeddings using the right
singular vectors of a scaled Z. Another approach along the lines
of our work is the work in [57] which proposes an efficient
version of the locally linear embedding method using landmarks.
In contrast to our approach which learns the landmarks, we
note that the methods in [56], [57] identify the landmarks
from the full data using strategies such as random sampling
and clustering. A method inspired by LLE for semi-supervised
learning, local anchor embedding (LAE), is proposed in [58]. In
this approach, the anchors are centers learned from the K-means
algorithm. To obtain the representation coefficient of each data
point, LAE solves a least squares problem in a dictionary of s-
nearest anchors and with coefficients restricted on the simplex.
Compared to our approach, the anchor learning step is disjoint
from the sparse coding step in LAE. In addition, while LAE
introduces sparsity by setting number of nearest anchors, our
approach is based on promoting sparsity via a flexible proximity
regularization. There are scalable landmark/exemplar methods
for sparse subspace clustering e.g., [59]–[61] but subspace
clustering stipulates global affine structure that is not directly
applicable to the general case of nonlinear manifolds.

D. Non-negative matrix factorization

Non-negative matrix factorization (NMF) considers the
problem of approximating a nonnegative data matrix using
underlying components that are also non-negative [62], [63]. Let
Rm×n

⩾0 denote the set of m× n nonnegative matrices. Given a
data matrix Y ∈ Rd×n

⩾0 , approximate NMF seeks non-negative
matrices W ∈ Rd×m

⩾0 and H ∈ Rm×n
⩾0 that best approximate

the data. Choosing the Euclidean distance as a loss function, the
problem can be formulated as min

W∈Rd×m
⩾0

,H∈Rm×n
⩾0

||Y−WH||2F .

Different models on NMF put forth various conditions on the
data matrix and the components. The work in [64] proposes
a convex-model for NMF for a general data matrix with the
restriction that H is non-negative and the columns of W lie in
the column space of Y. A similar work to ours is in [65] where
the authors propose simplex structured matrix factorization
(SSMF) which considers the recovery of W and H given a
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generic data matrix with the restriction that H ∈ S. Therein, the
authors show that the exact W can be recovered by considering
a maximum volume ellipsoid inscribed in the convex hull of
the data points. We note that the model assumption in [65]
assumes a full column rank A and a full row rank X which
we do not assume in our setting. Further discussion of different
assumptions for identifiability of SSMF can be found in [66].
Finally, the works in [67] and [68] in hyperspectral imagery
study a similar problem as ours but with the difference that
the former considers a non-negative constraint and the latter
uses the ℓ0 regularizer on the simplex.

IV. THEORETICAL ANALYSIS

To solve the optimization program in (1), a common
approach is alternating minimization which is comprised of
two steps. The first step is sparse coding and the second step
is dictionary learning. In this section, we provide theoretical
analysis for the sparse coding and dictionary learning steps of
our proposed optimization program in (1). The sparse coding
problem fixes A and optimizes over X while the dictionary
learning problem fixes X and optimizes for A. We also discuss
how to obtain a low-dimensional embedding of data points.
Part of this analysis was completed in our prior work in [26].

A. Sparse coding

The theoretical analysis for the sparse coding step assumes
a specific model for the atoms and for generating the data
points. Before describing the model, we start with essential
background information on d-simplices, triangulations and a
Delaunay triangulation.

Definition 1. A d-simplex is the convex hull of a set of d+ 1
points {a0,a1, .., ad} in Rd.

For example, a 0-simplex and 1-simplex respectively cor-
respond to a point and a line segment. The d+ 1 points that
determine the d-simplex are called vertices of the simplex.
Next, we define the s-face of a d-simplex. The definition is
restated from [69].

Definition 2. An s-face of a simplex is the convex combination
of a subset of s+ 1 vertices of the simplex.

For example, a 0-face corresponds to a point, a 1-face is
an edge and a 2-face is a triangular facet. The next definition
concerns triangulation given a set of points. For the purposes
of our analysis, we use the following definition [69], [70].

Definition 3. Given a set of points P = {p1,p2, ...,pm} in
Rd, a triangulation T is a set of d-simplices that partition the
convex hull of P such that the intersection of any two simplices
in T is either empty or a common face.

We now proceed to define the main object of our theoretical
analysis, the Delaunay triangulation.

Definition 4. A Delaunay triangulation of a set of m points
P = {p1,p2, ...,pm} in Rd, DT(P), is any triangulation of
P such that for every d-simplex in DT(P), the circumscribing
hypersphere of the d-simplex does not contain any other point
of P.

Given a set of points in Rd, the existence of a unique
Delaunay triangulation is based on the following geometric
condition: the affine span of P is d-dimensional and no d+ 2
points of P lie on the same sphere. We refer to such points as
points in a general position.

a) Model for generating atoms and data: We consider m
landmark points a1,a2, ..., am in Rd with m ⩾ d+1 in general
position meaning that there is a unique Delaunay triangulation.
Each data point is in the convex hull of the m landmark points.
Figure 2 illustrates the model when d = 2.

Fig. 2. The blue dots indicate the atoms which generate the data points. Each
black dot, denoting a data point, is a convex combination of three atoms which
are vertices of the triangle the point belongs to. Note that the circumscribing
circle of any triangle does not contain any additional landmark points.

b) Sparse coding under the Delaunay triangulation model:
Let A ∈ Rd×m be the dictionary of the m landmarks defined
as A = [a1,a2, ..., am]. Any point y in the convex hull of
the m landmarks can be written as y = Ax where x ∈ ∆m.
However, note that there may be multiple ways to represent
the point y as a convex combination of the landmark points.
Since our aim is to obtain sparse representations, we focus on
the problem of finding a unique sparse solution to y = Ax.
Let DT(A) denote the set of d-simplices that constitute the
Delaunay triangulation of {a1,a2, ..., am}. For our setting, we
define the sparsest representation to be the representation of a
point y using the vertices of the d-simplex of DT(A) it belongs
to. As an example, if d = 2, this will be representing the point
using the vertices of the triangle it belongs to. This motivates
the following definition of a weighted ℓ0 pseudo-norm.

Definition 5. Assume m landmark points a1,a2, ..., am in Rd

have a unique Delaunay triangulation DT(A). Let y ∈ Rd be
an interior point of a d-simplex of DT(A) with circumcenter
c. The weighted ℓ0 norm of x is defined as

ℓw,0(x) =
1

∥x||0

m∑
i=1

1R+
(xi)||c− ai||2, (3)

where 1R+
(xi) = 1 if xi > 0 and 0 otherwise.

Given the above definition of a weighted ℓ0 norm and the fact
that a given point y admits different representations as a convex
combination of the dictionary atoms, the natural question is the
sense in which this norm is minimal i.e., among the different
representations, which ones admit minimal values in this norm?
The next theorem shows that the local reconstruction is minimal
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in the weighted ℓ0 norm. The result of Theorem 1 follows
from the following lemma, which we prove below.

Lemma 1. Let A ∈ Rd×m be the dictionary of the m
landmarks defined as A = [a1,a2, ..., am]. Let DT(A) de-
note a set of d-simplices of the Delaunay triangulation of
{a1,a2, ..., am}. If f is a d-simplex of DT(A) defined by the
vertices {aj : j ∈ T, |T | = d+1}, there is a hypersphere with
center c and radius R such that ||aj − c|| = R if j ∈ T and
||aj − c|| > R if j /∈ T .

Proof. f is a d-simplex of DT(A) where the indices of its
vertices are in T . Let c and R respectively denote the center and
radius of the circumscribing hypersphere of f . By construction,
||aj −c|| = R if j ∈ T . For contradiction, assume that there is
a j /∈ T such that ||aj−c|| ⩽ R. This contradicts the definition
of a Delaunay triangulation in Definition 4 since aj will be
an interior point of the circumscribing hypersphere.

Theorem 1. Given a set of landmarks {a1, . . . , am} with a
unique Delaunay triangulation DT(A), let y ∈ Rd be an
interior point of the d-simplex of DT(A) with circumcenter c
and radius R. Let

x∗ = argmin
x∈∆m

ℓw,0(x) s.t. y = Ax.

Then, x∗ is such that {j : x∗
j ̸= 0} correspond to the indices

of the vertices of the d-simplex of DT(A) that contains y.

Proof. Consider a d-simplex of DT(A) containing y defined
by the vertices {aj : j ∈ T, |T | = d+ 1}. Using vertices in T ,
y can be represented as a convex combination using coefficient
vector x∗. Let x be another feasible solution of the program
with support T ′. We now apply Lemma 1 to obtain

1

||x||0

∑
i∈T ′

1R+
(xi)||c− ai||2 > R2

∑
i∈T ′

1R+
(xi)

||x||0
= R2

= R2
∑
i∈T

1R+
(x∗

i )

||x∗||0

=
1

||x∗||0

∑
i∈T

1R+
(x∗

i )||c− ai||2

Therefore, the sparse representation using the vertices in T is
the optimal solution to the ℓw,0 minimization problem.

Given a reconstruction y = Ax, we note that the weighted
ℓ0 norm puts a uniform prior on all atoms which are used in
the representation. However, there are two drawbacks of this
regularization. First, the definition of the weighted ℓ0 norm
depends on knowing the circumcenter of the d-simplex the
point belongs to. In addition, the regularizer uses an indicator
function which is not suitable for optimization. To obtain
a regularization amenable to optimization, we now define a
convex relaxation of the weighted ℓ0 problem as follows.

Definition 6. Assume m landmark points a1,a2, ..., am in Rd

with a unique Delaunay triangulation DT(A). Let the point
y ∈ Rd be in the convex hull of the landmark points i.e.,

y = Ax with x ∈ ∆m. The weighted ℓ1 norm of x is defined
as

ℓw,1(x) =
m∑
i=1

xi ||y − ai||2, (4)

Analogous to compressed sensing theory, the next question
is the sense in which a weighted ℓ1 minimization is equivalent
to a weighted ℓ0 minimization problem. This equivalency is
summarized in Theorem 2. The following lemma will be
essential to the proof of Theorem 2.

Lemma 2. Given the dictionary of landmarks A ∈ Rd×m, let
y = Ax for x ∈ ∆m. For any arbitrary point c ∈ Rd,

ℓw,1(x) =
m∑
i=1

xi ||y − ai||2 =
m∑
i=1

xi||ai − c||2 − ||y − c||2.

Proof. We expand ℓw,1(x) as follows and use the fact that
y = Ax and x ∈ ∆m:

m∑
i=1

xi ||y − ai||2

=
m∑
i=1

xi ||(y − c) + (c− ai)||2

=
m∑
i=1

xi

(
||y − c||2 + ||ai − c||2 − 2(y − c)T (ai − c)

)
= ||y − c||2 +

m∑
i=1

xi||ai − c||2 − 2(y − c)T

(
m∑
i=1

xiai − c

)

= ||y − c||2 +
m∑
i=1

xi||ai − c||2 − 2||y − c||22

=
m∑
i=1

xi||ai − c||2 − ||y − c||2.

Theorem 2. Given a set of landmarks {a1, . . . , am} with a
unique Delaunay triangulation DT(A), let y ∈ Rd be an
interior point of a d-simplex of DT(A). Let

x∗ = argmin
x∈∆m

∑
i

xi∥y − ai∥2 s.t. y = Ax.

Then, x∗ is such that {i : x∗
i ̸= 0} correspond to the indices

of the vertices of the d-simplex of DT(A) that contains y.

Proof. Consider the d-simplex containing y defined by the
vertices {aj : j ∈ T, |T | = d + 1}. Since y is an interior
point of the d-simplex, it can be represented as a convex
combination of its vertices using coefficient vector x∗. Note
that x∗ is supported on T with ||x∗||0 = d + 1. Let x be
another feasible solution of the program with support T ′. We
now apply Lemma 3 to y = Ax with c as the circumcenter
of the d-simplex that contains y:∑

j∈T ′

xj∥y − aj∥2 =
∑
j∈T ′

xj∥aj − c∥2 − ∥y − c∥2.
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We now apply Lemma 1 to lower bound the above term.
Specifically, we use the fact that ||aj − c|| > R if j /∈ T
and ||aj − c|| = R if j ∈ T :∑

j∈T ′

xj∥y − aj∥2 =
∑
j∈T ′

xj∥aj − c∥2 − ∥y − c∥2.

>
∑
j∈T ′

xjR
2 − ∥y − c∥2.

= R2 − ∥y − c∥2.

=
∑
j∈T

x∗
j ||aj − c||2 − ∥y − c∥2.

=
∑
j∈T

x∗
j∥y − aj∥2.

Above, the inequality in the second line uses the fact that there
is at least one index in T ′ that is not in T . The last equality
follows from applying Lemma 3 with y = Ax∗ and c as the
circumcenter. We have established that ℓw,1(x) > ℓw,1(x

∗) for
any feasible x. Therefore, the sparse representation using the
vertices in T is the optimal solution to the ℓw,1 minimization
problem.

B. Stability analysis
In this section, we consider the stability of sparse repre-

sentations when an input data is perturbed by a bounded
additive noise. Formally, given a data point y ∈ Rd, the data
is perturbed resulting ỹ with the condition that ||y− ỹ||2 ⩽ ε.
In the analysis to follow, the notion of a local dictionary is
used which we define below.

Definition 7. Given a set of landmarks {a1, . . . , am} with a
unique Delaunay triangulation DT(A), let y ∈ Rd be interior
points of the d-simplex of DT(A). Then the local dictionary
AL ∈ Rd×d+1 associated to y is AL = [aj1 aj2 ...ajd+1

],

where the indices {jk}d+1
k=1 correspond to the vertices of the

d-simplex that contains y.

The utility of a local dictionary is that it allows us to express
a data point in terms of its barycentric coordinates.

Definition 8. Given a local dictionary AL ∈ Rd×(d+1)

associated to y ∈ Rd, the barycentric coordinates of y is
the unique solution to the linear system BLx = z, where

BL ∈ R(d+1)×(d+1) is defined as BL =

(
AL

1d

)
and

z =

(
y
1

)
.

Theorem 3. Given a set of landmarks {a1, . . . , am} with
a unique Delaunay triangulation DT(A), let y, ỹ ∈ Rd be
interior points of the same d-simplex of DT(A). Further,
assume that ||y − ỹ|| ⩽ ε and y = Ax∗ where

x∗ = argmin
x∈∆m

∑
j

xj∥y − aj∥2 s.t. y = Ax.

Let x̃∗ be the optimal solution to the following ℓw,1 minimiza-
tion problem.

x̃∗ = argmin
x∈∆m

∑
j

xj∥ỹ − aj∥2 s.t. ỹ = Ax.

Then, x̃∗ to the above program is such that

||x̃∗ − x∗|| ⩽ 1

σmin(BL)
ε,

where BL =

(
AL

1d

)
and AL is the local dictionary associated

to ỹ.

Proof. Since y and ỹ belong to the same simplex of DT(A),
they have the same local dictionary denoted by AL. Using
Theorem 4, the optimal solution x̃∗ is such that it is only
nonzero on the indices corresponding to vertices of the simplex
that contains ỹ. An analogous argument could be made for
x∗. It then follows that y = ALx

∗ and ỹ = ALx̃
∗. In what

follows, we form a square linear system by considering an
additional constraint that the coefficients must sum to 1. To
that end, we define z, z̃ ∈ Rd+1 as follows: z =

(
y
1

)
and

z̃ =

(
ỹ
1

)
. Note that ||z− z̃||2 = ||y−ỹ||2. Further, z = BLx

∗

and z̃ = BLx̃
∗. We proceed to lower bound ||z− z̃||2:

||z− z̃||2 = ||BL(x
∗ − x̃∗)||2 ⩾ σmin(BL)||x∗ − x̃||2,

where σmin(BL) > 0 (this follows from the assumption that
the landmarks are in general position). Combining this lower
bound with ||y − ỹ||2 ⩽ ε, we obtain

||x̃∗ − x∗|| ⩽ 1

σmin(BL)
ε.

Remark: We would like to highlight that the affine constraint
on the coefficients ensures that the aforementioned theorem
remains valid even when the data points are translated. However,
the stability of the theorem is contingent upon the minimum
singular value of a shifted BL. We note that when the
noise is sufficiently low and σmin(BL) is appropriately large,
the stability analysis ensures a robust sparse solution. This
robustness depends upon the magnitude of σmin(BL), which
in turn is influenced by the geometrical structure of the localized
dictionary. Initial numerical experiments suggest that if the
localized dictionaries are “well-structured”, σmin(BL) tends
to be relatively large, whereas smaller values of σmin(BL)
correspond to elongated triangles. Details on the numerical
experiments can be found in the Supplementary Materials.

C. Optimal dictionary

In the theoretical analysis so far, we have studied the problem
of recovering a sparse coefficient vector given a fixed dictionary.
In this section, we assume that the sparse coefficients are fixed
and study the optimization problem over the dictionary. In
particular, we study the optimal solution defined as follows.

A∗ = argmin
A∈Rd×m

||Y−AX||2F+λ
n∑

i=1

m∑
j=1

(xi)j ||yi−aj ||2, (5)

where λ > 0 is a regularization parameter. Below, we will
prove that A∗ is unique and has a closed form solution.
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Theorem 4. For fixed X ∈ S, A∗ is given by

A∗ = (1 + λ)YXTH−1,

where H = XXT + λdiag(X1).

Proof. Let f(A) denote the objective function in (5). The
proof of the theorem relies on showing that f(A) is strongly
convex. Some calculation yields ∇f(A) = 2(AX−Y)XT +
2λAdiag(X1)− 2λYXT . Strong convexity requires showing
that ⟨∇f(A1) − ∇f(A2),A1 − A2⟩ ⩾ µ||A1 − A2||2F
with µ > 0 for any A1,A2. Using the explicit form of
the gradient, strong convexity is equivalent to showing that
⟨XXT+λdiag(X1), (A1−A2)

T (A1−A2)⟩ ⩾ µ||A1−A2||2F .
For ease of notation, let H = XXT + λdiag(X1) and
G = (A1 − A2)

T (A1 − A2). We first note that H is
symmetric positive definite and G is symmetric positive
semidefinite. To see the former claim, it suffices to show that
the diagonal entries of diag(X1) are non-zero. The only case
an entry will be zero is if an atom is not used by all data points.
For this case, the given atom can be discarded. In all other
cases, all the diagonal entries of diag(X1) are positive. Finally,
we claim that ⟨H ,G⟩ ⩾ λmin(H) trace(G). This gives the
desired strong convexity result with µ = λmin(H) > 0.
Setting the gradient to zero yields the unique solution
A∗ = (1 + λ)YXTH−1. It remains to prove the claim that
⟨H ,G⟩ ⩾ λmin(H) trace(G). This follows from noting that
the matrix H− λmin(H)I is symmetric positive semidefinite
and the term ⟨H− λmin(H)I ,G⟩ ⩾ 0 as it is a trace product
of symmetric positive semidefinite matrices.

Remarks: We note that the weighted ℓ1 regularizer enables us
to obtain strong convexity when optimizing over the dictionary
atoms. If λ = 0, strong convexity is not always guaranteed.
We also note that each column of the optimal dictionary is a
linear combination of the data points.

D. KDS embedding

In a typical setting, under the manifold hypothesis, the
number of landmarks is expected to be much smaller than the
number of data points i.e., m ≪ n. With that, the optimal sparse
coefficients obtained from solving (1) are a low-dimensional
representation of the high-dimensional data. However when
utilizing the sparse coefficients for downstream tasks such as
clustering, further dimensionality reduction can be useful. For
instance, this will be the case in the setting where m ≪ n,
such that the data is well represented via local landmarks, but
m ≫ k (e.g., k is number of clusters). In what follows, using
connections to spectral clustering and spectral embedding [14],
[71], we will show how to obtain low-dimensional embeddings
based on the eigenvectors of the covariance matrix XXT .

The starting point is the observation that the representation
coefficients X define a bipartite similarity graph G with n+m
vertices corresponding to the n data points and m learned
dictionary atoms. In this graph, each data point yi and each
atom aj is connected by an undirected edge of weight (xi)j .

To embed the data points and the atoms into Rk, we consider
the classic spectral embedding.

min
Q∈Rk×(n+m)

trace(QLQT ) s.t. QQT = I, (6)

where Q = [QY QA] ∈ Rk×(n+m). We enforce an additional
constraint QY = QAX to formulate the problem only in terms
of the landmarks. We note that this type of assumption has
been used for landmark-based locally linear embedding [57].
We will now proceed to state and prove a lemma which shows
that the Laplacian quadratic form could be formulated in terms
of the landmarks. The Schur complement will be used in the
proof and is defined as follows. Consider the block matrix

M =

(
A B
C D

)
where A ∈ Rp×p, B ∈ Rp×q , C ∈ Rq×p

and D ∈ Rq×q. If A is invertible, the Schur complement of
M with respect to A is defined as D−CA−1B.

Lemma 3. Let Q = [QY QA] ∈ Rk×(n+m). If QY = QAX,

trace(QLQT ) = trace
(
QALAQT

A

)
.

Proof. Using the weight matrix in (2), the Laplacian L is

given by
[

I −XT

−X diag(X1)

]
. We now proceed to evaluate

trace(QLQT ).

trace(QLQT ) = trace(QTQL)

= trace

([
QT

YQY QT
YQA

QT
AQY QT

AQA

] [
I −XT

−X diag(X1)

])
=trace

(
(QT

YQY)I−QT
YQAX−QT

AQYXT +QT
AQAJ

)
=trace

(
XTQT

AQAX− 2XTQT
AQAX+QT

AQAJ
)

=trace
(
QT

AQA

(
J−XXT

))
= trace

(
QALAQT

A

)
,

where J = diag(X1) and LA is known as the Schur
complement of L with respect to Y.

Given the above proof, we consider the following spectral
embedding problem

min
QA∈Rk×m

trace(QALAQT
A) s.t. QAQT

A = I. (7)

The above problem is a standard spectral problem whose opti-
mal solution is Q∗

A = UT
k where the columns of Uk ∈ Rm×k

are the eigenvectors of LA corresponding to the largest k
eigenvalues. It follows that the dominant computation of the
KDS spectral embedding only requires the calculation of the
first k eigenvectors of an m ×m matrix LA, which is very
small when m ≪ n, as well as a handful of O(mn)-time
multiplications by the matrix X to compute the adjacency
matrix XX⊤ and recover QY = QAX.

We note that it is important to set k and m carefully. In lack
of prior knowledge about number of clusters, one could employ
the eigengap heuristic [72] which sets number of clusters based
on the gap between eigenvalues of the graph Laplacian. In
terms of m, a relatively large value of m, implies that points
are well represented via local landmarks. However, this has the
implication that points within the same cluster may not have the
same sparsity structure. In contrast, a relatively small value of
m would allow points from different clusters to have a similar
sparsity structure (which leads to sub-optimal clustering).
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V. DICTIONARY LEARNING ALGORITHM

In this section, given a set of data points, we discuss
the problem of estimating both the sparse representations
and dictionary atoms. To this end, we study the following
minimization problem:

min
A∈Rd×m,X∈S

n∑
i=1

[
1

2
∥yi −Axi∥2 + λ

m∑
j=1

(xi)j∥yi − aj∥2
]
,

(8)
where X = [x1,x2, ...,xn] with each xi ∈ ∆m. The balance
between the reconstruction loss and the locality regularization
is controlled by the parameter λ. A standard way to solve
the above minimization program is alternating minimization
which alternates between sparse approximation and dictionary
update steps [73]. We discuss the two steps below. The KDS
algorithm is summarized in in Algorithm 1.

A. Sparse coding

Given a fixed dictionary A, the sub-problem over the
sparse coefficients is a weighted ℓ1 minimization problem
for which efficient methods exist [74]. We consider the
accelerated projected gradient descent algorithm [75] to solve
this problem. Since the minimization problem for X decouples
into optimizing the sparse representation of each data point, we
consider the problem of finding the optimal coefficient given
the dictionary A and a data point y as follows

x∗(A,y) = argmin
x∈∆m

1

2
∥y−Ax∥2 + λ

m∑
j=1

xj∥y− aj∥2. (9)

Let L(A,y,x, λ) denote the objective in the above program.

The accelerated projected gradient descent: This method
starts with the initialization x0 = x̃(0) = 0 and considers the
following updates

x(t+1) = P∆m

(
x̃(t) − α∇xL(A,y, x̃(t))

)
x̃(t+1) = x(t+1) +

t− 1

t+ 2
(x(t+1) − x(t)).

for 0 ⩽ t ⩽ Tmax. The operator P∆m projects onto S, the
probability simplex and has a closed form that can be readily
computed [76], [77]. The parameter α is a step size. We note
below the gradient of L with respect to xi:

∇xi
L(A,yi,xi, λ) = A⊤(Axi − yi) + λ

m∑
j=1

∥yi − aj∥2ej

B. Dictionary learning

After Tmax iterations of the sparse coding step, we have
optimized sparse coefficients {x(Tmax)

i }ni=1 corresponding to
the data points {yi}ni=1. The next part of the algorithm is to
optimize for the dictionary which can be estimated by solving
the following optimization problem:

min
A∈Rd×m

n∑
i=1

[
1

2
∥yi−Ax

(Tmax)
i ∥2+λ

m∑
j=1

(x
(Tmax)
i )j∥yi−aj∥2

]
.

(10)

Let L1(A,y,x, λ) denote the objective in the above program.
We note that the gradient of L1 with respect to A is given by

∇AL1 = 2(AX−Y)XT + 2λAdiag(X1)− 2λYXT

The dictionary learning sub-problem can be solved using
gradient descent.

C. Complexity of alternating minimization

For a fixed data point, the gradient update to estimate the
coefficient is O(md) and the projection onto the simplex is
O(m log(m)) [76]. Therefore, the per-iteration cost of sparse
coding is O(nmmax(log(m), d)). The per-iteration complexity
of the dictionary learning step is O(nmd) which is the cost
of the gradient update.

Algorithm 1 KDS algorithm to solve (8)
1: Input: Data points Y = [y1, . . . ,yn] ∈ Rd×n, maxitera-

tions.
2: Initialization: x(0)

i = 0 for 1 ⩽ i ⩽ n. Set A(0) ∈ Rd×m

to be random subset of data.
3: for k = 1:maxiterations do
4: Set step size: α = 1

(σmax(A(k−1)))2
.

5: Sparse coding via encoder: Given A(k−1),
use accelerated project gradient descent to obtain
{x(k)

1 ,x
(k)
2 , ...,x

(k)
n }.

6: Decoder: Reconstruct approximate data
{A(k−1)x

(k)
1 , ...,A(k−1)x

(k)
n }.

7: Dictionary learning: Backpropagation to obtain A(k).

D. Algorithm unrolling

In order to solve (8) efficiently and to design an interpretable
network, we consider a technique known as algorithm unrolling.
This is the process of designing a highly-structured recurrent
neural network to efficiently solve problems [78]. Although
our application of the technique for manifold learning is new,
there exists a rich literature on the subject in the context of
sparse dictionary learning [18]–[20], [22]–[25]. In order to
solve the relaxed optimization problem in (10), we introduce
an autoencoder architecture that implicitly solves the problem
when trained by backpropagation. Given a dictionary A, our
encoder maps a data point y, or a batch of such points, to
the sparse code x minimizing L(A,y,x). This is done by
unfolding T iterations of projected gradient descent on L into
a deep recurrent neural network. Our linear decoder reconstructs
the input as ŷ = Ax. The network weights correspond to the
dictionary A, which is initialized to a random subset of the
data Y and then trained to minimize (8) by backpropagation
through the entire autoencoder. If we view the forward pass
through our encoder as an analogue of the sparse recovery
step used in traditional alternating-minimization schemes, then
this backward pass corresponds to an enhanced version of the
so-called “dictionary update” step. We note that the projection
onto the probability simplex can be written as a modified ReLU
function and thus serves as a non-linear activation function in
the encoder.
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Fig. 3. Circle and two moons. Autoencoder input (first and third) and output
(second and fourth), with learned atoms marked in red.

VI. EXPERIMENTS

A. Application of KDS to clustering

Let Y = [y1, . . . ,yn] ∈ Rd×n be a collection of n data
points in Rd. To cluster the data, we utilize Algorithm 1
to obtain sparse representation coefficients X and a set of
m atoms a1, . . . , am. Our similarity matrix is XXT . Given
the similarity matrix, to cluster the data into k clusters, we
apply spectral clustering which first embeds the data using k
eigenvectors of a normalized graph Laplacian corresponding to
the largest k eigenvalues. We note that the obtained embedding
is extended to all data points by applying the dictionary. The
details of these are in Section IV. D. Given the embedding, we
run k-means to obtain the cluster labels [71].

In this section, we demonstrate the ability of KDS, imple-
mented in PyTorch [79], to efficiently and accurately recover the
underlying clusters of both synthetic and real-world data sets.
Details about pre-processing of data and parameter selection
for KDS as well as baseline algorithms can be found in
the Supplementary Materials. All clustering experiments are
evaluated with respect to a given ground truth clustering using
the unsupervised clustering accuracy (ACC), which is invariant
under a permutation of the cluster labels. Accuracy is defined
as the percentage of correct matches with respect to the ground
truth labels of the data.

B. Synthetic Data

Learned Dictionary Atoms: For our first experiment, we
visualize the dictionary atoms learned by our autoencoder when
the data is sampled from one-dimensional manifolds in R2.
Figure 3 shows two such data sets.

The first is the unit circle in R2. The second is the
classic two moon data set [71], which consists of two disjoint
semicircular arcs in R2. For each of these two data sets, we
trained the autoencoder on data sampled uniformly from the
underlying manifold(s). We added small Gaussian white noise
to each data point to make the representation learning problem
more challenging. Figure 3 shows the result of training the
autoencoder on these data sets. We see that in each case, the
atoms learned by the model are meaningful. Moreover, in
each case, we accurately reconstruct each data point as sparse
convex combinations of these atoms, up to the additive white
noise. As a final remark, drawing a sample of 5000 data points
from the noisy two moons distribution, computing their sparse
coefficients, and performing spectral clustering with k = 2 on
the associated bipartite similarity graph results in a clustering
accuracy of 99.9%. We note that KDS outperforms baseline
algorithms (see Table II).

Clustering with Narrow Separation: Our next experiment
assesses the clustering capabilities of our algorithm in a toy
setting. We studied a simple family of data distributions
consisting of two underlying clusters in R2. These clusters
took the shape of two concentric circles of radii router = 1 and
rinner = 1− δ, where δ ∈ [0, 1] is a separation parameter. For
multiple values of δ, we trained our structured autoencoder with
m atoms on data sampled uniformly from these two manifolds,
each with half the probability mass. For this experiment, we
did not add any Gaussian noise to the data.

Figure 4 shows the results across a range of m and δ.
Figure 5 shows the accuracy achieved by performing spectral
clustering on the corresponding similarity graphs. Based on
these results, it appears that our clustering algorithm is capable
of distinguishing between clusters of arbitrarily small separation
δ, provided that the number of atoms is sufficiently large.

Fig. 4. Clustering accuracy for concentric circles across δ,m.

C. Real-World Data

In this section, we empirically evaluate our algorithm on
synthetic and three publicly available real-world data sets.
We compared our method against four baseline clustering
algorithms that may be interpreted as dictionary learning: (i)
k-means (KM) [80], which learns a single dictionary atom for
each cluster; (ii) SMCE, which solves a sparse optimization
problem over a global dictionary consisting of all data points,
then runs spectral clustering on a similarity graph derived from
the solution [41]; (iii) LLL [57] which is a landmark method
that uses uniform sampling (LLL-U) or k-means clustering
(LLL-K) and (iv) ESC [59] is a landmark method that uses
furthest first search. A summary of results can be found in
Table II. For LLL, clustering is based on an affinity matrix
built from the weights. The reported accuracy is the best result
after optimizing for different factors (# of neighbors, exemplar
scheme, optimal clustering). See the Supplementary Materials
for details of numerical experiments. We note that the linear
system utilized in LLL is ill-conditioned, due to few sample
points to characterize the manifold, for the Yale B dataset and
obtains poor results. We denote this result by NA. Similarly,
clustering on MNIST is ill-conditioned with 500 points and
we instead set m = 800.

MNIST Handwritten Digit Database: The database [81]
consists of 28 × 28 grayscale images of 10 different digits.
We ran our clustering on a subset of the data comprised of
the k = 5 digits {0, 3, 4, 6, 7}, following the example of [41].
Figure 1 shows a subset of the randomly initialized atoms for
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Fig. 5. (a) Autoencoder output and learned atoms for concentric circles, separation δ = 0.15.

TABLE II
CLUSTERING ACCURACIES FOR VARIOUS DATA SETS ROUNDED TO THREE

DIGITS.

Method Moons MNIST-5 Yale B Salinas-A
KM 0.756 0.887 0.508 0.774

SMCE 0.835 0.975 1.0 0.847
KDS 0.999 0.986 1.0 0.881

LLL-U 0.944 0.976 NA 0.285
LLL-K 0.950 0.980 NA 0.261

ESC 0.842 0.966 0.958 0.840

MNIST before training (black and white) and after training
and clustering (color).

Extended Yale Face Database B: The cropped version of
the database [82] consists of 192× 168 grayscale images of
39 different faces under varying illumination conditions. We
ran our algorithm on a subset of the data comprised of k = 2
subjects.

Salinas-A Hyperspectral Image: The Salinas-A data set is
a single aerial-view hyperpspectral image of the Salinas valley
in California with 224 bands and 6 regions corresponding
to different crops [83]. We ran our algorithm on the entire
86 × 83 pixel image with k = 6 segments. Regarding the
KDS result depicted in Figure 6, KDS exhibits a specific
limitation: it tends to blend certain elements of the aquamarine
class with the yellow class, a characteristic shared with many
hyperspectral image (HSI) clustering algorithms. Conversely,
K-means exhibits a distinct challenge as it fails not only to
distinguish the turquoise class but also struggles to accurately
separate a portion of the aquamarine class.

VII. CONCLUSION

In this paper, we proposed a structured dictionary learning
algorithm K-Deep Simplex (KDS) that combines nonlinear
dimensionality reduction and sparse coding. Given a set of data
points as an input, KDS learns a dictionary along with sparse
coefficients supported on the probability simplex. Assuming
that data points are generated from a convex combination
of atoms, represented as vertices of a unique Delaunay
triangulation, we prove that the proposed regularization
recovers the underlying sparse solution. Furthermore, we
demonstrate that when a data point undergoes perturbation
and the perturbed point resides within the same d-simplex
as the original point, we establish the stability of sparse
representations. We also show how the optimization problem

Fig. 6. Salinas-A Scene. From left to right and top to bottom: image data
(mean across spectral bands), ground truth clusters, predicted clusters by K-
means, predicted clusters by KDS.

for KDS can be recast and solved via a structured deep
autoencoder. We then discuss how KDS can be applied for the
clustering problem by constructing a similarity graph based
on the obtained representation coefficients. Our experiments
show that KDS learns meaningful representation and obtains
competitive results while offering dramatic savings in running
time. In contrast to methods that set the dictionary to be the
set of all data points, KDS is quasilinear with the number of
dictionary atoms and offers a scalable framework. In our future
work, we intend to explore several aspects, including stability
estimates for scenarios where perturbed and original data points
are located in adjacent d-simplices, conducting experiments
on large, real-world datasets, examining the sampling of data
manifold using KDS and drawing comparisons to [51], [52],
investigating the out-of-sample extension property of KDS,
and exploring the generative capabilities of the model.

Acknowledgements: AT acknowledges support from NSF
through grant DMS-2208392. JMM gratefully acknowledges
support from the NSF through grants DMS-1912737, DMS-
1924513, DMS-2309519, and DMS-2318894 as well as The
Camille & Henry Dreyfus Foundation. DB acknowledges
support from the NSF through grants DMS-2134157 and PHY-
2019786.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TSP.2023.3322820

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.



13

REFERENCES

[1] C. Loader, Local regression and likelihood. Springer Science & Business
Media, 2006.

[2] C. J. Stone, “Consistent nonparametric regression,” The annals of
statistics, pp. 595–620, 1977.

[3] W. S. Cleveland, “Robust locally weighted regression and smoothing
scatterplots,” Journal of the American statistical association, vol. 74, no.
368, pp. 829–836, 1979.

[4] D. H. McLain, “Drawing contours from arbitrary data points,” The
Computer Journal, vol. 17, no. 4, pp. 318–324, 1974.

[5] J. H. Friedman and W. Stuetzle, “Projection pursuit regression,” Journal
of the American statistical Association, vol. 76, no. 376, pp. 817–823,
1981.

[6] B. Li, J. Friedman, R. Olshen, and C. Stone, “Classification and regression
trees (cart),” Biometrics, vol. 40, no. 3, pp. 358–361, 1984.

[7] D. Hallac, J. Leskovec, and S. Boyd, “Network lasso: Clustering and
optimization in large graphs,” in Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, 2015,
pp. 387–396.

[8] M. Yamada, T. Koh, T. Iwata, J. Shawe-Taylor, and S. Kaski, “Localized
lasso for high-dimensional regression,” in Artificial Intelligence and
Statistics. PMLR, 2017, pp. 325–333.

[9] M. Petrovich and M. Yamada, “Fast local linear regression with anchor
regularization,” arXiv preprint arXiv:2003.05747, 2020.

[10] J. M. Lee, “Smooth manifolds,” in Introduction to Smooth Manifolds.
Springer, 2013, pp. 1–31.

[11] B. Schölkopf, A. Smola, and K.-R. Müller, “Kernel principal component
analysis,” in International conference on artificial neural networks.
Springer, 1997, pp. 583–588.

[12] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” science, vol. 290, no.
5500, pp. 2319–2323, 2000.

[13] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[14] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural computation, vol. 15, no. 6,
pp. 1373–1396, 2003.

[15] R. R. Coifman and S. Lafon, “Diffusion maps,” Applied and computa-
tional harmonic analysis, vol. 21, no. 1, pp. 5–30, 2006.

[16] A. Cutler and L. Breiman, “Archetypal analysis,” Technometrics, vol. 36,
no. 4, pp. 338–347, 1994.

[17] D. van Dijk, D. B. Burkhardt, M. Amodio, A. Tong, G. Wolf, and
S. Krishnaswamy, “Finding archetypal spaces using neural networks,” in
2019 IEEE International Conference on Big Data (Big Data). IEEE,
2019, pp. 2634–2643.

[18] B. Tolooshams, S. Dey, and D. Ba, “Deep residual autoencoders for ex-
pectation maximization-inspired dictionary learning,” IEEE Transactions
on Neural Networks and Learning Systems, 2020.

[19] B. Tolooshams, A. Song, S. Temereanca, and D. Ba, “Convolutional
dictionary learning based auto-encoders for natural exponential-family
distributions,” in International Conference on Machine Learning. PMLR,
2020, pp. 9493–9503.

[20] B. Tolooshams and D. Ba, “Stable and interpretable unrolled dictionary
learning,” Transactions on Machine Learning Research, 2022.

[21] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable,
efficient deep learning for signal and image processing,” IEEE Signal
Processing Magazine, vol. 38, no. 2, pp. 18–44, 2021.

[22] T. Chang, B. Tolooshams, and D. Ba, “Randnet: deep learning with
compressed measurements of images,” in 2019 IEEE 29th International
Workshop on Machine Learning for Signal Processing (MLSP). IEEE,
2019, pp. 1–6.

[23] K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,”
in Proceedings of the 27th international conference on international
conference on machine learning, 2010, pp. 399–406.

[24] J. T. Rolfe and Y. LeCun, “Discriminative recurrent sparse auto-encoders:
1st international conference on learning representations, iclr 2013,” in
1st International Conference on Learning Representations, ICLR 2013,
2013.

[25] B. Tolooshams, S. Dey, and D. Ba, “Scalable convolutional dictionary
learning with constrained recurrent sparse auto-encoders,” in 2018 IEEE
28th International Workshop on Machine Learning for Signal Processing
(MLSP). IEEE, 2018, pp. 1–6.

[26] A. Tasissa, P. Tankala, and D. Ba, “Weighed l1 on the simplex:
Compressive sensing meets locality,” in 2021 IEEE Statistical Signal
Processing Workshop (SSP), 2021, pp. 476–480.

[27] P. Tankala, A. Tasissa, J. M. Murphy, and D. Ba, “K-deep sim-
plex: Deep manifold learning via local dictionaries,” arXiv preprint
arXiv:2012.02134, 2020.

[28] T. Cour, P. Srinivasan, and J. Shi, “Balanced graph matching,” Advances
in neural information processing systems, vol. 19, 2006.

[29] Y. Chen, D. M. Paiton, and B. A. Olshausen, “The sparse manifold
transform,” in Proceedings of the 32nd International Conference on
Neural Information Processing Systems, 2018, pp. 10 534–10 545.

[30] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images,” Nature,
vol. 381, no. 6583, pp. 607–609, 1996.

[31] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions
of systems of equations to sparse modeling of signals and images,” SIAM
review, vol. 51, no. 1, pp. 34–81, 2009.

[32] K. Engan, S. O. Aase, and J. H. Husøy, “Multi-frame compression:
Theory and design,” Signal Processing, vol. 80, no. 10, pp. 2121–2140,
2000.

[33] M. Aharon, M. Elad, and A. Bruckstein, “K-svd: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Transactions on signal processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[34] W. K. Allard, G. Chen, and M. Maggioni, “Multi-scale geometric
methods for data sets ii: Geometric multi-resolution analysis,” Applied
and computational harmonic analysis, vol. 32, no. 3, pp. 435–462, 2012.

[35] M. Maggioni, S. Minsker, and N. Strawn, “Multiscale dictionary learning:
non-asymptotic bounds and robustness,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 43–93, 2016.

[36] F. Dornaika and L. Weng, “Sparse graphs with smoothness constraints:
Application to dimensionality reduction and semi-supervised classifica-
tion,” Pattern Recognition, vol. 95, pp. 285–295, 2019.

[37] D. Cai, X. He, J. Han, and T. S. Huang, “Graph regularized nonnegative
matrix factorization for data representation,” IEEE transactions on pattern
analysis and machine intelligence, vol. 33, no. 8, pp. 1548–1560, 2010.

[38] H. Hu, Z. Lin, J. Feng, and J. Zhou, “Smooth representation clustering,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 3834–3841.

[39] K. Yu, T. Zhang, and Y. Gong, “Nonlinear learning using local coordinate
coding,” Advances in neural information processing systems, vol. 22,
2009.

[40] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-
constrained linear coding for image classification,” in 2010 IEEE
computer society conference on computer vision and pattern recognition.
IEEE, 2010, pp. 3360–3367.

[41] E. Elhamifar and R. Vidal, “Sparse manifold clustering and embedding,”
Advances in neural information processing systems, vol. 24, pp. 55–63,
2011.

[42] T. Ding, S. Tong, K. H. R. Chan, X. Dai, Y. Ma, and B. D. Haeffele,
“Unsupervised manifold linearizing and clustering,” arXiv preprint
arXiv:2301.01805, 2023.

[43] G. Zhong and C.-M. Pun, “Subspace clustering by simultaneously feature
selection and similarity learning,” Knowledge-Based Systems, vol. 193,
p. 105512, 2020.

[44] M. Abdolali and N. Gillis, “Beyond linear subspace clustering: A
comparative study of nonlinear manifold clustering algorithms,” Computer
Science Review, vol. 42, p. 100435, 2021.

[45] M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, and D. Cai, “Graph
regularized sparse coding for image representation,” IEEE transactions
on image processing, vol. 20, no. 5, pp. 1327–1336, 2010.

[46] J. Huang, F. Nie, and H. Huang, “A new simplex sparse learning model
to measure data similarity for clustering,” in Twenty-fourth international
joint conference on artificial intelligence, 2015.

[47] Y. Zhou and K. E. Barner, “Locality constrained dictionary learning for
nonlinear dimensionality reduction,” IEEE Signal Processing Letters,
vol. 20, no. 4, pp. 335–338, 2013.

[48] K. Jiang, Z. Liu, Z. Liu, and Q. Sun, “Locality constrained analysis dic-
tionary learning via k-svd algorithm,” arXiv preprint arXiv:2104.14130,
2021.

[49] H.-F. Yin, X.-J. Wu, and S.-G. Chen, “Locality constraint dictionary
learning with support vector for pattern classification,” IEEE Access,
vol. 7, pp. 175 071–175 082, 2019.

[50] W. Liao, M. Maggioni, and S. Vigogna, “Multiscale regression on
unknown manifolds,” Mathematics in Engineering, vol. 4, no. 4, pp.
1–25, 2022. [Online]. Available: https://www.aimspress.com/article/doi/
10.3934/mine.2022028

[51] V. Silva and J. Tenenbaum, “Global versus local methods in nonlinear
dimensionality reduction,” Advances in neural information processing
systems, vol. 15, pp. 721–728, 2002.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TSP.2023.3322820

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.



14

[52] V. De Silva and J. B. Tenenbaum, “Sparse multidimensional scaling
using landmark points,” technical report, Stanford University, Tech. Rep.,
2004.

[53] W. S. Torgerson, “Multidimensional scaling: I. theory and method,”
Psychometrika, vol. 17, no. 4, pp. 401–419, 1952.

[54] J. C. Gower, “Some distance properties of latent root and vector methods
used in multivariate analysis,” Biometrika, vol. 53, no. 3-4, pp. 325–338,
1966.

[55] G. Young and A. S. Householder, “Discussion of a set of points in terms
of their mutual distances,” Psychometrika, vol. 3, no. 1, pp. 19–22, 1938.

[56] X. Chen and D. Cai, “Large scale spectral clustering with landmark-based
representation,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 25, no. 1, 2011, pp. 313–318.
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