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Abstract 

Unpacking and comprehending how black-box machine learning algorithms (such as deep learning 

models) make decisions has been a persistent challenge for researchers and end-users. Explaining time-

series predictive models is useful for clinical applications with high stakes to understand the behavior of 

prediction models, e.g., to determine how different variables and time points influence the clinical 

outcome. However, existing approaches to explain such models are frequently unique to architectures 

and data where the features do not have a time-varying component. In this paper, we introduce 

WindowSHAP, a model-agnostic framework for explaining time-series classifiers using Shapley values. We 

intend for WindowSHAP to mitigate the computational complexity of calculating Shapley values for long 

time-series data as well as improve the quality of explanations. WindowSHAP is based on partitioning a 

sequence into time windows. Under this framework, we present three distinct algorithms of Stationary, 

Sliding and Dynamic WindowSHAP, each evaluated against baseline approaches, KernelSHAP and 

TimeSHAP, using perturbation and sequence analyses metrics. We applied our framework to clinical time-

series data from both a specialized clinical domain (Traumatic Brain Injury - TBI) as well as a broad clinical 

domain (critical care medicine). The experimental results demonstrate that, based on the two quantitative 

metrics, our framework is superior at explaining clinical time-series classifiers, while also reducing the 

complexity of computations. We show that for time-series data with 120 time steps (hours), merging 10 

adjacent time points can reduce the CPU time of WindowSHAP by 80% compared to KernelSHAP. We also 

show that our Dynamic WindowSHAP algorithm focuses more on the most important time steps and 

provides more understandable explanations. As a result, WindowSHAP not only accelerates the 

calculation of Shapley values for time-series data, but also delivers more understandable explanations 

with higher quality. 
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1 Introduction 

Explaining and understanding the decision-making process of black-box machine learning algorithms 

is one of the major challenges for the research community in computing and information sciences. Despite 

the strong performance of these algorithmic predictions, their non-linear structure makes them 

challenging to discern what information in the input data causes them to generate particular predictions 

that support clinical decisions [1]. Rationalizing model behavior can help uncover biases, promote fairness 

and transparency, and most importantly, increase trust among end-users [2], [3]. Furthermore, modern 

privacy laws such as the European Union General Data Protection Regulation (GDPR) emphasizes users’ 

right to explanations related to automated decision-making [4]. These trends and challenges, collectively, 

necessitate the development of tools for elucidating black-box clinical prediction models. 

Model explainability is further complicated by the emerging shift in underlying data from using 

relatively simple, abstracted clinical data to more complex, routinely collected, longitudinal clinical data. 

During the course of a patient's care process, electronic health records (EHRs) host vast amounts of time-

series data through frequent charting of vital signs, laboratory tests, and prescriptions [5]. Such time-

series data has the potential to support clinical decision-making and forecast a variety of patient outcomes 

such as clinical deterioration, functional improvement, discharge disposition, and effectiveness of 

interventions[6]–[9].  

Existing explainability methods are often focused on extracting the importance or contribution of 

input features to the model prediction. For example, SHAP (SHapley Additive exPlanations) [10] is one 

such method that generates contribution scores (i.e., Shapley values) to explain the individual predictions 

based on a coalitional game theory that satisfies three desirable properties for explanations: consistency, 

local accuracy, and missingness. There exists an alternative, kernel-based approximation of Shapley values 

called KernelSHAP that can reduce the complexity of calculating Shapley values by sampling from a smaller 

number of feature subsets [10]. 

Despite its prominence in informatics and clinical applications [11]–[16] , SHAP is not entirely 

appropriate for time-series predictive models. First, it was not originally intended to be used with time-

series data. Second, while KernelSHAP provides a model-agnostic approximation of Shapley values that 

sets a ceiling for the number of sampled feature subsets, it is still computationally expensive for high-

dimensional data [17], [18]. Last but not least, sequential data points in clinical time-series data are often 

highly dependent on each other, which can lead to misleading KernelSHAP results [19]. When there are 

several highly dependent features (e.g., variable-time point pairs in time-series data), the joint 

contribution of these features is distributed among them, resulting in a large number of small Shapley 



values [18]. This makes it more difficult to visualize data or extract useful explanations from the 

contribution scores. 

The primary objective of this research is to design and evaluate an explanation method based on 

Shapley values that is (1) applicable to time-series data, (2) computationally feasible for high-resolution 

time-series data, and (3) able to tackle dependencies between sequential data points. To address the 

shortcomings of KernelSHAP, we present WindowSHAP, a framework designed to explain time-series 

prediction models more effectively and accurately. WindowSHAP reduces the total number of features 

for which Shapley values must be determined by combining neighboring time steps into a time window. 

Instead of calculating Shapley values for every possible time step and variable combinations, we simply 

calculate Shapley values for each time window (see Figure 1 for conceptual demonstration). We propose 

various types of time windows, each with their own advantages under the WindowSHAP framework. For 

evaluation purposes, we train three deep learning models on time-series data both from a specialized 

clinical domain (Traumatic Brain Injury) and a broad clinical domain (critical care medicine) to show the 

applicability of algorithms. We compare our proposed framework with competitive baselines using 

different quantitative metrics to demonstrate the efficiency of our algorithms and accuracy of their 

explanations.  

In summary, the main contributions of this study are as follows: 

• Developing the WindowSHAP framework, a variation of Shapley additive explanations for time-

series data.  

• Introducing and evaluating variations of WindowSHAP based on different windowing techniques 

in both categories of fixed- and variable-length time windows. 

• Validating our method on real-world clinical time-series data by employing a variety of 

quantitative metrics. 

The rest of the paper is organized as follows. Section 2 describes the related research. Section 3 

presents the WindowSHAP framework as well as the datasets and prediction models that are used in 

experiments. Section 4 details our results, Section 5 discusses the findings and implications of our work, 

and Section 6 concludes our work. 

KernelSHAP 

 

 



WindowSHAP 

 

 

Figure 1. Conceptual Demonstration of KernelSHAP vs WindowSHAP for a classification model for an individual instance, predicting 
whether there is an anomaly in a synthetically generated sequence. The top picture shows the sequence and its Shapley values derived from the 
KernelSHAP while the bottom depicts the Shapley values from WindowSHAP. While KernelSHAP is spreading the Shapley values all over the 
sequence, our approach focuses more on the part of the sequence that is more important, avoiding calculating Shapley values for each single 
time step. 

2 Related Work 

Explanation approaches can be broadly classified into model-specific and model-agnostic techniques. 

Model-specific techniques generate explanations for model behavior using architectural properties of the 

model. Attention mechanism is the most commonly utilized model-specific strategy for explaining deep 

learning time-series classifiers [20]–[24], where an importance score is assigned to each time step using 

attention layers. Gradients can also be used to describe deep learning time-series classifiers by allocating 

a weight to each input based on the outcome's derivative with respect to the corresponding feature [25]. 

One study [26] produced important ratings for deep learning models using "difference from reference" 

rather than gradients. The reference value represents a default or neutral input, and the algorithm back-

propagates the "difference from reference" values to avoid artifacts such as gradient discontinuity. 

Model-agnostic explanation methods can be used on any black-box model regardless of the model 

structure. They only rely on the inputs and outputs rather than the model’s internal architecture. In recent 

years, one of the most common model-agnostic approaches is to attribute importance to features using 

Shapley values [10]. The Shapley value is a concept from coalitional game theory that fairly distributes the 

payout generated by a game to each of its players [27]. To calculate the Shapley value for a single feature, 

2𝐷−1 terms must be calculated. Hence, when the total number of input features increases, as it does in 

modern machine learning applications, the complexity of calculating Shapley values grows exponentially. 

Some approximations for calculating Shapley values have been developed, including KernelSHAP, which 

sums over a smaller sample of feature subsets rather than all subsets [10]. However, as the number of 

features increases, so does the number of sampled subsets (exponentially) in order to maintain an 

adequate accuracy for the approximated Shapley values. 

TimeSHAP [28] is a temporal model extension of SHAP that includes a pruning mechanism that 

combines all initial time steps whose cumulative relevance is less than a certain threshold. It assumes that 

the earliest time steps in sequential data sets are the least important time points. However, this 



assumption can be criticized because it might not be true in all cases of time-series data. For example, the 

conceptual demonstration in Figure 1 shows a situation of anomaly detection where the most important 

time points are not necessarily at the end of a sequence. 

Temporal Importance Model Explanation (TIME) [29] was developed to identify critical temporal 

steps and time intervals at the global explanation level. This approach, however, is confined to providing 

generalized, global significance of time steps and cannot be used for a single instance of data. Even though 

all of these methods are applicable to time-series classifiers, they either do not provide local explanations 

for a single instance of data, or they do not handle high dimensionality of time-series as well as high 

dependency of adjacent time steps. 

3 Methods 

3.1 Shapley values for tabular data 

Shapley values assign an importance (contribution) score 𝜙𝑖 to the 𝑖𝑡ℎ  feature, indicating how much 

the model output for a single instance is influenced by its 𝑖𝑡ℎ  feature. Based on [10], we provide a 

formulation of Shapley values. Assuming that 𝒙 ∈ 𝑅𝐷 is an input of a prediction model 𝑓(⋅), the Shapley 

value for feature 𝑖 for a given input 𝒙 = 𝒙∗ is calculated by 

 
𝜙𝑖 = ∑

|𝑺|! (𝐷 − |𝑺| − 1)!

𝐷!
𝑺⊂𝚫\{𝑖}

[𝜈𝒙∗(𝑺 ∪ {𝑖}) − 𝜈𝒙∗(𝑺)] (1) 

where 𝚫 is the set of all features, 𝑺 is a subset of feature indices, and 𝜈𝑥∗(𝑺) is the characteristic function 

which shows the output of the prediction function if only features in set 𝑺 are present from input 𝒙∗. The 

characteristic function is defined as follows: 

 𝜈𝒙∗(𝑺) = 𝐸[𝑓(𝒙)|𝒙𝑺 = 𝒙𝑺
∗ ] (2) 

Here, 𝒙𝑺 is a sub-vector of 𝒙 representing the features in set 𝑺. Due to the local accuracy property of 

Shapley values, the sum of all feature importance scores is equal to the prediction model output, i.e., 

𝑓(𝒙∗) = 𝜙0 + ∑ 𝜙𝑖
𝐷
𝑖=1  where 𝜙0 is the output of characteristic function when all the features are absent. 

See Table 1 for a description of the notations used in this work. 

Table 1. List of notations used in the paper 

Notation Description 

𝑓(⋅) The prediction model 
𝒙 Input of the prediction model 
𝑺 A subset of all features 
𝚫 The set of all combinations of variables and time steps 

𝚫𝑖  The set of all time steps for variable 𝑖 

𝜔𝑘
𝑖  𝑘𝑡ℎ time window in the variable 𝑖’s sequence 

𝑤𝑖 The number of time windows that variable 𝑖 is partitioned to 



𝛀𝑖  The set of all windows for variable 𝑖  
𝛀 The set of all time windows for all variables 
𝜙𝑖 The contribution score of variable 𝑖 

𝜙(𝑖,𝑡) The contribution score of variable 𝑖 at time point 𝑡 
𝜙

𝜔𝑘
𝑖  The contribution score assigned to the 𝑘th window in variable 𝑖 

𝑙 Window length parameter in Stationary and Sliding WindowSHAP algorithms 
𝑠 Stride parameter in Sliding WindowSHAP algorithm 
𝛿 The Shapley value threshold in Dynamic WindowSHAP algorithm 

𝑛𝑤 Maximum number of time windows in Dynamic WindowSHAP algorithm 

 

3.2 Shapley values for time-series data 

The general Shapley values formulation provided in equation (1) is not directly applicable to time-

series data. In order to calculate Shapley values for time-series data, each possible combination of variable 

and time step is considered an input feature, which results in Shapley values for each of these 

combinations. Suppose that 𝑿 ∈ 𝑅𝐷×𝐿 is a time-series instance with 𝐷 variables and 𝐿 time steps. Defining 

𝚫 =  {(𝑖, 𝑡) ∶ 1 ≤ 𝑖 ≤ 𝐷, 1 ≤ 𝑡 ≤ 𝑇}} as the set of all combinations of variables and time steps, we 

calculate the Shapley value of variable 𝑖 at time point 𝑡 as 

 
𝜙(𝑖,𝑡) = ∑

|𝑺|! (𝐷 × 𝐿 − |𝑺| − 1)!

(𝐷 × 𝐿)!
𝑺⊂𝚫\{(𝑖,𝑡)}

[𝜈𝑿∗(𝑺 ∪ {(𝑖, 𝑡)}) − 𝜈𝑿∗(𝑺)] (3) 

where 𝜈𝑿∗(𝑺) is the characteristic function which denotes the prediction output when only the 

variable-time pairs in set 𝑺 are present in input 𝑿∗. Extracting Shapley values for high resolution time-

series will be very time consuming since for each pair of (𝑖, 𝑡), 2𝐷×𝐿−1 terms should be calculated. 

3.3 WindowSHAP 

We introduce our efficient framework called WindowSHAP to estimate Shapley values for time-series 

data in this section. WindowSHAP is designed on the idea of constructing windows from either nearby or 

non-adjacent temporal steps. In this method, we compute Shapley values for each individual time window 

rather than for all possible combinations of variable-time points. Assume that we partition 𝚫𝑖 = {(𝑗, 𝑡) ∈

𝚫 ∶  𝑗 = 𝑖} into 𝑤𝑖 non-overlapping time windows. Note that a window need not necessarily have a 

contiguous set of time points. The resulting set of windows for variable 𝑖 is represented as 𝛀𝑖 =

{𝜔1
𝑖 , 𝜔2

𝑖 , … , 𝜔𝑤𝑖
𝑖  } where 𝜔𝑘

𝑖 ⊂ 𝚫𝒊  shows the 𝑘𝑡ℎ time window in the variable 𝑖’s sequence. Considering 

each window for each variable as a feature, the Shapley value for the 𝑘𝑡ℎ time window of variable 𝑖 is 

calculated as 

 
𝜙

𝜔𝑘
𝑖 = ∑

|𝑺|! (|𝛀| − |𝑺| − 1)!

|𝛀|!
𝑺⊂𝛀\𝜔𝑘

𝑖

[𝜈𝑿∗(𝑺 ∪ 𝜔𝑘
𝑖 ) − 𝜈𝑿∗(𝑺)] (4) 



where 𝛀 is the set of all time windows for all variables i.e., 𝛀 = ⋃ 𝛀i𝐷
𝑖=1 . The Shapley value of any 

variable-time point combination can be estimated by distributing the importance of a time window 

equally among its time points, i.e., 

 
𝜙(𝑖,𝑡) =

𝜙
𝜔𝑘

𝑖

|𝜔𝑘
𝑖 |

, ∀(𝑖, 𝑡) ∈ 𝜔𝑘
𝑖  (5) 

The Shapley value of all windows in 𝛀 add up to the prediction model output based on the local 

accuracy property. The local accuracy property is maintained after dispersing the Shapley values of time 

windows among their time points, i.e., 

 𝜙0 + ∑ ∑ 𝜙(𝑖,𝑡)

(𝑖,𝑡)∈𝜔𝑘
𝑖𝜔𝑘

𝑖 ∈𝛀

= 𝜙0 + ∑ 𝜙
𝜔𝑘

𝑖

𝜔𝑘
𝑖 ∈𝛀

= 𝑓(𝒙∗) (6) 

Under the WindowSHAP framework, we describe three algorithms: (1) Stationary WindowSHAP, (2) 

Sliding WindowSHAP, and (3) Dynamic WindowSHAP. Stationary WindowSHAP and Sliding WindowSHAP 

are our fixed-length algorithms where all time windows are of the same length, while Dynamic 

WindowSHAP is a variable-length algorithm. We will describe each algorithm in the following sections. 

3.3.1 Stationary WindowSHAP 

In this approach, the time-axis is segmented into fixed-length windows. Even though all time 

windows have the same length, if the length of the sequence is not divisible by the length of the time 

window, the last time window may be smaller than the others. Figure 2 shows a partitioning the time-axis 

for the Stationary WindowSHAP algorithm. 

 
Figure 2. A visualization of time-axis partitioning in the Stationary WindowSHAP algorithm. The windows are non-overlapping, 

contiguous, and of the same length, except possibly the last window being smaller. 

 

 

 Algorithm 1 Stationary WindowSHAP  

 Input: Input sequence 𝑿, prediction model 𝑓, 
 window size 𝑙 
Output: Shapley values Φ 

 

 
𝑤𝑖 ← ⌈

𝐿

𝑙
⌉,   ∀𝑖 = 1, … , 𝐷   

❖ Calculating the total number of time 
windows 



 𝜔𝑘
𝑖 ← {(𝑖, 𝑡)|(𝑘 − 1) ⋅ 𝑙 < 𝑡 ≤ min{𝐿, 𝑘 ⋅ 𝑙}}  

∀𝑘 = 1, … , 𝑤𝑖 , ∀𝑖 = 1, … , 𝐷  

❖ Building the time windows using 
adjacent time steps 

 
𝛀 ← ⋃ ωk

i   
❖ Building the set of all time windows 

 Φ ← 𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝐻𝐴𝑃(𝑚𝑜𝑑𝑒𝑙 = 𝑓, 𝑖𝑛𝑝𝑢𝑡 =
𝑿, 𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 𝛀)  

❖ Calculating the Shapley values for all 
time windows using WindowSHAP 

 return Φ  

 

3.3.2 Sliding WindowSHAP 

Since the stationary windowing approach may not explain time points near the boundary of 

neighboring windows, we developed sliding time window approach (see Algorithm 2) where adjacent time 

windows overlap. Since in the WindowSHAP framework, 𝛀𝑖  should have non-overlapping time windows 

for variable 𝑖, we shift the time window to the end of the sequence over iterations. This algorithm 

iteratively divides the temporal sequence into inside and outside of the specified time window, resulting 

in two Shapley values for each sequence. The algorithm's window length (𝑙) and stride (𝑠) parameters, 

respectively, determine the length and the amount of shift for time windows in each iteration.  

 Algorithm 2 Sliding WindowSHAP  

 Input: Input sequence 𝑿, prediction model 𝑓, 
 window size 𝑙, stride 𝑠 
Output: Shapley values Φ 

 

 𝑛𝑤 ← ⌈
𝐿−𝑙

𝑠
⌉ + 1  ❖ Calculating the total number of sliding 

time windows 
 Φ ∈ R𝐷×𝑛𝑤   ❖ Initializing Shapley values for all 

possible time windows and features 

 for 𝑗 ∈ {0,1, 2, … , 𝑛𝑤 − 1} do ❖ Iterating over all time windows 

  𝜔1
𝑖 ← {(𝑖, 𝑡)|𝑗 ⋅ 𝑠 + 1 ≤ 𝑡 ≤ 𝑗 ⋅ 𝑠 + 𝑙 − 1}  

 (∀𝑖 = 1, … , 𝐷)   

❖ Set of time steps inside the time 
window 

  𝜔2
𝑖 ← 𝚫𝑖 − 𝜔1

𝑖   
 (∀𝑖 = 1, … , 𝐷)   

❖ Set of time steps outside the time 
window 

  𝛀 ← ⋃ ωk
i  ❖ Building the set of all time windows 

  𝑊 ← 𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝐻𝐴𝑃( 
𝑚𝑜𝑑𝑒𝑙 = 𝑓, 
𝑖𝑛𝑝𝑢𝑡 = 𝑿, 
𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 𝛀) 

❖ Calculating the Shapley values for all 
features inside and outside the time 
window 

  Φ:,j+1 ← 𝑊:,1 ❖ Updating the matrix of Shapley values 
for the corresponding time window 

 return Φ  



Figure 3 demonstrates how Sliding WindowSHAP works (a) in each iteration and (b) after all iterations 

are completed. After all iterations are completed, the Shapley value of each time point is computed by 

averaging the Shapley values of the time windows that contain the time point. For example, the Shapley 

value of time step 𝑡 in Figure 3-b is 
𝜙2+𝜙3

2𝑙
. 

 

 
(a) (b) 

Figure 3. Demonstration of Sliding WindowSHAP: (a) depicts a single iteration in which the entire sequence is divided into two time 
intervals, inside and outside of the time window. (b) shows the final windowing result after all iterations have been completed and a Shapley 

value has been produced for each time window.  

3.3.3 Dynamic WindowSHAP 

In this approach, we divide the entire series into variable-length time windows. To accomplish this, 

we first define what the optimal split is using the following two objectives: 

1. Keeping the number of time windows as few as possible to avoid increasing the algorithm’s 

complexity 

2. Avoiding lengthy windows with large contribution scores to minimize information loss 

The Shapley value of all time windows is calculated in each iteration of this algorithm, and time 

windows with Shapley values greater than a threshold, 𝛿, are split into two subsequences. The method 

terminates when either it reaches the maximum number of time windows, 𝑛𝑤, or the Shapely values of 

all time windows are less than or equal to 𝛿. In the initial iteration of the algorithm, each time-series is 

considered as a single time window. For simplicity, Algorithm 3 shows the pseudo code of this method for 

a univariate sequence (𝒙𝜖𝑅𝐿). However, this can be easily extended to include all features of a 

multivariate time-series data at once. 

 Algorithm 3 Dynamic WindowSHAP 

 Input: Input sequence 𝒙, prediction model 𝑓, 
 Shapley value threshold 𝛿, maximum 
 number of time windows 𝑛𝑤 
Output: Shapley values Φ 

 

 S𝑛𝑒𝑤 ← {1, 𝐿}, 𝑆 ← {}  ❖ Initializing the set 𝑆 which stores 
splitting points of the sequence 

 While S𝑛𝑒𝑤 ≠ 𝑆 and |S𝑛𝑒𝑤| ≤ 𝑛𝑤+1 ❖ Stop the iterations when stopping 
criteria are met 

  𝑆 ← 𝑆𝑛𝑒𝑤   
  𝜔𝑘

𝑖 ← {(𝑖, 𝑡)|𝑆𝑘 ≤ 𝑡 ≤ 𝑆𝑘+1} 
 (∀𝑘 = 1, … , |𝑆| − 1 ) 

❖ Building the time windows based on the 
split points 



  𝛀 ← ⋃ ωk
i  ❖ Building the set of all time windows 

  Φ ← 𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝐻𝐴𝑃( 
𝑚𝑜𝑑𝑒𝑙 = 𝑓, 
𝑖𝑛𝑝𝑢𝑡 = 𝑿, 
𝑊𝑖𝑛𝑑𝑜𝑤𝑠 = 𝛀) 

❖ Calculating Shapley values for all time 
windows using WindowSHAP 

  for 𝑘 ∈ {1, 2, … , |𝑆|} do  
   if Φ𝑘 > 𝛿 do ❖ Adding a new split point to 𝑆 if an 

interval’s Shapley value is larger than 
the threshold 

    𝑛𝑒𝑤_𝑝𝑜𝑖𝑛𝑡 ← ⌊
Sk−1+S𝑘

2
⌋ 

    add new_point to 𝑆𝑛𝑒𝑤 
 return Φ  

Figure 4 demonstrates how the algorithm works in four iterations of an example where, in the second 

iteration, only the second time window has a Shapley value greater than 𝛿. Hence in the next iteration, 

this window gets split into two equal time windows. The algorithm terminates at iteration four because 

all Shapley values for time windows are less than 𝛿. 

3.4 Evaluation metrics 

Given the volume and variety of clinical time-series data, evaluating and confirming these 

explanations through direct inspection by domain experts is not practicable. To implement a fair and 

quantitative evaluation of the explanation results, we adopt metrics discussed by Schlegel et al.[30]. They 

propose two metrics - perturbation and sequence analysis metrics - for evaluating explanations of single 

time points and temporal patterns, respectively. These metrics are defined based on the assumption that 

if a relevant/important feature (at a certain time point) changes, the performance of an accurate 

prediction model must decrease.  



 
Figure 4. Demonstration of Dynamic WindowSHAP algorithm for a sequence. The algorithm stops in the fourth iteration because all the 

Shapley values for time windows are less than the threshold 𝛿 

Perturbation analysis metric: For a univariate time-series 𝑡 = (𝑡1 , 𝑡2, … , 𝑡𝑇) and the relevance vector 

𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑇), a time point 𝑡𝑖  changes to (max(𝑡) − 𝑡𝑖) if the corresponding 𝑟𝑖 is larger than the 𝑝𝑡ℎ 

percentile of 𝑟. The new sequence is called 𝑡𝑖𝑛𝑣𝑒𝑟𝑠𝑒  for which the model quality metric (𝑞𝑚) is calculated, 

e.g., loss function. The difference between quality metric for the original sequence and the perturbed 

sequence is called the perturbation analysis metric. We can calculate this as a percentage of change in the 

quality metric, i.e.,  
𝑞𝑚(𝑡𝑖𝑛𝑣𝑒𝑟𝑠𝑒)

𝑞𝑚(𝑡)
. Perturbation analysis metric aims to evaluate the impact of perturbing 

individual time points on model performance. However, this approach does not directly consider the 

impact of temporal patterns or trends, such as slopes or minima, on model performance.  

Sequence analysis metric: Unlike the perturbation analysis metric, this metric focuses on the inter-

dependency of time points in a sequence and how model performance is affected when entire segments 

of the time-series are replaced or modified. Sequence analysis metric helps assess the ability of the model 

and the explanation method to capture and explain the significance of temporal patterns in the data.  

For a univariate time-series 𝑡 = (𝑡1, 𝑡2, … , 𝑡𝑇) and the relevance vector 𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑇), a time 

point 𝑡𝑖  in the sequence is chosen if the corresponding 𝑟𝑖 is larger than the 𝑝𝑡ℎ percentile of 𝑟. Then, the 

time interval (𝑡𝑖 , 𝑡𝑖+1, … , 𝑡𝑖+𝑛) is replaced with the mean of the sequence and the resulting time-series is 

called 𝑡𝑚𝑒𝑎𝑛. Similar to perturbation analysis, the difference between quality metric for the original 



sequence and the new sequence is called the sequence analysis metric. We can calculate this as a 

percentage of change in the quality metric, i.e.,  
𝑞𝑚(𝑡𝑚𝑒𝑎𝑛)

𝑞𝑚(𝑡)
. 

In summary, the perturbation analysis metric evaluates the influence of individual time points on the 

model's performance, while the sequence analysis metric assesses the impact of temporal patterns and 

trends. Both metrics together provide a more comprehensive evaluation of explanaton methods, ensuring 

that they account for both individual time points and temporal patterns in time series data. 

 

3.5 Data sources 

To test the model-agnostic explanation methods (e.g., WindowSHAP), we used three distinct clinical 

time-series data sets to develop and train three different deep learning prediction models. Two sets of 

clinical time-series data were derived from the prospective, multicenter Transforming Research and 

Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study [31], while the third dataset came from 

MIMIC III EHR data [32]. TRACK-TBI includes detailed clinical data on nearly 3,000 Traumatic Brain Injury 

(TBI) patients from 18 academic Level I trauma hospitals throughout the United States. MIMIC III is a de-

identified EHR data for nearly 40,000 intensive care unit (ICU) patients at Beth Israel Deaconess Medical 

Center, Boston, MA. We utilized both specialized and generic clinical domain data to demonstrate the 

applicability of our method to a wide range of clinical areas. 

We used two subsets of data from the TRACK-TBI study to develop two distinct prediction models: 

(1) time-series EHR data collected during hospital stay and (2) high-resolution physiologic data. EHR time-

series data are comprised of clinical variables collected during the initial five days of hospital stay across 

patients admitted to the hospital with TBI. We included 900 out of 2996 participants, who had outcome 

data and recordings of blood pressure for at least 12 hours in the first 48 hours of ICU stay. We developed 

a prediction model to predict the long-term functional outcome of patients using the Glasgow Outcome 

Scale-Extended, a categorical outcome measure ranging from 1 (death) to 8 (upper good recovery) and 

dichotomous as good outcome (GOSE 5-8) vs poor outcome (GOSE 1-4). Detailed information on this 

dataset and the prediction model can be found in [33]. 

A subset of participants in the TRACK-TBI study (n = 25) also had high-resolution recordings of 

physiologic data using a bedside data aggregation system (Moberg Solutions, Inc; Ambler, PA). The 

waveform data for these individuals includes vital signs such as heart rate and arterial blood pressure, as 

well as intracranial monitoring data.  A prediction model was developed and trained to predict an adverse 

event. Here, an adverse event is defined when intracranial pressure (ICP) is larger than 22 mmHg for at 

least 15 minutes. 



The third clinical prediction model is based on the MIMIC data set and uses the initial 48 hours of 

clinical data to predict patient mortality in the subsequent 48 hours. The MIMIC time-series data includes 

eight vital signs and twenty lab measurements. The missing values in vital signs were imputed using the 

mean, whereas forward imputation is employed for missing laboratory measurements, i.e., the lab values 

were retained until a new measurement is obtained. A summary of data and model characteristics are 

included in Table 2. 

 

Table 2. Datasets characteristics 

Dataset 
characteristic 

TRACK-TBI EHR dataset 
TRACK-TBI physiologic 
dataset 

MIMIC-III dataset 

Size of data 
(#samples, #time 
steps, #variables) 

(900, 120, 62) (5,816, 360, 8) (22,988, 48, 26) 

Duration of each 
time step 

1 hour 10 seconds 1 hour 

Types of features 
Vitals, lab 
measurements, GCS 
score components 

Vital signs and 
intracranial data 

Vital signs and lab 
measurements 

Outcome 
Dichotomized GOSE 
score after 6 months 

Adverse event of high 
ICP values (binary 
outcome) 

Mortality after 48 
hours 

Unfavorable Label 
(%) 

22% 8.8% 10% 

Method of handling 
missing values 

Imputation during 
training using GRU-D 
units 

Imputation using linear 
interpolation 

Forward imputation 

 

To evaluate the quality of explanations generated by our algorithms, we compared the results to 

those of KernelSHAP and TimeSHAP, two baselines. We utilized all three RNN-based prediction models 

constructed and trained on distinct clinical time-series datasets, including TBI EHR data, TBI physiologic 

data, and MIMIC-III data. For each dataset, 50 random samples were selected from the test dataset and 

explanations were generated using several techniques. We computed perturbation analysis and sequence 

analysis scores for each combination of prediction model and explanation algorithm. 

3.6 Implementation details 

We developed three Recurrent Neural Network (RNN)-based prediction models and trained on 

distinct clinical time-series datasets, including TBI EHR data, TBI physiologic data, and MIMIC-III data. All 

algorithms and prediction models were implemented in Python 3 environment and is available online [34]. 



The prediction models were developed using Keras library. The detailed specifications of each prediction 

model are described in Table 3. 

 

Table 3. Prediction models specifications 

RNN model characteristic 
Data sets 

TBI EHR data TBI physiologic data MIMIC-III data 

Number of RNN layers 100 (GRU-D units) 200 (GRU units) 70 (GRU units) 

Number of neurons in the (first, 
second) layer after RNN 

(50, 0) (70, 30) (40, 10) 

Loss function optimization 
algorithm 

Adam Adam Adam 

Learning rate 0.0002 0.0002 0.0002 

Regularization rate 0.208 0.004 0.01 

RNN dropout rate 0.42 0.3 0.4 

RNN recurrent dropout rate 0.58 0.3 0.4 
Hidden layer dropout rate 0.29 0.3 0.4 

Batch size 32 32 64 

To evaluate the quality of explanations generated by our algorithms, we compared the results to 

those of KernelSHAP and TimeSHAP, two baselines. To extract the Shapley values for each variable-time 

step combination, we modified the implementation of TimeSHAP such that the Shapley values of pruned 

variables and time steps are distributed uniformly among them. We utilized a grid search to determine 

the optimal parameter values for all explanation methods (see Table 4). For each dataset, 50 random 

samples were selected from the test dataset and explanations were generated using several techniques. 

We computed perturbation analysis and sequence analysis scores for each combination of prediction 

model and explanation algorithm. 

Table 4. Parameter values for explanation methods. KernelSHAP does not have any parameter to fix. The only parameter of TimeSHAP is 
the tolerance which is related to its pruning mechanism. Our algorithms parameters are described under section 3.3 

Explanation Algorithm 
Data sets 

TBI EHR data TBI physiologic data MIMIC-III 

TimeSHAP 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 =  0.05 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 =  0.05 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 =  0.05 

Stationary WindowSHAP 𝑙 = 20 𝑙 = 14 𝑙 = 5 

Sliding WindowSHAP 
𝑙 = 15 
𝑠 = 8 

𝑙 = 15 
𝑠 = 8 

𝑙 = 10 
𝑠 = 6 

Dynamic WindowSHAP 
𝛿 = 0.01 
𝑛𝑤 = 20 

𝛿 = 0.001 
𝑛𝑤 = 14 

𝛿 = 0.001 
𝑛𝑤 = 20 

* 𝑙: Window length, 𝑠: Stride, 𝛿: Shapley value threshold, 𝑛𝑤: maximum number of windows 

4 Results 



In this section, we present the outcomes of quantitative analysis, computational complexity analyses, 

and qualitative analysis. As part of the quantitative analysis, we demonstrate how evaluation measures 

of WindowSHAP explanations compare against baseline approaches. Next, the computational complexity 

analysis demonstrates how WindowSHAP affects the runtime and memory utilization of Shapley value 

extraction. Finally, a qualitative comparison between KernelSHAP and WindowSHAP is offered based on 

the explanations of an exemplar patient record from the MIMIC-III dataset. 

Quantitative analysis: As the output of all prediction models is binary, the binary cross-entropy loss 

function was utilized as the quality metric in calculating perturbation and sequence analysis scores. It is 

worth noting that as the loss function values rise, it indicates that the prediction model performs worse, 

and as a result, some downstream performance indicators such as accuracy fall. Therefore, the greater 

the percent change in loss function, the higher the explanation quality. Figure 5 depicts the outcomes of 

experimental tests for three different datasets. WindowSHAP outperformed or provided similar results as 

compared to competitors (i.e., KernelSHAP and TimeSHAP). 
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Figure 5. Evaluation metrics for all explanation algorithms. Each row of figures shows the result for one of the prediction models. The x 
axis in all figures represents the percentile p that is used in the metrics definitions.  The 𝑦 axis represents the change in the quality metric after 

perturbing the most crucial time points. Error bars are shown as the mean ± standard errors of the mean of binary loss function. 

Computational complexity analysis: The order of complexity for the WindowSHAP variants is less 

than KernelSHAP (Table 5). 

Table 5. Order of complexity of designed algorithms and the original implementation of Shapley values 

KernelSHAP Stationary WindowSHAP Sliding WindowSHAP Dynamic WindowSHAP 

𝑂(𝐷 × 𝐿2𝐷×𝐿) 
𝑂 (𝐷 ⌈

𝐿

𝑙
⌉ 2𝐷⌈

𝐿
𝑙 ⌉−1) 𝑂 (2𝐷 ⌈

𝐿 − 1

𝑠
⌉ 22𝐷−1) 

𝑂(𝐷 ⋅ 𝑛𝑤
2 2𝐷⋅𝑛𝑤−1) 

 

We evaluated the memory usage and CPU time of each suggested algorithm for various 

hyperparameter values. Figure 6 depicts the results of the complexity study performed on the TBI EHR 

data prediction model. The total number of variables is 62, and the length of time-series is 120 (each time 

step represents an hour). This data set was chosen to evaluate the computational complexity since it has 

the highest number of variable-time point combinations. It is noteworthy that the original implementation 

of Shapley values, KernelSHAP, has the same complexity as the Stationary WindowSHAP algorithm when 

the window length is one. In terms of computational complexity, WindowSHAP has significantly lower 

computational cost for generating Shapley values (Figure 6).  

Memory 
usage (GB) 

   



CPU time (s) 

   
 (a) (b) (c) 

Figure 6.  Visualization of RAM usage and CPU time of different algorithms under WindowSHAP framework. Columns (a), (b), and (c) 
represent Stationary, Sliding, and Dynamic WindowSHAP algorithms respectively.  

Qualitative analysis: We use local explanations (i.e., the most important features) for a single patient 

record (see Figure 7) from the MIMIC-III dataset in order to illustrate how WindowSHAP differs from the 

original implementation of Shapley values, KernelSHAP. Based on the importance of each time step and 

variable, it is evident that the explanations of the two techniques are different. Dynamic WindowSHAP 

focuses more on the final time steps, whereas KernelSHAP assigns Shapley values to all time steps. Figure 

8 displays the findings of the two techniques' explanations for only heart rate variable.  

  
Figure 7. Heatmaps depicting the importance of all time steps for the important features for a certain patient record from the MIMIC-III 

dataset. The top 15 variables depicted on the y axis are ranked according to their importance. The darker the color is, the higher the absolute 
value of the assigned Shapley value is. 

  
Figure 8. The explanations of the heart rate variable for a patient in MIMIC mortality prediction model. The left and right plots represent 

visual explanations of WindowSHAP and KernelSHAP, respectively. 

5 Discussion 

Perturbation and sequence analysis metrics are central to evaluating explainability in time-series 

classifiers.  These metrics work by first identifying the most influential time steps based on the explanation 

results. Then, the values at these time steps are replaced with non-informative values, creating a 

perturbed input. The loss function of the predictive model is then recalculated based on this new input. If 

the identified time steps were indeed critical to the model's predictions, then this perturbation should 



lead to a significant increase in the loss function. This increase in the loss function serves as a measure of 

the importance of the identified time steps. Therefore, explanation methods that result in a larger 

increase in the loss function after perturbation are considered more effective. They are likely to have more 

accurately identified the key time steps and intervals, providing a more precise and reliable explanation 

based on the predictive model's behavior. 

WindowSHAP variants demonstrate superior explanatory performance (as illustrated in Figure 5) 

compared to other methods by inducing a larger change in the loss function value upon perturbation of 

the most critical time steps and intervals. However, for the TBI EHR dataset, the performance of 

WindowSHAP variants and TimeSHAP is not significantly different, but both outperform KernelSHAP. Only 

for the MIMIC dataset, KernelSHAP provides the highest quality explanation based on the sequence 

analysis metric, but the difference is negligible. Nonetheless, employing WindowSHAP remains justifiable, 

as it delivers explanations considerably faster than KernelSHAP for lengthy time-series data. 

TimeSHAP is developed under the premise that the initial time steps in time-series data are of lesser 

importance. Consequently, it aggregates the initial time steps and assigns them a single Shapley value. 

This could be the primary reason behind TimeSHAP's inferior performance for the TBI physiologic and 

MIMIC-III datasets. WindowSHAP, on the other hand, does not make any assumptions about the initial 

time steps. Instead, for example, Dynamic WindowSHAP aggregates adjacent non-important time steps 

regardless of their position within the sequence. This makes WindowSHAP more robust to the distribution 

of important timesteps in the data.  

The strong performance of WindowSHAP in terms of explainability can also be attributed to two other 

aspects. First, by aggregating nearby time steps as a time window, WindowSHAP lowers the dependence 

of the elements (i.e., time windows) for which the Shapley values are calculated, hence improving the 

performance of the explanation. Second, as illustrated in Figure 1, by aggregating neighboring time steps 

as time windows, the Shapley values of adjacent time steps might cancel each other out because their 

absolute values are nearly identical but in opposite directions. This results in an extremely low Shapley 

value in the associated time window, demonstrating its true insignificance. 

For the TBI EHR data prediction model with 62 variables and 120 time steps, KernelSHAP requires 

approximately 90GB of RAM and 104 seconds to calculate the Shapely values. By decreasing the duration 

of the time window in Stationary WindowSHAP, RAM and CPU time are reduced exponentially. For 

example, we show that merging 10 adjacent time points can reduce the CPU time by 80%. The complexity 

of Stationary WindowSHAP is dependent on the length of the time window, but the complexity of Sliding 



WindowSHAP is independent of length and only depends on the stride value. However, both 𝛿 and 𝑛𝑤 

parameters affect the complexity of Dynamic WindowSHAP. 

The explanations of KernelSHAP and WindowSHAP are different from each other. The results for 

explanation related to mortality prediction from the MIMIC-III dataset demonstrate that while 

KernelSHAP assigns large Shapley values to nearly all of the feature space and the complete time 

spectrum, Dynamic WindowSHAP assigns greater Shapley values to the final time steps, as this is more 

realistic and logical. Further, in Dynamic WindowSHAP, the length of time windows increases as the 

variables become less significant (lower on the 𝑦 axis in Figure 7), hence avoiding the calculation of 

Shapley values for less significant time points. The calculated Shapley values for heart rate shows that 

Dynamic WindowSHAP separates the sequence into two sections and only calculates two Shapley values, 

whereas KernelSHAP assigns single positive and negative values to some of the time points. Based on 

Dynamic WindowSHAP, the early part of the sequence contributes more to the unfavorable outcome 

(survival), whereas the second half contributes more to the positive outcome (death). Since the second 

half has a higher heart rate than the first, it is more rational to assign two opposite Shapley values to each 

segment. This is an illustration of how assigning Shapley values to windows, as opposed to scattered time 

points, makes explanations more comprehensible for end-users. The reason the algorithm only allocates 

two windows to this sequence is because the overall contribution of each window is not significant enough 

(less than 𝛿) so the algorithm does not further split them. 

WindowSHAP has significant clinical implications, as it can assist users in better comprehending 

complex time-series data obtained from electronic health records (EHRs), physiological monitoring 

devices, and other sources. By identifying critical time points and temporal patterns using the 

WindowSHAP framework, clinicians can gain valuable insights into underlying clinical processes and 

relationships. For example, WindowSHAP can help uncover hidden temporal patterns in physiological data 

[35], [36], such as vital signs or lab results, which may be indicative of disease progression or response to 

treatment. Additionally, it can be used to identify crucial time intervals in EHR data, shedding light on the 

relationship between specific medical events and patient outcomes [22], [37]–[39]. This, in turn, can guide 

clinicians in making more informed decisions about treatment strategies or intervention timing. In 

addition, the enhanced interpretability provided by WindowSHAP can help bridge the gap between 

sophisticated machine learning models and clinical decision-making, fostering clinicians' trust and 

confidence in machine learning based tools. 

Limitations: The need to tune the parameters of each algorithm is one of the limitations of this study. 

We utilized a basic grid search to determine the optimal explanation algorithm parameters. However, 



outcomes may vary from one data set to another or even within data instances. As an example, since 

Dynamic WindowSHAP adheres to the local accuracy property, the prediction outcome would equal the 

sum of all Shapley values. Consequently, the effect of the threshold value (𝛿) on the quality of the 

explanation is dependent on the model outcome. In other words, even for the same prediction model, a 

single 𝛿 would not provide decent explanations for different data instances. One of the potential future 

developments for the Dynamic WindowSHAP method is to dynamically calculate the threshold based on 

the model output. The fact that WindowSHAP algorithms are designed to behave similarly for different 

variables is one of its constraints. For instance, in the Stationary WindowSHAP technique, the length of 

time windows is the same for all variables in the time-series data, despite the fact that it may seem 

necessary to have varied window lengths for variables based on their relevance or rate of change.  

6 Conclusion 

Clinical machine learning models have strong prediction accuracies, but they are opaque because of 

their non-linear hierarchical structure, making it difficult to determine what details in the input data are 

causing specific predictions. While considerable effort has gone into understanding deep learning models, 

time-series models have received comparatively little attention. Our WindowSHAP framework offers a 

promising way for understanding the behavior of all forms of time-series classifiers. Three distinct 

algorithms are created within the WindowSHAP framework and compared against baselines. The results 

demonstrate that the explanations provided by our algorithms are of greater quality, i.e., by perturbing 

the most important time points based on our explanations, the performance of prediction models 

decreases more. For instance, for the TBI physiologic data, our algorithms' explanations identify the most 

significant time points that, if perturbed, would result in a rise in the loss function that is greater than 

twice that of baseline techniques. Our study also demonstrates that by utilizing the WindowSHAP 

framework, the computational complexity related to explainability can be dramatically reduced. 
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