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Abstract—Terahertz (THz) is a promising technique which
provides a ultra-wide frequency band for high requirement of
data rates and low-latency services. Nevertheless, the disadvan-
tage of THz networks is the severe propagation attenuation
even under short transmission distance. Thus, it becomes com-
pellingly imperative to employ a larger scale of antenna arrays.
For a network deployed with multiple THz base station (BS),
we propose a federated deep reinforcement learning (FDRL)
scheme to coordinate THz beamforming. Each BS conducts
deep deterministic policy gradient (DDPG) based DRL to obtain
THz beamforming policy with limited channel state information
(CSI). While, multi-BSs are controlled by a single federated
edge learning (FEL) server to exchange DDPG model with
hidden information capable of mitigating inter-cell interference.
The simulation results demonstrate the throughput convergence
of each BS. We can observe that higher throughput can be
achieved with a larger antenna arrays for more THz CSI and
hidden neurons of DDPG. Compared to full-model upload of
FEL, it requires lower operational overhead using partial-model
upload. Moreover, the proposed FDRL outperforms the existing
benchmarks using non-FEL and conventional non-learning based
on optimization methods.

Index Terms—Terahertz, federated learning, deep reinforce-
ment learning, beamforming, edge computing.

I. INTRODUCTION

For the purpose of meeting the increasing ultra-high data
requirement, such as virtual reality (VR), augmented reality
(AR) and hologram technologies in the future sixth genera-
tion (6G) communication network, the prospect of terahertz
communication is considered to be able to provide higher
frequency bands ranging from 0.1 to 10 THz. However,
compared to conventional millimeter wave (mmWave) at GHz-
bands, the most different and important challenges for THz are
severe power attenuations, blockages and additional molecu-
lar absorption that brings about a much shorter propagation
distance and corresponding limited. Therefore, beamforming
techniques are utilized to enhance the transmit direction to-
wards the desired receiving user equipment (UE) rather than
omni-directional transmissions, which requires a large-scale
antenna arrays deployed to obtain high beam gain and spatial
diversity. Although there exist potentially rich channel paths
in a multi-antenna system, only a single THz path can be
utilized with line-of-sight (LoS) condition in most cases. The
related beamforming designs in [1], [2] are proposed for
the THz system. However, when associating with enormous

UEs in different cells, there will still emerge serious inter-
fered beamforming under short transmission distance of THz
network which should be coordinated among different BSs
appropriately in order to improve overall system performance.
In addition, [3]-[5] apply full CSI for beamforming requiring
high-complexity channel estimation which is somehow non-
implementable and impractical due to numerous and dy-
namic antenna arrays. However, It is difficult to estimate
full CSI around the environment, which results in a dynamic
and uncertain wireless communication network. Accordingly,
the traditional optimization method cannot perfectly tackle
THz system deployed with large-scale antennas under the
constantly-changing and limited channels.

Recently, the deep learning techniques are widely applied
in the different fields in wireless communication systems. As
a prospect, the deep reinforcement learning (DRL) enables the
agent, which may be BS or UE to adjust its wireless state and
action, i.e., policy output according to the changed environ-
ment. Different from model-free reinforcement learning, the
deep Q network (DQN) architecture is implemented via deep
neural network (DNN) to decide the Q-value instead of the Q-
table which benefits the problems with non-countable or near-
continuous variables with infinite solution sets. However, when
the action is high-dimensional and continuous, it is inefficient
and unuseful to apply basic DQN to quantize the decision
space. Deep deterministic policy gradient (DDPG) using a
two-layered DNN as actor-critic (AC) network is conceived
to deal with this problem. Federated edge learning (FEL) has
been considerably studied for improving the training progress
via learning model exchange with less information uploaded to
edge server [6]. The main concept of FEL is to cooperate the
local training model in order to acquire a more complete global
model, which includes certain hidden information in different
BSs or UEs ended with greatly reduced data overhead. In
[7]-[9], they have studied in improving the learning speed
to deal with the tasks of minimizing computing delay and
energy consumption through FEL. In the meanwhile, FEL
server integrates the local model to the global model to
enhance privacy of every participating client [10]. However,
they consider that the BS has full-CSI which is difficult to
be estimated in practice, whereas interference generated from
different BSs has not been mentioned. Therefore, it becomes
promisingly imperative to design an FEL-enabled interference
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Fig. 1. A schematic diagram of the cellular network with edge computing
considered in this paper. In the network, there and there are K base stations,
each of them equipped with V¢ transmit antennas. A downlink communication
scenario is considered and BS k serves UE k equipped with a single antenna
in the THz frequency band. All the BSs are connected to an edge server
through a high-speed optical link.

mitigation scheme in THz beamforming using state-of-the-art
deep learning techniques. The contribution of this paper is
summarized as follows.

o We have conceived a federated deep reinforcement learn-
ing (FDRL) leveraging the benefits of both FEL and
DRL architectures. FEL aims at model exchange from
neural networks extracting hidden information of partially
estimated CSI, which potentially alleviates interference
from other BSs. While, AC-based DDPG is designed
to search candidate THz beams to maximize the total
throughput performance.

o We characterize the performance in terms of complexity
and throughput. We can infer that higher throughput
can be achieved with more antennas, exchanged data,
and more neurons of FDRL under a compromised com-
putational complexity of deep learning. The proposed
FDRL scheme outperforms the baseline using pure deep
Q-learning and conventional non-deep learning based
beamforming methods.

The rest of the paper is organized as follows: Section II
describes the system model and formulates the THz beam-
forming problem. Section III elaborates our proposed FDRL
algorithm for coordinating THz beamforming under a multi-
BS network. Section IV shows simulation results, whlist
conclusions are drawn in Section V.

II. SYSTEM MODEL

In this paper, we consider a cellular network in which each
UE is equipped with a single antenna and there are K base
stations (BSs) operating in the THz (frequency) band, each of
which equipped with [V, antennas. In the downlink, each BS is
assumed to adopt different resource blocks to serves different
UEs in its cell and thereby there is no intra-cell interference in
the network. We also assume that the frequency reuse factor

is one in the network so that the K BSs interferes each other
in the downlink so that UE k receives interference from the
other K — 1 BSs when it is served by BS k. All the BSs are
connected to a edge server through a high-speed optical link
where edge computing can be conducted. A schematic diagram
of the cellular network with edge computing considered in
this paper is shown in Fig. I. In the following, we will first
introduce the channel model in the THz band and then specify
the signal model transmitted over a THz channel.

A. THz Channel Model

Due to THz signals’ nature of extremely high frequency,
transmitting them significantly suffers from two serious envi-
ronmental impairments, i.e., severe attenuation and molecular
absorption [11]-[14]. As such, THz signals undergo much
higher path loss than mmWave as well as UHF signals. For
a THz channel with frequency f, its channel response for
transmitting a signal over distance d, denoted by complex
vector h € CNt, can be modeled as

h=d¢

L
1+ ZAM] ar(f,d)a(6), (1)
=1

where G is called the integrated antenna gain consisting of the
transmitted and received antenna gains of the antenna array, L
denotes the number of non-line-of-sight (NLoS) paths, A;(f)
is a frequency-dependent constant consisting of the reflection
factor and roughness coefficient of NLoS paths affected by
the reflective interfaces and material impedance. Moreover,
ar,(f,d) is defined as
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o p(h)d

o
 drfd
by considering a uniform linear array in which c is the speed

of light and p(f) is the medium absorption factor of frequency
f, at(6;) is defined as
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where 0; € [—7, 7] is the angle of departure, d,, is the distance
between two antennas, and 7" denotes the transpose operation
of a vector. Note that h in (1) consists of line-of-sight (LoS)
and NLoS components, that is, Gar,(f,d)a(t)(6:) is the LoS
component whereas the other term is the NLoS component.
Moreover,

B. THz Signal Model

Let w, € CM be the beamforming vector for BS % and
x), € C be the signal with unit power transmitted to the kth UE
by BS k. Since there are K BSs in the network, we consider
the worst scenario that all the BSs interferes each other when
they serve their UE. As a result, the signal received by UE k&
can be specifically written as

K
H H
Yk = \/Fhkkaxk + Z \/ﬁhjkwjxj + ng 5 (3)

desired signal J=Lj#i noise

interference signal



where k € {1,...,K}, P is the transmit power of each
BS, and superscript H stands for the Hermitian operation
of a complex vector, ny € C denotes the Gaussian noise,
and hy, € CM and h;, € CN+ are the channel vectors
from BS %k to UE k and from (interfering) BS j to UE k,
respectively. Note that hyy and hj; adopt the channel model
defined in (1). As such, the signal-to-noise-plus-interference
ratio (SINR) received at the kth UE can be defined as
H o |2
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where |-| represents the operator of absolute value and o2 is
the power of the Gaussian noise ny for all k € {1,..., K}.
According to (4), the downlink achievable rate (spectral effi-
ciency) of BS k can be written as

Cr =1logy (1 +T),

for all k € {1,...,K}. In the following, we will use Cj, to
formulate an optimization problem of beam search that is able
to maximize the sum rate of all the BSs in the scenario that
only limited CSI is available at each BS.

(bits/sec/Hz) (®)]

C. Sum-Rate Optimization with Limited CSI

In the multi-BS multi-user network, the attenuation of
THz channel and beamforming interference contribute to the
uncertain system performance. The purpose is to coordinately
strengthen the beamforming signal for each user while mit-
igating the interference. In other words, our objective is to
maximize the sum rate of the network by optimizing the
beamforming vector w;, with limited CSI h{y" € CV that
is estimated at BS k. The optimization problem can be
formulated as

K
max ];Ck (6)

sttt {wewl} <1, hy =W, VE e {1,...,K}.

However, problem (6) cannot be readily solved via con-
ventional optimization methods with respect to the digital
beamforming and partially-attainable CSI. Furthermore, due to
high computational complexity of global optimum and high-
overhead of CSI exchange, the traditional method is difficult
to analyze the sophisticated and unpredictable communication
network. As a consequence, we design a deep learning based
scheme by leveraging the DRL architecture and federated edge
learning architecture to resolve the complex problem.

III. PROPOSED FEDERATED DEEP REINFORCEMENT
LEARNING (FDRL) FOR THZ BEAM SEARCH

In this section, due to the non-analytic optimization problem
and limited attainable CSI of THz network, we propose an
FEL based DDPG learning scheme iteratively to coordinate to
attain the appropriate THz beamforming policy. We consider
that each BS conducts a DDPG to obtain THz beamforming
policy with limited CSI. While, multi-BSs are controlled by

a single FEL server to exchange training model with hidden
information mitigating THz interference.

A. DRL-based DDPG Network

As a brief concept, DRL framework contains state S, action
A and reward function R, where an agent (may be BS or
UE) conducts a certain action to obtain the corresponding
reward while updating the current status. Therefore, the action
will be reinforced iteratively to obtain better rewards under
the changing environment. However, our THz beamforming
problem exists a large state-action space, which is inappro-
priate to employ conventional DRL algorithm due to its slow
convergence and huge storage of table-mapping. Moreover,
traditional reinforcement learning deep neural network (DNN)
is adopted in DRL to become a Q-table generator instead
of directly accessing and computing Q values in a table-
mapping manner. Additionally, since THz beamforming vector
is deemed to be continuous variables with substantially-high
quantization levels, we adopt the DDPG to establish a two-
layered actor-critic network to resolve the problem with con-
tinuous solutions. For beamforming policy in the THz network,
we define the state, action and rewards as follows.

1) State space S: In THz, the state space is situation
of each BS under current THz channels, denoted by & =
{si|Vi=1,2,..., K}, which consists of the serving CSI h;;
linked to the ¢-th UE, and SINR I'; fedback from the UE ;.
Note that h;; may be partially attainable due to limited mea-
sured CSI under a large-scale THz antenna array. Therefore,
state of each BS should be s; = {h%m,FiWi =1,2,.., K}

2) Action space A: The action set represents the decision-
making of THz beamfoming vector defined as A =
{a; ={w;}|Vi=1,2,..., K}. Note that each BS will only
determine its own action, i.e., w; according to current input
state and reward.

3) Reward function R: We define the overall reward as
R = {r;|Vi=1,2,..., K}. Since we aim at maximizing the
sum throughput in (6), we consider the reward function as
individual throughput of each BS, i.e., r; = C;.

As shown in Fig. 2, DDPG architecture contains the main
and target networks which individually consist of actor and
critic sub-networks, which 9;‘ s HiQ denote DNN-enabled ac-
tor/critic weights in the main network, and 95 / and GZQI denote
the actor/critic weights in the target network, respectively. The
main network determines the beamforming action of the i-th
THz BS as a;+ = u(si|0) + Ng, where p(s;]6%) is the
output layer of the DNN-based actor network. To promote the
exploration of the environment, the deterministic policy will
obtain the probabilistic action by adding the perturbation N¢g
as Gaussian noise. On the other hand, the target network input
is fed by the output action of actor network, which provides

the Q-value outcome @) (si,t, ai7t|9iQ ) via hidden DNN layers
at ¢-th epoch to evaluate the selected action, which is written
as

Q (5i,taai,t|9iQ> =E {Ti +7Q <5i,t+17ai,t+1|9?)} , (D
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Fig. 2. The DRL-based DDPG algorithm. The main/target networks contain their actor-critic sub-networks established by DNN.

where v is a discount factor, and E[.] is the expectation.
In order to update the DDPG network, the gradient of actor
network is acquired as

VgrJi =VgrE [Q (Si,t7 amW?)}

Algorithm 1: Proposed FDRL Algorithm

1: Input: hy;, I';, Vi

2: Output: a; = Wi;Vi )

3. Initialize: 6/, 6", HZ-Q, HZQ Vi, g9tobal replay memory
M,

8
=E [va“Q (Si,hai,twiQ) v (s”|gf)} , ®) 4: fort =1,2..., F do
' 5. for each BS i do
where critic loss function can be given by 6: Decide the action a; ; = u(s;¢|0") + N¢
o\12 7: Interact with the environment and save result of
L;=E [yz -Q (si,aiIGi )} ; ) (8it,it,Ti, 8i4+1) to replay memory M,
, 8: Off-line actor/critic model training by
where y; = i +7Q (Si.441, a4 041/05° ) The target network mini-batching data with a size of B
will periodically update the network weights from the main 9: Soft update 95',91,@'

network based on the soft update [15] for both actor-critic
sub-networks which is represented by

10: end for
1: if mod (¢,7) = 0 then

’ ’ . sane Aglobal _ 1 K _elocal
09 — - 99 L (1 — 9% 10 12: FEL model aggregation: 6 = 7 i1 &ib;
v 7 + (1= 7) e (10) 13: Model update after aggregation: §iocal = gglebal
95 = Tcog + (1 - Tc)eéL , (11) 14: end if
where 7,, T, are constants meaning the significance of param- 15: end for
eters in the target and main networks.
B. Federated Edge Learning for Interference Mitigation In (12), glocal = 0" oiQ consists of neural weights of main

After DDPG learning for THz beamforming adjustment at
each BS, each BS trains their local DDPG training model of
the actor and critic network’s weights will be sent from BSs to
the edge server every 7 iteration. The edge server aggregates
local training model to exchange the hidden information in
neurons of interference information rather than directly upload
compellingly-high overhead of full-channel dataset. Based on
the weighted FEL method [15], the model aggregation can be
presented as

K
gglobal — % Zgieéocal7

i=1

(12)

where ¢; is a ratio indicating the importance of each training
model depending on certain property of dataset in each BS.

actor/critic network. Note that in this case, we consider &; = 1
as equivalent importance of each beamforming model since
the THz BS could provide potentially useful information of
limited estimated THz channels. After finishing the model
aggregation, the edge server returns the global parameters to
each BS, which is repeatedly performed until convergence.
Thus, the candidate beamforming of each THz BS w; will
converge to near optimum by searching for the higher DDPG
reward through the iterative training. The concrete algorithm
of proposed FDRL is demonstrated in Algorithm 1.

IV. SIMULATION RESULTS

In this section, we have performed simulations of proposed
FDRL-enabled THz beamforming with maximization of sys-



TABLE I
PARAMETERS OF FDRL-ENABLED THZ NETWORK
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Definition Symbol | Value

Discount factor ol 0.9 5y

Significance of actor network Ta 0.01 é’

Significance of critic network Te 0.01 Saor

Number of epoch E 300 2

Buffer of the memory size M, 10 315

Batch size of DDPG training B 5 =

The cycle of FEL T 20 10

Number of antenna N, {8, 16,32, 64,128,256}

Number of BS K {2,3,6} 5

Operating frequency f 0.3 THz

Distance between BS and UE d [10,100] m %

The medium absorption factor | p(f) 0.1

Bandwidth W 10 GHz

Number of NLOS paths Nnr, 5 Fig. 3. Covergence of system throughput of the proposed FDRL with K = 3

Transmit Antenna gains Gy 10 dB clients.

Receiving Antenna gains G, 10 dB

Noise power spectral density Ny —174 dBm/Hz 5 x10° 51

Transmit power P 10 dBm . Qe (J) o Qe R %)
g 4 50% FEL ’g 50% FEL e -
g @ 49 0
Sy H

tem throughput while mitigating network interference. The % %’4
THz BS and serving UEs are uniformly-randomly distributed 5o £ -

in the radius from 10 to 100 meters. We consider Ny, = 5
NLOS paths and THz frequency is set to be 0.3 THz. The
parameter setting of the THz network is listed in Table I.

In Fig. 3, the convergence of the throughput with K = 3,
clients served by three BS equipped with N; = 8 antennas.
Each BS have a two-layer actor-critic neural network with
{100, 70} neurons. The actor network decides the beamform-
ing vector w;, while the critic network using the Q-learning
network evaluates the decision of actor network. Initially, the
beamforming vector is randomly selected with the perturbation
N¢g with variance equal to 3 leveraging exploitation and
exploration. However, it will gradually decay to 0.99 as
deterministic decision. At about 100-th epoch, the client 1
tends to be stable, but the others are still looking for the
potential solution from DDPG network. At around 150-th
epoch, the performance of throughput is almost converged.
Note that the result only shows a run of a certain channel
condition in Fig. 3; however, we will conduct more than 100
Monte Carlo runs in the following comparisons.

In Fig. 4, we illustrate the throughput that is affected by
the number of the actor and critic neurons. The number of
the BSs is K = 4 equipped with N, = 128 antennas. As
the actor-critic neuron is set as (20,20), the performance
of full FEL upload achieves higher throughput than that of
partial upload with around 2 and 0.5 Gbps for 10% and 50%
upload of FEL parameters. However, the operational overhead,
i.e., operation for training in local network and FEL server
is quite higher using full upload than that of 10% upload.
That is, the overhead of 10% upload is half the overhead
compared to that of full upload while sustaining sufficiently
high throughput performance, which also implies that the
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Fig. 4. The proposed FDRL compared to different numbers of actor and critic
neurons with {(20, 20), (30, 30), (40, 40), (50, 50)}.

exchanged hidden information is enough featured to alleviate
induced interference. Moreover, when the number of actor-
critic neurons is (30, 30), there provokes higher computational
overhead but reaches high throughput performance.

Fig. 5 demonstrates the throughput considering input states
of CSI and only SINR feedback with different number of
antennas and THz BS deployment with K = {2,6} and
Ny = {8,16,32,64,128,256} antennas. We can observe the
result of K = 2 and K = 6 that higher performance
can be obtained due to advantageous FDRL of interference
mitigation. Furthermore, the overall throughput performance
is proportional to the number of antennas due to higher
spatial diversity. In addition, throughput difference becomes
increasingly larger when N; = 256 antennas are equipped
by comparing the mechanism of THz CSI and of only SINR
feedback. This is because that more hidden information from
the estimated CSI is extracted and exchanged by FEL server,
which is compellingly advantageous to interference cancella-
tion.

Fig. 6 demonstrates the throughput considering distances be-
tween THz BS-UE. The throughput of all algorithms decreases
to near zero due to limitation of severe intrinsic pathloss
from the THz channel. The proposed FDRL algorithm with
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Fig. 6. The proposed FDRL algorithm compared to non-FEL benchmarks
and conventional optimization methods.

estimated CSI can exchange more hidden information than that
without CSI, which achieves higher throughput performance.
In addition, DDPG lacks training model exchange benefited
by FEL, i.e., each BS has training without CSI exchange has
lower throughput than our FDRL algorithm. Moreover, the
proposed FDRL is capable of exchanging sufficient hidden
training models from powerful deep learning based DDPG,
which outperforms the based conventional beamforming of
zero forcing (ZF) and minimum mean square error (MMSE).

V. CONCLUSIONS

THz communication is a highly well-known research in the
future 6G communication network. However, signal suffers
from the serious power attenuation resulting in short prop-
agation distance. We have an proposed FDRL algorithm to
maximize the sum rate to intelligently adjust beamformer
under limited THz CSI. The performance shows that with
more available CSI, FDRL is capable of exchanging represen-

tative features among THz BSs to achieve higher throughput.
With more deployed antenna arrays, it reaches higher sys-
tem throughput because of higher spatial diversity. Moreover,
it becomes a compelling tradeoff between overhead of ex-
change information and throughput, i.e., high-throughput can
be reached at a cost of high upload overhead. The proposed
FDRL scheme outperforms the baseline using pure deep Q-
learning, which is beneficial for interference mitigation from
information exchange through FEL. Also, FDRL triumphs
over the existing beamforming mechanisms using non-learning
methods.
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