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1. ABSTRACT

Temporal electronic health record (EHR) data are often preferred for clinical prediction tasks because they offer more
complete representations of a patient’s pathophysiology than static data. A challenge when working with temporal
EHR data is problem formulation, which includes defining the time windows of interest and the prediction task. Our
objective was to conduct a systematic review that assessed the definition and reporting of concepts relevant to temporal
clinical prediction tasks. We searched PubMed® and IEEE Explore® databases for studies from January 1, 2010
applying machine learning models to EHR data for patient outcome prediction. Publications applying time-series
methods were selected for further review. We identified 92 studies and summarized them by clinical context and
definition and reporting of the prediction problem. For the time windows of interest, 12 studies did not discuss window
lengths, 57 used a single set of window lengths, and 23 evaluated the relationship between window length and model
performance. We also found that 72 studies had appropriate reporting of the prediction task. However, evaluation of
prediction problem formulation for temporal EHR data was complicated by heterogeneity in assessing and reporting
these concepts. Even among studies modeling similar clinical outcomes, there were variations in terminology used to
describe the prediction problem, rationale for window lengths, and determination of the outcome of interest. As
temporal modeling using EHR data expands, minimal reporting standards should include time-series specific concerns

to promote rigor and reproducibility in future studies and facilitate model implementation in clinical settings.

2. INTRODUCTION

Electronic health record (EHR) systems have been implemented in the majority of hospitals and physician offices in
the United States, with an average of 91% of non-federal acute care hospitals having adopted a certified EHR in 2019
[1,2]. EHR systems provide a rich source of timestamped patient data on vital signs, medications, laboratory
measurements, clinical observations, and procedures [1]. Along with typical clinical and administrative uses, EHR

data has been leveraged for several secondary purposes, including clinical research and disease surveillance [3].

Effective secondary use of EHR data for clinical research often relies on understanding and processing temporal
patient data. Although temporal data can be aggregated using descriptive statistics, aggregation limits the usefulness
of clinical time-series data by over-simplifying or generalizing sequential patterns [4]. In particular, prediction of

clinical outcomes has shifted from using traditional statistical methods and static, cross-sectional data to machine



learning algorithms designed to model outcomes based on a sequence of inputs [5]. For example, temporal clinical
data have been used to develop and evaluate machine learning methods to predict acute conditions, such as in-hospital
mortality [6] and sepsis [7], and chronic conditions, such as onset of cardiovascular disease [8] and renal function

deterioration [9].

In response to the upward trend in using machine learning algorithms for prediction with EHR data, several reviews
have provided in-depth analyses of the challenges of processing temporal EHR data and applying models for
prediction [1,10-13]. These reviews focused on issues in working with temporal data, including irregularities in data
sampling (e.g., worsening patients tend to have a higher frequency of recorded clinical measurements), sparsity and
missing data (e.g., incomplete data from patients visiting multiple hospital systems), and patient heterogeneity (e.g.,
presence of sub-cohorts within a large, comprehensive EHR dataset) [13]. However, few studies have looked at the
difficulties inherent in problem formulation with temporal EHR data. Notably, a case study evaluating processing
strategies for temporal EHR data [5] assessed the relationship between model performance and indexing methods for
prediction of hospital mortality and hypokalemia. The investigators found using the outcome as the reference point
for time-series indexing, while prevalent across the selected studies reviewed, provided misleading results and limited
the clinical utility of models. However, no systematic reviews, to our knowledge, have evaluated components of time-

series problem formulation using EHR data and how well they are reported across studies.

The major components of problem formulation for patient-level time-series prediction are defining the outcome and
the time windows of interest [14]. For the outcome, researchers select the event of interest and how it is measured in
both cases (those positive for the event) and controls (those negative for the event) during processing. When
determining the time windows of interest, researchers select the length of the observation and prediction windows,

how they are related to each other, and how the model will update predictions for future patients.

The observation window is defined as the period of time where observations are used to update model predictions
[14]. The prediction window, however, has two different meanings depending on the context. First, the prediction
window can be the gap between the end of the observation window and the time of prediction [15]. The other definition

is the “time-at-risk” where the prediction window is the period of time directly following the observation window



when a prediction can be made such that there is no gap between observation and prediction [14,16]. To standardize
the definitions across studies, we define prediction window as an umbrella term for the gap and time-at-risk windows
where the gap window is the period of time between observation and prediction and the time-at-risk window is the

period of time when a prediction is made. These definitions are illustrated in Figure 1.

This review aims to study how prediction problems are defined and formulated when developing models from
temporal clinical data. Specifically, we sought to answer the following:

1. How do researchers establish observation and prediction window lengths and relationships to each other?

2. How is the prediction task determined based on the time windows and outcome of interest?

3. How consistently are these concepts reported across studies?



Definition 1: Gap Window

Case Observation Window Gap Window Remaining Data

Control Observation Window Gap Window Remaining Data

Make Prediction Label
Definition 2: Time-at-Risk Window
Case Observation Window ﬁ Time-at-Risk Window
Control Observation Window Time-at-Risk Window

Make Prediction

Fig. 1 Observation and prediction window diagram for the various definitions of the prediction window. For the gap
window, a patient is marked as a case when the outcome occurs after a period of time (or “gap”) after the observation
window. Any patient with outcomes that occur within the gap window or after the label is applied are marked as
controls. For the time-at-risk window, a patient is marked as a case if the outcome occurs at any point in the time-at-
risk window (which may have a fixed length or vary depending on the amount of data present and the prediction task).

All other patients are labeled as controls. Stars represent a hypothetical occurrence of the outcome.

3. MATERIALS AND METHODS
3.1. Search Strategy and Study Selection
We conducted a systematic review of studies based on temporal clinical data modeling using 2020 Preferred
Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines [17]. Our search involved two

literature databases (PubMed® and IEEE Explore® databases) and a combination of keywords associated with



EHR data (“electronic health records” or “electronic medical records”), time-series analysis (“time-series” or
“neural networks”), machine learning (“machine learning” or “deep learning”) but excluded imaging (“image” or
“imaging”) and natural language processing (NLP) modeling (“NLP” or “natural language processing” or “text
processing”) since their temporal data processing pipelines differ from those for structured, temporal EHR data.
The search was restricted to studies published in English from January 1, 2010. After excluding duplicates, we
screened titles and abstracts to determine potential studies for review. Studies were included if they applied neural
network models for patient-level outcome prediction using temporal EHR data. Studies were excluded based on
the following criteria: (1) studies using non-clinical applications, signal processing studies, population-based
studies, and other systematic reviews; (2) lack of structured EHR data (e.g., studies using free text such as clinical
notes and imaging data); (3) temporal data used to develop static models, or models that were trained on
aggregated temporal EHR data. After screening titles and abstracts, we read the full text of the selected articles
and applied the same inclusion and exclusion criteria as above to assess the relevancy of the studies. Two
reviewers (SP and VS) screened the full text articles. In addition to the literature search, additional studies meeting
the inclusion and exclusion criteria were included after a grey literature search using Google Scholar. The process

for study selection is summarized in Figure 2.
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Fig. 2 Study selection flowchart using Preferred Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) 2020 guidelines [17].

3.2. Data Extraction

We extracted the following characteristics from each study:

Clinical context: clinical setting; clinical outcome(s) being predicted.

Data source and sample lengths: source of EHR data; number of observations used for modeling; time
of data collection (see supplementary material A).

Model selection and evaluation: basic model architectures; comparisons to baseline (either static or
temporal) models; measures for model evaluation (see supplementary material B).

Time window selection and evaluation: definition of observation and prediction windows; selection of

window lengths; evaluation of models trained with different window lengths.



e Prediction task: research question of interest; prediction frequency.

3.3. Quality Assessment

Quality assessment was performed using two standard frameworks for evaluating minimal reporting in machine
learning research, Transparent Reporting of a Multivariate Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD) [18] and Minimum Information about Clinical Artificial Intelligence Modeling (MI-
CLAIM) [19]. For both frameworks, there was a particular focus on reporting of the methods (study design, data
processing, and modeling). In addition to TRIPOD and MI-CLAIM, we assessed the extent to which time-series
specific concerns (the time windows of interest and prediction task) were reported in the methods to maintain
consistency with TRIPOD and MI-CLAIM standards. Appropriate reporting of the time windows of interest was
assessed separately from appropriate reporting of the prediction task. Studies were considered to have appropriate
reporting of the time windows of interest if the type, length, and relationship of the windows were discussed in
the methods. Studies were considered to have appropriate reporting of the prediction task if researchers discussed

the outcome of interest and how often predictions were updated in the methods.

RESULTS

4.1. Clinical Context

After selecting eligible studies (n = 82) and studies from alternate searches (n = 10), there were 92 studies included
for review. Around 96% of the studies could be categorized into prediction related to acute (n = 60, 65%) or
chronic (n = 28, 31%) conditions. The remaining 4% modeled prediction of all-cause hospital readmission (n =
4) [20-23]. The most common acute conditions were prediction of sepsis or bacteremia (n = 17) [7,15,24-38], in-
hospital mortality (n = 14) [39-52], multi-task learning or general clinical outcome prediction (n = 12, which
usually included sepsis and in-hospital mortality predictions along with multiple diagnoses predictions) [6,53-
63], and acute kidney injury (n = 5) [64-68]. Some chronic diseases considered for modeling were onset of heart
failure (n =5) [69-73], cancer (n=4) [10,74-77], cardiovascular disease (n =4) [8,78-82], arthritis (n =2) [81,82],

and cognitive impairment (n = 2) [83,84].

4.2. Observation and Prediction Windows



4.2.1. Window Definition

In all studies that explicitly mentioned the observation window, the definition was consistent with prior
literature. However, the definition of prediction window (if specified) varied between studies. Of the studies
where the definition(s) of the prediction window were either assumed or explicitly stated (n = 77, 84%), 21
(27%) defined the prediction window as a gap of time, 48 (62%) defined the prediction window as time-at-
risk, and eight (10%) used both definitions for prediction (Table 1). However, 51 (55%) studies had
appropriate reporting of both the length and type of the prediction window(s) in the methods while 34 (37%)
did not have appropriate reporting of the type only, two (2%) did not have appropriate reporting of the length
only, and 5 (5%) did not have appropriate reporting of both length and type. In studies where we found
appropriate reporting of the relationship between observation and prediction window(s) (n = 70, 76%), the
windows did not overlap and there were clearly defined cut-offs for when the windows of interest began and
ended. Different terms were used to describe the prediction window, including “hold-off window” [27],

“prediction horizon” [30], “future of any horizon” [59], and “predictive time horizon” [85].

Table 1. List of reviewed studies by prediction window definition. Percentages are calculated out of a total of 92

studies.
Prediction Window Definition Number (%) of Studies References
. 15,29,31,34-39,47,69,71,74,75,81,86-

Gap window 21 (23%) [9 1
[6-8,20-23,30,40-42,45,48,49,51-

Time-at-risk window 48 (52%) 55,57-59,61-64,66,68,73,76-
78,80,82,84,85,92-103]

Both definitions used 8 (9%) [25,27,43,50,60,65,83,104]

. . .\ 24,26,28,32,33,44,4 2
Unclear prediction window definition 15 (16%) [24,26,28,32,33,44,46,56,67,70,72,79,

105-107]

4.2.2. Window Selection
Of the 92 studies, 12 (13%) did not explicitly mention the lengths of the time windows used, 57 (62%) only
considered a single observation and prediction window length, 22 (24%) selected several window lengths for

evaluation, and one (1%) performed an optimization algorithm to determine optimal window lengths (Table



2). For studies that assessed different observation and prediction window lengths, the optimal window length
was selected after training separate models on each window length combination, comparing model
performance, and then selecting the window lengths based on the model with the best performance. For
example, in a study predicting sepsis [27], investigators first fixed the length of the gap window and varied
the observation window from two to 24 hours and then fixed the length of the observation window and varied
the gap window from five to 24 hours. They found that the method varying the observation window (and
setting the gap window to 0 hours) produced better model performance with a 24 hour observation window

as the optimal window length.

Table 2. Summary of evaluation methods for observation and prediction window lengths. Percentages are calculated

out of a total of 92 studies.

Number (%)

Method of Evaluation . References

of Studies
Observation and prediction window 12 (13%) [7,21,28,33,44,46,70,78,96,100,102,106]
lengths were not directly discussed
A single observation window length and [6,8,20,22-24,26,30,35-38,40-43,45,48,49,51 -
prediction window length were used in all 57 (62%) 53,55,56,59-63,65-67,73-77,79-86,88,89,91 -
analyses 95,97,101,103,104,108]
Different observation and/or prediction
window lengths were established and 22 (24%) [15,25,27,29,31,34,39,47,50,54,64,68,69,71,72,87,
model performance was compared for o 90,98,99,105,107]
each window length
Optimization algorithm was used to
determine the optimal window lengths 1 (1%) (87]

along with testing different window
lengths

10

For window selection, researchers employed two strategies: right and left alignment. These terms were
explicitly mentioned in some studies [25,27] and we have broadly applied these to all studies in this review
to further characterize window selection. Briefly, right alignment refers to setting the prediction window to
a certain length and leaving the observation window variable while left alignment refers to setting the
observation window to a certain length and leaving the prediction window variable (Figure 3). Of the

reviewed studies, 43 (47%) used right alignment only, nine (10%) used left alignment only, and 28 (30%)



used both such that both window lengths were defined as part of the prediction problem (Table 3). For the

remaining studies (n = 12, 13%), it was unclear whether the windows were right or left aligned since the

window lengths were not provided in the main text.

Left Alignment

n-hours

Fixed Observation Window

First Observation

First Observation

Observation Window

Prediction Time

- - - - e Ee Ee o EE o B O Em Em

Observation Window

- EE O EE EE EE O o Em Em am am =

Prediction Window
Time-at-Risk and/or Gap Window

Event/Label

n-hours
> Right Alignment

Prediction Time

i Fixed Prediction Window
Prediction Window

Time-at-Risk and/or Gap Window

Event/Label

Fig. 3 Visualization of the definitions for left and right alignment. Left alignment refers to a fixed observation window

of n-hours with a variable prediction window. Right alignment refers to a fixed prediction window (either time-at-risk

window or gap window) of n-hours with a variable observation window. The bolded timeframes are those with pre-

specified lengths and the dashed timeframes are variable depending on a patient’s length of stay, health record history,

or onset time of the outcome.

Table 3. List of reviewed studies using right alignment and/or left alignment. Percentages are calculated out of a total

of 92 studies.

Alignment Type Number of Studies (%) References
[7,15,20-22,24,31,35-38,43,47-49,51,53-
55,59,61,63,66-

. . 0 9 b b b

Right alignment 43 (47%) 68,72,73,76,78,80,84,88,91,92,94,96,97,100-
104,108]

Left alignment 9 (10%) [6,33,40-42,45,62,83,98]
[8,23,25,27,29,30,34,39,50,56-

Both alignment types used 28 (30%) 58,60,64,69,71,74,75,77,81,82,85-

87,89,90,93,99]

11



Unclear alignment type 12 (13%) [26,28,44,46,52,65,70,79,95,105-107]

12

When selecting the length of the observation and prediction windows, investigators cited clinical relevance
or optimal model performance when rationale was provided [43,93]. For chronic diseases, there was less
variability in how windows were selected among studies studying the same clinical context. Notably, for
different studies predicting cancer onset, the observation and prediction windows were all set to three years
and one year, respectively, although multiple types of cancers were considered [74,75,77]. On the other hand,
for acute conditions, the length of the observation and prediction windows was dependent on both the clinical
context and the individual study. For example, in the 17 studies looking at sepsis or bacteremia, the
observation window lengths tested ranged from three hours [26] to 48 or 72 hours [34]. The prediction
window lengths also ranged from six hours [24,32,35,36,38,108] to 24 hours [15] although it was not always

possible to determine whether the prediction window was referring to a gap window or time-at-risk window.

4.2.3. Effect of Window Selection on Model Performance

Model performance was assessed in 23 (25%) studies after changing the length of the observation and/or
prediction windows (Table 2). Of the studies that looked at changes in the observation window (13%), an
increase in the observation window corresponded with an increase in model performance as measured by
AUC (Table 4). For studies using alternative metrics, an increase in the length of the observation window
corresponded with an increase in model performance as measured by accuracy [87] and F-1 score [27]. In
contrast to observation window experiments, evaluation of the effect of changing the prediction window
length on model performance was complicated by inconsistent reporting of prediction window definitions.
In studies where it was either stated or assumed that the gap window was changing between experiments, a
decrease in the length of the gap window increased model performance as measured by AUC, accuracy
[87,90], sensitivity [64,90], or specificity [31,64,90] (Table 4). However, the result of changing the time-at-
risk window on model performance was inconclusive. Model performance as measured by AUC either
increased, decreased, or did not show a clear pattern [50] when increasing the length of the time-at-risk

window (Table 4).



Table 4. Summary of changes in model performance, as measured by AUC, after increasing the length of the

observation, gap, and time-at-risk windows.

Evaluation of

Performance

Increase in Performance (AUC) Decrease in Performance (AUC)

Increase observation

window length

[15,25,27,34,39,47,54,69,71,72,87,99] None

Increase in gap window
length

None [15,25,27,29,31,34,39,47,64,69,71,87,90,99]

Increase in time-at-risk

window length

[72,98] [54,68]

13

4.3. Prediction Task

For reporting of the prediction task, we found the majority (n = 72, 78%) of studies reported the outcome of
interest and how often predictions were updated in the methods while 20 (22%) did not. Of the 20 studies that did
not appropriately report the prediction task, 14 also did not provide appropriate descriptions of the prediction
window type, alignment, or length of the observation window. There were also 17 studies with dynamic
predictions (i.e., updating predictions continuously) although there may have been more studies with dynamic
predictions despite not directly stating this in the text [7,15,24,31,35,38,39,42,47,49,52,60,65,67,68,94,108]. Out
of these studies, the majority (n = 12) used right alignment with the remaining using left alignment (n = 1), both

(n = 2), or an unclear alignment (n = 2).

DISCUSSION

In this review, we assessed studies using temporal EHR data to make patient-level predictions for factors related
to problem formulation to determine how the time windows of interest and prediction task were defined and
reported. Temporal machine learning models have been used to model a variety of clinical use cases, including
acute and chronic conditions. Although selecting different observation and prediction windows can impact the
clinical utility and rigor of temporal models, nearly half of the studies reviewed did not clearly report the length
or type of time windows used despite most studies sufficiently outlining the prediction task. The discrepancy in
reporting of the time windows of interest demonstrates a need for improvements in evaluating model rigor,

reproducibility, and applicability in a clinical setting.
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5.1. How to formulate the prediction problem?

5.1.1. General Considerations

Prior to selecting the time windows of interest and the prediction task, researchers should first consider the
underlying goal of the model. If the model is to be used for research related to model development and/or
evaluation, selection of the prediction task and time windows of interest are primarily limited by data
availability and computational power. However, if the goal is implementation in a clinical setting such that
the model will be interacting with clinicians, there are additional considerations, including how often the
prediction will be made, whether to right or left-align the time windows of interest, and how the outcome

will be defined in the context of the clinical setting.

Time window lengths are important considerations for model implementation. One consistent attribute across
studies that looked at multiple observation and prediction window lengths was that increasing the length of
the observation window and decreasing the length of the gap window improved model performance, likely
because a larger observation window lends more data for model training while a small gap window reduces
the period between the data used for training and the prediction time. For researchers looking to select the
best window lengths, optimal model performance should be achieved when using a large observation window
and a small gap window. However, researchers must also consider how the gap window length affects the
clinical utility of their model. For example, a model may be of low clinical utility if the time between
observation and prediction is not long enough for selecting an appropriate intervention or course of action.
Additionally, since the relationship between the time-at-risk window and model performance was
inconclusive, assessing different time-at-risk window lengths based on the clinical context may be
appropriate. To demonstrate these concepts, we will outline how researchers may approach modeling of acute

conditions (e.g., sepsis) and chronic conditions (e.g., chronic heart failure).

5.1.2. Example of Prediction Problem Formulation for Acute Conditions
For implementation, it is easiest to formulate the prediction problem by thinking about the outcome and

working backwards to the observation window. However, it should be noted that while it is easier to consider
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the prediction problem in reverse, models should be able to provide predictions without knowledge of the
outcome since the outcome is unknown at the time of prediction. Thus, for prediction of sepsis, the first step
is defining sepsis to split the data into cases and controls. However, the definition of sepsis varied between
studies and a thorough review of current definitions or expert review are likely needed to ensure the condition
is defined appropriately. For example, in one study [7], sepsis was defined as “two or more SIRS [Systemic
Inflammatory Response Syndrome] criteria, a blood culture order, and at least one element of end-organ
failure” while in another study [30], sepsis was identified using at least two points on the Sequential Organ

Failure Assessment (SOFA) along with suspected infection.

After defining the outcome for each patient, the length of the gap window should be determined to ensure
that model predictions provide adequate time to apply interventions. For predicting sepsis, the next step is to
assess the interventions available and the optimal time to apply these interventions. While early application
of interventions such as antibiotics and fluid resuscitation are associated with better patient outcomes [109],
there are few guidelines about how early in advance is sufficient, which is likely why prediction window
lengths varied between studies in this review. Nevertheless, a critical review of the evidence base and
consultation with clinical experts should be performed to determine the length of the gap window. The next
decision is whether the prediction should be precise (a narrow time-at-risk window) or general (a broad time-
at-risk window). Based on the studies reviewed, there does not appear to be a consensus about which strategy
is more effective for implementation although most of the studies predicting onset of sepsis used a narrow
time-at-risk window presumably to have more precise timing for interventions. Thus, a narrow time-at-risk
window suggests more patient-focused prediction and a broad time-at-risk window suggests prediction for

resource allocation.

Based on the time-at-risk window, one can assign the length of the observation window and the prediction
task. For the study looking at a broad time-at-risk window [25], the observation window was set between
four and 48 hours (with optimal model performance at 48 hours) and the prediction task was defined as
prediction of sepsis onset within the remainder of that visit. For studies looking at a narrow time-at-risk

window, the observation window was either variable or unknown and predictions were made continuously



such that for each hour, prediction of sepsis during the hour immediately following the gap window was
assessed. Both strategies have potential for implementation since neither require knowledge of sepsis onset

when the prediction is made.

5.1.3. Example of Prediction Problem Formulation for Chronic Conditions

Here, we consider the prediction problem for modeling of chronic heart failure (HF) onset. Similar to acute
conditions, we start with defining the time windows and prediction task from the onset of disease. Since all
studies reviewed predicting onset of chronic conditions used visits as the modeling unit rather than
observations from a single visit, HF onset was defined as the visit when disease codes for HF were reported
[69-72]. To avoid an imbalanced set for model training, several studies sampled controls by matching visit

times aligned to HF onset (or index visit) for cases [69-71].

We then define the gap and time-at-risk windows. Among HF studies, the gap window was defined either as
a minimum of three months [69,71,72] or as the time between the previous visit and the index visit [70,73]
although justification was not provided. Thus, while interventions exist for HF [71], there does not appear to
be a consensus about the amount of time required for these interventions to be effective. However, there was
a consensus about the length of the time-at-risk window in that all the HF studies were only interested in
prediction of HF at the next visit rather than within a specified period of time, likely to provide more targeted
therapies. Finally, setting the observation window can be more difficult with chronic conditions than with
acute ones because a single visit will have a defined start point at admission but data availability (or the
completeness of patient records over many years) is necessary to consider when defining the observation
window. For HF onset prediction, there were varying observation window lengths and definitions with some
studies using a number of visits [72,73] and others using a period of time, such as two years [71] or 10 months

[69], and then aggregating visit information for each time step.

5.2. What are best practices for reporting prediction problems?
Discussion of time windows and prediction tasks varied across studies and clinical contexts. All the studies we

reviewed had appropriate reporting of modeling methods based on TRIPOD and MI-CLAIM standards and most
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had appropriate reporting of participant selection, data source(s), and data processing methods. Although most
studies had appropriate reporting of the prediction task, we found nearly half of the studies did not provide a clear
description of the length and/or type of prediction window(s) used for modeling. There were also studies that did
not define the window lengths or prediction task in the methods but rather as a part of the results when describing
the outcome for each prediction task. Since these inconsistencies make it difficult to assess and reproduce study
design, we propose reporting standards consider specific concerns when modeling time-series data and

appropriate additions for minimal reporting of time-series modeling to improve rigor and reproducibility.

Regardless of reporting standards, we suggest all studies clearly describe the prediction problem, including how
the time windows of interest will be defined, whether the windows overlap, and how predictions will be made, as
part of the methods. If possible, we also highly recommend that studies include a visualization that demonstrates
the relationship of the time windows of interest (between cases and controls if applicable), at which point the
prediction will be made, and at which point the outcome is being assessed. For several studies reviewed, the
description provided in the text could have been interpreted differently based on the varying definitions of
prediction window and on nuances in the use of words such as “in” and “within.” However, figures (when

provided) clarified the prediction problem significantly to the point where we considered previously inappropriate

reporting of the prediction problem appropriate.

CONCLUSION

We reviewed 92 studies applying predictive models on EHR data and assessed the prediction problem, including
time window selection and definition of the prediction task. Previous studies have demonstrated significant
promise for use of temporal EHR data in predicting clinical outcomes. Here, we found unique challenges in
selection of the prediction task and time windows of interest that were complicated by a lack of standardized
reporting for temporal EHR applications. Based on these observations, we offered guidelines for time-series
problem formulation and reporting that can be expanded upon and integrated into frameworks such as TRIPOD
[18] and MI-CLAIM [19]. Given the rapid growth of temporal modeling using EHR data, such standardized
reporting would promote rigor and reproducibility in future studies and facilitate the process of implementing

algorithms in clinical settings.
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