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GEOLOGY

Landscape evolution under the southern

Laurentide Ice Sheet

Shawn Naylor'*t, Andrew D. Wickert?, Douglas A. Edmonds?, Brian J. Yanites®

Subglacial landscapes, revealed in regions of recent ice-sheet retreat, provide a window into ice-sheet dynamics and
interactions with evolving subglacial topography. Here, we document landscape evolution beneath the southern
Laurentide Ice Sheet of North America since the end of the Pliocene, 2.6 million years (Ma) ago, by reconstructing
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the isostatically adjusted preglacial surface and modern bedrock topography at 250 m horizontal resolution. We
use flow routing to reconstruct drainage networks and river longitudinal profiles, revealing the pattern and extent
of their glacially forced reorganization. The overall mean Quaternary (2.6 Ma ago to present) erosion rate is 27 m/Ma,
rising within ice-streaming corridors to 35 m/Ma (and locally reaching 400 m/Ma) and falling to 22 m/Ma in non-
ice-streaming regions. Our results suggest that subglacial erosion was sufficient to lower the southern Laurentide
Ice Sheet into warmer environments, thereby enhancing ablation and reducing ice-sheet extent over time.

INTRODUCTION

During the Quaternary, the Laurentide Ice Sheet (LIS) repeatedly
advanced across the North American mid-continent, modifying the
landscape and depositing low-relief and agriculturally productive
sediments across the north-central United States and southern
Canada. Buried beneath these deposits lies a hidden topography
of river gorges, drainage divides, and glacially scoured bedrock that
records the past 2.6 million years (Ma) of landscape evolution
(1-6). Understanding this landscape and its development is critical
for accurately reconstructing the dynamics and history of the LIS,
which researchers often use to examine the long-term behavior of
ice-sheet models, and to understand the feedbacks between land-
scape and ice dynamics (7-9). Such feedbacks are hypothesized to
have caused the mid-Pleistocene transition (10), generate marine
ice-sheet instability (11, 12), and result in extensive Early Pleistocene
glacial advances (13).

Existing glacial deposits and modeling provide direct evidence
for at least 10 LIS advances and retreats in the Quaternary (14) that
transformed the landscape and river systems across North America
in the process. While the effects of some of these LIS advances and
retreats can be isolated, their cumulative impact on landscape change
is largely unknown because the initial end-Pliocene topography,
which strongly determined the trajectory and pace of landscape evo-
lution (9, 10), has never been reconstructed.

The rearrangement of river networks during the Quaternary was
accomplished through erosion and deposition of material during LIS
advances and retreats, but understanding the interplay between the
LIS and North America’s landscape evolution is difficult without
maps of bedrock erosion. Glacially scoured landscapes of the
Laurentide region are intuitively associated with erosion, but most
estimates of glacial denudation are inferred from volumes of off-
shore Quaternary sediments (2), observations of surficial geology
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(3, 15, 16), or modeling studies, whose authors note the sparse and/
or inconsistent data available for validation (17, 18). These different
inferences led to total erosion estimates throughout the Quaternary
ranging from 1 m to tens of meters (3, 15, 18) to hundreds to
thousands of meters (2, 4, 17). In this study, we directly assess the
integrated effects of LIS advances and retreats on erosion and depo-
sition by using our modern, bedrock, and Pliocene surface digital
elevation models (DEMs).

RESULTS

Mapping Quaternary bedrock erosion

We map landscape change through the southern LIS region by
reconstructing two key surfaces. First, we create a seamless 250-m-
resolution grid of the bedrock surface of the North American mid-
continent (Fig. 1) using depth-to-bedrock data derived from
residential and municipal water well logs, drill cores, geotechnical
borings, and seismic surveys. Second, we reconstruct preglacial (i.e.,
end-Pliocene) paleotopography (Fig. 2) by linking our bedrock
topography (Fig. 1) with (i) paleo-drainage evidence contained in
that surface and from the published literature and (ii) known regions
of little to no erosion or deposition (see Materials and Methods).
Our end-Pliocene DEM is an interpolated surface from newly recon-
structed preglacial drainage patterns, valley-bounding strath terraces
from 187 valley cross sections, relict landforms, and computed resid-
ual glacial isostatic adjustment (GIA) (see Materials and Methods
and figs. S3 to S6) (19). From this DEM, we use flow-routing algo-
rithms to quantitatively reconstruct paleo-drainage basins and river
courses (Fig. 2). Together, these portray a landscape and hydrography
with integrated drainage and more extensive north- and east-flowing
river systems, in contrast to today’s glacially altered landscape.

By subtracting the bedrock surface from the Pliocene surface, we
find that over the course of the Quaternary, the southern LIS region
experienced 71 m of spatially averaged bedrock erosion (27 m/Ma).
This is almost double the average continental erosion rate (16 m/Ma)
during the Phanerozoic (20). Similarly, subtracting the bedrock sur-
face from the modern surface indicates an average of 39 m of depo-
sition. Although glacial landforms dominate much of the region, these
spatially averaged estimates also include erosion associated with
glacial, paraglacial, and proglacial processes.
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Fig. 1. Bedrock topography of the Laurentide region. Gray outlines mark physio-
graphic provinces, and black lines denote the Driftless Area (DA), Red River Valley/
Des Moines Lobe region (RD), and the Pembina (PE) and Niagara (NE) Escarpments.
The inset map shows the analysis extent (black outline) atop the mapped maximum
Quaternary ice extent (gray shading) (74).

Spatial patterns of glacial erosion

Erosional and depositional maxima in our study area occur
1200 km from the Hudson Bay ice saddle, which connected the
Keewatin and Québec-Labrador domes of the Last Glacial Maximum
LIS (Fig. 3A and figs. S7 and S8) (21). The position of these zones
coincides with empirical evidence (22) and the modeled presence
(17, 23) of fast-moving, warm-based ice during the last 120,000 years.
Farther down-ice from this maximum, erosion and deposition
become indistinguishable except at the southern edge of the study
area (Fig. 4), in a pattern consistent with idealized physics-based
modeling (24). However, in contrast to the modeling, our data
demonstrate that erosional and depositional maxima both lie up-ice
from the southernmost ice-sheet margin. This may be reconciled by
acknowledging that the LIS often was smaller than its maximum
extent (14) and that the observed erosional maximum lies at the
transition from Canadian Shield bedrock to more erodible sedi-
mentary units (25).

Alpine glacial erosion rates are proportional to the square of
ice-sliding velocity (26), and a comparison of streaming versus
nonstreaming zones of the LIS supports velocity-dependent erosion
rate laws for continental ice sheets as well. Outside of ice-streaming
corridors, the southern Laurentide region experienced 57 m (22 m/Ma)
of spatially averaged erosion during the Quaternary. In contrast,
ice-streaming corridors experienced 91 m of erosion (35 m/Ma), com-
parable with previous estimates of spatially distributed LIS bedrock
erosion (120 m) based on off-shore sedimentation (2). Ice stream-
ing produced deep scours of up to ~1 km (Fig. 1 and fig. S8). The
~400 m/Ma erosion rates in the deep scours of the LIS are typical for
valley glaciers (27), plausible for tectonically active mountain belts
(28), and extreme compared to long-term exhumation rates for the
North American Craton (29). At the margin of the ice sheet, our
glacial erosion-rate estimates are conservative because ice did not
continuously occupy this area and some of the erosion may be
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Fig. 2. Pliocene surface reconstruction with paleo-drainage. We extracted paleo-
watershed boundaries and river longitudinal (long) profiles following the five
dominant paleo-rivers denoted in solid blue lines.

caused by subaerial fluvial processes. In the Great Lakes basins, where
we measured maximum erosion rates, our estimates are more accurate.

Volumetrically, 60% of the total erosion occurs in ice-streaming
regions, which cover 40% of the study area (1.34 million km?), and the
highest rates of erosion are dominantly or only seen here (Fig. 3B).
Beneath ice streams, erosion depths are exponentially distributed
(Fig. 3B), similar to findings from subglacial bedforms (30), and sug-
gesting that this could be a fingerprint of glacial erosional processes.
Outside of ice-streaming regions, this exponential erosion rate dis-
tribution is truncated. The 14:1 ratio of deep scour to mean erosion
matches interpretations of the subglacial topography of Antarctica (7).

Quaternary deposition averaged 39 m (15 m/Ma), bracketed by
mean deposit thicknesses of 38 m in ice-streaming regions and 40 m
outside of them. Deep scours, where erosion:deposition ratios can
exceed 10:1 (Fig. 4), may form with the assistance of sediment that
protects their margins from quarrying and abrasion (31). Likewise,
sediment deposits outside of ice-streaming regions, whose erosion:
deposition ratio is closer to 3:2, may protect the underlying bedrock from
erosion (31), further enhancing the erosion-ice-streaming feedback
and associated nonuniform rates of erosion.

Preglacial river long profiles and Quaternary
drainage alterations
Most reconstructed rivers in our end-Pliocene DEM bear concave-
upward longitudinal (long) profiles, typical of graded rivers (Fig. 5) (32).
Furthermore, our geomorphically reconstructed river courses align
with the sedimentologically reconstructed northern boundary of
the pre-Quaternary Mississippi River drainage basin (5). These end-
Pliocene river long profiles provide a dataset that is more appropri-
ate than the modern glacially altered land surface and rivers for past
reconstructions of uplift patterns (33) and dynamic topography (34).
Ice advance rerouted northward- and eastward-flowing rivers by
damming them, forming lakes that overtopped and incised drainage
divides (fig. S9) with the aid of abundant glacial meltwater (6). On a
continental scale, this process integrated the modern Mississippi
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Fig. 3. Erosion and deposition within the study area. (A) Erosion and deposition
relative to the LIS domes and divide in and around Hudson Bay (27). Erosion is cal-
culated by subtracting the end-Pliocene surface from the bedrock surface. Deposition
is calculated by subtracting the modern surface from the bedrock surface. Mean
values of erosion and deposition are binned every 100 km. See figs. S7 and S8 for
distance from ice-sheet center contours overlain on the study area, and for reference,
the middle of Lake Superior is located approximately 1200 km from the ice-sheet
saddle. (B) Bedrock erosion histograms normalized to total erosion in the study re-
gion. Deep erosion occurred only under mapped zones of streaming ice (63), which we
infer to be persistent ice-streaming regions throughout much of the Quaternary.

River system (I, 6, 35), redistributing water and sediment discharge
across the landscape and to the sea (1). More locally, buried and
exposed bedrock valley systems record multiple phases of glacially
mediated river rerouting. In the Western Plains, narrow, steep-walled,
north-south-oriented valleys cross both the preglacial drainage sys-
tem (Figs. 2 and fig. S5) and one another. These valleys lack well-
developed tributary networks, indicating that glaciers (or their
impacts on drainage systems) (36), and not precipitation, provided
the dominant source of water that carved them. In the Central Plains,
the south-flowing Mississippi crosscuts preexisting northeast-oriented
drainages and their associated bedrock cuestas (1).

DISCUSSION

Both the modern surface and bedrock topography of the southern
LIS region bear the characteristics of a positive feedback between
glacial erosion and ice streaming (37) mediated by regional varia-
tions in bedrock erodibility. The Canadian Shield basement, com-
prising Precambrian igneous and high-grade metamorphic rocks,
was exhumed by glacial erosion of sedimentary cover. As ice crossed
onto thicker sedimentary rock packages—including shallow marine
sediments of the Western and Central Plains, syn-rifting sediments
in and around the Lake Superior basin, and Paleozoic bedrock
through the Michigan basin and Great Lakes Lowlands—it prefer-
entially eroded through weaker lithologic units (38). Increased ice
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Fig. 4. Erosion-to-deposition ratio. Previously mapped major marine isotope
stage 2 (MIS 2) ice-stream flowlines (63) and ice extents (64) are plotted atop a color
map indicating the ratio of bedrock erosion (end-Pliocene elevation minus modern
bedrock elevation) to sediment thickness (modern ground-surface elevation minus
modern bedrock elevation).

thickness and velocity in these eroded regions accelerated their
erosion in a feedback loop, forming the overdeepened basins of the
Great Lakes (39) and the large ice-streaming corridors on the Western
and Central Plains (40). This erosion-ice-flow feedback preserved
the Niagara escarpment, which bounds the Great Lakes ringing the
Michigan basin and served as a divide between ice lobes, and most
likely prevented the glaciers from entering the Driftless Area (41) of
Wisconsin and northwestern Illinois (Fig. 1).

Quaternary erosion in the southern Laurentide region likely af-
fected ice-sheet dynamics by enhancing ablation. Early Pleistocene
LIS moraines lie far beyond the margins of the more recent ice ad-
vances despite larger global ice volumes during recent glacial cycles
(42). The leading “regolith hypothesis” for this transition is that
erosion of sedimentary cover overlying the Canadian Shield con-
verted a soft, deformable bed that allowed the LIS to expand laterally
via till deformation into a rigid one that supported a thicker and less
laterally extensive ice sheet (10). Old moraines from mountain
glaciers similarly lie far beyond the extent of more recent glacial
advances. Here, glacial erosion of deep valleys forced subsequent ice
advances into lower altitudes and warmer temperatures, limiting
glacier length (13). Assuming a temperature lapse rate of 5.1°C/km
(43), 71 m of mean erosion would increase temperature of an equally
thick ice sheet by 0.4°C. Erosion of the deepest troughs would in-
crease the temperature experienced by the ice sheet by 3° to 5°C and
generate calving margins where the ice sheet scoured below sea level
(37) or formed closed depressions that filled to become lakes (41).
Discharge to outlet glaciers flowing through these deep scours thinned
the LIS interior (44), giving them outsized importance to ice-sheet
mass balance. Our quantification of subglacial erosion therefore indi-
cates that the landscape-evolution feedback may also decrease ice-sheet
extents through time for a given climate forcing, even in low-relief
environments. Such topographic change may therefore explain some
of the reduced areal extent of Middle-to-Late Pleistocene glacial
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Fig. 5. Longitudinal (long) profiles for major preglacial river networks extracted
from the Pliocene DEM. Most river long profiles are concave. The smallest river in
our analysis, the Wabash, bears a convexity that could relate to complexities asso-
ciated with the variable rock type in the region (65) or mid-continental seismicity
that has been shown to correlate with river morphology (66). See Fig.2 for loca-
tions of main paleo-river channels along which profiles were extracted.

advances, although the counterintuitive increases in ice volume still
require consideration of basal friction (10) and the periodicity of
climate forcing. Reduced ice volumes at the southern LIS margin
could be offset by increases along the western LIS margin, where
empirical data (14) and modeled ice-sheet reconstructions (45) in-
dicate an expansion of the LIS at higher latitudes during the LGM.
Landscape and drainage change have remained major open ques-
tions in the geologic history of mid-continental North America. By
reconstructing spatially distributed erosion and deposition, we
demonstrate that an exponential fingerprint of glacial erosion per-
sists from the bedform (30) to the landscape scale. Furthermore, the
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mapped glacial erosion suggests that continental glaciers demon-
strate self-limiting behavior (9) by “digging their own graves” (13)
and that this may complement erosion to rigid bedrock (10) in ex-
plaining smaller ice-sheet extents despite more extreme glacial cycles
after the mid-Pleistocene transition. Our reconstructed end-Pliocene
surface likewise provides the necessary starting point to test feed-
backs between landscape evolution and ice-sheet dynamics (23, 46),
including the regolith hypothesis (10) for the mid-Pleistocene tran-
sition, and the accuracy of glacial erosion laws (24, 47). Last, our
map of the Pliocene landscape and its rivers is the first glimpse of the
quantitatively reconstructed topographic surface of North America
before glaciation. Combining this with maps of the bedrock and
modern land surface illuminates the power of ice in reshaping

topography.

MATERIALS AND METHODS

To create a bedrock-surface topographic map, we compiled various
high-resolution (typically 1:500,000 scale or better) state and pro-
vincial maps. These disparate datasets of buried bedrock surfaces
(figs. S1 and S2) are available in either digital or analog map formats
from most states and provinces within the Laurentide region.
We applied three approaches to convert multiple bedrock-elevation
data sources to elevation contours in digital vector formats for use
in a surface interpolation algorithm and summarize these methods
in fig. S1. (i) In the “direct-use” approach, we directly ingested and
integrated existing digital contours and bedrock DEMs that we
converted to digital contours. (ii) Using a “refinement” approach, we
integrated local data with edge-matching datasets (e.g., at the
Canada/U.S. border) to align valley and ridge features and/or augment
base datasets with additional information from published work. An
example of this refinement step was to incorporate Great Lakes
bedrock contours from academic publications in place of the default
lake bathymetry. (iii) Last, the absence of bedrock-elevation data in
some areas required us to interpolate existing point bedrock eleva-
tions to produce bedrock-surface topographic contours at a resolu-
tion consistent with our larger-scale dataset. We obtained the depth
of the bedrock interface from drilling logs and prepared data for
interpolation (48), including filtering problematic data because of
incorrect locations, geologic materials without depth assignments,
and/or inaccurate ground-surface elevations.

We generated the complete bedrock surface by assimilating dif-
ferent elevation data types, such as points and polylines (contours),
from the sources described above. To do this, we used the ANUDEM
gridding algorithm (49-51), which applies a computationally effi-
cient, iterative finite difference interpolation approach that maintains
surface continuity using a thin-plate spline. It minimizes a terrain/
user-specified roughness penalty while also using a conservative
drainage enforcement algorithm that removes sinks while not im-
posing drainage conditions that contradict elevation data (49). The
algorithm also minimizes a weighted sum of squared residuals from
the input elevation data and the resulting surface grid (49). We
statistically validated the final surface interpolation using borehole
data from eight states and provinces where approximately 1 million
data points (N = 938,157) were used to obtain an average root mean
square error of 12.5 m (see Supplementary Methods and Materials
and fig. S2).

To ensure that our preglacial topographic surface reconstruc-
tion is based on elevations that are not substantially affected by the
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ongoing transient solid-Earth response to deglaciation, we summed
our bedrock-surface elevations with residual GIA, defined as the
remaining amount of uplift and/or subsidence required to reach
isostatic equilibrium. To do so, we used gridded model outputs from
Raymo et al. (19), who simulated GIA using a variety of solid-Earth
rheologies. From their multiple model runs, we chose outputs with
a 71-km elastic lithosphere and upper- and lower-mantle viscosities
of 3 x 10*° and 3 x 10*' Pa s, respectively. The 71-km lithospheric
elastic thickness is consistent with independent elastic-thickness esti-
mates for the southern Laurentide region of North America (52, 53).
This elastic thickness falls between the 90-km value used in VM2
for coupling with ICE-5G (54), the ice-thickness reconstruction
used by Raymo et al. (19), and the 60-km value used in the newer
VM5a model (55), designed to better fit GIA observations in the
area south of the Last Glacial Maximum LIS, which our study area
includes. Our mantle viscosity values are similar to those from
the GIA-calibrated VM2 and VM5a mantle-rheology models (56).
While consistent with VM2 and VM5a, this 10:1 ratio of lower:upper
mantle viscosity is less than the 30-fold increase that would be con-
sistent with observations of the long-wavelength geoid (57). We opted
to more closely match VM2 and VM5a based on their joint calibration
with ice-sheet reconstructions to simulate ice-age solid-Earth re-
sponse to loading (54, 56).

To construct the Pliocene surface, we first defined preglacial valleys
and their gradients by following their centerlines and matching local
channel elevations interpreted from geomorphic features and regional
base-level indicators at the mouths of end-Pliocene watersheds.
Bedrock valley cross sections (N = 187) were analyzed to define geo-
morphic features such as river terraces and truncated spurs (eroded
ridgelines) and estimate local channel segment elevations. We inter-
polated channel elevations along with interfluve elevation constraints
extracted from the bedrock surface DEM based on previous litera-
ture (58-61) describing preglacial uplands and undissected bedrock
highs to create a continuous surface. This work involved three key
assumptions. First, we assumed that regions of minimal glacial ero-
sion are preserved as high anomalies in the bedrock topography.
Second, we assumed that most tectonic uplift occurred southwest
of the mid-continent (5, 62) and that the southern Laurentide region
was tectonically quiescent during the Pliocene. Third, we assumed
that truncated spur ridges and corresponding strath terraces exposed
in the surface topography and indicated in the buried bedrock topog-
raphy represent relict floodplains and therefore the level to which
the landscape was graded (figs. S3 to S6). Elevations along preglacial
drainage divides and interfluves were conservatively approximated
using bedrock highs buried in sediment-filled lowlands and exposed
at the modern ground surface of unglaciated uplands (figs. S4 to S6).
Last, we presumed that by linking these local indicators of preglacial
channel elevations across a regionally reconstructed drainage, we
could reconstruct a continuous Pliocene surface even though
Quaternary landscape modifications occurred at different times and
in different places.

On the basis of elevation constraints from the GIA-adjusted
bedrock surface and paleodrainage patterns, we used ANUDEM
(49-51) to reconstruct preglacial (i.e., end-Pliocene) topography. After
creating the ANUDEM-generated interpolated surface, we registered
it to the bedrock topography DEM and set all preglacial elevations
calculated to be below the current bedrock surface to the present-day
bedrock elevation. This final Pliocene surface formed the basis for
our calculations of erosion during the Quaternary.

Naylor et al., Sci. Adv. 7, eabj2938 (2021) 24 November 2021

Watershed boundaries for five major preglacial drainages were
extracted from the end-Pliocene DEM by establishing pour points
near drainage outlets and applying standard flow-routing algorithms.
We compared the DEM-derived watershed boundaries with the
reconstructed mid-continental drainage (Fig. 2). If these watershed
boundaries intersected the mapped courses of preglacial rivers courses,
this would indicate that our chosen paleotopographic surfaces indi-
cate a different preglacial drainage pattern. This could occur, for
example, if we had picked a mix of features of different ages as our
end-Pliocene (i.e., preglacial) land-surface control. The excellent
match between our mapped preglacial river courses and the com-
puted drainage basins from the end-Pliocene DEM confirms that
the reconstructed drainage and base-level elevations distributed
throughout coincide with a hydrologically correct digital elevation
model even after incorporating full mantle relaxation (19) after the
last glacial maximum.

We extracted river long profiles from the paleo-Saskatchewan,
Missouri, St. Lawrence, Platte, and Wabash Rivers (Fig. 5). We flooded
all depressions in the end-Pliocene DEM and then performed a D8
convergent flow routing across that surface. We defined each of
these five reconstructed paleo-rivers to begin at headwaters with a
threshold drainage area of 156,000 km?. This choice of threshold
drainage area is purely for the purpose of extracting long profiles
but is otherwise not meaningful because the headwaters for each
of these five rivers extends beyond the boundaries of the study area.
We then extracted the original (i.e., unfilled) end-Pliocene DEM ele-
vations along each of these five rivers; extracting elevations from
the unmodified DEM produces some of the irregularities visible
in Fig. 5. These long profiles are largely concave-up, although
the Missouri River and Wabash River display convexities associ-
ated with lithological change (both) and tectonic activity (Wabash),
and the long profile of the Wabash begins downstream of its
headwaters.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj2938
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