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Abstract 

Background 

Noninvasive respiratory support is increasingly used to support patients with acute 

respiratory failure. However, noninvasive support failure may worsen outcomes 

compared to primary support with invasive mechanical ventilation. Therefore, there is a 

need to identify patients noninvasive respiratory support failure so that treatment can be 

reassessed or altered. The objective of this study was to develop and evaluate three 

recurrent neural network models to predict noninvasive respiratory support failure. 

Methods 

This is a cross-sectional observational study to evaluate the ability of deep recurrent 

neural network models (long short-term memory, gated recurrent unit, and gated 

recurrent unit with trainable decay) to predict failure of noninvasive respiratory support. 

Data were extracted from electronic health records from all adult (> 18 years) patient 

records requiring any type of oxygen therapy or mechanical ventilation between 

November 1, 2013, and September 30, 2020 across >20 hospitals in a single healthcare 

network.   

Results 

Time series data from electronic health records were available for 22,075 patients. The 

highest accuracy and area under the receiver operating characteristic curve were for the 

long short-term memory model (94.04% and 0.9636, respectively). Accurate predictions 

were made 12 hours after ICU admission and performance remained high well in 

advance of noninvasive respiratory support failure.  
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Conclusion 

Recurrent neural network models using routinely collected time-series data can 

accurately predict noninvasive respiratory support failure well before intubation. This 

lead time may provide an opportunity to intervene to optimize patient outcomes.  
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Introduction 

Acute respiratory failure is a common reason for admission to the intensive care 

unit, is costly for the health care system, and often exposes patients to high morbidity 

and mortality.1-4 Patients with acute respiratory failure are commonly treated with a 

noninvasive respiratory support (NIRS) strategy to support the work of breathing, 

improve gas exchange, and avoid the undesirable consequences of invasive 

mechanical ventilation.5  

Overall, NIRS strategies (noninvasive positive pressure ventilation or high flow 

nasal oxygen) reduce the need for intubation and consequently lower mortality, but the 

benefits are skewed heavily by helmet noninvasive positive pressure ventilation and 

comparisons show no difference between noninvasive positive pressure ventilation by 

facemask and high flow nasal oxygen.6-9 While NIRS may benefit patient outcomes, 

failure of these therapies carries a cost of increased mortality.10-12 Failure of noninvasive 

positive pressure ventilation in patients with acute hypoxemic respiratory failure is often 

associated with prolonged ICU stays and increased mortality.12-15 Thus, predicting who 

will likely fail a NIRS strategy has important implications for clinical care and potentially 

patient outcomes.  

Previous studies have evaluated factors associated with or predictive of NIRS 

failure with variable success and many limitations.10, 15-25 Physiology studies have 

provided some evidence as to the mechanism of failure and injury associated with 

failure,23, 26 but there are no routinely available clinical data that can be used as 

substitutes for measurements such as transpulmonary pressure and respiratory effort. 

The objective of this study is to evaluate the predictive value of a deep learning model 
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(recurrent neural network) to predict NIRS failure using clinically available time series 

data from electronic health records.  

 

Materials and Methods 

Study Setting 

Clinical data were obtained from Banner Health Network clinical data warehouse. 

Banner Health Network represents >25 hospitals across six states in the western United 

States. All adult patients (≥18 years of age) requiring any form of oxygen therapy or 

mechanical ventilation were extracted between November 1, 2013, and September 30, 

2020. Data consist of deidentified structured data generated from the Cerner electronic 

health record (Cerner Corporation, North Kansas City, MO, USA). This study was 

approved by both the University of Arizona Institutional Review Board and Banner 

Health Institutional Review Board and granted waiver from informed consent. All 

methods were carried out in accordance with relevant guidelines and regulations, and 

aligned with the TRIPOD statement for predictive modeling 27 and recommended 

reporting guidelines for machine learning algorithms.28 

 

Study Participants 

We generated seven cohorts of patients using a previously developed 

phenotyping algorithm,29 which uses the sequence of therapy received to generate the 

following cohorts: 1. invasive mechanical ventilation only, 2. noninvasive positive 

pressure ventilation only, 3. high flow nasal oxygen only, 4. noninvasive positive 

pressure ventilation requiring subsequent invasive mechanical ventilation, 5. high flow 
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nasal oxygen requiring subsequent invasive mechanical ventilation, 6. invasive 

mechanical ventilation extubated to noninvasive positive pressure ventilation, and 7. 

invasive mechanical ventilation extubated to high flow nasal oxygen. All patients in 

Cohorts 2 and 3 (NIRS success) and 4 and 5 (NIRS failure) were included in this 

analysis. Patients that alternated between noninvasive positive pressure ventilation and 

high flow nasal oxygen during a single ICU admission were excluded. Readmissions to 

the ICU were also excluded as readmission may alter treatment trajectory or decision-

making by a clinician regarding if and when to intubate as compared to a first ICU 

admission patient. 

 

Predictors and Data Pre-processing 

Failure of NIRS therapy requiring invasive mechanical ventilation at any time 

during an ICU stay was the prediction outcome of interest (i.e., patients that failed and 

patients that did not fail NIRS therapy). We trained and tested all models using three 

different outcomes, namely, noninvasive positive pressure ventilation failure, high flow 

nasal oxygen failure, and NIRS failure. The latter is the combination of noninvasive 

positive pressure ventilation and high flow nasal oxygen failures. Data were extracted 

from the entirety of each ICU visit, but only variables measured prior to NIRS failure 

were used for model derivation. Model inputs consisted of the twelve most common 

laboratory measurements and vital signs: chloride, creatinine, albumin, respiratory rate, 

heart rate, pulse oximetry oxygen saturation (SpO2), fraction of inspired oxygen (FiO2), 

oxygen saturation, and two measurements each (point-of-care and laboratory 

measurement) of partial pressure of carbon dioxide and partial pressure of arterial 
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oxygen from an arterial blood gas. Inputs were both regularly and irregularly sampled. 

While the frequency of input data for each feature varied across patients, most patients 

had at least one data point for each (online resource Table E1), and patients were not 

excluded due to missing data.  All data preprocessing and prediction modeling was 

performed in Python (v.2.7.14; Python Software Foundation) using the Pandas 

(v.0.23.4),30 Seaborn (v.0.9.0),31 and sci-kit learn package (v.0.19) 32 libraries. 

 

Prediction Modeling 

Recurrent neural networks (RNN) are complex predictive models that are 

particularly well-suited for predicting outcomes over long time periods.33, 34 We trained 

three recurrent neural network variations for multivariate time series predictions: 1) long 

short-term memory (LSTM),35 2) gated recurrent unit (GRU),36 and 3) gated recurrent 

unit with trainable decay (GRU-D).37 Recurrent neural network architectures and 

hyperparameters were held constant between the models for comparison, although long 

short-term memory and gated recurrent unit models used a global average pooling layer 

and gated recurrent unit with trainable decay did not (online resource Figure E1). The 

pooling layer for long short-term memory and gated recurrent unit reduces 

dimensionality by averaging across model inputs. By taking the average of two 

activation function weights within the networks, average pooling also helps avoid 

overfitting. The Adam optimizer and binary cross entropy loss function were used with 

accuracy as the target training metric which is common for binary classification. The 

hidden layers in the network structures used linear activation functions and the output 

layer used a sigmoid activation function.  
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 We used a variable observation window (i.e., input feature extraction time 

window) and time at-risk (i.e., temporal distance between the end of the observation 

window and the time of failure) to evaluate clinical validity (Figure 1). For patients that 

did not fail NIRS, we extracted time series data from an observation window of 1 to 72 

hours from the initiation of NIRS. NIRS initiation was used as a reference point for data 

extraction and to avoid complications that may have led to the patient dying even if they 

were not intubated. For NIRS failure patients, we extracted time series data from an 

observation window of 1 to 72 hours starting at the point of failure and moving back in 

time away from that point. We also varied the time at-risk from 1 to 72 hours effectively 

moving the observation window away from the time of failure. Data recorded during the 

time at-risk were not used as model inputs. Rather time at-risk was used to determine 

how far in advance accurate failure predictions can be made. This approach ensures 

consistent time-at-risk period for all patients that failed NIRS (i.e., consistent time 

between prediction and failure) and allows for side-by-side comparison between 

prediction models with predictions being made at the end of the observation window. 

Observation windows for NIRS failure patients at the beginning of NIRS therapy would 

result in variable time between prediction and failure. This could bias results toward 

models better suited for longer or shorter-term predictions. Thus, time-at-risk in our 

approach is constant across all comparisons.  

We determined the highest performance for each model using the full 

observation window (72 hours) and a failure cohort time-at-risk period of one hour. We 

then shortened the observation window in decrements to a minimum of one hour and 

tested all models at each time decrement. We tested time-at-risk incrementally to the 
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maximum of 72 hours prior to failure using a fixed observation window size. In all 

experiments, the observation window for patients that did not fail NIRS (or NIRS 

success) mirrored the observation window of the NIRS failure patients in terms of 

window size but remained at the beginning of NIRS therapy for training and testing.  

 

Model Training and Evaluation  

For comparison, we used logistic regression and random forest models with 

discrete input data. Model inputs for logistic regression and random forest included 

demographics (i.e., age, gender) and Acute Physiology and Chronic Health Evaluation 

(APACHE) data.38, 39 We used ten estimators for random forest and fully expanded trees 

to maximum depth (i.e., expanded until leaves contained less than two samples). The 

highest area under the receiver operating characteristic curve and the precision-recall 

curve were calculated and reported for all models. The area under the curve is reported 

for the three RNN models for variable observation window with time-at-risk held 

constant and for constant observation window with variable time-at-risk to illustrate 

performance over time.  

Model training and testing was performed with 66% of the total population using 

0.33 validation split. The remaining 33% of the total population was used as an 

additional hold-out test set. The train test split was stratified such that the proportion of 

failure patients in each set was constant. We performed an exhaustive grid search to 

determine batch size and number of epochs. Number of epochs was verified by 

graphically comparing training and testing accuracy and loss to avoid overfitting. Batch 

size was then held to 150 patients and 20 epochs were used for model training in all 

trials. Long short-term memory testing results were then used to further evaluate patient 
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outcomes after model prediction. Patient outcomes of mortality and length of stay were 

calculated for the test set output resulting in four groups of patients: 1) patients 

predicted to fail NIRS and failed, 2) patients predicted to fail NIRS and did not fail, 3) 

patients predicted not to fail NIRS and failed, and 4) patients predicted not to fail NIRS 

and did not fail.  

 

Results 

Descriptive Statistics 

A total of 22,075 patients fit inclusion criteria for NIRS and NIRS failure groups 

(Table 1). The failure rate of noninvasive positive pressure ventilation was 26% and the 

failure rate of high flow nasal oxygen was 50%, respectively, for an overall failure rate of 

42%. Generally, patient characteristics across both NIRS modalities were similar and 

not expected to negatively impact prediction performance.  

 

Prediction Results and Model Comparisons 

Long short-term memory and gated recurrent unit models had the highest area 

under the curve and best precision and recall for all observation window and time-at-risk 

trials (Figure 2). The long short-term memory model outperformed gated recurrent unit 

and gated recurrent unit with trainable decay in terms of prediction accuracy and area 

under the curve using data from a 72-hour observation window and a 1-hour time-at-risk 

window (Table 2). We compared results across all models for noninvasive positive 

pressure ventilation and high flow nasal oxygen separately and for the combined NIRS 
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group. The gated recurrent unit with trainable decay model was comparable to the two 

baseline models, logistic regression, and random forest.   

 

Timeline Analysis 

An observation window of 12-18 hours yields nearly the same results as using 72 

hours of available data prior to NIRS failure (Figure 3). Performance begins to diminish 

with an observation window <12 hours. Using a fixed observation window size of 12 

hours and moving the observation window away from the time of NIRS failure by 

increasing the time-at-risk period showed an initial drop in area under the curve but 

sustained performance beyond a 9-hour time-at-risk (Figure 3). This temporal 

relationship was seen consistently throughout all trials suggesting that accurate 

predictions can be made well in advance of failure using a trailing 12 hours of time 

series input variables. Using less than 12 hours of data still returns reasonable results 

but performance decreases across all three models.  

 

Patient Outcomes 

Mortality and ICU length-of-stay (Online Resource, Table E4) were analyzed for 

patients in the NIRS success and NIRS failure test set using the long short-term 

memory model with a 12-hour observation window and 1-hour time-at-risk period. 

Patients that failed NIRS therapy had a mortality rate around 30% in both predicted 

outcomes. Patients that were predicted not to fail but failed NIRS had a slightly higher 

mortality rate. On the other hand, for patients that did not fail NIRS, the predicted 

success patients had a lower mortality than the predicted failure patients.  
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ICU length-of-stay did not show the same relationship. The patients that failed 

NIRS but were predicted not to fail had a lower LOS than the patients that were 

successfully treated with NIRS. The reverse relationship was seen for patients predicted 

to fail NIRS where patients that failed had a longer LOS than patients that did not fail 

NIRS.  

Discussion 

Our results show that time series based deep learning model (long short-term 

memory) outperforms baseline models for predicting failure of NIRS in patients with 

acute respiratory failure, and the model performance remains high over relatively long 

observation windows. Other NIRS failure models have been tested near the time of 

failure 17 but not extended to test lengthy observation and time-at-risk windows for 

earlier prediction. We use twelve commonly available measurements that allows for use 

of a pooling layer in recurrent neural network design and compensates for missing 

variables. Other NIRS failure models use a smaller number of input features but are 

unable to make predictions if even one variable is missing. Lastly, our approach does 

not require that a patient receive NIRS or any other treatment prior to making 

predictions. The time series inputs are independent of treatment path and thus could 

predict decompensation for any patient if tested in a prospective study design or 

implemented in real-time. These results demonstrate that early prediction of failure can 

potentially impact patient outcome. However, there is not a consistent duration of time 

between prediction of failure and observed failure.  

One important consideration for all prediction models in this application is that 

they are not directly predicting physiological decompensation but rather the clinical 
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determination of failure and the need for invasive mechanical ventilation. This decision 

carries subjectivity and variability between clinicians and institutions, and the subjectivity 

will likely evolve with new knowledge and experience. These models are durable, 

however, and may be retrained as practice changes, allowing the model to evolve 

based on how input data relates to the decision to intubate a patient. Predicting failure 

using widely available clinical data is challenging but has practical applications for 

differentiating patients likely to fail NIRS at the cost of increased mortality.  

Several studies have identified factors associated with failure or predictive of 

failure for both noninvasive positive pressure ventilation and high flow nasal oxygen 

(see online resource Tables E2 and E3).10, 11, 15-22, 24, 25 The ROX index, which is the 

ratio of oxygen saturation/FiO2 and the respiratory rate, is a recently derived and 

validated prediction tool, albeit not under protocolized conditions, for determining if a 

patient is likely to succeed or fail high flow nasal oxygen.21 A value >4.88 at 2, 6, or 12 

hours has good predictive value for not requiring intubation. Values <2.85 at 2 hours, 

<3.47 at 6 hours, and < 3.85 at 12 hours were predictors of failure. Unfortunately, the 

ROX index is only developed for one specific type of high flow nasal cannula system 

and is largely flow dependent with increases in ROX index when going from 30 to 60 

liters per minute of flow indicating higher severity of lung disease.19 In one retrospective 

study, high flow nasal oxygen was more likely to fail in patients with a significant 

increase in respiratory rate or decrease in ROX index within 3 days in patients with 

COVID-19.40 However, lower oxygen saturation at admission were only significantly 

associated with failure after adjustment, and failure was associated with a 30% increase 

in mortality. 
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For our application, we used timeline adjustments to evaluate clinical validity of 

our approach and improve robustness. The variable observation window answered how 

much temporal data is required to make an accurate prediction; and how early accurate 

predictions can be made. This has potential to be employed clinically. A prediction of 

failure can be made early to allow an opportunity to alter strategies and potentially 

improve outcomes. Though, our current approach does not predict how long until 

failure. 

Observation windows and time at-risk from one to 72 hours were selected for 

several reasons. Making predictions inside of one hour from the time of failure does not 

allow sufficient time for clinicians to alter treatment path to minimize potential impact to 

patient-centered outcomes (e.g., mortality). In other words, too short of a time window 

predicts what clinicians likely already know. Predicting outside of 72 hours allows for too 

much variability in the trajectory of a critically ill patient and is well beyond typical 

decision-making timelines. Clinicians will likely wait and evaluate whether a patient 

improves or worsens even if a failure prediction is made 72 hours in advance. In 

addition to practical implications of observation and at-risk window sizes of 1-72 hours, 

computational factors must be considered. For example, a newly admitted patient will 

require a prediction to be made soon after admission rather than waiting for enough 

data to be recorded and extending the amount of time series data being used increases 

computational load required to make a prediction.  

There are several important limitations to these results. Missing time series data 

varies across datasets and among individual patients. Presumably, increased 

measurements would not adversely affect the training and testing aspects of model 
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development. Reproducibility and future implementation, however, could be affected if 

input data is insufficient for the model to accurately make predictions. This is reflected in 

our timeline adjustments with observation windows <12 hours.  In addition, timeline 

adjustments resulted in fewer patients used for training and testing due to variations in 

ICU lengths-of-stay. For example, if a patient was in the ICU for 18 hours and then died 

(before or after NIRS failure), that patient was dropped from timeline experiments using 

>18 hours of time series data. Our total population, however, is large enough that 

missing patients did not change overall characteristics of training and testing sets nor of 

the NIRS success and failure groups. Presumably, this had minimal impact on testing 

outcome as the timeline adjustments progressed. Correlating prediction results to the 

clinical outcomes (e.g. mortality) in the same dataset has limited interpretability. In-

depth interpretability efforts are a part of our ongoing work as these results require both 

external and prospective validation before they can be used clinically as a decision 

support tool on an electronic health record platform.  

In conclusion, recurrent neural networks are promising for predicting NIRS failure 

in patients with acute respiratory failure. Long short-term memory and gated recurrent 

unit outperformed gated recurrent unit with trainable decay and baseline comparison 

models in predicting NIRS failure soon after ICU admission. Prediction performance 

remained high until using observation window sizes of twelve hours or fewer near time 

of failure. Prediction performance minimally decreased as observation window was 

moved away from the time of failure suggesting that the combination of deep learning 

model inputs captures sufficient information to predict NIRS failure regardless of 

temporal proximity to the time of failure. Predictions can potentially be early enough for 
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patient level impact and outperforms previously developed predictions for NIRS 

therapies. 
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Quick Look 

Current Knowledge 

Patients that fail NIRS have disproportionately worse outcomes than patients 

successfully treated with NIRS. Early prediction of failure for patients with acute 

respiratory failure on noninvasive respiratory support can potentially optimize the 

balance between improved outcomes with NIRS success and disproportionately worse 

outcomes with NIRS failure.  

What This Paper Contributes to Our Knowledge 

This study shows that neural networks using clinically available data can be used to 

predict NIRS failure. Multiple RNN models showed varying levels of prediction accuracy 

with sufficient lead time to potentially impact patient outcomes.  

 



Figure 1. Timeline of NIRS failure patients and those patients not requiring intubation post NIRS 
therapy. Observation window and time at-risk varied from 1 to 72 hours (shown in gray).  

 
Figure 2. ROC and Precision-Recall curves for all models using 72-hour observation window 
and 1-hour time-at-risk for combined NIRS group. 

 
 
Figure 3. AUC change over variable observation window from 1 to 72 hours and time-at-risk 
window of 1 hour (left); AUC with constant 12-hour observation window size and variable time-
at-risk window from 1 to 72 hours (i.e., observation window moving away from the time of 
failure) (right). 

 



Table 1. Patient characteristics within each noninvasive ventilation group. 
 

Parameters 
Total NIPPV 

Success 
NIPPV 
Failure 

HFNO 
Success 

HFNO 
Failure 

Patients, n (%) 22075 14,168 5087 1401 1419 
Male, % 54.43 53.28 56.38 54.82 58.56 
Age, median (IQR) 69 (58-78) 70 (59-79) 66 (56-75) 71 (59-81) 64 (52-74) 
Race, %      
 African American 5.53 5.87 4.92 5.80 3.97 
 Asian 0.94 0.86 1.15 0.86 1.13 
 Hispanic 0.06 0.07 0.04 0.00 0.14 
 Native American 2.55 0.13 3.08 2.01 5.32 
 Other/unknown 3.43 3.13 3.66 3.58 5.46 
 White 87.49 87.93 87.15 87.75 83.97 
Ethnic group, %      
 Hispanic or Latino 15.53 14.76 15.98 15.05 22.02 
 Not Hispanic or Latino 84.25 85.09 83.82 84.73 76.92 
 Unable or unwilling to answer 0.22 0.15 0.20 0.22 1.07 
APACHE IVa score, median (IQR) 55 (41-69) 50 (39-63) 66 (51-84) 56 (43-70) 81 (59-105) 
Respiratory rate, bpm, med. (IQR) 30 (14-36) 29 (13-35) 32 (17-38) 31 (24-36) 31 (16-37) 

SpO2/FiO2 (first available) 194 (134-
245) 

196 (143-
248) 

184 (108-
240) 

147 (99-
191) 

150 (100-
200) 

Total therapy duration, days, med. 
(IQR) 1.62 (0-5) 0.74 (0-2) 3.01 (1-8) 0.17 (0-1) 1.26 (0-4) 

Duration of IMV, days, med. (IQR) 1.87 (1-5) - 2.05 (1-5) - 1.23 (0-4) 
Time to IMV from NIV start, hours, 
med. (IQR) - - 5.1 (2-23) - 3.8 (2-22) 

ICU length of stay, days, med. (IQR) 6.93 (4-12) 6.20 (4-10) 11.79 (6-20) 6.12 (3-11) 4.27 (2-11) 
Mortality, % 17.83 8.34 24.89 34.63 71.98 
APACHE – acute physiology and chronic health evaluation. ICU – intensive care unit. IQR – 
interquartile range. 
Categorical variables are reported as proportion and continuous variables are reported as medians 
with interquartile range 
NIPPV= noninvasive positive pressure ventilation 
HFNO= high flow nasal oxygen 

 
 



Table 2. Accuracy and ROC comparison between all models (Recurrent Neural 
Network and baseline) for three train and test cohorts (NIRS total, noninvasive positive 
pressure ventilation, and high flow nasal oxygen) using 72-hour observation window 
and 1-hour time-at-risk. 
 

Cohort: NIRS  NIPPV HFNO 
Model Accuracy, % AUC Accuracy, % AUC Accuracy, % AUC 
LSTM 94.04 0.9636 94.37 0.9666 82.12 0.8833 
GRU 92.80 0.9538 93.66 0.9582 76.22 0.8668 
GRU-D 83.37 0.7901 83.61 0.8149 77.08 0.6318 
LR 84.56 0.7950 83.98 0.7894 74.54 0.7617 
RF 84.56 0.7962 84.77 0.7868 77.16 0.7904 
NIRS= Noninvasive respiratory support 
NIPPV= Noninvasive positive pressure ventilation 
HFNO= High flow nasal oxygen 
LSTM= Long short-term memory 
GRU= Gated recurrent unit 
GRU-D= Gated recurrent unit with trainable decay 
LR= Logistic regression 
RF= Random forest 
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