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Abstract
Background
Noninvasive respiratory support is increasingly used to support patients with acute
respiratory failure. However, noninvasive support failure may worsen outcomes
compared to primary support with invasive mechanical ventilation. Therefore, there is a
need to identify patients noninvasive respiratory support failure so that treatment can be
reassessed or altered. The objective of this study was to develop and evaluate three
recurrent neural network models to predict noninvasive respiratory support failure.
Methods
This is a cross-sectional observational study to evaluate the ability of deep recurrent
neural network models (long short-term memory, gated recurrent unit, and gated
recurrent unit with trainable decay) to predict failure of noninvasive respiratory support.
Data were extracted from electronic health records from all adult (> 18 years) patient
records requiring any type of oxygen therapy or mechanical ventilation between
November 1, 2013, and September 30, 2020 across >20 hospitals in a single healthcare
network.
Results
Time series data from electronic health records were available for 22,075 patients. The
highest accuracy and area under the receiver operating characteristic curve were for the
long short-term memory model (94.04% and 0.9636, respectively). Accurate predictions
were made 12 hours after ICU admission and performance remained high well in

advance of noninvasive respiratory support failure.



Conclusion
Recurrent neural network models using routinely collected time-series data can
accurately predict noninvasive respiratory support failure well before intubation. This

lead time may provide an opportunity to intervene to optimize patient outcomes.



Introduction

Acute respiratory failure is a common reason for admission to the intensive care
unit, is costly for the health care system, and often exposes patients to high morbidity
and mortality.’* Patients with acute respiratory failure are commonly treated with a
noninvasive respiratory support (NIRS) strategy to support the work of breathing,
improve gas exchange, and avoid the undesirable consequences of invasive
mechanical ventilation.®

Overall, NIRS strategies (noninvasive positive pressure ventilation or high flow
nasal oxygen) reduce the need for intubation and consequently lower mortality, but the
benefits are skewed heavily by helmet noninvasive positive pressure ventilation and
comparisons show no difference between noninvasive positive pressure ventilation by
facemask and high flow nasal oxygen.®® While NIRS may benefit patient outcomes,
failure of these therapies carries a cost of increased mortality.'%'? Failure of noninvasive
positive pressure ventilation in patients with acute hypoxemic respiratory failure is often
associated with prolonged ICU stays and increased mortality.'?'> Thus, predicting who
will likely fail a NIRS strategy has important implications for clinical care and potentially
patient outcomes.

Previous studies have evaluated factors associated with or predictive of NIRS
failure with variable success and many limitations.% 1525 Physiology studies have
provided some evidence as to the mechanism of failure and injury associated with
failure,?® 26 but there are no routinely available clinical data that can be used as
substitutes for measurements such as transpulmonary pressure and respiratory effort.

The objective of this study is to evaluate the predictive value of a deep learning model



(recurrent neural network) to predict NIRS failure using clinically available time series

data from electronic health records.

Materials and Methods

Study Setting

Clinical data were obtained from Banner Health Network clinical data warehouse.
Banner Health Network represents >25 hospitals across six states in the western United
States. All adult patients (=18 years of age) requiring any form of oxygen therapy or
mechanical ventilation were extracted between November 1, 2013, and September 30,
2020. Data consist of deidentified structured data generated from the Cerner electronic
health record (Cerner Corporation, North Kansas City, MO, USA). This study was
approved by both the University of Arizona Institutional Review Board and Banner
Health Institutional Review Board and granted waiver from informed consent. All
methods were carried out in accordance with relevant guidelines and regulations, and
aligned with the TRIPOD statement for predictive modeling 2’ and recommended

reporting guidelines for machine learning algorithms.28

Study Participants

We generated seven cohorts of patients using a previously developed
phenotyping algorithm,?® which uses the sequence of therapy received to generate the
following cohorts: 1. invasive mechanical ventilation only, 2. noninvasive positive
pressure ventilation only, 3. high flow nasal oxygen only, 4. noninvasive positive

pressure ventilation requiring subsequent invasive mechanical ventilation, 5. high flow



nasal oxygen requiring subsequent invasive mechanical ventilation, 6. invasive
mechanical ventilation extubated to noninvasive positive pressure ventilation, and 7.
invasive mechanical ventilation extubated to high flow nasal oxygen. All patients in
Cohorts 2 and 3 (NIRS success) and 4 and 5 (NIRS failure) were included in this
analysis. Patients that alternated between noninvasive positive pressure ventilation and
high flow nasal oxygen during a single ICU admission were excluded. Readmissions to
the ICU were also excluded as readmission may alter treatment trajectory or decision-
making by a clinician regarding if and when to intubate as compared to a first ICU

admission patient.

Predictors and Data Pre-processing

Failure of NIRS therapy requiring invasive mechanical ventilation at any time
during an ICU stay was the prediction outcome of interest (i.e., patients that failed and
patients that did not fail NIRS therapy). We trained and tested all models using three
different outcomes, namely, noninvasive positive pressure ventilation failure, high flow
nasal oxygen failure, and NIRS failure. The latter is the combination of noninvasive
positive pressure ventilation and high flow nasal oxygen failures. Data were extracted
from the entirety of each ICU visit, but only variables measured prior to NIRS failure
were used for model derivation. Model inputs consisted of the twelve most common
laboratory measurements and vital signs: chloride, creatinine, albumin, respiratory rate,
heart rate, pulse oximetry oxygen saturation (SpO32), fraction of inspired oxygen (FiO2),
oxygen saturation, and two measurements each (point-of-care and laboratory

measurement) of partial pressure of carbon dioxide and partial pressure of arterial



oxygen from an arterial blood gas. Inputs were both regularly and irregularly sampled.
While the frequency of input data for each feature varied across patients, most patients
had at least one data point for each (online resource Table E1), and patients were not
excluded due to missing data. All data preprocessing and prediction modeling was
performed in Python (v.2.7.14; Python Software Foundation) using the Pandas

(v.0.23.4),30 Seaborn (v.0.9.0),3" and sci-kit learn package (v.0.19) *? libraries.

Prediction Modeling

Recurrent neural networks (RNN) are complex predictive models that are
particularly well-suited for predicting outcomes over long time periods.33 34 We trained
three recurrent neural network variations for multivariate time series predictions: 1) long
short-term memory (LSTM),® 2) gated recurrent unit (GRU),3¢ and 3) gated recurrent
unit with trainable decay (GRU-D).3” Recurrent neural network architectures and
hyperparameters were held constant between the models for comparison, although long
short-term memory and gated recurrent unit models used a global average pooling layer
and gated recurrent unit with trainable decay did not (online resource Figure E1). The
pooling layer for long short-term memory and gated recurrent unit reduces
dimensionality by averaging across model inputs. By taking the average of two
activation function weights within the networks, average pooling also helps avoid
overfitting. The Adam optimizer and binary cross entropy loss function were used with
accuracy as the target training metric which is common for binary classification. The
hidden layers in the network structures used linear activation functions and the output

layer used a sigmoid activation function.



We used a variable observation window (i.e., input feature extraction time
window) and time at-risk (i.e., temporal distance between the end of the observation
window and the time of failure) to evaluate clinical validity (Figure 1). For patients that
did not fail NIRS, we extracted time series data from an observation window of 1 to 72
hours from the initiation of NIRS. NIRS initiation was used as a reference point for data
extraction and to avoid complications that may have led to the patient dying even if they
were not intubated. For NIRS failure patients, we extracted time series data from an
observation window of 1 to 72 hours starting at the point of failure and moving back in
time away from that point. We also varied the time at-risk from 1 to 72 hours effectively
moving the observation window away from the time of failure. Data recorded during the
time at-risk were not used as model inputs. Rather time at-risk was used to determine
how far in advance accurate failure predictions can be made. This approach ensures
consistent time-at-risk period for all patients that failed NIRS (i.e., consistent time
between prediction and failure) and allows for side-by-side comparison between
prediction models with predictions being made at the end of the observation window.
Observation windows for NIRS failure patients at the beginning of NIRS therapy would
result in variable time between prediction and failure. This could bias results toward
models better suited for longer or shorter-term predictions. Thus, time-at-risk in our
approach is constant across all comparisons.

We determined the highest performance for each model using the full
observation window (72 hours) and a failure cohort time-at-risk period of one hour. We
then shortened the observation window in decrements to a minimum of one hour and

tested all models at each time decrement. We tested time-at-risk incrementally to the



maximum of 72 hours prior to failure using a fixed observation window size. In all
experiments, the observation window for patients that did not fail NIRS (or NIRS
success) mirrored the observation window of the NIRS failure patients in terms of

window size but remained at the beginning of NIRS therapy for training and testing.

Model Training and Evaluation

For comparison, we used logistic regression and random forest models with
discrete input data. Model inputs for logistic regression and random forest included
demographics (i.e., age, gender) and Acute Physiology and Chronic Health Evaluation
(APACHE) data.®® 3 We used ten estimators for random forest and fully expanded trees
to maximum depth (i.e., expanded until leaves contained less than two samples). The
highest area under the receiver operating characteristic curve and the precision-recall
curve were calculated and reported for all models. The area under the curve is reported
for the three RNN models for variable observation window with time-at-risk held
constant and for constant observation window with variable time-at-risk to illustrate
performance over time.

Model training and testing was performed with 66% of the total population using
0.33 validation split. The remaining 33% of the total population was used as an
additional hold-out test set. The train test split was stratified such that the proportion of
failure patients in each set was constant. We performed an exhaustive grid search to
determine batch size and number of epochs. Number of epochs was verified by
graphically comparing training and testing accuracy and loss to avoid overfitting. Batch
size was then held to 150 patients and 20 epochs were used for model training in all
trials. Long short-term memory testing results were then used to further evaluate patient

10



outcomes after model prediction. Patient outcomes of mortality and length of stay were
calculated for the test set output resulting in four groups of patients: 1) patients
predicted to fail NIRS and failed, 2) patients predicted to fail NIRS and did not fail, 3)
patients predicted not to fail NIRS and failed, and 4) patients predicted not to fail NIRS

and did not fail.

Results

Descriptive Statistics

A total of 22,075 patients fit inclusion criteria for NIRS and NIRS failure groups
(Table 1). The failure rate of noninvasive positive pressure ventilation was 26% and the
failure rate of high flow nasal oxygen was 50%, respectively, for an overall failure rate of
42%. Generally, patient characteristics across both NIRS modalities were similar and

not expected to negatively impact prediction performance.

Prediction Results and Model Comparisons

Long short-term memory and gated recurrent unit models had the highest area
under the curve and best precision and recall for all observation window and time-at-risk
trials (Figure 2). The long short-term memory model outperformed gated recurrent unit
and gated recurrent unit with trainable decay in terms of prediction accuracy and area
under the curve using data from a 72-hour observation window and a 1-hour time-at-risk
window (Table 2). We compared results across all models for noninvasive positive

pressure ventilation and high flow nasal oxygen separately and for the combined NIRS
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group. The gated recurrent unit with trainable decay model was comparable to the two

baseline models, logistic regression, and random forest.

Timeline Analysis

An observation window of 12-18 hours yields nearly the same results as using 72
hours of available data prior to NIRS failure (Figure 3). Performance begins to diminish
with an observation window <12 hours. Using a fixed observation window size of 12
hours and moving the observation window away from the time of NIRS failure by
increasing the time-at-risk period showed an initial drop in area under the curve but
sustained performance beyond a 9-hour time-at-risk (Figure 3). This temporal
relationship was seen consistently throughout all trials suggesting that accurate
predictions can be made well in advance of failure using a trailing 12 hours of time
series input variables. Using less than 12 hours of data still returns reasonable results

but performance decreases across all three models.

Patient Outcomes

Mortality and ICU length-of-stay (Online Resource, Table E4) were analyzed for
patients in the NIRS success and NIRS failure test set using the long short-term
memory model with a 12-hour observation window and 1-hour time-at-risk period.
Patients that failed NIRS therapy had a mortality rate around 30% in both predicted
outcomes. Patients that were predicted not to fail but failed NIRS had a slightly higher
mortality rate. On the other hand, for patients that did not fail NIRS, the predicted

success patients had a lower mortality than the predicted failure patients.
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ICU length-of-stay did not show the same relationship. The patients that failed
NIRS but were predicted not to fail had a lower LOS than the patients that were
successfully treated with NIRS. The reverse relationship was seen for patients predicted
to fail NIRS where patients that failed had a longer LOS than patients that did not fail
NIRS.

Discussion

Our results show that time series based deep learning model (long short-term
memory) outperforms baseline models for predicting failure of NIRS in patients with
acute respiratory failure, and the model performance remains high over relatively long
observation windows. Other NIRS failure models have been tested near the time of
failure 7 but not extended to test lengthy observation and time-at-risk windows for
earlier prediction. We use twelve commonly available measurements that allows for use
of a pooling layer in recurrent neural network design and compensates for missing
variables. Other NIRS failure models use a smaller number of input features but are
unable to make predictions if even one variable is missing. Lastly, our approach does
not require that a patient receive NIRS or any other treatment prior to making
predictions. The time series inputs are independent of treatment path and thus could
predict decompensation for any patient if tested in a prospective study design or
implemented in real-time. These results demonstrate that early prediction of failure can
potentially impact patient outcome. However, there is not a consistent duration of time
between prediction of failure and observed failure.

One important consideration for all prediction models in this application is that

they are not directly predicting physiological decompensation but rather the clinical
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determination of failure and the need for invasive mechanical ventilation. This decision
carries subjectivity and variability between clinicians and institutions, and the subjectivity
will likely evolve with new knowledge and experience. These models are durable,
however, and may be retrained as practice changes, allowing the model to evolve
based on how input data relates to the decision to intubate a patient. Predicting failure
using widely available clinical data is challenging but has practical applications for
differentiating patients likely to fail NIRS at the cost of increased mortality.

Several studies have identified factors associated with failure or predictive of
failure for both noninvasive positive pressure ventilation and high flow nasal oxygen
(see online resource Tables E2 and E3).10. 1. 15-22,24,25 The ROX index, which is the
ratio of oxygen saturation/FiO2 and the respiratory rate, is a recently derived and
validated prediction tool, albeit not under protocolized conditions, for determining if a
patient is likely to succeed or fail high flow nasal oxygen.?' A value >4.88 at 2, 6, or 12
hours has good predictive value for not requiring intubation. Values <2.85 at 2 hours,
<3.47 at 6 hours, and < 3.85 at 12 hours were predictors of failure. Unfortunately, the
ROX index is only developed for one specific type of high flow nasal cannula system
and is largely flow dependent with increases in ROX index when going from 30 to 60
liters per minute of flow indicating higher severity of lung disease.® In one retrospective
study, high flow nasal oxygen was more likely to fail in patients with a significant
increase in respiratory rate or decrease in ROX index within 3 days in patients with
COVID-19.° However, lower oxygen saturation at admission were only significantly
associated with failure after adjustment, and failure was associated with a 30% increase

in mortality.
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For our application, we used timeline adjustments to evaluate clinical validity of
our approach and improve robustness. The variable observation window answered how
much temporal data is required to make an accurate prediction; and how early accurate
predictions can be made. This has potential to be employed clinically. A prediction of
failure can be made early to allow an opportunity to alter strategies and potentially
improve outcomes. Though, our current approach does not predict how long until
failure.

Observation windows and time at-risk from one to 72 hours were selected for
several reasons. Making predictions inside of one hour from the time of failure does not
allow sufficient time for clinicians to alter treatment path to minimize potential impact to
patient-centered outcomes (e.g., mortality). In other words, too short of a time window
predicts what clinicians likely already know. Predicting outside of 72 hours allows for too
much variability in the trajectory of a critically ill patient and is well beyond typical
decision-making timelines. Clinicians will likely wait and evaluate whether a patient
improves or worsens even if a failure prediction is made 72 hours in advance. In
addition to practical implications of observation and at-risk window sizes of 1-72 hours,
computational factors must be considered. For example, a newly admitted patient will
require a prediction to be made soon after admission rather than waiting for enough
data to be recorded and extending the amount of time series data being used increases
computational load required to make a prediction.

There are several important limitations to these results. Missing time series data
varies across datasets and among individual patients. Presumably, increased

measurements would not adversely affect the training and testing aspects of model
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development. Reproducibility and future implementation, however, could be affected if
input data is insufficient for the model to accurately make predictions. This is reflected in
our timeline adjustments with observation windows <12 hours. In addition, timeline
adjustments resulted in fewer patients used for training and testing due to variations in
ICU lengths-of-stay. For example, if a patient was in the ICU for 18 hours and then died
(before or after NIRS failure), that patient was dropped from timeline experiments using
>18 hours of time series data. Our total population, however, is large enough that
missing patients did not change overall characteristics of training and testing sets nor of
the NIRS success and failure groups. Presumably, this had minimal impact on testing
outcome as the timeline adjustments progressed. Correlating prediction results to the
clinical outcomes (e.g. mortality) in the same dataset has limited interpretability. In-
depth interpretability efforts are a part of our ongoing work as these results require both
external and prospective validation before they can be used clinically as a decision
support tool on an electronic health record platform.

In conclusion, recurrent neural networks are promising for predicting NIRS failure
in patients with acute respiratory failure. Long short-term memory and gated recurrent
unit outperformed gated recurrent unit with trainable decay and baseline comparison
models in predicting NIRS failure soon after ICU admission. Prediction performance
remained high until using observation window sizes of twelve hours or fewer near time
of failure. Prediction performance minimally decreased as observation window was
moved away from the time of failure suggesting that the combination of deep learning
model inputs captures sufficient information to predict NIRS failure regardless of

temporal proximity to the time of failure. Predictions can potentially be early enough for
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patient level impact and outperforms previously developed predictions for NIRS

therapies.
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Quick Look

Current Knowledge

Patients that fail NIRS have disproportionately worse outcomes than patients

successfully treated with NIRS. Early prediction of failure for patients with acute

respiratory failure on noninvasive respiratory support can potentially optimize the

balance between improved outcomes with NIRS success and disproportionately worse

outcomes with NIRS failure.

What This Paper Contributes to Our Knowledge

This study shows that neural networks using clinically available data can be used to

predict NIRS failure. Multiple RNN models showed varying levels of prediction accuracy

with sufficient lead time to potentially impact patient outcomes.
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Figure 1. Timeline of NIRS failure patients and those patients not requiring intubation post NIRS
therapy. Observation window and time at-risk varied from 1 to 72 hours (shown in gray).
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Figure 2. ROC and Precision-Recall curves for all models using 72-hour observation window

and 1-hour time-at-risk for combined NIRS group.
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Table 1. Patient characteristics within each noninvasive ventilation group.

Total NIPPV NIPPV HFNO HFNO

Parameters Success Failure Success Failure
Patients, n (%) 22075 14,168 5087 1401 1419
Male, % 54.43 53.28 56.38 54.82 58.56
Age, median (IQR) 69 (58-78) 70 (59-79) 66 (56-75) 71 (59-81) 64 (52-74)
Race, %

African American 5.53 5.87 4.92 5.80 3.97

Asian 0.94 0.86 1.15 0.86 1.13

Hispanic 0.06 0.07 0.04 0.00 0.14

Native American 2.55 0.13 3.08 2.01 5.32

Other/unknown 3.43 3.13 3.66 3.58 5.46

White 87.49 87.93 87.15 87.75 83.97
Ethnic group, %

Hispanic or Latino 15.53 14.76 15.98 15.05 22.02

Not Hispanic or Latino 84.25 85.09 83.82 84.73 76.92

Unable or unwilling to answer 0.22 0.15 0.20 0.22 1.07
APACHE IVa score, median (IQR) 55 (41-69) 50 (39-63) 66 (51-84) 56 (43-70) 81 (59-105)
Respiratory rate, bpm, med. (IQR) 30 (14-36) 29 (13-35) 32 (17-38) 31 (24-36) 31 (16-37)
SPORIFIO? (frst availabi) 194 {13419 (143|184 (108|147 (95| 150 (100
gg;')therapy duration, days, med. 162(0-5) | 0.74(02) | 3.01(1-8) | 017(0-1) | 1.26 (0-4)
Duration of IMV, days, med. (IQR) 1.87 (1-5) - 2.05 (1-5) - 1.23 (0-4)
Time to IMV from NIV start, hours,
med. (IQR) - - 5.1 (2-23) - 3.8 (2-22)
ICU length of stay, days, med. (IQR) | 6.93 (4-12) | 6.20 (4-10) 11.79 (6-20) | 6.12 (3-11) 4.27 (2-11)
Mortality, % 17.83 8.34 24.89 34.63 71.98

APACHE - acute physiology and chronic health evaluation. ICU — intensive care unit. IQR —
interquartile range.

Categorical variables are reported as proportion and continuous variables are reported as medians
with interquartile range

NIPPV= noninvasive positive pressure ventilation

HFNO= high flow nasal oxygen




Table 2. Accuracy and ROC comparison between all models (Recurrent Neural
Network and baseline) for three train and test cohorts (NIRS total, noninvasive positive
pressure ventilation, and high flow nasal oxygen) using 72-hour observation window
and 1-hour time-at-risk.

Cohort: NIRS NIPPV HFNO
Model Accuracy, % AUC Accuracy, % AUC Accuracy, % AUC
LSTM 94.04 0.9636 94.37 0.9666 82.12 0.8833
GRU 92.80 0.9538 93.66 0.9582 76.22 0.8668
GRU-D 83.37 0.7901 83.61 0.8149 77.08 0.6318
LR 84.56 0.7950 83.98 0.7894 74.54 0.7617
RF 84.56 0.7962 84.77 0.7868 77.16 0.7904

NIRS= Noninvasive respiratory support
NIPPV= Noninvasive positive pressure ventilation
HFNO-= High flow nasal oxygen
LSTM= Long short-term memory
GRU= Gated recurrent unit
GRU-D= Gated recurrent unit with trainable decay
LR= Logistic regression
RF= Random forest
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