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Abstract

We study auctions for carbon licenses, a policy tool used to control the social cost of pollution. Each
identical license grants the right to produce a unit of pollution. Each buyer (i.e., firm that pollutes
during the manufacturing process) enjoys a decreasing marginal value for licenses, but society suffers an
increasing marginal cost for each license distributed. The seller (i.e., the government) can choose a
number of licenses to put up for auction, and wishes to maximize the societal welfare: the total
economic value of the buyers minus the social cost. Motivated by emission license markets deployed in
practice, we focus on uniform price auctions with a price floor and/or price ceiling. The seller has
distributional information about the market, and their goal is to tune the auction parameters to
maximize expected welfare. The target benchmark is the maximum expected welfare achievable by
any such auction under truth-telling behavior. Unfortunately, the uniform price auction is not
truthful, and strategic behavior can significantly reduce (even below zero) the welfare of a given
auction configuration.

We describe a subclass of “safe-price” auctions for which the welfare at any Bayes-Nash equilibrium
will approximate the welfare under truth-telling behavior. We then show that the better of a safe-
price auction, or a truthful auction that allocates licenses to only a single buyer, will approximate
the target benchmark. In particular, we show how to choose a number of licenses and a price floor so
that the worst-case welfare, at any equilibrium, is a constant approximation to the best achievable
welfare under truth-telling after excluding the welfare contribution of a single buyer.
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15:2 Reducing Inefficiency in Carbon Auctions

1 Introduction

Licenses for carbon and other emissions are a market-based policy tool for reducing pollution
and mitigating the effects of climate change. Roughly speaking, a government agency
distributes pollution licenses to firms according to some mechanism. At the end of a period of
time (e.g., a year), firms must submit licenses to cover their pollution or else face severe
penalties. Different ways of distributing licenses are possible. For example, if licenses are
simply sold at a fixed price to anyone who wishes to pay, then this is equivalent to a carbon tax
where polluters must pay a linear fee to offset their emissions. Alternatively, in a cap-and-
trade mechanism, the agency releases a fixed number C  of pollution licenses, either via a pre-
determined allocation at no price (e.g., based on prior pollution or industry averages) or via
auction, and then polluters can trade these licenses on the open market. Many emission
trading systems take features of both schemes, combining a cap-and-trade market with a
price floor p, where each license must be sold above the reserve price of p, and/or a price
ceiling p, where an extra license beyond the cap can always be purchased at a price of p.
In general, such a pollution license market is referred to as an Emission Trading System (ETS).

There are many important E T S  in effect today. The EU E T S  has thousands of particip-
ating firms and has raised billions of dollars in auction revenue over the past 10 years [2].
The Western Climate Initiative runs a license auction that is linked between California and
Quebec [4, 1], and the Regional Greenhouse Gas Initiative ( RG G I ,  pronounced “Reggie”)
serves New England and the New York region [3]. These markets differ in the details of
their implementations, but in each case, licenses are distributed on a regular schedule, with
a significant quantity of those licenses sold at auction.

One can model such a license auction as a multi-unit auction; that is, an auction for
multiple identical goods. There is no bound on the supply of goods, but there is a cost of
production corresponding to the social cost of more pollution. The social cost is typically
assumed to be increasing and convex, and the value for licenses for each buyer is commonly
assumed to be increasing and concave [27]. Each of the E T S  described above uses a uniform-
price auction rule to resolve this multi-unit auction. Such auctions proceed roughly as
follows. Participating firms declare bids, which take the form of a non-decreasing concave
function that describes their willingness-to-pay for varying quantities of licenses. This can
alternatively be viewed as a list of non-increasing marginal bids for each successive license.
Any marginal bids below the reserve price p are removed, and licenses are then distributed
to the highest remaining marginal bids while supplies last. Each firm then pays a fixed price
p per license, where p is set to some value between the lowest marginal winning bid and the
highest marginal losing bid. Such auctions are not truthful, but are common in practice due
to their many advantageous properties; see, e.g., Chapter 7 of [22].

Implementing a uniform-price auction for carbon licenses presents an optimization chal-
lenge: good outcomes require that the system designer correctly sets the quantity of licenses
to distribute and/or the price (either direct price or auction reserve) at which they will
be sold. The goal is to maximize social welfare: the aggregate value that firms receive for
their licenses (i.e., by producing goods) minus the externality on society caused by polluting
the corresponding amount during production. This optimization problem is complicated by
uncertainty. Even if the social cost of pollution is fully known, the designer may not know
what the demand for licenses will be, which makes it hard to predict the optimal level
of pollution to allow. The goal of the designer, then, is to set the parameters of the
uniform price auction to maximize the expected outcome over uncertainty in the market.
Notably, the presence of social costs significantly increases the complexity of multi-unit
auctions,
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since efficiency becomes a mixed-sign objective. Even a slight misallocation of the licenses,
resulting in a small reduction of received value, might have a disproportionately large effect on
net welfare. In practice, inefficient allocations may be partially resolved in the trade phase of
cap-and-trade systems. However, there are significant trading frictions, so it is imperative to
choose an initial allocation, via the auction, that is as efficient as possible.

Since uniform price auctions are not truthful, one must account for strategic behavior
of participating firms. A  notable feature of E T S  markets in practice is that, despite their
size, they commonly have a small number of participants with significant market power.1

The presence of dominant players suggests imperfect competition and raises the issue of
strategic manipulation, in which large individual firms try to influence the market in their
favor. One particular concern is demand reduction, where firms reduce their bids to suppress
the price determined by the auction. We ask: how should one set auction parameters to
(approximately) maximize welfare, in the face of strategic bidding?

1.1 Our Results

In this paper we apply ideas from theoretical computer science to approach the design of
carbon license auctions with strategic firms. In this new domain, we use facts regarding
uniform price auctions to understand what is happening in these markets and probabilistic
analysis to handle the uncertainty of valuation realizations. We then apply a Price of Anarchy
analysis to give strategic guarantees. As a result, we provide a concrete recommendation for
how to set the parameters of the mechanism used in practice – a recommendation with
provable approximation guarantees.

A  market instance is described by a convex social cost curve and, for each participating
firm, an independent distribution over concave valuations. To  capture the relevant space of
auctions, we formalize a class of allocation rules that we call cap-and-price auctions.2 These
auctions are parameterized by a maximum number of licenses to allocate, a price floor, and a
price ceiling. They proceed by running a uniform-price auction for the given number of
licenses, subject to the price floor and ceiling. Given a market instance, there is some choice of
cap-and-price auction that maximizes the expected welfare generated under non-strategic
(truth-telling) behavior. This optimal non-strategic solution will serve as a benchmark, which
we denote opt.  Our main result is an auction that approximates o p t  at any equilibrium of
strategic behavior.

We show that, in general, the welfare obtained at an equilibrium of a cap-and-price
auction can be negative, even for the auction that optimizes welfare under non-strategic
bidding. This motivates our main question: given a cap-and-price mechanism that achieves a
certain expected welfare W under truth-telling behavior, can one modify the auction
parameters so that the expected welfare is an O(1) approximation to W at any Bayes-Nash
equilibrium? To  answer this question, we describe a subclass of cap-and-price auctions that
use safe prices. A  safe-price auction is a cap-and-price auction in which the price floor is at
least the average social cost, per license, of selling all of that auction’s licenses. We show
that for any such auction the worst-case welfare at any Bayes-Nash equilibrium is within a
constant factor of the welfare under truth-telling. This result proceeds by transforming the
market instance into a corresponding instance without social costs, and makes use of bounds on
the Bayes-Nash price of anarchy for uniform-price auctions [20, 13].

1 For example, in the EU E T S ,  the top 10 firms together control approximately 30 percent of all licenses
allocated and traded; see [9], page 127.

2 Note, we are focused on the auction phase in this paper and do not model the trade phase of these
systems.

I T C S  2 0 2 0
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To construct an auction that approximates o p t  at equilibrium, it therefore suffices to find
a safe-price auction whose non-strategic welfare approximates that of the best unconstrained
cap-and-price auction. However, as it turns out, there are market instances for which no
constant approximation by a safe-price auction is possible. Such a situation can occur if there
is a single firm that drives most of the demand for licenses, and this demand has very high
variance. We show that this is essentially the only barrier to our desired price of anarchy
result: one can always construct an auction that achieves a constant approximation to o p t
minus the welfare obtainable by allocating licenses to any one single auction participant. In
other words, as long as no single firm accounts for most of the expected welfare of the carbon
license market, one can find a cap and price floor so that the welfare at any equilibrium
is within a constant of the optimal outcome achievable without strategic behavior. We
argue that this assumption is reasonable, since presumably the motivation for running a
carbon license market in the first place is that the demand for emission licenses is distributed
across multiple firms. An alternative way to view this result is that one can always achieve
a constant approximation to our benchmark by either running a safe-price auction, or by
selling to only a single firm.

Along the way, we also show that for any cap-and-price auction that sells all of its licenses
with probability q >  0, there is a safe-price auction whose welfare (under truth-telling) is
within a factor O(1/q) of the original auction’s welfare. In particular, if our benchmark is
implemented by a cap-and-price auction that distributes all of its licenses with constant
probability, then we can construct a safe-price auction whose welfare at any Bayes-Nash
equilibrium is a constant approximation to the benchmark.

Note that our results are applicable for any setting with imperfect competition where a
uniform price auction is used to allocate goods with a production or social cost. For instance,
they may apply to allocating queries to a database, where the social cost is privacy. Another
example might be allocating medallions to taxi and rideshare drivers in New York City,
where the social cost is congestion.

1.2 Related Work

Our work is related to rich line of literature in economics comparing emission licence auction
formats and flat “carbon tax” pricing methods to control the externalities of pollution.
Weitzman [27] proposed a model of demand uncertainty and initiated a study comparing
price-based vs quantity-based screening in the context of pollution externalities. Kerr and
Cramton [10] noted that auctions tend to generate more efficient outcomes than grandfathered
contracts (i.e., pre-determined allocations based on prior usage), which distort incentives
to reduce pollution and efficiently redistribute licenses. Cramton, McKay, Ockenfels and
Stoft [11] subsequently lay out arguments in favor of tax-based approaches. Murray, Newell,
and Pizer [23] analyze the use of price ceilings in emission license auctions, and argue that
they provide benefits of both auction-based and tax-based systems, improving efficiency
in dynamic markets with intertemporal arbitrage. For a recent overview of auction-based
systems used in practice, from both the economic and legal perspectives, we recommend [9].

A  similar line of literature studied alternative approaches to the related electricity
markets, where individual providers sell electricity into a central grid. Whereas the main
issue in emission license sales is the social externality of production, the main focus in
electricity markets was incentivizing participation of small firms. The primary discussion
focused on using uniform pricing versus discriminatory pricing in the resulting procurement
auction [12, 24].
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Within the theoretical computer science community, there have been numerous studies of
the efficiency of auction formats at equilibrium. For multi-unit auctions without production
costs (or, equivalently, no social cost of pollution), the price of anarchy of the uniform-price
auction was shown to be constant for full-information settings, and this was subsequently
extended to Bayes-Nash equilibria [20, 13]. Our work can be seen as an extension of that
work to the setting with a convex cost of allocation. Auctions with production costs have
also been studied [6, 15], but primarily from the perspective of mechanism design, where
the goal is to develop allocation and payment rules to achieve efficient outcomes. In the
present work we do not take a mechanism design approach; we instead restrict our attention to
(non-truthful) uniform price auctions, as these are used in practice, and study bounds on the
worst-case welfare at equilibrium under different choices of the auction parameters.

Uniform-price auctions with costs can be viewed as games for which the designer has a
mixed-sign objective (i.e., total value generated minus the social cost of production). Prior
work on the price of anarchy under mixed-sign objectives has focused primarily on routing
games [25, 7, 8]. Results in this space tend to be negative, motivating alternative measures of
performance (such as minimizing a transformed measure of total cost) that avoid the
pitfalls of mixed-sign optimization. Our work shows that in an auction setting, use of an
appropriately-chosen thresholding rule (in the form of a reserve price) can enable a constant
approximation to our mixed-sign objective of total value minus a convex social cost.

There is a vast amount of work on auctions with externalities, such as the seminal work
of [16], and other work including externalities in advertising auctions [14], characterizations
of equilibria in auctions with externalities [19], and more. However, these externalities are
private and held by the buyers, as opposed to public and suffered by the seller as in this
paper. In this case, the externality functions more like a production cost, as described above.

Kesselheim, Kleinberg and Tardos [17] study the price of anarchy of an energy market
auction, which is a similar application to the carbon license auction that we study. Their
focus is on the uncertainty of the supply and temporal nature of the auction, and not on
externalities of production, and hence their technical model is quite different.

The theory of bidding in uniform-price auctions with imperfect competition is well-
developed in the economic theory literature. Much of this work focuses specifically on the
efficiency and revenue impact of demand reduction, and how modifications to the auction
format or context might impact it. Demand reduction occurs at equilibrium even in very
simple settings of full information, can dramatically reduce welfare, and is a concern in
practice [28, 26, 5]. One way to reduce the inefficiency of demand reduction is to perturb the
supply, either by allowing the seller to adjust the supply after bids are received [21], or by
randomizing the total quantity of goods for sale (or otherwise smoothing out the allocation
function) [18]. Such results are typically restricted to full-information settings. Moreover,
these approaches are not necessarily appropriate in the sale of government-issued licenses,
where one typically expects commitment and certainty about the quantity being sold. In
contrast, we forego a precise equilibrium analysis and instead argue that setting a sufficiently
high price floor can likewise mitigate the impact of demand reduction.

1.3 Roadmap

Our main result is a cap-and-price auction whose welfare in equilibrium approximates the
maximum welfare of a cap-and-price auction with non-strategic reporting in markets without
a single dominant bidder. In Section 2, we introduce our model and formally define cap-and-
price auctions. In Section 3, we first show that we can restrict attention to cap-and-price
auctions with an infinite price ceiling (i.e., ones who never sell more licenses than the cap).

I T C S  2 0 2 0
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15:6 Reducing Inefficiency in Carbon Auctions

We then derive a class of such cap-and-price auctions, which we call safe-price auctions,
whose performance in equilibrium approximates the performance in a non-strategic setting.
Thus it suffices to show that the best safe-price auction approximates the best cap-and-price
auction in a non-strategic setting. However, this is not true: we give an example where it can
be unboundedly worse. In Section 4, we demonstrate that the only barrier to this is the
existence of a dominant bidder, yielding our main result.

2 Preliminaries

There are n firms seeking to purchase carbon licenses. Licenses are identical, and each permits
one pollution unit. Each firm i  has a monotone non-decreasing concave valuation curve
Vi () that maps a number of pollution units x  Î Z ³ 0  to a value R³ 0 ;  this is the value they
enjoy for polluting this amount. The profile of valuation curves V  =  (V1, . . . , Vn) is drawn
from a publicly-known distribution F  over profiles, where the draw of Vi () is the private
information of firm i. Valuations are drawn independently across firms, so F  =  F1  ´ . . . ´ F n  is
a product distribution and Vi � F i .

There is a publicly known monotone non-decreasing convex cost function Q() that maps
a number of pollution units x  Î Z ³ 0  to the value of externality that society faces for having
this much pollution. Given a valuation profile (V1, . . . , Vn), the welfare of a given allocation
rule x  =  (x1 , . . . , xn ) is i  V i (x i )  � Q( i = 1  xi ).  Our objective is to maximize expected
welfare.

Given some integer x  ³  0, we write V (x )  for the maximum aggregate value that could be
obtained by optimally dividing x  licenses among the firms. That is,

V (x )  =  
~y Î Z + : | | y | | 1 = x      

i      

Vi (yi ).

We refer to V as the combined valuation curve. As each Vi () is weakly concave, so is V ().
We will sometimes abuse notation and write V � F  to mean that V is distributed as the
aggregate value when (V1, . . . , Vn) � F .  We’ll write W (V, x) =  V (x )  � Q(x) for the welfare
generated by allocating x  licenses optimally among the firms.

We’ll write vi ( j )  =  Vi ( j )  � Vi ( j  � 1) for firm i’s marginal value for aquiring license j ,
for each j  ³  1. By the monotonicity and concavity of Vi (), vi () is non-increasing. We’ll
also write Vi ( j |k ) =  Vi ( j  +  k) � Vi (k) for the marginal value of j  additional items given k
already allocated. We’ll write di (p) =  max{j : vi ( j )  ³  p} for the number of units demanded
by bidder i  at price p.

We will study equilibria and outcomes of license allocation auctions. An auction takes as
input a reported valuation Vi from each firm i. The auction then determines an allocation
x  =  (x1 , . . . , xn ) and a price pi ³  0 that each firm must pay. The auctions we consider
will be uniform price auctions, where the auction determines a per-license price p and each
firm i  pays pi =  p  xi .  Given an implicit uniform-price auction, we will tend to write x i ( V )
(resp., p (V ) )  for the allocation to agent i  (resp., per-unit price) when agents report according
to V .  For a given valuation profile V ,  we’ll also write U i (V )  for the utility enjoyed by firm i
when agents bid according to V :

U i (V )  =  V i (x i (V ) )  � p (V )   x i ( V ) .

Finally, given an auction M and a distribution F  over input profiles, we will write W (M, F ) for
the expected welfare of M on input distribution F .  We will sometimes drop the dependence of F
and simply write W (M ) when F  is clear from context. We emphasize that W (M ) is a
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non-strategic notion of welfare; it is the expected welfare of M with respect to inputs drawn
from F ,  or equivalently the welfare of M under truthful reporting when agent valuations
are distributed according to F .  Let x M  (V ) =  ( x M  (V ), . . . , xM (V )) be the allocation rule of
mechanism M for realization V . Then

" ! #

W (M ) =  EV  �F Vi     x i  (V )  � Q x i  (V ) .
i                                                            i

A  Bayes-Nash equilibrium of a uniform-price auction is a choice of bidding strategies
σ =  (σ1, . . . , σn) for each agent, mapping each realized valuation curve Vi to a (possibly
randomized) reported valuation σ i (Vi ), so that each agent maximizes their expected utility
by bidding according to σ i  given that other agents are bidding according to σ�i. That is, for
all Vi and all Vi , we have

EV �i �F �i  [Ui (σ i (Vi ), σ�i (V�i ))] ³  EV �i �F �i  [Ui (Vi, σ�i (V�i ))].

We make a standard assumption of no overbidding on behalf of the firms uniform-price
auction, which is motivated by the fact that overbidding is a weakly-dominated strategy.

Motivated by license auctions used in practice, we study a particular form of uniform
price auction that we call a cap-and-price auction which forces prices to be within some fixed
interval.3

I  Definition 1. A  cap-and-price auction M (C, p, p) is parameterized by a quantity C  ³  1, a
price floor p, and a price ceiling p >  p. The allocation and price are determined as follows:
1. If       i  di (p) ³  C ,  then x i  =  di (p) for all i  and p =  p.
2. If         di (p) <  C ,  then x i  =  di (p) for all i  and p =  p.
3. Otherwise, choose p =  V ( C )  � V ( C  � 1), the C t h  highest bid, and choose ~x to be any

optimal allocation of C  licenses among the firms: x  Î arg max~yÎZn  : | | y | | 1 = C i  Vi (yi ).

We can think of this as a uniform price auction of up to C  licenses (case 3 above), where
the price is set to the lowest winning marginal bid, with two modifications. First, there is a
reserve price p, so that possibly fewer than C  licenses are sold if there is not enough demand
at price p; this is case 2. Second, if the lowest winning marginal bid would be larger than p,
then the price is lowered to p and firms can purchase as many licenses as they like at this
price; this is case 1.

Given social cost function Q and valuation distribution F ,  we will write o p t  for the
optimal expected welfare obtained by any cap-and-price auction under truthful reporting.
That is, o p t  =  maxC,p,p{W (M (C, p, p))}. We will also tend to write C �, p�, and p� for
the parameters that achieve this maximum. We emphasize that this is a non-strategic
notion: o p t  is the maximum expected welfare attainable when bidders report truthfully.
We view o p t  as a benchmark against which we will compare performance at Bayes-
Nash equilibrium. Note also that, in general, o p t  may be strictly less than the expected
welfare of the unconstrained welfare-optimal allocation; an example is provided in Appendix
C.

3 Safe-Price Auctions

We will derive a class of cap-and-price auctions, which we will call safe-price auctions, whose
performance in equilibrium approximates their non-strategic welfare. The hope is that the
non-strategic welfare of this class then approximates the non-strategic welfare of the larger
class of cap-and-price auctions.

3 Note the cap is not a hard constraint, but rather governs which prices bind.

I T C S  2 0 2 0
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I  Definition 2. A  safe-price auction is a cap-and-price auction M (C, p, p) parameterized by a
license quantity C ,  a price floor p =  Q (C )/C ,  and price ceiling p =  ¥ .  We wil l write M (C )  for
the safe-price auction with license quantity C ,  and P ( C )  =  Q (C )/C  for the associated safe
price.

This definition restricts cap-and-price auctions in two ways. The first is that the price
ceiling is now infinite. The second is that we have imposed a lower bound on the price floor.4

The first restriction is for convenience; the following lemma shows that it does not cause
much loss in welfare. Motivated by this lemma, we will restrict our attention from now on
to auctions with no price ceiling, that is, p =  ¥ .  We notate such mechanisms M =  (C, p).
Note that, in the language of definition 1, case (1) can no longer occur. That is, when is
there is no price ceiling, only exactly C  or less than C  licenses will be allocated.

I  Lemma 3. For any distribution F  and any cap-and-price auction M (C, p, p), there exist a
cap C 0 and price floor p0 such that W (M (C 0 , p0 , ¥)) ³  2 W (M (C, p, p)).

The proof of Lemma 3 appears in Appendix A.1. The main idea is to decompose the
expected welfare of a cap-and-price auction M (C, p, p) into the welfare attained from the
first (at most) C  licenses sold plus the incremental welfare attained from any licenses sold
after the first C .  The first can be approximated by M (C, p, ¥); the latter, if non-negative,
can be approximated by M (¥ , p, ¥).

The second way safe-price auctions restrict price-and-cap auctions is with a lower bound
on the price floor. As the following example shows, the equilibrium welfare of cap-and-price
auctions, even those with an infinite price ceiling, suffer from a problem known as demand
reduction in which a bidder improves her price, and hence utility, by asking for fewer units.
This can have drastic consequences on welfare, causing it to become negative, due to the
existence of the social cost. In particular, this means the approximation of such auctions,
relative to the best welfare attainable in non-strategic settings, is unbounded.

I  Example 4. Consider two agents, 1 and 2. Their distributions over valuations will be
point-masses, so that the valuations are actually deterministic. These valuation functions
are given by the following marginals: v1(1) =  10, v1(2) =  10, v2(1) =  6, v2(2) =  1, and all
other marginals are 0. We will have C  =  2, p =  0, p =  ¥ ,  and the social cost function is
given by Q(x) =  9x. Under truthful reporting, the auction M (C, p) allocates 2 licenses to
agent 1 at a price of 6 each, resulting in a welfare of V1(2) � Q(2) =  20 � 18 =  2. However, we
note that firm 1 could improve their utility from 8 to 9 by instead reporting a modified
valuation V given by ṽ1(1) =  10 and ṽ1(2) =  1. If agent 2 continues to report truthfully,
M (C, p) will allocate 1 license to each agent at a price of 1 each, resulting in a welfare of
V1(1) +  V2(1) � Q(2) =  16 � 18 =  �2. One can verify that this is indeed a pure Nash
equilibrium of the auction, and hence a Bayes-Nash equilibrium as well.

The issue illustrated in Example 4 is that strategic behavior can cause licenses to be
allocated to agents whose marginal values for these licenses are below Q(C )/C ,  causing the
aggregate value derived from allocating C  licenses to fall below Q(C ). Safe-price auctions
seek to prevent this by imposing a sufficiently high price floor.

Indeed, the following lemma shows that price floors do indeed circumvent the issue in the
above example. Namely, we show safe-price auctions have good equilibria, compared to their
own non-strategic welfare. This is the main result of this section, and motivates us to focus on
analyzing the non-strategic welfare of safe-price auctions.

4 In fact we set p to be equal to P ( C )  , but our results still hold if this is relaxed to p ³  P (C ) .
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I  Lemma 5. For  any safe-price auction M (C ) ,  the expected welfare at any Bayes-Nash
equilibrium is at least ( 3.15 )  W (M (C )).

Proof. F i x  a license cap C  and write p =  Q ( C ) /C  for the corresponding safe price, and
recall that M (C )  =  M (C, p). We claim that this auction is strategically equivalent to a
modified auction, as follows. First, since each agent pays at least p per license, we can define
v̂ i ( j )  =  vi ( j )  � p for the residual marginal utility of agent i  for their j th  license, after taking into
account that they must pay at least p. Then from each agent’s perspective, playing in
M (C, p) with marginal values vi ( j )  gives the same utility as playing in M (C, 0) with
marginal values v̂i ( j ).  The welfare generated by the original auction is V (x )  � Q(x), which is
equal to V (x )  � (Q(x) � px). So the welfare generated by M is equivalent to the welfare
generated with modified valuations V , where the marginal social cost of each unit of pollution is
reduced by p. But now note that from the definition of p, Q(x) � px £  0 for all x  £  C .  So in an
auction with a cap of C ,  the welfare is at least the welfare obtained with a social cost of 0; it is
always non-negative.

We conclude that the welfare generated by M (C, p), at any equilibrium, is equal to the
welfare generated at an equilibrium of the standard uniform price auction with modified
valuations V . Theorem 3 of [13] (which bounds the welfare in Bayes-Nash equilibria of
uniform auctions without costs) therefore applies5, and the welfare at any equilibrium is at
least  1  times the optimum achievable under the modified valuations, which is at most
W (M (C )). J

4 Welfare Approximation

Motivated by Lemma 5, we would like to show that the non-strategic welfare of safe-price
auctions approximates that of cap-and-price auctions. Unfortunately, there are cases where
this does not hold, as demonstrated by Example 6. The example consists of just a single
firm that dominates the market and whose demand for licenses has high variance. The firm’s
value is always large enough that even at a low price and high license cap, the resulting
allocation has high net welfare. However, safe-price auctions will generate much lower welfare.
Roughly speaking, for any number of licenses C  that the auction designer selects as the cap
for a safe-price auction, significant welfare will be lost from realizations where the firm’s
demand is much higher than C ,  and the corresponding safe price will exclude welfare gains
from realizations where the firm’s demand is much lower than C .  If the variance is high
enough, this will cause overall welfare to be low regardless of the choice of C .

I  Example 6. We will present an example for which the expected welfare of any safe-price
auction M (C )  is at most an O(1/n)-approximation to opt.  Let Q(x)  =  x2. There is a
single firm participating in the auction. That firm’s valuation curve is drawn according to a
distribution F  over n different valuation curves, which we’ll denote V (1), . . . , V ( n ) .  For all i,
valuation V ( i )  is defined by V ( i ) (x )  =  max{2 i+1  x, 22 i+1 }. The probability that V ( i ) ( )  is
drawn from F  is proportional to 2 2 i  . That is, the firm has valuation V ( i )  with probability β2 2 i  ,
where β = 2�2i =  1 (1 �2�2n) is the normalization constant. Note that a cap-and-price
auction with cap C  =  ¥  and price floor p =  1 achieves welfare i = 1  22i  1  =  1  n, so o p t  is
at least this large.

5 The proof of the 3.15 bound in [13] is actually for a uniform-second-price auction that charges the
highest losing bid, or V ( C  +  1) � V (C ) ;  however, the proof is also correct for charging a price of the
lowest winning bid V ( C )  � V ( C  � 1).

6 In fact, this is the “first-best” welfare obtainable at every possible realization, so this is actually the
best possible cap-and-price auction and hence the exact value of opt.

I T C S  2 0 2 0



n n

β2 β β

β

i , x ³ 0

P
i

15:10 Reducing Inefficiency in Carbon Auctions

Consider a safe-price auction with cap C0. Suppose that C 0 Î (2k , 2k+1 ] for some k ³  1.
Then the safe price is P (C 0 ) =  Q(C 0 )/C 0 =  (C 0 )2 /C 0 =  C 0 >  2k . If the firm has valuation
V ( i )  with i  £  k � 1, then all marginal values are strictly below P (C 0 ), then no licenses are
allocated and the welfare generated is 0. On the other hand, if the firm has valuation V ( i )

for any i  ³  k, then since at most C 0 £  2k + 1  licenses can be purchased, the auction generates
welfare at most 2 i + 1 (2 k + 1 )  � (2k +1 )2 =  22k +2 (2 i�k � 1).

The total expected welfare of M (C 0 ) is therefore at most

X
2 2 k + 2 ( 2 i �k  � 1) 

1
2i =  

4 X
2 �2 ( i �k ) ( 2 i �k  � 1) £  

4 
=  O(1).

i = k                                                                               i = k

Since o p t  ³  1  n but W (M (C 0 )) =  O(1) for all C0, we conclude that no auction with a safe
price achieves an o(n)-approximation to opt.  This concludes the example.

Example 6 is driven by a single firm that dominates the market and has high variance in
their demand. We next show that this is the only barrier to a good approximation: either a
safe-price auction is constant-approximate, or else one can approximate the optimal welfare by
selling to just a single firm. To  this end, we will be interested in the expected maximum welfare
attainable by allocating licenses to just one firm, which we will denote W (1) . That is,

W (1) =  EV  �F       max {Vi (x) � Q(x)} .

The following theorem is our main result.

I  Theorem 7. There exists a constant c such that, for any cap C  and price floor p, there
exists C 0 such that c  W (M (C 0 )) +  W (1) ³  W (M (C, p)).

Note that a corollary of Theorem 7 (combined with Lemmas 3 and 5) is that for any
cap-and-price auction M (C, p, p), there exists some C 0 such that the expected welfare of
any Bayes-Nash equilibrium of M (C 0 ) is at least a constant factor of W (M (C, p, p)) � W (1) .
That is, the worst-case equilibrium welfare is a constant-factor approximation to the best
welfare achievable by any cap-and-price auction under truth-telling, excluding the welfare
contribution of a single firm.

Also, W (1) is the expected welfare of a truthful mechanism that we will call M (1) . In
M (1) , the firms first participate in a second-price auction for the right to buy licenses. The
firm with the highest bid wins, and they pay the second-highest bid. The winning firm can
then purchase any number of licenses x  ³  0, for which they pay Q(x) (in addition to their
payment from the initial second-price auction). Since the utility obtained by firm i  if they
win the initial auction is precisely maxx {Vi (x) � Q(x)}, and since a second-price auction is
truthful and maximizes welfare, we can conclude that W (M (1) ) =  W (1) . Then another
corollary of Theorem 7 is that one can approximate the non-strategic welfare of any cap-and-
price auction using either a safe-price auction (in which case the approximation holds at
any Bayes-Nash equliibrium), or using the (truthful) mechanism M (1) that allocates licenses to
at most one firm.

We are now ready to prove Theorem 7. F i x  a cost function Q and distribution F ,  and
choose the optimal cap C  and price floor p such that W (M (C, p)) is maximized. Let d() and
x ( )  be the demand and allocation functions for M (C, p). For any given realization of
preferences V , there is a total demand d(V ) =          di(p), where again, di (p) =  arg maxx Vi (x)�
px. Recall also that W (x, V ) =  V (x )  � Q(x)  is the welfare generated by allocation x  given

aggregate valuation V .
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(a) (b)

Figure 1 A  visualization of the proofs of Theorem 8 (a) and Theorem 7 (b). The x-axis represents
quantity of licenses; the y-axis represents value. The expected welfare of benchmark W (M (C, p)) is
divided into separate contributions, based on the location of allocation outcome (x, V (x )) ;  these
are depicted as shaded regions. Each of these contributions is bounded by either the welfare of a
safe-price auction or the welfare obtained from a single buyer. Figure (a) is the (simpler) partition
used in Theorem 8, and (b) is the partition used in Theorem 7.

We will begin by proving a simpler version of Theorem 7, which is parameterized by
q : =  Pr[d(V ) ³  C ], the probability that the auction sells C  licenses. When q is bounded away
from 0, we show that there is a safe-price auction that achieves an O(1/q)-approximation to
W (M (C, p)). We note that this result does not require firm valuations to be independent,
and holds even if the valuations are drawn from an arbitrarily correlated distribution F .  We
will explain in Section 4.1 how to extend the argument to the general case of Theorem
7, with details deferred to the appendix.

I  Theorem 8. For the welfare-optimal cap C  and price floor p, there exists a cap C 0 such
that (1 +  2/q)  W (M (C 0 )) ³  W (M (C, p)).

Proof. The welfare generated by M (C, p) can be broken down as follows:

W (M (C, p)) =  PrV �F  [d(V ) ³  C ]   E[W (x(V ), V )  |  d(V )  ³  C ]

+  PrV �F  [d(V ) <  C ]   E[W (x(V ), V )  |  d(V )  <  C ].

The first term is the contribution to the welfare from events where C  licenses are sold (or,
equivalently, at least C  licenses are demanded). The second term is the contribution from
events where the total demand for licenses is less than C .

Consider price P (C ) ,  the safe price for quantity C .  We wish to decompose the second term
in the expression above into marginal values above P ( C )  and those below P (C ) .  For this,
we need to introduce some notation. Write θ i  for the largest j  ³  1 such that vi ( j )  ³
P (C ) ,
or θ i  =  0 if Vi (1) <  P (C ) .  Write x i      =  min{xi , θi}, and write x i      =  x i  � x i  . Then x i      is
the part of allocation x i  for which firm i  has marginal value at least P ( C )  per unit, and x i
is the part of x i  for which firm i  has a marginal value less than P ( C )  per unit. We’ll also
define Vi       as Vi (x )  =  Vi (x |θ i ); this is the marginal value of i  for receiving x  additional
licenses after already having received θ i  licenses. Note then that Vi (xi )  =  Vi (x i  )  +  Vi (x i  ),
for all i. We then have
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PrV �F  [d(V ) <  C ]   E[W (x(V ), V )  |  d(V )  <  C ]  Z
= Vi (xi (V )) � Q(x(V ))      dF V

Z
V : d(V ) < C            i                                                                      !

£ V i (x > (V )) � Q (x> (V ))     dF V 
V : d(V ) < C            i

!

+ V < ( x < ( V  ))  � Q(x< (V ))      dF V
V : d(V ) < C            i

where the final inequality used the fact that Q(x) ³  Q (x < )  +  Q(x> ) ,  due to the convexity of
Q. We conclude that

W (M (C, p)) £  PrV �F  [d(V ) ³  C ]   E[W (x(V ), V )  |  d(V )  ³  C ] (1A)
Z

+ V i (x > (V ))  � Q (x> (V ))      dF V (1B)

Z
V : d(V ) < C            i                                                                          !

+ V < ( x < ( V  ))  � Q(x< (V ))      dF V (1C)
V : d(V ) < C            i

so that W (M (C, p)) £  (1A) +  (1B) +  (1C). See Figure 1(a) for an illustration.
We claim that the welfare obtained from the first two terms, (1A) and (1B), are covered

by the safe-price auction with cap C .  The intuition is that a price floor of P ( C )  does not
interfere with the welfare contribution due to licenses with marginal values greater than
P (C ) .  One subtlety is that some of the licenses in the summation (1A) might have marginal
values less than P (C ) ,  but it turns out that it can only improve welfare to exclude
such licenses from the allocation.

B  Claim 9.     W (M (C )) ³  (1A) +  (1B).

Proof. Write d0 and x0 for the demand and allocation under auction M (C ), respectively. We
have

W (M (C )) =  PrV �F  [d(V ) ³  C ]   E[W (x0 (V ), V )  |  d(V )  ³  C ]  +

PrV �F  [d(V ) <  C ]   E[W (x0 (V ), V ) |  d(V )  <  C ].

Note that we intentionally use d(V ), the demand for M (C, p), rather than d0(V )  in the
expressions above. The second term is precisely (1B), since x0 =  x >  from the definition of
x > .  We claim that the first term is at least (1A). To  see why, fix any V with d(V ) ³  C  (and
corresponding allocation x  =  x(V ) where necessarily |x |  =  C ) ,  and note that x0 £  x i  for all i.
Furthermore, Vi (xi )  ³  Vi (xi )  � (x i  � x i )P (C ) ,  since x i  is simply x i  after possibly excluding
some items with marginal value less than P (C ) .  Thus, since |x |  =  C ,

V (x0 ) � |x0 |  P ( C )  ³  V (x )  � |x |   P ( C )  =  V (x )  � Q( |x |).

Also, by convexity, we have Q(y) £  y  P ( C )  for all y Î [0, |x|].
V (x0 ) � Q(|x0 |) ³  V (x0 ) � |x0 |  P ( C )  ³  V (x )  � Q( |x |), and hence

PrV �F  [d(V ) ³  C ]   E[W (x0 (V ), V )  |  d(V )  ³  C ]

³  PrV �F  [d(V ) ³  C ]   E[W (x(V ), V )  |  d(V )  ³  C ]

as claimed.

In particular, we have

C
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The more difficult part of the proof of Theorem 8 is to account for term (1C). This
represents the contribution of licenses whose marginal values lie below P (C ) ,  and are
therefore excluded when the price floor is set to p =  P (C ) .  What we show is that the welfare
contribution from all such licenses is approximated by W (M (C/2)), the welfare obtained by
the safe auction with cap C/2.7 We do this in three steps. First, we show that any optimal
cap-and-price auction M (C, p) must generate non-negative expected welfare conditional on
selling C  licenses. The intuition is that if the expected welfare from selling C  licenses is
negative, then it must be strictly preferable to reduce the quantity of licenses.

I  Lemma 10. If cap C  and price floor p are chosen to maximize W (M (C, p)), then

EV  �F  [W (M (C, p)) |  d(V ) ³  C ]  ³  0,

where d(V ) is the total quantity of licenses demanded at price p.

The proof of Lemma 10 appears in Appendix B.1. Next, for any cap-and-price auction
M , we provide an upper bound on the total welfare contribution that comes from events
where x  <  C  licenses are sold, and the average marginal value of the sold licenses, V
(x )/x ,  is less than P (C ) .  In fact, it will be useful to state the lemma more generally: we
provide a more general bound that applies to any C  £  C  and any valuation that is at most
P ( C )   x  (not necessarily V (x)).  The lemma bounds the total welfare contribution, P ( C )
x  � Q(x), by the difference in price between (a) C  licenses sold at the safe price for C ,
and (b) the same C  licenses sold at the safe price for C /2.

I  Lemma 11. Choose some quantity C  and a number of licenses x  £  C .  Then P ( C )   x  �
Q(x) £  C   (P ( C )  � P (C /2)) .

The proof of Lemma 11 appears in Appendix B.2. We are now ready to bound the
contribution of (1C). The intuition is as follows. By Lemma 11, the contribution from (1C) is at
most (a constant times) the gap between the line y =  P ( C ) x  and the curve Q(x) at point x  =
C /2. But recall that Pr[d(V )  ³  C ]  =  q, and Lemma 10 implies that, on average, the
expected marginal value of licenses allocated subject to this event is at least P (C ) .  Therefore, if
we set a license cap of C /2, then with probability at least q all C /2 licenses will be sold at
an average expected marginal value of at least P (C ) .  The welfare generated in this case
covers the “gap” at C /2, and hence covers the loss due to excluding licenses with marginal
values at most P (C ) .

B  Claim 12.     W (M (C /2)) ³  2 q  (1C).

Proof. Write d0 and x0 for the demand and allocation under mechanism M (C/2), respectively.
Choose any V such that d(V )  ³  C .  For any such V , d0(V )  £  d(V ), and is formed by
removing items with marginal value at most P (C /2). In particular, since x0(V )  £  d0(V ),
we have V (x0(V )) ³  V ( C )  � ( C  � x0(V ))   P (C /2). Noting that Q(|x0(V ) |)  £  |x0(V ) |   P ( C )
since x0(V ) £  x(V ), we have

V (x0(V )) � Q(|x0(V ) |) ³  V (x0(V ))  � |x0(V ) |   P ( C )

³  V ( C )  � ( C  � |x0(V ) |)  P (C /2)  � |x0(V ) |   P (C ) .

7 For convenience we will assume C  is even for the remainder of this section. When C  is odd, the result
holds for at least one of the floor or the ceiling of C /2. Details appear in the full version.
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Taking an expectation over all V such that d(V )  ³  C ,  we note that Lemma 10 implies
E[V (C ) ]  ³  C   P (C ) .  We therefore have

E[V (x0(V )) � Q(|x0(V )|)] ³  C   P ( C )  � ( C  � E[|x0 (V )|])  P (C /2)  � E[|x0 (V )|]  P ( C )  =

( C  � E[|x0 (V ) | ] ) (P (C )  � P (C /2))

³  (C /2)   (P (C )  � P (C /2))

where in the last inequality we used that |x0(V ) |  £  C /2 by definition. Since Pr[d(V ) ³  C ]  =  q,
we therefore have that

W (M (C /2)) ³  Pr[d(V ) ³  C ]   E[V (x0(V ))  � Q(|x0(V ) |)  |  d(V )

³  C ]  ³  q (C /2)  (P (C )  � P (C /2) .

We now claim that (C /2)   ( P ( C )  � P (C /2)  ³  (1C )/2, completing the proof. To  see why, note
that for any x� <  C  and any V , V < (x�) �Q( |x�|)  £  |x�| P (C ) �Q( |x�|). Thus (1C )  £  maxx�

{|x�| P (C ) �Q(|x�|)}. But note that for any x� >  C /2, we have Q(x�) >  |x�|P (C /2), and hence
|x�| P (C ) �Q( |x�|) £  |x�| (P (C ) �P (C /2))  £  (C ) (P (C ) �P (C /2)).  Also, for any x� <  C /2,
Q( |x�|) lies above the line joining (C /2, Q(C /2)) and (C, Q(C )),  and hence |x�|  P ( C )  �
Q( |x�|) is at most the distance between |x�|  P ( C )  and this line, which is at most ( C )   ( P ( C )
� P (C /2)).  So in either case we have maxx� {|x�|  P ( C )  � Q(|x�|)} £  C   (P (C )  � P (C /2))  as
required. C

Combining Claim 9 and Claim 12 we have that W (M (C ))  +  (2/q )W (M (C/2)) ³
W (M (C, p)), which completes the proof of Theorem 8.                                                                   J

As a corollary, Theorem 8 combined with Lemma 5 and Lemma 3 implies that for any
cap and price auction M (C, p, p), there exists a safe-price auction M (C 0 ) such that, at any
Bayes-Nash equilibrium of M (C 0), the expected welfare generated is at least  1   1        1

W (M (C, p, p)). In particular, if q is a constant bounded away from 0, then M (C 0 ) obtains a
constant fraction of W (M (C, p, p)) at any Bayes-Nash equilibrium.

4.1 The General Case

We complete the proof of Theorem 7 in Appendix B.3. Here we describe at a high level what
steps are needed to complete the argument. We will focus on the case where Pr[d(V ) ³  C ]  <  1 �
1/e, since if Pr[d(V )  ³  C ]  ³  1 � 1/e then Theorem 7 follows from Theorem 8.

Recall that in Claim 12, we used the assumption that Pr[d(V ) ³  C ]  =  q to argue that the
welfare gained in M (C /2) in the event that d(V ) ³  C  covers the welfare lost from marginals
lying below P (C ) ,  up to a constant factor. If the probability that d(V )  ³  C  is small, then this
may no longer be true. To  handle this, we consider a reduced cap Cmed <  C  set to be the largest
integer such that Pr[d(V ) ³  Cmed] ³  1 �1/e. Our hope is to reproduce the argument from Claim
12, but substituting Cmed for C .  To  this end, we divide the welfare of M (C, p) into four parts:
all welfare under the event that d(V ) >  C ;  all welfare from individual agents whose demand is
at least Cmed; the contribution of marginal values greater than P (Cmed ) (but with individual
firms demanding at most Cmed ) when d(V )  <  C ,  and the contribution of marginal values less
than P (Cmed ) when d(V ) <  C .  See Figure 1(b) for an illustration.

As in the proof of Theorem 8, the contribution due to events where d(V )  >  C  can be
covered by the welfare of M (C, P (C )).

The contribution from agents who individually demand at least Cmed licenses is a new
case that we didn’t have to handle in Theorem 8. It is here that we use M (1) , allocating to any
single agent. Because the total demand is at most than Cmed with probability at least
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1/e, independence implies that the expected number of agents who demand more than Cmed

licenses is at most 1, given that the probability that none have demand more Cmed must be at
least 1/e. So the total contribution to welfare of all such events is at most W (M (1) ).

If d(V )  £  Cmed, then the contribution from marginal values that are at least P (Cmed )
can be covered by the welfare of M (Cmed , P (Cmed)), precisely as in Claim 9. We must also
handle the case that d(V ) Î [Cmed , C ], and consider the welfare contribution of agents that do
not (individually) demand more than Cmed licenses. Here we use independence: the total
quantity demanded by such “small” agents is likely to concentrate, so it is unlikely that the
total demand will be larger than 2Cmed. Thus, by imposing a cap of Cmed, we lose at most a
constant factor of the welfare from marginal values greater than P (Cmed ).

The final step is to show that W (M (Cmed/2)) obtains at least a constant fraction of the
welfare generated by marginal values less than P (Cmed ), similarly to Claim 12. When proving
Claim 12, we used Lemma 10 to argue about the welfare generated by events where d(V ) >  C .
Unfortunately, Lemma 10 does not extend to Cmed: it could be that the expected welfare
generated by M (Cmed , P (Cmed)), conditional on selling Cmed licenses, is negative. However,
we can prove an upper bound on how negative this expected welfare can be. After all, if the
expected welfare is sufficiently negative sufficiently often, it would be welfare-improving to
increase the price floor of M (C, p) from p to P (Cmed ), contradicting the supposed optimality of
M (C, p). This turns out to be enough to prove a bound similar to Claim 12.

Combining these bounds, we can conclude that each of the four parts of the welfare of
M (C, p) can be covered by either a safe-price auction or by M (1) , which completes the proof of
the theorem.
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A Omitted Proofs from Section 3

A.1 Proof of Lemma 3

Recall the statement of Lemma 3: for any distribution F  and any cap-and-price auc-
tion M (C, p, p), there exist a cap C 0 and price floor p0 such that W (M (C 0 , p0 , ¥)) ³

2 W (M (C, p, p)).

Proof. We show that given any mechanism M =  (C1 , p, p), we can construct a mechanism
M0 with price ceiling ¥  such that W (M 0) ³  2 W (M ).

We can decompose the expected welfare of M into (a) the welfare attained from the first
(at most) C1  licenses sold, and (b) the incremental welfare attained from any licenses sold
after the first C1 .

Note that the auction M1 =  (C1 , p, ¥), which is M but with price ceiling set to ¥ ,
achieves welfare precisely equal to the former of these two parts. This is because M1 always
allocates at most C1  licenses, and will allocate them efficiently subject to all marginal values
being at least p.

Next consider the second of these two parts of the welfare of M . If the expected welfare
in the second part is negative, then we are already done, so suppose not. Whenever more
than C1  licenses are sold, all licenses are sold at price p, and therefore have marginal value
at least p. Auction M 2 =  (¥ , p, ¥ ) ,  with no license cap and with a price floor of p, will
also sell all such licenses that have marginal value at least p. We note, however, that M2

additionally also includes the marginal contribution of the first C1  licenses. But we claim
that this contribution is non-negative: when the event occurs that more than C1  licenses
are sold, the marginal contribution of the first C1  licenses to the welfare can only be greater
than that of those beyond the first C1 . Thus, since the expected welfare in the second part
is non-negative, the welfare is only higher if we also include the contribution of the first C1

licenses whenever more than C1  licenses are sold. This is precisely the welfare of auction
M2 =  (¥ , p, ¥ ) ,  so the welfare of M 2 is therefore at least that of the second of the two
parts of the welfare of M .

We conclude that W (M 1) +  W (M 2) ³  W (M ), and hence either W (M 1) or W (M 2) is at
least 1 W (M ).                                                                                                                                                 J

B Omitted Proofs from Section 4

B.1 Proof of Lemma 10

First recall the statement of the lemma. If C  and p are chosen to maximize W (M (C, p)),
then E[W (V, x(V )) |  d(V ) ³  C ]  ³  0.

Proof. Suppose not. Then it must be that E[W (V, x(V ))  |  d(V )  ³  C ]  <  0. We will show
this implies W (M (C � 1, p)) >  W (M (C, p)), contradicting the optimality of C .  To  see why,
note that when d(p) <  C ,  the welfare of the two auctions is identical. Write x  and x0 for
the allocation functions from M (C, p) and M (C � 1, p), respectively. When x  ³  C ,  we have
x0 =  C  �1, and V (x0) ³  C �1 V (x )  by concavity. Similarly, Q(x0) £  C �1 Q(x) by convexity.
Thus, for any V such that d(V )  ³  C  and hence x(V )  =  C ,  we have

V (x0(V )) � Q(x0(V )) ³  
x(V ) 

(V (x(V ))  � Q(x(V )))  =  
C

C  
1

(V (x(V ))  � Q(x(V ))).
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Taking expectations, we therefore have

E[V (x0(V )) � Q(x0(V )) |  d(V )  ³  C ]  ³  
C  � 1

(E[V (x(V ))  � Q(x(V ))  |  d(V )  ³  C ] )

>  E[V (x(V )) � Q(x(V )) |  d(V )  ³  C ]

where the last inequality follows because E[V (x(V ))�Q(x(V )) |  d(V ) ³  C ]  <  0 by assumption.
This implies W (M (C � 1, p)) >  W (M (C, p)), which is the desired contradiction. J

B.2 Proof of Lemma 11

First recall the statement of the lemma. Choose some quantity C  and a number of licenses
x  £  C .  Then P ( C )   x  � Q(x) £  C   (P ( C )  � P (C /2)).

Proof. Suppose x  ³  C /2. Then Q(x) ³  C / 2   Q(C /2) by convexity. So P ( C )   x  � Q(x)  £  x

P ( C )  � Q(C /2)/(C /2) £  C   (P (C )  � P (C /2))  as claimed.
Next suppose x  <  C /2. Then (x, P (C )   x )  and (x, Q(x))  both lie between the line

through the origin with slope P (C ) ,  and the line between (C, Q (C ))  and (C /2, Q(C /2)).
Their difference is therefore at most twice the difference between those two lines at x-
coordinate C /2, which is (C /2)   (P (C )  � P (C /2)). J

B.3 Omitted Details from the Proof of Theorem 7

Recall the statement of Theorem 7: for any cap C  and price floor p, there exists C 0 and a
constant c such that c  W (M (C 0 )) +  W (M (1) ) ³  W (M (C, p)).

As in the proof of Theorem 8, the welfare generated by M (C, p) can be broken down as
follows:

W (M (C, p)) =  PrV �F  [d(V ) ³  C ]   E[W (x(V ), V )  |  d(V )  ³  C ]  +

PrV �F  [d(V ) <  C ]   E[W (x(V ), V )  |  d(V )  <  C ]

We will break down the second term into three sub-terms. Recall that we can assume
Pr[d(V ) ³  C ]  £  1 �1/e. Choose Cmed <  C  so that Pr[d(V ) ³  Cmed] =  1 �1/e. We will write x i  =
x� +  x >  +  x < .  If x i  ³  Cmed then we set x� =  x i  and x >  =  x <  =  0, otherwise we set x� =  0. In
this latter case, we set x >  and x <  similarly as in case 1, except that we consider marginal
values above and below P (Cmed ) rather than P (C ) .  That is, if θ i  is the largest j  ³  1 such
that vi ( j )  ³  P (Cmed ) (or θ i  =  0 if vi (1) <  P (Cmed )), we have x >  =  min{xi , θi} and x <  =  x i  �
x > .  And as before, we will define V <  as V < ( x )  =  V < (x |θ i ) ,  the valuation of i  counting only
those marginal values less than P (Cmed ).

Using convexity of Q as in case 1, we then have

W (M (C, p)) £  PrV �F  [d(V ) ³  C ]   E[W (x(V ), V )  |  d(V )  ³  C ]                                           (2A)

+                        (
X

V i ( x �( V  )) � Q(x�(V )))dF V                                            (2B)

Z
V : d(V ) < C i

+ ( V i (x > (V )) � Q (x> (V )))dF V (2C)

Z
V : d(V ) < C        i

+ ( V < ( x < ( V  )) � Q(x< (V )))dF V (2D)
V : d(V ) < C        i

so that W (M (C, p)) £  (2A)  +  (2B )  +  (2C )  +  (2D ).
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As in Theorem 8, we have that W (M (C ))  ³  (2A). For (2B ),  note that the probability
that every bidder i  has x i  <  Cmed is at least 1/e, from the definition of Cmed. If we
write pi for the probability that x i  <  Cmed, then we have         pi ³  1/e. Subject to this
condition, the value of        (1 �pi ) is maximized by setting all pi equal, in which case we have

(1 � pi ) £  n(1 � e�1/n ) £  1. But this means that the expected number of agents with
x i  ³  Cmed is at most 1. Thus, (2B )  is at most the value of allocating to just a single bidder
with x i  >  Cmed, which is at most the maximum possible welfare attainable from allocating to
any one bidder. We therefore have that W (M (1) ) ³  (2B ).

We next claim that W (M (Cmed)) ³  (2C )/4. To  see why, note that
Z

(
X

V i (
x

> ( V  ) )  � 
Q

(
x

> ( V  )))d
F

V
V  :  d ( V  ) < C

£  2 1[x(V )  <  2Cmed ]  (
X

V i (
x

> ( V  ) )  � x >   Q ( x  
(

( V  ) )  d
F

V
V  :  d ( V  ) < C

�i � � �

£  4 1[x(V )  <  2Cmed ]  �
X
� X

 
vi ( j )/2� � x i       Q ( m i n { C m e  

,
, x  

(
( V  ) } )  �dF V V  :  d ( V

) < C                                                                    i j £ x >

£  4W (M (Cmed ))

where the last inequality follows because, when imposing a cap of Cmed on an allocation of
total size at most 2Cmed, the value obtained is at least the top half of all marginal values,
which is more than half of all marginal values.

Finally, we claim that W (M (Cmed /2)) ³  (2D )/21. Define Ψ : =  (Cmed /2)  (P (Cmed ) �
P (Cmed /2)). Then Lemma 11, combined with the fact that the total demand is at most
Cmed with probability 1/e, implies that (2D )  £  (2/e)  Ψ.

We claim that for β =  8  »  1.55, we must have Pr[V (Cmed ) <  Q(Cmed)�βΨ |  d(V ) >
Cmed] £  1/4. That is, conditional on having total demand at least Cmed, the probability that
the welfare generated at Cmed is more negative than �βΨ is at most 1/4. Suppose not: then
consider the difference in welfare between M (C, p) and M (C, P (Cmed )). The difference is
that (2D) would be removed, as would any (negative) contribution with V (Cmed ) <  Q(Cmed)
and d(V ) >  Cmed. As we noted above, the total contribution of (2D) to the welfare is at most
2Ψ/e. But the contribution due to the event V (Cmed ) <  Q(Cmed) � Ψ and d(V )  >  Cmed is
at most �(βΨ)(1 � 1/e)(3/4). So as long as β ³  (8/3(e � 1)) »  1.55, we would have
W (M (C, P (Cmed ))) >  W (M (C, p)). This contradicts the optimality of M (C, p).

We can therefore assume Pr[V (Cmed ) ³  Q(Cmed) �βΨ |  d(V ) >  Cmed] ³  1/4. By concav-
ity of V and convexity of Q, this means Pr[V (Cmed /2) ³  Q(Cmed/2) +  (2 � β)Ψ/2 |  d(V ) >
Cmed] ³  1/4. Since d(V ) ³  Cmed with probability at least 1 �1/e, the total welfare generated
by M (Cmed /2) from the events d(V )  ³  Cmed is at least (2 � β )(1 � 1/e)Ψ/8, and hence
W (M (Cmed/2)) ³  (2 �β)(1 �1/e)Ψ/8. Since (2 �β)(1 �1/e)e/16 ³  1/21, the result follows.

We conclude that

W (M (C )) +  W (M (1) ) +  4W (M (Cmed)) +  21W (M (Cmed/2)) ³  W (M (C, p)).

This implies Theorem 7, with c =  26.

C Cap-and-Price Auction Outcomes are not Fully Efficient

We note that cap-and-price auctions cannot always implement the fully optimal allocation
rule for every distribution F .  For an allocation rule to be implementable by some M (C, p, p), it
must be that on every input V ,  either the total allocation is C ,  or the total allocation is

I T C S  2 0 2 0



1
2

2 i

P n
β2 3

n

β2 β

n

β2 β

n

1
β

X

1
β

X

1

2

15:20 Reducing Inefficiency in Carbon Auctions

at most C  and each agent wins precisely their marginal bids above p, or the total allocation is
at least C  and each agent wins precisely their marginal bids above p. When there is
uncertainty about V ,  such a restricted allocation rule might return suboptimal allocations
on some realizations.

In fact, we note that there are cases where, even under truthful reporting, no cap-and-
price auction can achieve a non-vanishing approximation of the unrestricted welfare-optimal
allocation.

I  Example 13. We present an example for which the expected welfare of any cap-and-price
auction M (C, p) is at most an O(1/n)-approximation to the unrestricted allocation that can
optimize individually for each realization of the valuation curves, the welfare of which we
call the “first-best welfare” in line with economics terminology.

Let Q(x) =  x2. There is a single firm participating in the auction. That firm’s valuation
curve is drawn according to a distribution F  over n different valuation curves, which we’ll
denote V (1), . . . , V ( n ) .  For all i, valuation V ( i )  is defined by V ( i ) (x )  =  2 i + 1   x. These curves are
depicted in Figure 2. The probability that V ( i ) ( )  is drawn from F  is proportional to  

2 i  .
That is, the firm has valuation V ( i )  with probability  1     , where β = i = 1  2�2i =  1 (1 �2�2n) is
the normalization constant.

Then in expectation over the realizations of V (), the first-best welfare is

X
2 2 i       1

2i =  
1 

 n.
i = 1

Consider a cap-and-price auction M (C, p). For any cap C ,  the optimal price floor is to
set p =  2C . This eliminates all possible negative welfare contributions at C .  As a sanity
check, any smaller price floor allows negative contributions, yet any larger price floor excludes
positive contributions. For C 0 Î (2k , 2k+1 ], , if the firm has valuation V ( i )  with i  £  k,
then all marginal values are strictly below p, so no licenses are allocated and the welfare
generate is 0. On the other hand, if the firm has valuation V ( i )  for any i  ³  k +  1, then
since at most C  <  2k + 1  licenses can be purchased, the auction generates welfare at most
2 i + 1 (2 k + 1 )  � (2k +1 )2  =  22k +2 (2 i�k � 1). This yields expected welfare

X  
22k +2 (2 i�k � 1) 

1
2i =  

1 X  
2�2( i�k�1) (2 i�k � 1)

i = k + 1                                                                              i = k + 1

n�k

= 2�2( j �1) (2 j  � 1)
j = 1

n�k

£ 2�(j �1)

j = 1

=  
β

(2 � 2�(n�k�1) )

£  
β 

=  o(n).

In comparison to opt,  any cap-and-price policy is off by an order of n, so no o(1/n)-
approximation to the first-best welfare is possible. This concludes the example.
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Figure 2 A  depiction of Example 13, with the welfare achieve by the vertical cap and dashed
price floor denoted by the checks and x’s.
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