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Abstract

Image subtraction is essential for transient detection in time-domain astronomy. The point-spread function (PSF),
photometric scaling, and sky background generally vary with time and across the field of view for imaging data
taken with ground-based optical telescopes. Image subtraction algorithms need to match these variations for the
detection of flux variability. An algorithm that can be fully parallelized is highly desirable for future time-domain
surveys. Here we introduce the saccadic fast Fourier transform (SFFT) algorithm we developed for image
differencing. SFFT uses a δ-function basis for kernel decomposition, and the image subtraction is performed in
Fourier space. This brings about a remarkable improvement in computational performance of about an order of
magnitude compared to other published image subtraction codes. SFFT can accommodate the spatial variations in
wide-field imaging data, including PSF, photometric scaling, and sky background. However, the flexibility of the
δ-function basis may also make it more prone to overfitting. The algorithm has been tested extensively on real
astronomical data taken by a variety of telescopes. Moreover, the SFFT code allows for the spatial variations of the
PSF and sky background to be fitted by spline functions.

Unified Astronomy Thesaurus concepts: Astronomy software (1855); Transient detection (1957)

1. Introduction

Since Zwicky (1964), variable source identification from
astronomical observations has played an indispensable role in
time-domain astrophysics. However, the time and spatial
variations of the point-spread function (PSF), the noises in
the sources and the sky backgrounds, the optical distortions of
the observing facilities, and many other effects barricade rapid
and robust transient detection over wide sky areas. An efficient
algorithm for calculating image differences is crucial in a
broad range of astronomical observations of today. Examples
include transient searches, as well as microlensing (Mao &
Paczynski 1991) and pixel lensing (Crotts 1992; Baillon et al.
1993). The techniques of image differencing and co-addition
are also of central importance to the next-generation survey
telescope, such as the Legacy Survey of Space and Time
(LSST; Ivezić et al. 2019) and the Nancy Grace Roman Space
Telescope.

To solve the PSF discrepancies between a pair of images
taken at different epochs of the same field, Phillips & Davis
(1995) and Tomaney & Crotts (1996) introduced a convolution
kernel to match PSFs from one image to the other. They used a
simple deconvolution solution to determine the kernel by
calculating the ratio of the Fourier transform of a bright star or
a precomputed PSF of each image. However, this approach
cannot guarantee optimal subtractions since the division in
Fourier space is prone to numerical instability, especially in the
noise-dominated high frequencies domain (Alard & Lupton
1998; Zackay et al. 2016). Given that the PSFs are only
modeled from the isolated stars with sufficient signal-to-noise
ratios, the method has difficulty in using all statistically valid

pixels in kernel determination, which makes it challenging to
handle very crowded fields as found in microlensing surveys.
With the same goal of finding the matching kernel, Kochanski
et al. (1996) moved in the first step toward kernel determination
without any direct knowledge of PSFs. They solved the
problem by a least-squares fitting on the image pair under
consideration instead of extracting the light profiles. Never-
theless, the required computing time of the nonlinear fitting
introduced by Kochanski et al. (1996) is generally formidable
(Alard & Lupton 1998).
Soon after Kochanski et al. (1996), a fork in the road was

signposted by the pioneering paper of Alard & Lupton (1998).
They decomposed the convolution kernel into a basis of
functions, converting the problem to be a linear least-squares
question. To accommodate the varying PSFs across the image,
Alard & Lupton (1998) modeled a spatially variant convolution
kernel that evolves with image coordinates in a polynomial
form. Subsequently, Alard (2000) simplified the calculations
for constructing the least-squares matrix, making it possible to
fit the kernel spatial variation with a reasonable computing
cost. In the last two decades, the framework outlined in Alard
& Lupton (1998) and Alard (2000) has served as the
mathematical foundation upon which several successful
transient survey programs have been built (e.g., Cao et al.
2016; Morganson et al. 2018; Price & Magnier 2019). As the
approach does not require the existence of isolated stars, it has
been applied to very crowded fields, such as microlensing
observations toward the Galactic bulge (e.g., Sumi et al.
2003, 2006, 2013).
Alard & Lupton (1998) provided the essential building

blocks of image subtraction, and subsequent studies continue to
move the field forward, with a focus on improving the kernel
basis functions and developing kernel regularization techni-
ques. The Gaussian basis functions adopted in Alard & Lupton
(1998) only allow for incomplete expansion of the convolution
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kernels. As a result, the method is constrained by the bases’
intrinsic symmetry and hinders the ability to construct a shape-
free kernel (Becker et al. 2012). Moreover, one has to configure
a variety of hyper-parameters for the kernel basis, e.g., the
number and width of the Gaussians. In order to achieve sheer
kernel flexibility and minimize user-adjustable parameters,
Bramich (2008) and Miller et al. (2008) introduced the delta
basis functions (DBFs) for the construction of complete kernel
space. With the DBFs, image subtraction is capable of
compensating for the sub-pixel astrometric misalignment
through an unconstrained flux redistribution within the scale
of kernel size (Bramich 2008; Becker et al. 2012). Albrow et al.
(2009) confirmed the compelling advantage of DBFs by
showing a distinct improvement in photometry accuracy over
the traditional Gaussian basis functions. Bramich et al. (2013)
further developed the DBF-based approach by taking the
spatially varying photometric scale into account, aimed to
accommodate the variation of transparency and airmass across
the field in wide-field surveys.

The flip side of the ultimate flexibility of DBFs is that the
resulting kernel solution can be more susceptible to noise. To
alleviate the overfitting problem, Becker et al. (2012)
conceived a Tikhonov regularization by adding a penalty term
so that the solution would favor compact and smooth kernels.
Masci et al. (2017) adopted an easily implemented way to
regularize the kernel with DBFs for iPTF transient discovery.
They used to solve the least-squares but dropped the
eigenvalues with low statistical significance. Regularizing the
kernel itself is not a unique option in resolving the overfitting
problem. Bramich et al. (2016) found that using a parsimonious
choice of un-regularized DBFs might be a better alternative.

Apart from the methods that stem from Alard & Lupton
(1998), a numerically stable approach characterized by cross
convolution was proposed by Gal-Yam et al. (2008) and Yuan
& Akerlof (2008). This strategy became more prevalent since
Zackay et al. (2016, hereafter ZOGY) presented a closed-form
algorithm that yields the optimal subtraction for transient
source detection. By its design, ZOGY can result in difference
images with uncorrelated background noise. With the noise
propagation during the image subtraction process, ZOGY
claims optimal detection rates of transients with minimal
subtraction artifacts.

In addition to the subtraction algorithms mentioned above,
machine-learning approaches are making their way into the
field. Sedaghat & Mahabal (2018) recently suggested the use of
deep convolutional neural networks instead of PSF matching
for transient detection. Hitchcock et al. (2021, hereafter
PyTorchDIA) proposed a novel machine-learning approach to
optimize the convolution kernel by making use of automatic
differentiation in PyTorch instead of constructing a least-
squares matrix.

We show in this paper that the entire imaging differencing
process can be performed with fast Fourier transform (FFT).
FFT can be easily adapted to different computer environments
for parallel processing. Our method, saccadic fast Fourier
transform (SFFT), provides a massively parallelizable frame-
work for image subtraction and brings substantial processing
speed acceleration when implemented on graphics processing
units (GPUs). Besides the gain in computing cost, SFFT can
retain the crucial features that have come from the advances in
image subtraction since Alard & Lupton (1998), including that
(1) SFFT employs flexible DBFs as kernel basis functions; (2)

SFFT can adequately handle the spatial variations of convolu-
tion kernel, photometric scale, and differential background; (3)
SFFT does not rely on the availability and distribution of the
observed stellar objects.
This paper is structured as follows: Section 2 provides the

mathematical frameworks of SFFT. Section 3 introduces the
implementation of SFFT and the details of the software
pipeline. Section 4 shows the application of the SFFT pipeline
to data taken from a variety of telescopes. Section 5 presents
the computing performance of SFFT, with comparisons to
other existing image subtraction implementations. Section 6
discusses the limitations of SFFT and plans for future works.
All the code about SFFT subtraction is available on Github.4

2. Methodology of SFFT

2.1. Overview

As the core engine of transient detection, image subtraction
is often the most computationally intensive individual task in
the data processing pipeline. The ongoing trend of very
massive data flow from time-domain surveys is making real-
time data reduction increasingly challenging. This has
motivated us to develop a new tool to relieve the computational
bottleneck while reconciling the subtraction performance and
the computing cost.
The image subtraction algorithms emanated from Alard &

Lupton (1998) have been broadly applied in astronomical
transient surveys. Our proposed method, SFFT, is a new
member of this category. The main purpose of the approach
aims to perform PSF matching via image convolution with
pixelized kernels formulated as linear combinations of a
predefined set of basis functions. The fact that astronomical
images from wide-field surveys generally possess nonconstant
PSF across the entire field of view leads to spatial variations of
the convolution kernels. Moreover, the spatially varying
photometric scale also needs to be taken into account in order
to match the images from wide-field surveys.
There have been some attempts to accelerate the calculations

involved in image subtraction, either aimed at faster kernel
determination or speed-up of the subtraction afterward. For
image subtraction, constructing the least-squares matrix to
solve the convolution kernels is computationally expensive,
especially for spatially variant kernels. Alard (2000) proposed
fitting the space-varying kernel on a set of subareas of the field,
with the simple assumption that the spatial variation of the
kernel within each subarea can be negligible. The useful
strategy has been adopted in the software HOTPANTS, a widely
used implementation of Alard & Lupton (1998). Apart from the
efficient simplification in computing, the flexibility of using
subareas has some additional benefits in practice. One may
preselect an optimal set of subareas to exclude the sources in
observational data that cannot be perfectly modeled by the
image subtraction algorithm. Doing so can also avoid the fitting
being strongly misled by specific regions of the field (e.g., the
brightest and densest regions).
Very recently, Hitchcock et al. (2021) provided an

innovative way (i.e., PyTorchDIA) to bypass the construction
of the analytical least-squares matrix. PyTorchDIA finds the
kernel solution by optimizing a loss function using the
automatic differentiation in PyTorch, which brings a

4 https://github.com/thomasvrussell/sfft
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considerable gain in computing cost compared with that in
Bramich (2008). However, PyTorchDIA is incompatible with
kernel spatial variation and can only solve a constant kernel for
image subtraction. In addition to the efforts on kernel
determination, Hartung et al. (2012) successfully implemented
fast image convolution with a spatially varying kernel on
GPUs, which helps accelerate the subtraction after the
convolution kernel has been computed.

The strategy of SFFT is different from the methods
mentioned above: we present the least-squares question in
Fourier space. By Parseval’s theorem, a least-squares mini-
mization in real space is equivalent to a least-squares
minimization in the Fourier domain. Given that δ functions
have higher flexibility and can maintain simple forms after
Fourier transform, here we adopt the DBFs as the kernel basis
functions following Bramich (2008) and Miller et al. (2008).
Finally, SFFT allows for spatial variations across the field,
whether from PSF, photometric scaling, or sky background.
The following section will show how the calculations for image
subtraction can be reduced to be FFTs and element-wise matrix
operations.

2.2. Derivation of Subtraction

Given a reference image R and a science image S, PSF
homogenization is carried out by convolving R or S with a
spatially varying kernel Kx,y. Considering that the sky
background between the two epochs may change, we introduce
an additional term B to model the sky background difference
between the two images. The image subtraction problem can be
written in real space as the minimization of the difference
image D, defined as

= - - -

-
= - -

∬( ) ( ) ( ) ( )
( )

( ) ( )( ) ( ) ( )

D x y S x y dudvR x u y v K u v

B x y
S x y R K x y B x y

, , , ,

,
, , , , 1

x y,

where the input images R and S are images with dimensions
(N0, N1), and x and y are indices in the ranges of [0, N0− 1] and
[0, N1− 1], respectively. Note that the kernel Kx,y is spatially
variant, so the integral in the equation above, strictly speaking,
is not a convolution, such an integral is denoted by R#K. The
differential background map B is modeled as a polynomial
form following Alard & Lupton (1998), that is,

å=( ) ( )B x y b x y, , 2
pq

pq
p q

where the polynomial power indices p and q are in the range of
[0, DB] and [0, DB− p], respectively. We follow Miller et al.
(2008) and Hartung et al. (2012) to decompose the kernel Kx,y

into the shape-free δ-function basis . The kernel dimension is
assumed to be (L0, L1), with L0 and L1 being odd integers, such
that L0= 2w0+ 1 and L1= 2w1+ 1. We assume

d= = 


( ) ( ) ( ) ( )u v u v u v, , , , 300 00

and

d a b d

= -

= - - -

ab ab  
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( ) ( ) ( )

u v u v u v
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, , , 4
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where d a b= - -ab


( ) ( )u v u v, , is the standard Cartesian
orthonormal basis, which consists of δ functions at each kernel

pixel, α and β are indices in the range of [−w0, w0+ 1) and
[−w1, w1+ 1), respectively, u and v are kernel coordinate
indices in the range of [−w0, w0+ 1) and [−w1, w1+ 1),
respectively, and d


is a binary function on integers d r =


( ), 1

if ρ= ò= 0, otherwise d r =


( ), 0 with ρ and ò being any
integers. With such a construction, the sum of the convolution
kernel is uniquely determined by the coefficient of the basis
vector 00, which simplifies the way we control the
photometric scaling through convolution.
The spatial variation of the kernel can be fitted by the sum of

the kernel function given above, modulated by a two-
dimensional polynomial function to account for their varying
contributions across the image field,

å=
ab

ab ab ( )K A , 5x y xy,

å=ab ab  ( )A a x y , 6xy
ij

ij
i j

where the polynomial power indices i and j are in the range of
[0, DK] and [0, DK− i], respectively. The information on the
spatial variation of the kernel is encoded in the coefficients

abaij , which will be eventually solved by the subsequent linear
system during the minimization of the residuals. More
specifically, once abaij is known, we can calculate abAxy for
any given pixel coordinate (x, y) following Equation (6), and
further derive the certain kernel associated with the pixel via
the expansion on a δ-function basis by Equation (5).
Equations (2), (5), and (6) can be replaced by more complex

functions. The code we developed includes an option for using
B-splines to model the PSF and background level variations.
For the B-splines cases, the space-varying kernel Kx,y and
differential background B(x, y) are modeled as

å=
ab

ab ab ( )K A , 7x y xy,

å=ab ab  ( ) ( ) ( )A a B x B y , 8xy
ij

ij i k t j k t; , ; ,

and

å= ¢ ¢ ¢ ¢( ) ( ) ( ) ( )B x y b B x B y, , 9
pq

pq p k t q k t; , ; ,

where Bi k t; , and Bj k t; , ( ¢ ¢Bp k t; , and ¢ ¢Bq k t; , ) are B-spline basis
functions of degree k ( ¢k ) and knots t ( ¢t ). For simplicity, in this
paper we focus only on the performance with polynomial
models.
The pixel-to-pixel flux variations of the two images are

accounted for by the coefficients = å A a x yxy ij ij
i j

00 00 . If we
consider the flux level of the image pair to be well calibrated,
the constant flux scaling between images requires a constant
kernel integral, that is, = A axy00 0000. Note that a constant flux
scaling was first presented in Alard & Lupton (1998). Having a
constant photometric ratio across the entire field is optional in
our program. Like the method in Bramich et al. (2013), SFFT
allows for space-varying flux scaling with a polynomial form to
accommodate the effect of imperfect flat-field correction or
cirrus cloud attenuation. Note that the current SFFT does not
disentangle the polynomial degrees of spatial variations
accounting for the convolution kernel and the photometric
sensitivity.
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With the abbreviation T ρ ò(x, y)= x ρy ò and R ρ ò= T ρ òR,
where ρ and ò are any integers, Equation (1) is rewritten as

å

å

= -

-
ab

ab ab ( ) ( ) [ ( )]( )

( ) ( )

D x y S x y a T R x y

b T x y

, , ,

, . 10

ij
ij

ij

pq
pq

pq

The convolution kernel is typically very small in size, at such
scale its spatial variation is expected to be negligible locally.
An approximation (see Appendix A) can be made by moving
the polynomial functions describing the spatial variation
outside the integral in Equation (1). This leads to

å

å

= -

-
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ab ab ( ) ( ) ( )( )

( ) ( )
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and

å å= - -
ab

ab ab( ) ( ) ◦ ( )D x y S x y a R b T, , . 12
ij

ij
ij

pq
pq

pq

Note the notation ◦ in Equation (12) indicates circular
convolution and ab can be estimated to generate the
convoluted source image that best matches the PSF of the
reference image across the entire field.

The δ-function basis we have adopted for  as shown in
Equations (3) and (4) allows for a simple Fourier space
representation of the image difference procedure. In Fourier
space, Equation (12) becomes

å å= - -
ab

ab ab   ( )D S a R b T , 13
ij

ij
ij

pq
pq

pq

where the symbols with a hat denote the Fourier transform of the
images, =ab aba N N aij ij0 1 with N0 and N1 being the dimensional
of the images in x and y, respectively. The discrete Fourier
transform (DFT) of the basis function has the simple form

a b

a b

= - ¹
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1
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N
l
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m

0 1
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0 1

where = p-W eN
i N2

0
0 and = p-W eN

i N2
1

1, with i being the
unitary imaginary number.

Now we define = *G DD , where * stands for a complex
conjugate, and we find
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Our goal of optimal subtraction is to minimize the power of
the difference image in Fourier space, as given in
Equation (15). Let F=∑l,mG(l, m), the minimization in
Fourier space for image subtraction has a simple least-squares

solution given by ∇F= 0 where the gradients are calculated
with respect to all the parameters for image matching,

å

å

å

¶ ¶ = -

+

+

=

ab ab

ab
ab ab ab

ab

*

* *

*



 







 



 







{ [ ]

[( ) ( ) ]

[ ( ) ]}( )

( )

¯¯ ¯ ¯
¯¯

¯ ¯

¯¯
¯ ¯

¯¯
¯ ¯

F a S R

a R R

b R T l m

2

2

2 ,

0, 16

i j
lm

i j

ij
ij

ij i j

pq
pq

i j pq

R

R

R

å

å

å

¶ ¶ = -

+

+

=

ab
ab ab

*

* *

*

















{ [ ]

[( ) ( ) ]

[( ) ]}( )

( )

¯ ¯
¯ ¯

¯ ¯

¯ ¯

F b S T

a R T

b T T l m

2

2

2 ,

0. 17

pq
lm

pq

ij
ij

ij pq

pq
pq

pq pq

R

R

R

Equations (16) and (17) form a linear system with the array
elements shown in Equation (18).

ð18Þ

The elements of Equation (18) are given explicitly as
follows:

å=ab ab ab ab* *   { [ ( ) ( ) ]}( ) ( )¯¯ ¯ ¯
¯¯

¯ ¯A R R l m, , 19i j ij
lm

i j ijR
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¯¯
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¯ ¯D S R l m, , 23i j
lm

i jR

å= * { [ ]}( ) ( )¯ ¯
¯ ¯E S T l m, . 24pq
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These equations can be further simplified as shown in
Appendix B. Finally, the difference image D is calculated by
Equation (13) by applying the linear system solution
{...,aijab,...,bpq,...} of Equation (18). Given that the difference
image will possess correlated noise on the background, we
present a decorrelation process to whiten the background noise
in Appendix C.

3. Implementation of SFFT

We have presented the mathematical derivation of the SFFT
image difference algorithm in Section 2.2. In a nutshell, to
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calculate the difference image D from a pair of the reference
image (R) and science image (S), one can first search for the
optimal parameters {...,aijab,...,bpq,...} by minimizing the power of
the resulting difference image of R and S in Fourier space via the
linear system described in Equation (18). Subsequently, one needs
to apply the solution to match image R to image S following
Equation (13) and get the ultimate difference image D.

However, saturated sources with a significant nonlinear
response, casual cosmic rays and moving objects, bad CCD
pixels, optical ghosts, and even the variable objects and
transients themselves can severely affect the construction of
reliable convolution kernels. These objects can be seen as
distractions for image subtraction (hereafter referred to as
distraction sources), which are hardly modeled by the image
subtraction algorithm but are ubiquitous in real observations.
We further need to offer an effective channel to prevent the
distraction sources in R and S from contributing to the
parameter-solving process. One likely choice is to deweight
those trivial pixels, but it appears to be tricky to formulate the
weight assignment in Fourier space. Instead, we found that a
more straightforward approach by adequate image masking is
easier to implement and can perform well enough in our study.

In the current implementation of SFFT, image subtraction is
developed as a two-step process. First, make a masked version of
reference image R and science image S, denoted as R and S,
respectively. Second, solve the linear system in Equation (18)
using the masked image pair R and S, then apply the solution to
calculate the difference image D of the original image pair R and S
following Equation (13). The SFFT algorithm does not rely on
isolated stellar objects to construct PSF-matching kernels, thereby
performing equally well for the observations taken in crowded and
sparse fields. Our software provides two flavors for image
subtraction, crowded-flavor and sparse-flavor, to accommodate
the situations for both crowded and sparse fields. But the flavor
for crowded fields can also work for sparse fields, except the
results may be affected by the large number of noisy background
pixels that do not contribute to the construction of the convolution
kernel. The two flavors follow the same routine for image
subtraction and differ only in ways of masking the data.

3.1. Preprocessing for Crowded-flavor SFFT

Applying SFFT is straightforward for signal-dominated
crowded fields. Mostly, saturation is the predominant factor
in all distraction sources for crowded fields. The crowded-
flavor SFFT will automatically mask the pixels affected by the
saturated sources in the field and replace them with the
neighboring background. To further reduce image matching
errors, it is allowed to use a more elaborate customized mask
instead, e.g., to include the pixels affected by known variables
and transients in the field.

3.2. Preprocessing for Sparse-flavor SFFT

On the other hand, sparse-flavor SFFT is relatively more
sophisticated in image masking. We select a set of sources of
astronomical significance in the field and mask all other
irrelevant regions so that the selected objects can dominate the
parameter-solving process. It is reminiscent of the similar
strategy in HOTPANTS, which fits on the rectangle stamps (i.e.,
sub-stamps in HOTPANTS terminology) encompassing selected
astronomical objects. The analogous intention of both methods
is to restrict the calculation on a properly preselected set of

sources to eliminate the effect of distraction sources on the
solution of convolution kernels. In this scheme, the regions
masked by SFFT also include abundant background pixels.
This is a reasonable consideration under our framework. Pixel
uncertainty is not considered as weights in SFFT subtraction.
Accordingly, the overwhelming noise-dominated background
pixels are more likely to degrade the construction of accurate
PSF-matching kernels rather than to contribute to it (see the
same consideration in Kochanski et al. 1996).
In practice, the input image pair of sparse-flavor SFFT is

required to be sky subtracted. This requirement is to simplify
the image-masking process so that all the pixels enclosed in
masked regions can be replaced by a constant of zero. As a
result, the differential background term in the SFFT algorithm
becomes trivial as the background offset between the input
image pair has been minimized by sky subtraction. That is to
say, we pass on the function of matching differential
background, which was embedded in the numerical calcula-
tions of SFFT, to a customized sky subtraction as a preliminary
process. Fortunately, modeling sky background is usually
feasible in sparse fields (e.g., using an interpolation-based
method). Note this requirement is not a prerequisite for
crowded-flavor SFFT. This is because properly modeling sky
background can be tricky for crowded fields: the modeled sky
is more susceptible to being biased by the signal harboring in
the pixels misidentified as background (e.g., the outskirts of
nearby galaxies, see Akhlaghi & Ichikawa 2015).
We developed a morphological classifier to carry out the source

selection in sparse-flavor SFFT. The classifier was initially
proposed for PSFEx (Bertin 2011), which enables PSFEx to
select a subset of point sources for constructing the PSF model.
Given a photometry catalog generated by SEXTRACTOR (Bertin
& Arnouts 1996), one can draw a figure of instrumental
magnitudes (SEXTRACTOR catalog value MAG_AUTO) against
flux radius (SEXTRACTOR catalog value FLUX_RADIUS) for all
detected photometry objects. Generally, bright point sources tend
to stay around a nearly vertical straight line on this figure. PSFEx
leverages the statistical feature to select appropriate samples to
establish the PSF model. Although the goal of source selection for
sparse-flavor SFFT is not entirely aligned with that for PSFEx, it
inspired us to make the selection based on SEXTRACTOR
parameters and their statistical characters.
To demonstrate the source selection criterion in sparse-flavor

SFFT, we show an example of an individual DECam
(Honscheid & DePoy 2008) image in Figure 1. By contrast,
the SEXTRACTOR photometry catalog of this image is cross
matched with the Tractor catalog from the Legacy Survey
(Blum et al. 2016), which offers its own fitted morphological
types. As shown in Figure 1, the point sources and extended
sources form two conspicuous branches, which intersect at the
faint end but become well separated toward the bright side.
According to the Tractor types, the branch with a nearly
vertical orientation primarily comprises point-like sources with
the Tractor type PSF, while the extended sources with Tractor
types DEV, EXP, and REX are likely to be found in the other
branch that sprawls out horizontally. Moreover, the discrete
gray dots represent the objects that cannot be found in the
Tractor catalog, which are casual detections such as cosmic
rays. SFFT uses Hough transformation (Hough 1959) to
identify the straight line surrounded by the branch of point
sources. The figure is first pixelized by counting the number of
objects in each small grid. Hough transformation is applied so
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that we can search for the strongest line feature with vertical
orientation. The thin belt-like region around the detected
straight line with a fixed width is referred to as the point-source
belt. In SFFT, the parameter BeltHW describes the belt half-
width (default value is 0.2). With this terminology, it is easier
to describe the specific selection criteria.

For the source selection, sparse-flavor SFFT first generates a
SEXTRACTOR photometry catalog for reference image and the
science image, respectively. A source is selected if it lies in the
point-source belt or out of the point-source belt on the right
side for both images. The extended sources in the field are not
excluded, as SFFT can use both stars and galaxies to derive the
solution for the matching kernel. However, typical cosmic rays
and the faintest astronomical sources will be discarded. Given
that each pixel of the selected samples, whether bright or faint,
is equally weighted in SFFT, rejecting the noisiest subset
should be appropriate under our framework. Furthermore,
SEXTRACTOR has been configured to only output the objects
with the SEXTRACTOR catalog value FLAG of zero. Namely,
this guarantees that the saturated sources and blending objects
(relatively rare in sparse fields) are not in the selection.
Significant variable sources in the field should be further

rejected. SFFT cross matches the photometry catalogs of the
input image pair, then calculates the difference in instrumental
magnitude for each matched object. The outliers of the
distribution of magnitude difference indicating a violent change
in brightness will be discarded from the initial set of selection.
In SFFT, the outliers are identified by the threshold parameter
MAGD_THRESH (the default value is 0.12 mag). The
surviving selection set is applied to the image masking in
sparse-flavor SFFT. The rejection of an outlier is usually
sufficient enough for a successful image subtraction, but one is
also allowed to further refine the automatic selection by
removing the known but not recognized variables and
transients. Unlike HOTPANTS, SFFT does not enclose each
source of the selection within a fixed-sized rectangle stamp.

Instead, we employ the SEXTRACTORsegmentation map to
define the pixel domain of each selected source. Finally, the
pixels that are not in any pixel domain will be masked by a
constant of zero.

3.3. Implementation of SFFT Subtraction

The next step is to perform subtraction with the unmasked
and the masked image pairs, in the same way for the two
flavors. We implemented the subtraction algorithm in CUDA
following the mathematical reasoning in Section 2.2.
There are a few free parameters in this process. In Section 2.2,

the spatial variation of the convolution kernel was modeled as a
polynomial form of degree DK. Similarly, the differential
background is assumed to be a polynomial with degree DB. In
SFFT, the two free parameters correspond to KerPolyOrder and
BGPolyOrder, respectively. The default values of the two
parameters are 2. Another parameter that should be specified is
the pixel size of the convolution kernels. The default way is to
determine kernel size as seeing related, i.e., the kernel half-width
is calculated as KerHWRatio× FWHML, where the ratio
KerHWRatio is a free parameter of SFFT and FWHML is the
worst seeing of the input image pair. The last free parameter
ConstPhotRatio is boolean, which controls whether SFFT
subtraction is subject to a constant photometric ratio or not. The
default value of this parameter is True, which assumes the input
image pair has been well calibrated. Setting the parameter to
False means the photometric ratio will also become a
polynomial form of degree KerPolyOrder.

4. Examples of Image Subtraction with SFFT

We show examples of SFFT applied to observations from
five different telescopes. These data correspond to a diverse
range of characteristics. The technical specifications of the
instruments are given in Table 1. To test the two flavors of SFFT,
we use ZTF (Bellm et al. 2019), AST3-II (Yuan et al. 2014),

Figure 1. Morphological classifier in sparse-flavor SFFT demonstrated by an arbitrary DECam image of Legacy Survey (Blum et al. 2016). The classifier is based on
the photometric results of the image using SEXTRACTOR. The data points show the relationship between instrumental magnitude (SEXTRACTOR catalog value
MAG_AUTO) and flux radius (SEXTRACTOR catalog value FLUX_RADIUS) for the detected objects with SEXTRACTOR catalog value FLAG being zero. We also
group the data by the morphological types in the Tractor catalog of Legacy Survey (Blum et al. 2016) shown with different markers in the figure. The dashed black line
is detected by Hough transformation as the strongest straight line feature with vertical orientation. Two dotted lines are parallel to the dashed line with fixed separation
being 0.2 (SFFT parameter BeltHW), the region between that is referred to as the point-source belt.
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and TESS (Ricker et al. 2015) data as examples of crowded
fields. Also, the observations from DECam and TMTS with
abundant isolated stars are selected as representatives of
sparse fields.

The ZTF (Bellm et al. 2019) and AST3-II (Wang et al. 2017;
Yuan et al. 2014) data are images of the nearby galaxies M31
and the Large Magellanic Clouds (LMC), respectively. The two
wide-field survey telescopes have the same pixel sampling but
point to a different hemisphere. We additionally test SFFT with
TESS (Ricker et al. 2015) images with a vastly different pixel
scale of 21.0 arcsec pixel−1 where PSF is severely under-
sampled. All of these selected observations could be seen as
signal-dominated cases so that subtraction tests on them are
conducted by the crowded-flavor SFFT.

The DECam and TMTS data were acquired from extra-
galactic transient surveys (Mould et al. 2017; Zhang et al.
2020). The DECam data are from deep surveys with a large
number of isolated point sources and extended galaxies, while
the TMTS data are from a shallow nearby survey that recorded
plenty of point sources. TMTS has a larger pixel scale than
DECam, but its PSF is not under-sampled, unlike TESS. For
these observations, the observed stellar objects are generally

isolatedly distributed in the field, making it possible to apply
the source selection described in Section 3. We use sparse-
flavor SFFT for the subtraction tests on DECam and TMTS.
Throughout this section, SFFT always uses the default

configuration of the free parameters described in Section 3, which
are summarized in Table D1, even though the two sets of images
differ drastically. Detailed information on the test data used in this
section is presented in Table E1. In this context, we will highlight
the alias names of the test images in italics. All input image pairs
for image subtraction have been registrated by SWarp (Bertin
2010) with the LANCZOS3 resampling function. For the input
images of sparse-flavor SFFT, we have modeled and subtracted
their sky using SEXTRACTOR with a mesh size of 64× 64 pixels.

4.1. Crowded Fields

By design, SFFT does not require isolated sources to solve
the image matching. In crowded fields where few or no isolated
stars are present, SFFT can perform exceptionally well. The
ZTF test images are downloaded from ZTF Data Release 3,5

covering the nearby galaxy M31. Figures 2 and 3 show the
subtraction performance of both the SFFT and ZOGY method,

Table 1
Technical Specifications of the Instruments

Instrument Telescope Pixel Scale Field of View Field Property Comments
(m) (arcsec pixel−1) (deg2)

ZTF 1.2 1.0 47.0 Crowded M31
AST3-II 0.5 1.0 4.3 Crowded LMC
TESS 4 × 0.1 21.0 4 × 576.0 Crowded Space based
DECam 4.0 0.262 3.0 Sparse L
TMTS 4 × 0.4 1.86 4 × 4.5 Sparse CMOS detectors

Figure 2. Image subtraction performance of the ZTF test with observations
covering M31. The upper panel, from left to right, shows the input reference
image ZTF-REF and science image ZTF-SCI. The lower panel presents the
resulting difference image from SFFT (left) and ZOGY (right), where
the ZOGY difference is directly downloaded from ZTF Data Release 3. The
red dashed square marks the core region of M31.

Figure 3. Image subtraction performance of the ZTF test around the galaxy
center of M31. The panel descriptions are the same as those in Figure 2,
however, in a close-up view of the region enclosed by the red square in
Figure 2. In each panel, the solid black squares mark five field stars to be
checked in detail as shown in Figure 4.

5 https://www.ztf.caltech.edu/page/dr3
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with a wider view and a close-up view of the galaxy core,
respectively.

The difference image generated by SFFT is much cleaner
than that from the ZOGY approach, as indicated by the lower
panels of the two figures. One can also notice that the
difference image by the ZOGY method appears to have a bias
seemingly due to the photometric mismatch of image
subtraction. This guess is confirmed in Figure 4, which
illustrates an analysis of the flux residuals of five field stars
near the galaxy core. ZOGY subtraction uniformly remains
negative net flux for these samples, suggesting an improperly
estimated photometric ratio between the reference and science
images. By contrast, SFFT does not have the same problem.
Unlike ZOGY, the photometric ratio (a constant in our default
configuration, i.e., a0000) in SFFT is straightforwardly solved
from the linear system, rather than an extra value calculated by
some other photometric process.

Figures 5 and 6 show the SFFT subtraction performance on
LMC observations of the Antarctica telescope AST3-II and test
data from space-based TESS 30 minute cadence full frame
images (FFIs), respectively. A known variable star of RRAB
type is easily identified at the center of the image for both
cases. It illustrates how the flux variability can be effectively
captured by SFFT subtraction from the densely packed fields.

4.2. Sparse Fields

It is also essential to investigate the performance of SFFT
subtraction on the ordinary sparse sky fields that are more
common in extragalactic transient surveys. For comparison, we
additionally employed the widely used image subtraction
software HOTPANTS as a baseline method. As one of the
specific implementations of Alard & Lupton (1998), HOT-
PANTS adopts Gaussian basis functions to construct the
convolution kernel. In real space, the use of DBFs has been
shown to yield better performance than Gaussian basis
functions in terms of photometric accuracy (Albrow et al.
2009). Here we present the comparisons to HOTPANTS to
confirm that SFFT, though working in Fourier space, will still

inherit the advantage of DBFs compared with Gaussian basis
functions. The parameters of HOTPANTS used for this section
are listed in Table D2. Recall that sparse-flavor SFFT restricts
the calculations of convolution kernels on a preselected set of
sources, this source list used by SFFT will be shared by
HOTPANTS for the sake of fairness. Besides, both methods
always apply a consistent size of convolution kernels and use
the same degree of the polynomial of the spatial variation for
image subtraction. We selected 25 DECam observations with
the same pointing but with diverse seeing conditions from our
DECamERON survey (Mould et al. 2017) (see Table E1). With
the set of DECam images, we conduct two types of tests to
check the cleanness of the subtraction and photometric
accuracy, respectively.
For the subtraction cleanness test, we use the image DECam-

SREF as the shared reference, having the best seeing among all
of them. The remaining 23 images aliased by initial DECam-
OBS are regarded as science images in this test. Image
subtractions are performed for the sequence of science images
with a shared reference using sparse-flavor SFFT and
HOTPANTS, respectively. An example of the results of the
subtraction is shown in Figure 7 from the observation DECam-
OBS02f. For both methods, the calculations involved in
parameter-solving have been restricted to the same preselected
sources, and the minimization aims at optimal subtraction on
these sources as clean as possible. It is useful to give a close-up
view of the performance of the subtraction specifically for the
selection. For each image in Figure 7, we cut a small thumbnail
image around each selected source and combine the cutouts
into a grid to be a new synthetic image, as shown in Figure 8.
Note that the source selection, in this case, is more than 1100,
so we only exhibit a subset of size 64 from the bright end of the
complete set for clarity of display. One can notice that the most
conspicuous subtraction-induced artifacts have a dipole-like
pattern that is especially prominent for the bright sources. The
pattern can be found in both difference images, but is much less
profound in SFFT subtractions than in HOTPANTS subtrac-
tions. It is an expected improvement as the SFFT kernel
solution with DBFs allows more degrees of freedom than
HOTPANTS using Gaussian basis functions.
To further verify such an improvement is real in a statistical

sense, here we define a naive quantifiable metric to describe the
cleanness of the subtraction and show comparisons of the
performance with the test data. Note that the subtraction-
induced artifacts on difference images are usually detectable by
SEXTRACTOR like other real transient and variable objects.
Generally, a huge number of artifacts in transient surveys will
survive until an AI-based stamp classifier recognizes them.
This fact makes it possible to use a simple dichotomous metric
to describe the cleanness of the subtraction. A given source is
either clean-subtracted or not according to the existence of
SEXTRACTOR detection of its subtraction residuals. Now we
can investigate how the probability of clean subtraction for a
given set of sources is related to the employed image
subtraction method. For transient surveys, it is essential to
probe the performance of the subtraction over the galaxies in
the field, which are potential hosts of transient events. When a
transient emerges at a position very close to its host galaxy
core, the subtraction-induced artifacts from the galaxy can
severely hinder the discovery and photometric measurement of
the transient.

Figure 4. Analysis of flux residuals of the ZTF test. The second row and third
row show thumbnail images of the selected five samples from the SFFT
difference and ZOGY difference, respectively. From left to right, thumbnail
images are sorted by the sample labels shown in Figure 3. For each thumbnail
image, the flux integral along the y-axis can produce a flux curve as a function
of the index of the x-axis. These functions are shown in the first row, denoted
by red solid curves for ZOGY and black solid curves for SFFT. In each panel
of the first row, the two flux curves have been rescaled with the same factor for
the clarity of the display clarity. The green dashed line denoted the flux level of
constant zero.
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Figure 5. Image subtraction performance of the AST3-II test with observations of the LMC center. The figure, from left to right, shows the input reference image AST-
REF, science image AST-SCI, and the resulting difference image by SFFT. The red dashed square at the center of the image indicates a known RRAB variable TY Dor
(R.A. = 05:24:06.35 decl. = −69:25:11.0) from the VSX catalog (Watson et al. 2006). The vertical strip illustrates the detection readout sections with slightly
different gain values.

Figure 6. Performance of the image subtraction of the TESS test. The figure, from left to right, shows the input reference image TESS-REF, science image TESS-SCI,
and the resulting difference image by SFFT. The red dashed square at the center of the image indicates a known RRAB variable CV Scl (R.A. = 23:09:30.52
decl. = −35:47:16.9) from the VSX catalog (Watson et al. 2006).

Figure 7. Image subtraction performance of the DECam test from the
DECamERON survey. The upper panel shows the input reference image
DECam-SREFand science image DECam-OBS02f. The lower panel shows the
resulting difference image by SFFT (left) and HOTPANTS (right). The full field
of view of DECam is too large for display, so here we only present them in a
narrow view of a 3′ width.

Figure 8. Performance of the image subtraction of the DECam test on the
selected sources. The panels are arranged as in Figure 7 but show the
subtraction results on the set of preselected individual sources. Each panel
shows a synthetic image that combines thumbnail cutouts of 64 sources from
the original images. The presented samples are drawn from the brightest end of
the complete selection, and the thumbnails in the four panels are placed in order
of decreasing brightness.
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Our deep DECam observations in the test (3 deg2, down to
23.5 mag in the i band) have covered a vast number of galaxies
with various morphological types. It is interesting to calculate
the statistics of the probability of clean subtraction for those
sources identified as extended galaxies (i.e., Tractor morpho-
logical types DEV, EXP, and REX) in the Legacy Survey
(Blum et al. 2016). The check radius for searching subtraction-
induced artifacts using SEXTRACTOR is specified as 11 pixels
(∼2 times the median FWHM for DECam) from the galaxy
core. Figure 9 shows the rate of clean subtraction as a function
of the magnitude of the examined galaxy. As expected, the
brighter galaxies have a higher probability of leaving detectable
subtraction-induced artifacts. However, the SFFT method is
more likely to achieve clean subtraction than HOTPANTS.

For the photometric accuracy test, we use the image
DECam-PTAR as the PSF target, which has a median-level
seeing among all selected DECam observations. The remaining
23 images aliased by initial DECam-OBS are convolved to
achieve a homogeneous PSF using sparse-flavor SFFT and
HOTPANTS, respectively. We derive the light curves of the
field stars by conducting photometry on the sequence of
convolved images with a fixed aperture. The photometric
accuracy measured by the light curves can work as a metric to
assess the PSF-matching quality. We investigate the aperture
photometry of the point sources classified as Tractor morpho-
logical type PSF. Figure 10 shows the rms error of the derived
light curves as a function of the star brightness. As the
photometric uncertainty from SFFT is systematically lower
than that from HOTPANTS, especially at the bright end, the
improvement in PSF matching is again confirmed.

Figure 11 shows an example with TMTS data. The
subtraction artifacts generated by SFFT and HOTPANTS are
not identical. HOTPANTS produces relatively circular and
symmetric patterns, while SFFT shows more random residuals.
This obviously originates from the different base kernel
construction in SFFT and HOTPANTS. SFFT uses a δ-basis
kernel, which is more flexible, while HOTPANTS utilizes

Gaussian functions, which possess a higher intrinsic symmetry
about the kernel center.

5. Computational Performance of SFFT

The most remarkable feature of SFFT is that the image
subtraction in Fourier space can be efficiently parallelized in
GPU devices. With the simplification described in Appendix B,
we have reduced the computationally intensive kernel determi-
nation as DFTs and element-wise matrix operations, which are
exceptionally suitable for GPU graphic multiprocessors. This
section will show the excellent computing performance of the
SFFT algorithm in comparison with several existing image
subtraction methods, including HOTPANTS, ZOGY,6 and
PyTorchDIA.7 Note that the comparisons only focus on the
limited specific implementations of image subtraction algo-
rithms. One should not overinterpret the computing costs given
in this section to represent the best possible computational
performances of the general algorithms. Unless specified
otherwise, the parameters of the software used in this section
are listed in Tables D1–D4.
It is useful to demonstrate the computing performance of the

image subtraction methods by testing them with a variety of
data on different computational platforms. We select a set of
testing input data with diverse image sizes, seeing conditions,
and sky areas. The tests are performed on two computing
servers with different hardware configurations. One server
(denoted by I) is equipped with Intel(R) Xeon(R) CPU E5-
2630 (2.20 GHz) and one NVIDIA Tesla V100 GPU, while the
other server (denoted by II) has more advanced configurations
with AMD EPYC CPU 7542 and one NVIDIA Tesla A100
GPU. Note that the time spent on preprocessing steps can also
be considerable. We additionally record the computing cost of
the pre-subtraction procedures in our tests. In this section, we
conduct two types of tests using TMTS data and DECam data,
respectively.

Figure 9. Clean subtraction rate of galaxies measured from the DECam test.
The solid curves show a clean subtraction rate as a function of galaxy
magnitude for SFFT (blue) and HOTPANTS (red), with a magnitude bin width
of 0.4 mag. The panel insets show examples of the performance of the
subtraction for a bright galaxy. The first two panels of the insert show the
zoomed-in region around the galaxy from the reference image DECam-SREF
and the science image DECam-OBS18a, respectively. The last two panels give
the resulting difference image by SFFT and HOTPANTS. The yellow dashed
circle indicates the search region for subtraction-induced artifacts with a radius
of 11 pixels. The example represents typical cases when SFFT is able to
provide a clean subtraction but HOTPANTS failed.

Figure 10. Photometric accuracy measured from light curves of field stars for
DECam test. The light curve of each field star (classified as PSF in the Legacy
survey) is derived by force aperture photometry on the queue of the convolved
images (aliased with the initial DECam-OBS). The force photometry is carried
out by SEXTRACTOR with Gaussian optimal aperture 1.3462 × FWHMPTAR,
where FWHMPTAR is the FWHM of the specific CCD tile of DECam-PTAR.
The photometric uncertainty against star magnitude is shown as blue dots (for
SFFT) and red dots (for HOTPANTS). The solid curves denote the median level
of the rms in each magnitude bin with a width of 0.2 mag for SFFT (yellow)
and HOTPANTS (cyan), respectively.

6 https://github.com/pmvreeswijk/ZOGY
7 https://github.com/jah1994/PyTorchDIA
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To explore the relationship between the computing time and
input image size, we extract subimages of different sizes from
the original TMTS image pair (i.e., TMTS-REF and TMTS-
SCI). We then perform image subtractions for the trimmed
image pairs on the two servers using the four tested methods.
For SFFT, HOTPANTS, and PyTorchDIA, in order to test if
the computational cost is sensitive to the size of the
convolutional kernel, we run the image subtractions repeatedly
with a specified kernel size from 15–25 pixels in each run (six
runs in total).

Figure 12 shows the computing time on the preprocessing as
a function of input image size. In general, larger input images
consume more computing time on preprocessing. Among the
tested methods, ZOGY requires the longest preprocessing time.
For ZOGY, the preprocessing is composed mainly of fitting the
PSF models for input images and calculating their flux ratio as
well as the astrometric registration noises. The preprocessing
time of SFFT and HOTPANTS are comparable and much
shorter than that of ZOGY. For these two methods, the goal of
the pre-subtraction procedures is to select an optimal set of
sources for kernel determination. Like in Section 4.2, we have
forced HOTPANTS to use the preselected set given by SFFT
following Section 3.2. Note that SFFT further needs to perform
an image masking based on the preselected set while
HOTPANTS does not; that is why the preprocessing time of
SFFT is slightly longer than that of HOTPANTS. For
PyTorchDIA, the preprocessing only involves reading the
input FITS images. Thus, it can achieve theminimal

preprocessing time. We note that the robust loss function used
in PyTorchDIA is designed to be insensitive to the distraction
sources, as a result, no source selection or image masking is
involved in PyTorchDIA.
Figure 13 presents the computing time on the image

subtraction versus the input image size. Unsurprisingly, larger
images generally require more computing time for subtraction.
The computing speeds for HOTPANTS and ZOGY are broadly
comparable, with a typical cost of 40–90 s for 4K images. By
contrast, the GPU-powered method PyTorchDIA brings a
considerable speed-up. For the 4K images, the computing time
is around 30 and 10 s on servers I and II, respectively. Note that
PyTorchDIA only solves a spatially invariant kernel while
other tested methods can accommodate spatially varying PSF.
Remarkably, SFFT is almost an order of magnitude faster than
PyTorchDIA. For the 4K images, the computing time is close
to 4 and 1 s on servers I and II, respectively. As shown in
Figure 13, the subtraction speed of SFFT is less affected by the
kernel size compared to HOTPANTS and PyTorchDIA.
The second type of test aims to explore the computing

expense on a set of images with diverse seeing conditions
covering different sky areas. We randomly select 100 CCD
images from the 23 DECam observations aliased by the initial
DECam-OBS (see Table E1). Note that one DECam exposure
produces 62 CCD images, each with a size of 2046 × 4094
pixels. As shown in Table E1, the DECam data were obtained
under varying seeing conditions. Although the DECam
exposures listed in Table E1 have similar telescope pointing,

Figure 11. Performance of the image subtraction test using the TMTS images. The figure, from left to right, shows the input reference image TMTS−REF, science
image TMTS−SCI, and the resulting difference images by SFFT and HOTPANTS.

Figure 12. Computing time on preprocessing vs. the image size of the input data for different methods. The curves with different colors represent the measured time
spent on pre-subtraction procedures using different methods on server I (left) and server II (right). Note that each test using SFFT, HOTPANTS, or PyTorchDIA has
been repeated with a specified kernel size in each run. Given that the kernel size is irrelevant to preprocessing, we simply use the average time in the figure.
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the arbitrarily selected CCD images can, to some extent, cover
a variety of distributions of the observed stellar objects. In this
test, the selected 100 images are regarded as science images,
and we use the corresponding CCD images of DECam-SREF
as their reference images. We perform image subtractions for
the 100 image pairs on the two servers using the four tested
methods. Unlike the above test, we do not specify a given
kernel size but leave it to be automatically determined
according to the seeing condition. Table 2 summarizes the
time costs of preprocessing and image subtraction for the tested
DECam data set. The results are broadly consistent with the
first test. Again, SFFT shows a distinct advantage in the
subtraction speed over the other tested methods. Given the
image size, SFFT is the most stable method on subtraction
time, with a percentage variation ∼of 6% (the typical value is
20% for other methods).

We note that the software HOTPANTS also allows users to
perform image subtraction without a preselected source list. In
such an automatic mode, HOTPANTS will accomplish the
source selection using its built-in functions. One may wonder if
the automatic mode can be faster than the manual mode used in
this paper. Hence, we additionally perform the image
subtraction on the 100 image pairs using the automatic mode
HOTPANTS. As shown in Table 3, the total computing time
(preprocessing plus subtraction) for the two modes is very close
with the automatic mode having a slightly higher variation.

For the crowded fields, the computational cost of SFFT will
not rise to a level higher than the cost shown in this section. For
preprocessing, crowded-flavor SFFT involves much simpler
operations than sparse-flavor SFFT (see Section 3.1). On the
other hand, signal-dominated input images will not prolong the
computing time on image subtraction in Fourier space.

6. Limitations and Future Works

To get a clear picture of the current SFFT and find its
limitations, we summarize a variety of features from different
perspectives for SFFT and other existing image subtraction
methods, including PyTorchDIA, HOTPANTS, and ZOGY in
Table 4. Although a general algorithm (e.g., Alard & Lupton 1998)
can have multiple existing implementations, the scope of the
comparisons in Table 4 is restricted: we have only considered a
specific implementation for each algorithm. Some characteristics
of a specific implementation may not necessarily be the intrinsic
features of its underlying algorithm (see the note attached to
Table 4).
Although SFFT uses the state-of-the-art DBFs as kernel

basis functions, the current version does not contain an
effective mechanism to address the overfitting problem of
DBFs. In future work, we may try to incorporate existing
solutions into SFFT; see, e.g., Becker et al. (2012), Bramich
et al. (2016), and Masci et al. (2017). Moreover, unlike Alard
& Lupton (1998), Bramich (2008), and Hitchcock et al. (2021),
the kernel determination in SFFT is not weighted by pixel
noise, which may introduce a possible bias toward the brighter
pixels. It looks tricky to design a weighting scheme in Fourier
space. Note that some practical implementations, including

Figure 13. Computing time on image subtraction vs. the image size of input data for different methods. The curves with different colors represent the measured time
spent on subtraction using different methods on server I (left) and server II (right). For SFFT, HOTPANTS, and PyTorchDIA, the data points in the curves represent
the average time measured from the multiple runs, and the shaded areas indicate the corresponding 1σ standard deviation.

Table 2
Comparison of the Computing Time on Preprocessing and Subtraction Measured from the Tests on DECam Data Using Different Methods

Method Time Cost of Preprocessing (s) Time Cost of Subtraction (s)

Intel E5 AMD EPYC Intel E5 AMD EPY Tesla V100 Tesla A100
CPU CPU CPU CPU GPU GPU

SFFT 5.75 ± 0.26 3.35 ± 0.15 L L 1.61 ± 0.10 0.97 ± 0.06
PyTorchDIA 0.11 ± 0.01 0.16 ± 0.07 L L 15.87 ± 3.25 6.45 ± 1.36
HOTPANTS 4.37 ± 0.85 2.43 ± 0.39 26.39 ± 8.50 15.39 ± 3.49 L L
ZOGY 63.59 ± 6.42 42.28 ± 3.74 62.83 ± 9.16 41.01 ± 5.25 L L

Table 3
Comparison of the Total Computing Time Measured from the Tests on DECam

Data Using HOTPANTS in Two Modes

HOTPANTS Total Time Cost (s)

Mode Intel E5 AMD EPYC

Manual (this work) 30.76 ± 8.81 17.82 ± 3.62
Automatic 30.75 ± 10.54 17.71 ± 4.40
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HOTPANTS and Miller et al. (2008), also ignore the pixel
weights in kernel determination.

As discussed in Zackay et al. (2016), the approach proposed
by Alard & Lupton (1998) is not symmetric, i.e., changing the
convolution direction of image subtraction will generally result
in inconsistent difference images. Consequently, SFFT has
some limitations inherited from the nature of this kind. In
particular, when the direction matches an image to another one
with better seeing, the deconvolution effect makes its way into
the subtraction to amplify the noise and strengthen noise
correlation on the difference image. In many cases, one can
steer clear of the deconvolution effect by simply adjusting the
direction. However, this strategy is not a panacea; e.g., it may
be insufficient when the observations have elliptic-like PSF
with varying orientations (Zackay et al. 2016).

Another limitation of the current SFFT is related to the
computing cost of preprocessing. The image-masking scheme
of SFFT introduced in Section 3 provides a safe and generic
approach that has proved to be reliable through extensive tests
by multiple transient surveys. However, its computing cost
might become a potential hindrance for those projects that
pursues extremely rapid transient detection. Fortunately, there
is ample space for speed-up in a given survey program. One
can modify the SFFT code to design a particular image-
masking function for optimizing its overall computing expense.
For example, the SEXTRACTOR catalogs used for the source
selection can be provided by preceding modules (e.g.,
astrometric calibration) in the pipeline. When processing
time-series data taken from the same pointing, one can skip
the repeated photometry for the shared reference image to save

preprocessing time. One may also consider using a single
predefined mask (fixed or seeing related) for all images in the
time series. We note that PyTorchDIA can take very little
time on preprocessing as it designs a specific loss function
insensitive to outlying values, which provides an alternative to
suppress the impact from distraction sources amid the kernel
determination.
In the current implementations of SFFT, the subtraction has

two flavors that enable image masking in different ways.
However, there is no built-in discriminator for sparse fields and
crowded fields in SFFT. One may specify the adopted flavor
for each field to be processed. In future work, we may consider
developing a more unified way to conduct image masking
rather than dividing the observations into two subgroups.
Besides, the limited amount of memory of GPU devices can
constrain the applicability of the GPU-based SFFT to very
large images. To allow for large image cases, we have provided
a NumPy-based backend for SFFT without a GPU requirement.
This is also helpful for users who do not have GPU resources
available.

7. Summary and Conclusions

SFFT is a novel image subtraction algorithm formulated in
Fourier space. Like in the classic framework of Alard & Lupton
(1998), SFFT addresses the PSF discrepancy between two
images by convolution with pixelized kernels that are
decomposed into predefined basis functions. In our work, we
adopted the δ-function basis proposed by Miller et al. (2008)
for kernel flexibility and minimal hyper-parameters. SFFT

Table 4
Characteristics of SFFT Compared with Other Existing Image Subtraction Methods

Method Convolution Kernels Accommodate Spatial Variations

Gaussian-function δ-function Regularized Convolution Photometric Differential
Basis Basis Kernel Kernels Scale Factor Background

SFFT × ✓ × ✓ ✓ ✓

PyTorchDIA × ✓ × × × ✓

HOTPANTS ✓ × × ✓ × ✓

ZOGY L L L ✓ ✓ L

Method Kernel Determination

Require PSF Require Isolated Rely on Rectangle Weighting by Construct Least Symmetric to
Knowledge Objects Subareas Pixel Noise -squares Matrix Image Exchange

SFFT × × × × ✓ ×
PyTorchDIA × × × ✓ × ×
HOTPANTS × ✓ ✓ × ✓ ×
ZOGY ✓ ✓ ✓ L × ✓

Method Preprocessing before Subtraction Computing Performance of Subtraction

Stamp Selection PSF Calculate Implemented Built-in CPU Speed Sensitive
/Image Masking Modeling Flux Ratio for GPU Multithreading to Kernel Size

SFFT ✓ × × ✓ L ×
PyTorchDIA × × × ✓ L ✓

HOTPANTS ✓ × × × × ✓

ZOGY L ✓ ✓ × ✓ L

Note. For PyTorchDIA, the kernel regularization has been mentioned in Hitchcock et al. (2021) whereas no regularization has been implemented in the software
PyTorchDIA; For HOTPANTS, the kernel determination relies on a set of stamps encompassing isolated objects. Note that requiring isolated objects is not a feature
of the work in Alard & Lupton (1998). Moreover, pixel noise is not used in the matrix calculation in HOTPANTS though formulated in Alard & Lupton (1998); For
ZOGY, all the convolutions involved in image subtraction are determined by precalculated PSFs. Generally, constructions of the PSF models are based on a sample of
rectangle subimages (e.g., SExtractor VIGNETS) centered at isolated bright point sources.
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solves the least-squares problems of image subtraction in the
Fourier domain, and it allows for space-varying PSF,
photometric scaling, and sky background modeling across the
entire field of view. In particular, SFFT can reduce the
computationally intensive kernel determination to FFTs and
element-wise matrix operations. By leveraging CUDA-enabled
GPU acceleration, SFFT brings a great advancement in the
computational performance of astronomical image subtraction
with a speed-up of around one order of magnitude.

We demonstrated in this paper the power of our method on
real astronomical images taken by a variety of telescopes. We
show that SFFT can accommodate imaging data with diverse
characteristics, including sparse fields, crowded fields, and
under-sampled PSFs. The examples of SFFT for image
subtraction are presented in Section 4. We confirm that SFFT
yields a high quality of PSF matching when compared with the
widely used image subtraction software HOTPANTS using a
Gaussian kernel basis for models of the PSFs. A comprehen-
sive investigation of the computing performance of SFFT is
presented in Section 5. We find that SFFT is not only faster
compared to other existing image subtraction methods but is
also more stable and efficient.

We also explored the limitations of the current SFFT
implementation in Section 6. One prominent weakness of the
current SFFT is that the kernel solutions may suffer from the
overfitting problem due to the high degrees of freedom of DBFs.
A few approaches have been proposed to alleviate the overfitting
issue of DBFs, e.g., regularizing the kernel solutions (Becker et al.
2012). However, the DBFs employed by the current SFFT are un-
regularized. The regularization techniques will be included in
future works. In the meantime, proper image masking is required
in the current version of SFFT to identify the pixels that are not
correctly modeled by SFFT. In principle, SFFT also provides a
generic and robust function to perform preprocessing of the data,
which has been extensively tested with data from various transient
surveys. In contrast to the high speed of the image subtraction,
however, the computing performance of generic preprocessing is
less remarkable. Given a particular time-domain program, we
believe there is plenty of room for further optimization of the
computing expense on the preprocessing.

We conclude that SFFT has the potential to be the optimal
image subtraction engine for future time-domain surveys with
massive data flows that require differential image subtractions
for transient detection and precision differential photometry.
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Appendix A
The Approximation in SFFT

Here we will prove the approximation applied to
Equation (10). Given any image R and a kernel Q, where Q
has a much smaller size than R as it is in most astronomical
applications.
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Note that the indices of kernel Q are modified with the origin
at its center pixel, and the subscript p is employed to indicate
the periodic extension.
For r and s, (r− c, s− d) is a vector within the image frame

and (r− c, s− d)≈ (r, s) for nearly all possible c and d.

å å

å å

= - -

» - -

- - =

r

r

=-

¢

=-

¢

=-

¢

=-

¢





( ) ( )[ ( )]

( )[( ) ( )

( )] ( )
( )

r s Q c d r s R r c s d

Q c d r c s d

R r c s d r s

LHS , , ,

,

, RHS , .
A4

c w

w

d w

w

c w

w

d w

w

0

0

1

1

0

0

1

1

For the particular case ρ= ò= 0, it becomes a rigorous
equation rather than an approximation.

Appendix B
Calculation Simplification

The δ-function basis facilitates further simplifications.
Equation (19) will be re-expressed as
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Equation (21) is written as
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Equation (22) turns out to be
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Likewise, Equation (23) becomes
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Equation (24) on the RHS becomes
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Now Equations (19)–(24) have been converted to
Equations (B1), (B3), (B5), (B7), (B9), and (B11). These
equations used to establish the linear system are mainly
comprised of DFTs and element-wise matrix operations, which
allows for highly efficient parallel computations on a GPU
architecture.

Appendix C
Noise Decorrelation

Like in other subtraction methods emanated from Alard &
Lupton (1998), SFFT will introduce correlated errors on the
difference image through the convolution process. For the cross-
convolution approach, Zackay et al. (2016) have proved that one
can whiten the difference image by one convolution with a
decorrelation kernel. Later, Reiss & Lupton (2016) presented a
noise decorrelation strategy for image subtraction under the
framework of Alard & Lupton (1998). Here we extend this to a
more general case. That is, the subtraction can be performed with
images constructed from the average or median co-addition of
individual observations, and the original images are preprocessed
by convolutions to match their PSFs before the co-additions.
The following derivation does not consider the spatial variation

of convolution kernels across the field of view. However, it is
appropriate to perform the operation by splitting the images into
smaller segments to minimize the effect of PSF variation on
correlated background noise. Likewise, the spatial variation of the
background map for the input images is not considered. Note that a
constant map has nothing to do with the noise correlation.
Therefore, it is appropriate to assume that all the input images have
zero mean background in our derivation. Note that noise
correlation caused by resampling for image alignment and
drizzling is not considered here, as such operations cannot be
simplified as convolution, and it is not easy to formulate how these
procedures affect the statistical properties of the noise. Finally, we
assume that the noise of the original images before convolution to
be uncorrelated Poisson noise.
GivenM science images s~ ( )S 0,j S

2
j
with j being integers

from 0, M− 1, and reference images s~ ( )R 0,i R
2
i

with i
being integers from 0, N− 1, respectively. We consider the
generic case of subsequent average or median co-additions to
produce the stacked science and reference images. The image
subtraction employed to obtain the final difference image D is
given by
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For simplicity, the convolution kernels Gj and Hi for PSF
homogenization are divided by a number of science (Sj) and
reference (Ri) images M and N, respectively. Assuming that a
decorrelation kernel Q exists that can whiten the noise of D, we
can calculate Q using the equation = D QD , where
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The covariance matrix of D in Fourier space can be written as
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where Lx and Ly are the image dimensions in the x and y directions,
respectively, and p and q are the pixel indices of the image frame.
The Fourier transform of the decorrelation kernel Q can be

derived by setting q= p,
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The final solution to Q should be conjugate symmetric to
ensure its inverse Fourier transformation to be real. Here we
consider the most straightforward solution with Q being a real
function only, that is
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Note sD is the desired noise of the decorrelated difference
image. In principle, it should be set to be as close as possible to
the true background in regions free of astronomical objects. In
practice, this normalization can also be set by requiring the
decorrelation procedure to preserve the flux zero-point of the
images. In the latter case, SFFT simply normalizes the
decorrelation kernel Q to have a unit kernel sum.

There is a major difference between SFFT and ZOGY for noise
decorrelation, although they share the same statistical principles.
In ZOGY, convolution kernels for co-addition and subtraction are
tied to the PSFs of the images. SFFT does not need to model the
PSFs for the images Sj and Ri for the noise decorrelation process.
Only the match kernelsGj,Hi, andK are needed for SFFT. This can
be even more convenient for images with simple co-additions of
original observations without matching the PSFs, such as
observations taken under stable seeing conditions, only the
matching kernel K is needed for SFFT, and no PSF construction
is necessary.

We select 10 DECam images from Table E1 to test the
performance of noise decorrelation. The generic case of image
subtraction follows Equation (C1), with {R0, R1, R2, R3,
R4}= {DECam-OBS18a, DECam-OBS18b, DECam-OBS18c,
DECam-OBS18d, DECam-OBS18e} being the individual refer-
ence images, and {S0, S1, S2, S3, S4}= {DECam-OBS04a,
DECam-OBS04b, DECam-OBS04c, DECam-OBS04d, DECam-
OBS04e} being the individual science images. All the images
have been astronomically aligned to S0 by SWarp. We create the
stacked reference image by median co-addition of the five
individual reference images with PSF-homogenization matching
to R0. Similarly, the stacked science image is the median coadd of
the five individual science images after matching their PSFs to S0.
The final subtraction is performed between the stacked reference
and stacked science image. Noise decorrelation for the difference
image is conducted by convolving the decorrelation kernel
calculated by Equation (C4). As the spatial variation has been
ignored, here, the example only focuses on a small area around the
supernova candidate AT 2018fjd discovered in the DECamERON
survey (Hu et al. 2018).
We trace the background pixel correlation along with the coadd

and subtraction processes, as shown in Figure 14. Note that image
alignment can also introduce pixel correlation via a localized
resampling function (LANCZOS3 function of SWarp in this
case). One can notice that the pixel correlation in the resampled
image R0 is already slightly higher than the un-resampled image
S0. The correlation is increased drastically in coadded images as
multiple convolutions for PSF homogenization come into play in
this process. It becomes even stronger after the final subtraction.
Nevertheless, our decorrelation scenario can effectively reduce the
noise correlation on the final difference image to a quite low level
comparable with that of a resampled individual image R0.

Figure 14. Noise decorrelation test with DECam data. The upper panels show the zoomed-in region of SN candidate AT 2018fjd (R.A. = 21:12:25.980
decl. = −66:00:56.50) discovered by DECamERON (Mould et al. 2017; Hu et al. 2018). R0 (S0) is from individual observations DECam-OBS18a (DECam-OBS04a).
R (S) is the stacked reference (science) image. The subtraction between R and S results in the difference image D, and Ddc is the decorrelated difference image. The
black dashed boxes (41 × 41 pixels) are selected on the background region in the vicinity of AT 2018fjd. The lower panel shows the corresponding covariance matrix
measured from the boxes. To probe the local correlation of background pixels, we constructed a multivariate random variable X for the flux of adjacent pixels with
fixed positional relationship, where X= (X(0,0), X(1,0), X(−1,0), X(0,1), X(0,−1), X(1,1), X(1,−1), X(−1,1), X(−1,−1), X(2,0), X(−2,0), X(0,2), X(0,−2), X(3,0), X(−3,0), X(0,3), X(0,−3),
X(4,0), X(−4,0), X(0,4), X(0,−4), X(5,0), X(−5,0), X(0,5), X(0,−5)). Note the subscripts represent the relative pixel locations with respect to the first element. Only the pixels
within the boxes are allowed to be involved in the random vector. The covariance matrix is calculated by exhausting all possible realizations of X.

16

The Astrophysical Journal, 936:157 (19pp), 2022 September 10 Hu et al.



Appendix D
Software Parameters

Here we show the default parameters of the softwares used in
this paper in Tables D1–D4.

Table D2
HOTPANTS Parameters

Parameter Value Note

r 2 × FWHML Convolution kernel half-width (pixel)
rss 6 × FWHML Sub-stamp half-width (pixel)
nsx NX/200 Image segmentation of stamps (x-axis)
nsy NY/200 Image segmentation of stamps (y-axis)
ko 2 Spatial order of kernel variation
bgo 2 Spatial order of background variation
tu Saturation recorded in reference header Upper valid flux of the reference image
tl sky(reference)-10×skysigma(reference) Lower valid flux of the reference image
iu Saturation recorded in science header Upper valid flux of the science image
il sky(science) − 10 × skysigma(science) Lower valid flux of the science image

Note. FWHML is the worst seeing measured from the input image pair. Note the ratio of 2 in parameter r is consistent with the default configuration of SFFT
(see KerHWRatio). The parameters ko and bgo are equivalent to SFFT parameters KerPolyOrder and BGPolyOrder, respectively. The symbols NX and NY indicate
the image size along the x-axis and y-axis, respectively. Sky and skysigma describe the sky background measured by the MMM algorithm. The HOTPANTS
configurations here largely refer to those in the iPTF image subtraction pipeline (Cao et al. 2016).

Table D1
SFFT Parameters

Parameter Value Note Comment

BeltHW 0.2 Half-width of the point-source belt Only for sparse flavor
MAGD_THRESH 0.12 Outlier threshold to reject variable sources (mag) Only for sparse flavor
KerPolyOrder 2 Spatial order of kernel variation L
BGPolyOrder 2 Spatial order of background variation L
KerHWRatio 2 The ratio between seeing and convolution kernel half-width L
ConstPhotRatio True Constant photometric ratio between reference and science L

Table D3
ZOGY Parameters

Parameter Value Note

subimage_size 256 Size of subimages (pixel)
subimage_border 32 Border around subimage to avoid edge effects

(pixel)
fratio_local F Flux ratio from subimage (T) or full frame (F)
psf_poldeg 2 Polynomial degree for PSF spatial variation
size_vignet 49 Size of the SExtractor VIGNETS for PSF

construction
nthreads 32 Number for CPU multithreading

Table D4
PyTorchDIA Parameters

Parameter Value Note

loss_fn robust Loss function (robust or Gaussian)
flat 1 Initialization value of the convolution

kernel
ks 4 × FWHML + 1 Kernel size
poly_degree 2 Degree of the polynomial for the back-

ground fit

Note. FWHML is the worst seeing measured from the input image pair.
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Appendix E
Specifications of the Test Data

Here we show the specifications of the test data used in this
paper in Table E1.
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Table E1
Specifications of the Test Data

Instrument Alias File File Name Exposure Time FWHM 5σ Lim. Mag
(s) (arcsec) (mag)

ZTF ZTF-REF ztf_001735_zg_c01_q2_refimg 1200 2.02 22.89
ZTF ZTF-SCI ztf_20180705481609_001735_zg_c01_o_q2_sciimg 30 1.80 20.68
AST3-II AST-REF a0331.94 60 2.41 L
AST3-II AST-SCI a0405.162 60 2.96 L
TESS TESS-REF tess2018258205941-s0002-1-1-0121-s_ffic.001 1440 36.95 L
TESS TESS-SCI tess2018258225941-s0002-1-1-0121-s_ffic.001 1440 36.89 L
DECam DECam-SREF c4d_180806_052738_ooi_i_v1 330 0.85 24.35
DECam DECam-PTAR c4d_150821_001224_ooi_i_v1 330 1.40 22.73
DECam DECam-OBS18a c4d_160818_043331_ooi_i_v1 330 1.04 23.28
DECam DECam-OBS18b c4d_160818_020339_ooi_i_v1 330 1.07 23.35
DECam DECam-OBS18c c4d_160818_030325_ooi_i_v1 330 0.96 23.45
DECam DECam-OBS18d c4d_160818_053313_ooi_i_v1 330 1.12 23.09
DECam DECam-OBS18e c4d_160818_065148_ooi_i_v1 330 1.01 23.32
DECam DECam-OBS02a c4d_180802_052807_ooi_i_v1 330 1.38 23.40
DECam DECam-OBS02b c4d_180802_055800_ooi_i_v1 330 1.31 23.55
DECam DECam-OBS02c c4d_180802_062754_ooi_i_v1 330 1.22 23.60
DECam DECam-OBS02d c4d_180802_065746_ooi_i_v1 330 1.41 23.33
DECam DECam-OBS02e c4d_180802_072740_ooi_i_v1 330 1.21 23.58
DECam DECam-OBS02f c4d_180802_075732_ooi_i_v1 330 1.29 23.62
DECam DECam-OBS02g c4d_180802_085719_ooi_i_v1 330 1.24 23.55
DECam DECam-OBS02h c4d_180802_092739_ooi_i_v1 330 1.35 23.42
DECam DECam-OBS04a c4d_180804_092331_ooi_i_v1 330 1.41 23.50
DECam DECam-OBS04b c4d_180804_052409_ooi_i_v1 330 1.37 23.62
DECam DECam-OBS04c c4d_180804_055402_ooi_i_v1 330 1.57 23.43
DECam DECam-OBS04d c4d_180804_075344_ooi_i_v1 330 1.36 23.61
DECam DECam-OBS04e c4d_180804_082338_ooi_i_v1 330 1.10 23.89
DECam DECam-OBS04f c4d_180804_045412_ooi_i_v1 330 1.46 23.45
DECam DECam-OBS04g c4d_180804_062356_ooi_i_v1 330 1.68 23.35
DECam DECam-OBS04h c4d_180804_065350_ooi_i_v1 330 1.45 23.58
DECam DECam-OBS04i c4d_180804_072342_ooi_i_v1 330 1.66 23.22
DECam DECam-OBS04j c4d_180804_085332_ooi_i_v1 330 1.40 23.51
TMTS TMTS-REF f20191103_1_NT0023_L_1965_1970 60 6.45 L
TMTS TMTS-SCI f20191028_1_NT0023_L_755_760 60 7.46 L

Note. ZTF-REF, directly retrieved from ZTF Data Release 3, is coadded from 40 individual observations as a deep reference. TESS-REF and TESS-SCI are FFIs
recorded at a 30 minute cadence, with an effective integration time of 1440 s. TMTS-REF (TMTS-SCI) is the median stacked from six consecutive observations, each
of which has an exposure time of 10 s. Other images in the table are single-exposure observations. Each DECam exposure is comprised of 62 CCD images, the
FWHM, and the limiting magnitude for each exposure in the table shows the median measurement over all CCD tiles.
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