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ABSTRACT ARTICLE HISTORY
In engineering practice, many products exhibit multiple and dependent degrading performance character- Received August 2022
istics (PCs). It is common to observe that these PCs' initial measurements are nonconstant and sometimes Accepted July 2023
correlated with the subsequent degradation rate, which typically varies from one unit to another. To KEYWORDS

accommodate the unit-wise heterogeneity, PC-wise dependency, and “initiation-growth” correlation, this
article proposes a broad class of multi-dimensional degradation models under a framework of hierarchical
multivariate Wiener processes. These models incorporate dual multi-normally distributed random effects
concerning the initial values and degradation rates. To infer model parameters, expectation-maximization
(EM) algorithms and several tools for model validation and selection are developed. Various simulation
studies are carried out to assess the performance of the inference method and to compare different models.
Two case studies are conducted to demonstrate the applicability of the proposed methodology. The online
supplementary materials of this article contain derivations of EM estimators, additional numerical results,
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and R codes.

1. Introduction
1.1. Background

Degradation is a major cause of failure for many highly reli-
able consumer products and industrial systems, including inkjet
printer heads (Weaver et al. 2013), Micro-ElectroMechanical
Systems (Peng, Feng, and Coit 2009), and pipeline circuits (Tian,
Liu, and Meeker 2019), among others. The overall quality of such
products or systems is often evaluated using multiple degrading
performance characteristics (PCs), and the stochastic nature of
these degradation processes typically results in strongly cor-
related PCs. For instance, Si et al. (2018) introduced a three-
dimensional deformation process leading to plate failure due to
cracks on three local points. Gu et al. (2009) presented a multi-
dimensional photodegradation process in polymeric materials.
Meanwhile, an eye-catching observation of some degradation
processes shows that the initial performance level is random; and
this variability may be caused by unavoidable manufacturing
defects or some unknown usage, such as burn-in screening
(Shen et al. 2019). In addition, another interesting phenomenon
is that the initial observations are sometimes correlated with
the subsequent degradation rate. This type of correlation can be
referred to as the “initiation-growth” correlation. For example,
Ye, Hu, and Yu (2019) described infrared sensors where a unit
with a higher initial noise level (i.e., the value of a PC) tends to
possess a higher degradation rate. Therefore, to account for (a)
the unit-wise heterogeneity, (b) the PC-wise dependency, and

perhaps (c) the initiation-growth correlation, a class of flexible
multivariate degradation models is much desired. The example
below further elaborates on these concerns and motivates our
study.

1.2. A Motivating Example

A transceiver is a device that transmits and receives different
signals and is widely used in fiber-optic systems. Affected by its
operational environment, one of this product’s important per-
formance metrics, Receiver (Rx) Sensitivity, gradually degrades
over time. This metric is defined as the minimum signal optical
power level required at the receiver to achieve a certain Bit
Error Ratio (BER) level. Figure 1 shows an experimental result of
nine samples that underwent a degradation test. Each specimen
was tested by capturing two types of light signals with different
wavelengths, referred to as two separate channels. The Rx Sensi-
tivity to these two channels is measured in decibels (dB) relative
to the product design specification. Hence, each unit has two
performance measurements, denoted as PC1 and PC2.

From Figure 1, diverse degradation paths can be observed
among these samples, and the orderings of these paths are
relatively consistent for the two PCs. They suggest unit-to-unit
variation and process dependency. Moreover, the initial status
of these samples doesn't hold at a constant level. This vari-
ability may result from unavoidable manufacturing variation or
nonuniform raw materials. Then, the following questions would
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Figure 1. Degradation paths of transceivers.

naturally arise: Is there a proper model that can account for
the unit-to-unit variation, process dependency, and randomness
of the initial observations? Do the initial observations provide
some partial information about the subsequent degradation
rates? To address these inquiries, this article proposes a class of
multivariate Wiener process-based degradation models.

1.3. Related Literature

The literature on degradation modeling is extensive, so this
section only highlights a few select articles relevant to this article.
For a univariate degradation process, a natural choice is to
apply regression analysis such that the degradation measure and
the measurement time are treated as a response variable and
a regressor, respectively. This modeling technique, known as
the general path model, has gained much attention since the
early 1990s (Lu and Meeker 1993). Built upon the basic struc-
ture, some model variants addressing additional complexities,
including the unit-to-unit variation (Bae and Kvam 2004; Fang,
Rigdon, and Pan 2018) and multi-phase degradation (Bae et al.
2015; Wen, Wu, and Yuan 2017), have been developed. Another
approach is to view the degradation path as a result of an
accumulation of infinitesimal segments, leading to the stochastic
process model. It emcompasses three commonly used ones—
the Wiener process (Wang 2010; Hong, Tan, and Ye 2020), the
gamma process (Lawless and Crowder 2004; Ye et al. 2014), and
the inverse Gaussian process (Ye and Chen 2014; Peng 2015). For
a detailed comparison of these models, readers are referred to Ye
and Xie (2015), Zhang et al. (2018), and Kang, Gong, and Chen
(2020).

When extending to multi-dimensional scenarios, a key con-
sideration is how to account for the dependency between dif-
ferent PCs. One research stream in the literature is the copula-
based approach, which builds the dependency between degrada-
tion increments of two/several PCs through a particular copula

function. Some developments in this regard can be found in
the articles by Fang and Pan (2021), Sun et al. (2020a), Fang,
Pan, and Hong (2020), Palayangoda and Ng (2021), and Hu
et al. (2021). Even though this approach is flexible to cover
many types of tail dependency, it often suffers from missing
clear physical interpretations and lacking desirable mathemat-
ical properties (Hong, Zhang, and Meeker 2018b). An alterna-
tive is to build multi-dimensional distributions by extending
the aforementioned univariate models. For instance, Si et al.
(2018) and Lu et al. (2021) constructed multivariate general path
models to analyze the material deformation and the photodegra-
dation process, respectively. Hong, Ye, and Ling (2018a) used
a two-dimensional Wiener process to analyze the degradation
behavior of different emerging contaminants. Sun, Ye, and Hong
(2020b) further developed a multivariate Wiener process that
could account for both the rig-layer and gauge-layer block effect,
and Wang et al. (2020) proposed a similar model to analyze
the impact of time-variant covariates and imperfect preventative
maintenance actions. Under a multi-dimensional Wiener pro-
cess framework, Hao et al. (2017) designed a Bayesian method
to dynamically update the remaining useful life distribution
of multistage manufacturing processes with the interaction
between tool wear and production quality degradation. More
recently, Song and Cui (2022) proposed a bivariate gamma
process with a common random effect for remaining useful life
prediction, and Yan, Wang, and Ma (2022) made use of the sim-
ilar idea of assigning a common random-effects term to several
Wiener processes. Zhai and Ye (2023) introduced a common
stochastic time scale to model the dependence from the dynamic
operating environment. Fang, Pan, and Wang (2022) built a
multivariate inverse Gaussian process with correlated random
effects.

Despite these previous studies, to the best of our knowledge,
there is still a dearth of discussion on the multivariate degra-
dation models that can jointly capture the three aspects of the
variability described earlier, namely the unit-wise heterogeneity,



the PC-wise dependency, and the initiation-growth correlation.
To fill the gap, in this article, we introduce a class of hierarchical
multivariate Wiener process models that can be applied to a
broad range of practical scenarios. The proposed methodology
provides a significant enhancement to the existing family of
multivariate degradation models.

1.4. Overview

The remainder of this article is organized as follows. Section 2.1
presents the formulation of the proposed multivariate Wiener
process model, which incorporates structured and correlated
random effects. Built upon this model, a number of theoretically
tractable results (See Sections 2.2 and 2.3) are produced. They
greatly facilitate model fitting and validation/selection (See Sec-
tion 3). By simulation studies (See Section 4) and case studies
(See Section 5), the effectiveness and flexibility of the proposed
methodology are demonstrated. Finally, Section 6 concludes this
article with a summary and discussion of the future study.

2. A Hierarchical Multivariate Wiener Process Model
2.1. Model Formulation

Let Yjj(t) denote the degradation measurement of process j,
j=12,...,p,onuniti, i = 1,2,...,n, at the elapsed time
t, t > 0. It is assumed that the evolution of Yj;(t) is subject
to a Wiener process with a random initial value Y;;(0) and a
drift rate b;;. Meanwhile, the multiple degradation processes cor-
responding to a unit’s multiple PCs are statistically dependent.
By letting Y;(t) = (Yil(t), Yin(D),..., Yip(t))/ be the vector of
all process observations, the following hierarchical multivariate
Wiener process model is proposed:

Yi(t) = Yi(0) + thi + D'/*B, (1)
(Yi(0),b) ~ MVN (1, %)

where Y;(0) = (Yi1(0),Y(0),...,Y;(0) and b; =
(bir, bizs . . ., bip)/ are the vector of the ith unit’s initial degrada-
tion values and rates, respectively. The stochastic process B, (t)
is a p-dimensional standard Brownian motion and D is a diag-
onal matrix with the form D = diag (012, 0. .., sz), where
oj > 0 is the diffusion parameter. The joint vector (Y;(0)’, b))’
is assumed to follow a multivariate normal (MVN) distribution
with the mean vector p and the variance-covariance matrix X.
B, (1) is regarded independently from both Y;(0) and b;. A more
concise model form, which is referred to as model My, is given

by
Yi(0| (Yi(0), ) ~ MVN (Yi(0) + tb;, tD)

Mo: 3 ( Yi(0) Ra o Za |
(7)o ([ L2 %)
where p is decomposed into two parts - pu, =
(,U«ab MHa2s---» Mup)/ and my = (H’bl’ Mb2s---> ,lpr)/ - with

respect to Y;(0) and b;, respectively. Correspondingly, X,
and X, are the variance-covariance matrices for Y;(0) and
bj, respectively. By symmetry, X, = X, and they are the
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cross-covariance matrices between Y;(0) and b;. Specifically,
¥, Xy, and X, are defined as

2 a a
a1 ‘7122 O1p
a a
5 012 % %2
a = . . >
a a 2
O'lp Uzp DY O’ap
2 b b
crl;Jl 07y C’lgv
2
5 o1 Opy O2p 4
b= . > an
b b 2
%p 9 %bp
ab ab ab
O"l b o'lzb PR O"lp
a a ab
Oy O3 0 Oy
Eub =
ab ab . ab
%1 %p2 %

In these matrices, 0, and oy; are the standard deviation of Y;;(0)
and bj;, respectively. The covariances of the initial degradation
value and the rate, between the jthand /thPC,V1 <j < j < p,
i a — 5l b — 0500 i
are given by 0y = Pjy0aj0af and 0y = Py a.b]ab]/, respectively.
The covariance between Y;j(0) and by, Vj = 1,2,...,p, is
ot
J
bip, V1 <j#j <p,is 0}?? = p]j“.f’aujabj/. Each of these Pearson

= p]f‘boajahj and the cross-covariance between Y;;(0) and

correlation coeflicients — pj‘;.,, p?,, p]f‘b, and ,oj?,b - is within the
range of [—1, 1]. Note that X, is generally a dense matrix, but
it can be reduced to a sparse one if most or even all elements in
X are 0’s, such as a null matrix or a diagonal matrix. These
circumstances correspond to the special model variants to
be discussed later. In this article, we denote all the unknown
parameters by a vector 0 = (p,, p},, 02, p,.02,p}.0 .67,

2 2 2 2
Where aa = (O'al)o'aZ)-~~aUap)/a pa = (p{f2$ Pilg,)- -~)10;)1—1,p)/)
2 (52 52 2y — (oh b by —
oy, = (abl,abz,...,abp) , Py = (:012’/’13>--~’:0p—1,p) Py =
b b b b b b b b b /
(P15 035+ Pp > P> P13> - 5 Pp 190 PR P3T> -5 Ppp 1)
and 0?2 = (012,02,...,0;)/ . In short, an abbreviated

representation is § = {u,X,D} = {p, 1y, Xa> Xp> Xap, D}
For notational convenience, the preceding model assumes the
original time scale ¢, implying linear degradation paths. A more
general representation is A(f), a transformation function of ¢.
Choices for A (+) include the power law function and exponential
law function (Whitmore and Schenkelberg 1997). Later, we
will illustrate how to handle this time transformation. In the
case of positive degradation values and rates, a conventional
assumption of negligible nonpositive Y;;(0) and b;; is made (Lu
and Meeker 1993; Peng 2015).

Apparently, the proposed model creates a hierarchical struc-
ture for multiple Wiener processes, and this structure pro-
vides several meaningful interpretations. First, a well-defined
multivariate Wiener process with unit-to-unit variation is con-
structed. This unit-wise heterogeneity is engineered into the
model by incorporating the randomness of initial levels and
degradation rates. Conditioning on the random effects, the
property of mutually independent PCs is achieved. This nice
property would largely facilitate the characterization of lifetime
distribution and parameter estimation, as illustrated in later
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Table 1. Structure of random effects of model My and its various special variants.

Variation sources

Model Y;(0) b;
Yi(0) ” Ta  Zab

M ! ~ MVN a|, a

0 b; ( b } [ Ypa  Zp

Y;(0) M s O

M i ~ a |,

1 (5 ) ([ LY,
M; Fixed effect bj ~ MVYN (pp, Zp)

Y;(0) 2 diag(e)  diag(ogp)

M ! ~ MVN a |, . a )

g ( bi ) <[ Kb ] [ diag(oqp)  diag(od)
M < Yib(p) ) N va([ Ka ][ 03 (Ha ® o) Paboas diag(tq © ) ])

i Rp PabTaop diag(pg o fp) of (kp ® pp)

Table 2. Characteristics of models Mg—Mg.
Model Random initial levels Random degradation rates Initiation-growth correlation Model attribute
Mo v 4 v Generalized form
M v v ® Initiation-growth independence
M; *® v *® Fixed initial levels
Ms v =0 v (pj’?, 0) v PC-wise independence
My V(pjf/?, =1) V(pjj, =1) v Common random effects

sections. Second, any possible dependency that remains in PCs
is accounted for by the unobserved random-effects terms -
Y;(0) and b; - modeled by a MVN distribution. This implies
that the PC-wise dependency originates from the correlation
among intrinsic degradation mechanisms (Fang, Pan, and Wang
2022). Lastly, it is noted that another type of dependency—
the correlation between the initial degradation level and the
degradation rate (i.e., the initiation-growth correlation), often
neglected but ubiquitous in engineering practice (Ye, Hu, and
Yu 2019), is taken into account by assuming the cross-covariance
component in the MVN distribution.

The proposed model M is designed to be sufficiently general
to cover four special model variants, referred to as models M,
M;, M3, and My in Table 1. These variants are produced by
varying the structure of the two variation sources - Y;(0) and
b;. Specifically, in model M, the cross-covariance matrix Xy, is
a null matrix, which indicates that the initial levels and degrada-
tion rates behave independently. It can be seen as a multivariate
extension of the model proposed by Xiao and Ye (2016). Model
M, assumes that Y;(0) is fixed, resulting in a multivariate Wiener
process with random degradation rates only. As an example,
in Lu et al. (2021), an identical zero-damage level across all
test units at the beginning is present for the photodegradation
process. This model extends the random-effects Wiener process
model proposed by Li, Pan, and Chen (2015) to the multivariate
setting. Next, when the off-diagonal elements in X4, X, and X 4,
are all left out, the resulting matrices become diagonal ones as
indicated by model M3. Consequently, the model consists of p
independent sub-models with the jth one defined as follows:

Yij(t) = Y;(0) + byt + 0;B(t)

Ms : < Y;(0) ) ~ BUN [ :|, bcrazj p]{lbaajabj .
bij Pja 04j0bj 01,2]-
Here, Y;;(0) and b;; are subject to a bivariate normal (BVN)

distribution. Lastly, by denoting a random vector (a;, b;)’ and
letting gja; and wp;b; be the initial levels and degradation rates

Maj
Hbj

of the jth PC, respectively, we define the following jth sub-model:
Yij(t) = WUgjdi + ,thjbit + GjB(t)

M; <Z§>~BvN([i]>[p£ah D

Since these PCs share the same stochastic terms (i.e., a; and
b;), this model essentially mimics a modeling idea known as
common random effects, which has been discussed in numerous
previous publications, including Xu et al. (2018), Sun, Ye, and
Hong (2020b), Song and Cui (2022), and Yan, Wang, and Ma
(2022). If denoting Y;(0) = (ualai, Ha2@is . . . s Mapa,-)/ and b; =
(/u,l bis p2bis - - - tpp bi)/, the structure of random effects in My
is actually a special case of our proposed modeling framework, as
shown in Table 1. Here, 0 and @ denote the Hadamard and outer
product, respectively. Note that models M3 and M4 demonstrate
the two extreme scenarios of PC-wise dependency, where p]f]‘., =

pb_

pabaza Ob
%

i =0 for the former and ,0]?, = ,0]?/ =1V1<j<j <p,for
the latter.

Table 2 summarizes the characteristics of these models (M-
M,) from three perspectives—random initial levels, random
degradation rates, and the initiation-growth correlation. In the
table, a check mark indicates that a particular variability feature
is considered, while a cross mark indicates its absence. It is evi-
dent that models M -M, represent various reduced forms of M.
They capture several practical scenarios, including initiation-
growth independence, fixed initial levels, PC-wise indepen-
dence, and common random effects. The generalized form, My,
is essentially a broad class of these multivariate degradation
models.

2.2, Theoretical Properties

In model My, one can observe that in a Bayesian manner,
the joint MVN distribution governing Y;(0) and b; serves as
the conjugate distribution for multi-normally distributed data
implied by the Wiener process. This assumption of conjugacy



is employed for technical convenience since it releases ben-
eficial theoretical properties with closed-form expressions for
the marginal, joint, and conditional functions. Moreover, it
allows for the specification of conditional distributions for future
degradation predictions given existing observations.

First, under model My, the marginal (Y;;(0), b;j)’ is subject to
a BVN distribution, that is,

2 b
YO\ Cgpar(| ke || 04 pf %y )
bi Hbj P 060y Oy

Then, it is easy to see that the marginal process Yj;(t) after
integrating out (Y;;(0), bjj)" is subject to a normal distribution
such that

Yii(t) ~ N (paj + g o + 2tpj“"aajobj + Pop + o). (1)
Similarly, the unconditional joint distribution of Y;(#) is
Yi(t) ~ MYN (4t Ta+tZ g +1tTpa + 122, +tD). (2)

The derivation of (1) and (2) is based on the basic property of
an affine transformation applied to a multi-normally distributed
random vector (See chap. 3.10.2 of Rencher and Christensen
2012). Now, suppose all the individual PCs are divided into
two mutually exclusive subsets— Y4 (t) and Y ;g (¢), in which the
collections of indices are denoted by A = { jYit) e Y,A(t)}
and B = {] 1 Yi(t) € Y,-]E;(t)}. Then, if denoting p; = p, + tpy,
and X, = X, + tXyp + tXpe + 12X, + tD, the conditional
distribution of Y;a (t) given Y;p(¢) = y;5(t) satisfies that

Yian(OIYip(t) = yp(t) ~ MVN(IMA + EtA]BZt_[BI s (®)

— p)s e — ztmzt‘ﬁlzm), (3)

where ;4 and p;p are the partitioned vectors from p; for A and
B, respectively. Correspondingly, partitioned from X, ¥4 and
X are the resulting block matrices, along with the oft-diagonal
cross-covariance matrices X;ap = Z/ﬂB A

Furthermore, provided that a measurement is taken at cer-
tain time t, t > 0, it produces the degradation measure
yi(t) = (v (1), y(®), ..., yip(H)". Combining with the initial
measurement ¥;(0) = (yi1(0), y12(0),. .., y;p(0))’, we denote the
vector of degradation increments y;(t) — y;(0) for this dura-
tion from 0 to t by y;(#,0). (Remark: In this article, notations
related to degradation measurements, such as y;;(t) and y;(t), are
expressed in normal mathematical fonts. The symbols, including
y;(£,0), in sans-serif mathematical fonts with the tilde character
on the top represent a variety of notations associated with degra-
dation increments.)

Evidently, y;(0) is just the realization of Y;(0), that is

Yi(0) ~ MVYN (g, Zo). (4)

And y;(¢,0) is the observed outcome of the random vector tb; +
DI/ZBp(t), that is,

Yi(t,0) ~ MVYN (tpy, X}, + tD). (5)

- /
Hence, (Y,'(O)’, b, Yi(t, 0)’) is jointly subject to a MVN distri-
bution such that
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Y;(0) mg Xa Xap ; tXap
~bi ~ MVYN NERE 7721,7“77275477t§b777 .
Yi(t,0) tiy tTpa tX), | X, + D

Then, the conditional (posterior) distribution of b; given that
Y;(0) =y,(0)is

bily;(0) ~ MVYN (ILb,-|yi(0)’ Zbi|yi(0)), (6)
where

Roiy0) =Hp + a2y (7:(0) — 1) and

Ty, =6 — ZpaZ;  Zap.
3 And the conditional (posterior) distribution of b; given that
Yi(t,0) = y;(t,0) is

bily;(t,0) ~ MVYN <”’b,-|9i(t,0)’ Eb,-|9,~(t,0)>’ 7)
where
i,y = o+ o (T + D/ (§,(60)/t — py)
= (2, + ") (T, iy + DIY;(£,0)) and
g0 = o — Zp (Zp + D/ Xy
—1 11
=(Z, +t>7") .

Note that the first line in the equation for iy, y.(10) Of Zp,y,(1.0)
directly results from the conditional mean or variance of a MVN
distribution. The equivalent expression defined in the second
line is obtained by applying the Bayes’ rule. The derivation is
given in Supplementary Section A. The latter representation
mirrors the result of the univariate conditional (posterior) dis-
tribution of b;; given y;;(t, 0) as presented by eq. (14) in Li, Pan,
and Chen (2015).

If y;(0) and y;(t,0) are both known, the conditional (poste-
rior) distribution of b; is

bily;(0),y;(t,0) ~ MVN (’Lb,‘|yi(0),;’i(t,0)a Eb,-|y,.(0),y,-(t,0)),
8)

where

> > !
a a
Moy 05,00 = [ Zea 12 ][ tXp, 2L+ tD ]

|: }’,(0) — Hg :|
yi(t,0) — tpy

-1 -1 -1 -1 -1\7!
= (5 + D7 + 2 BTy g Za B )

[Eblub +D7'Y(50) + 2, Zha gy,

<yz(0) - lLu + Eabzglﬂb>} and
Ty, 5,60 =26 — [ Zea tZp |
1
2, tEap X
t2pa 1*Ep+tD £,
-1
= (Z;l +tD7 ! 4 Eljlzbuz;il(O)\bizubEb_l> .

In the equations above, Xy, 0)p;, = Za — EablelEba. Similar
to (7), Rpyly, 009,00 and T,y 0),5,(10) can also be expressed
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in two ways. Their derivations are provided in Supplemen-
tary Section B. It is interesting to observe that b;|y;(f,0) and
bily;(0),y;(t,0) are only dependent on the up-to-date infor-
mation Y;(t,0) and {y,(0),y,(t,0)}, respectively, regardless of
any intermediate information. This suggests that the Markovian
property holds for this proposed model. In addition, the univari-
ate conditional (posterior) distribution of b;;|y;;(0), y;(t, 0) and
bily;(0), y;(t, 0) can be derived, which will serve for the inference
issue of models M3 and My, respectively. Supplementary Section
C includes the details.

Last, conditioning on {y;(0),y;(t,0)}, the distribution of the
subsequent degradation increments y;(f + s, t) for an interval of
time s is

Yi(t + 5, 1)|y;(0),¥,(t, 0)
9)
~ MY (st11y,0,5,600 b1y 015,00 + D) -

2.3. Lifetime Distribution

It is well known that the first passage time of reaching a pre-
specified threshold for an individual Wiener process is subject
to an inverse Gaussian distribution (Whitmore and Seshadri
1987). Concretely, given the initial degradation level Y;(0) =
;(0), the degradation rate bj, and the failure threshold D; for
the particular jth degradation process, the lifetime Tp;, ~

—y 0\ 2
g (D’h—]y_’(o), (D’T)j}’(o)) ).Thus, the cdf of the lifetime is given
by
Frp (t]y;(0), bjs sz, D))
tbj — (Dj — y;(0))
—| T
O’j\/E

©exp |:2bj(Dj —zyj(O))} o [_ thj + D; —yj(o)} )

(o3 i 0, jﬁ
(10)

where ® (-) is the cdf of the standard normal distribution. In this
section, the subscript i is dropped from y;;(0) and b;;, which indi-
cates that population characteristics (i.e., the average values of
the variables of interest after integrating out the random effects)
are concerned with. Similar changes apply to other relevant
notations.

Then, the unconditional cdf of the lifetime for PC j is pro-
vided by

2 2 b 2
Fro, (& taj Iy 0455 0y £} 075 D))

:// FTD.(tl;Vj(O),bj;sz,Dj)
R2 J

x f (bjl)’j(o); Wajs Ibj» Ufj, U};zj’ ,Ojab>

(11)

X f (300 1ajs ) by (0).

When multiple risks (i.e., degradation processes) threaten
a product/system, the system failure time is the working
period until any one of these processes reaches its failure

threshold (i.e., a competing-risk model). Mathematically, it is
defined by

Tp =inf{t:Yi(t) > Dy or---or Yp(t) > Dp},

where D = (D1, Ds,...,Dp) is the vector of all PCs’ failure
thresholds. Then, given {y(0), b}, the conditional cdf of system
lifetime is

Frop (ty(0), b;0%,D) = 1 — ]_[ [1 _p (ij < t)]

=1

—1-]] [1 — Frp, (tlyj(0), by ajz,Dj)] .
=1
(12)
This conclusion is based on the conditional independence of
the marginal degradation processes given the random effects.
The unconditional cdf of the system lifetime is obtained by
integrating out the random effects. It is given by

Frp (50, D) = //H;Zp Frop, (t1y(0), 0%, D)f (y(0), bs p, ) dy(0)d”b,

(13)
where f (y(0), b; ., X) represents the joint pdf of the MVN
distribution regarding (Y(0)’,b’)’. The multivariate integral in
(11) and (13) can be evaluated numerically.

3. Statistical Inference
3.1. EM Algorithm

For degradation data modeled by stochastic processes, using
the property of independent increments is the typical approach
to derive the log-likelihood function and estimate parameters.
However, as our model involves three additional varijabilities—
the heterogeneous initial values, the varying degradation rates,
and the initiation-growth correlation, it results in a high dimen-
sional 6 to be inferred. Consequently, a simple maximum likeli-
hood estimation (MLE) process may struggle to provide accu-
rate parameter estimates. To address this challenge, we resort
to an expectation-maximization (EM) algorithm. It tackles the
estimation problem by separating the initial observations from
the subsequent degradation increments, allowing for efficient
parameter estimation. To proceed, we introduce several nota-
tions to describe the observed data.

Suppose a degradation test has m; measurements on test
unit i, i = 1,2,...,n, after the initial inspection; thus, a total
of (m; + 1) x p observations are generated from this unit.
Denote an individual observation by yj, Vi = 1,2,...,n,j =
L,2,...,p,k=0,1,...,m; and the corresponding degradation
increment by yijx (i.e., yijk — yijk—1), Yk = 1,...,m;. When an
inspection on the ith unit is taken, the elapsed time tj, V k =
0,1,...,m;, is kept noted, and the time interval since the last
measurement is recorded as tx (i.e., tix —tix_1), Yk = 1,...,m;.
Then, y;jo would be the initial degradation observation at the
test commencement time tjj = 0. And we denote the initial
observations of the ith unit by y;; = (¥i10, yi20, - - - » yipo)" and the
degradation increments of the ith unit among the interval from
the (k — 1)th to kth time point by y; = (Vitk, Yizks - - -» Yipk) -
Further, the collection of y;,’s across all units, the degradation



increments, and the measurement time intervals of the ith unit
are respectively written as

Y50 Y10 Y120 Y1po
Y50 Y210 Y220t Y2p0
YO = . = . . . . >
Vo Yn10 Yn20 Yrpo J pp
~/ ~ = Y
Ya Yiin - Yizl Yip1
~/ ~ oA 7
B Yo Yiiz  Yi2 Yip2
yi= . = . : » and
~/ it <7 7
Yim; Yilm;  Yi2m; Yipmi /) . Xp
~ ~ ~ ~ /
ti = (tilxtiZ) cee timi)mixl .

Together, the total observed data across #n units are defined to be
{Yo, D}, where D = {y;,¥5,.. ., ¥t ta, .., by )

Recall that y,;, previously referred to as y;(0), is a realization
of Y;(0). Thus, the estimates of u, and X, can be obtained by
simply maximizing the log-likelihood function of Yy. But it is
difficult to obtain estimates of the other parameters because of
the complicated form of the total log-likelihood function and
its high dimensionality in terms of these parameters. To resolve
this issue, in addition to the observed data, the remaining iid
random-effects terms, b’ = (b}, b5, ..., b)), can be treated as
missing data or latent variables. Jointly, {Y(, D, b} are viewed as
the complete data, and their total log-likelihood function (up to
a constant) is given by

£(0;Yo, D, b)
=L(D;D | b) + £ (i R Za> Ty Taps b | Yo)
+ E (M’(p Z(l; YO) >

where
£ (D;D | b)
(yz]k tzksz) :|
= —— In o — |,
213 (i) P2

€ (Pgs p> Za» T Zaps b | Yo)

/
=__Z|:ln‘zb,|y0’+( ’Lbb’zo) Zb_z‘|lyi0
<bi - "Lbil}’io) i|’ and

14 (ﬂw DIPE Y0)

1 n
-7 Z [ln|2a| + ()’io - ”’a)/ 2;1 (J’io - ”‘u)] :
i=1

In€ (g iy Za» Too Taps b | Yo), Iy, and Zp,y, are the con-
ditional mean vector and variance-covariance matrix, respec-
tively, according to (6).

The EM algorithm alternates between an expectation step (E-
step) and a maximization step (M-step) until convergence. The
iy 0] ‘

convergence criterion is built upon max ‘H(SH) < €,

where | - | is the element-wise absolute value with the maximum
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one returning by max, and € is the error tolerance (e.g., 107°).
In the process of iterative computation, we denote the estimate
of @ at the sth iteration by #). When the algorithm termi-
nates,  is employed to denote the ultimate parameter estimates.
Algorithm 1 briefly summarizes the algorithm. Please refer to
Supplementary Section D.1 for more technical details. Note that
the four special model variants in Table 1 are the simplified
versions of the original model My, so their inference steps can
be adjusted accordingly. The adapted procedure is included in
Supplementary Section D.2. When nonlinear degradation pro-
cesses are present, transforming the original time scale via the
aforementioned function A(-) is necessary. We assume that the
transformation is a fixed effect and varies process by process,
thus, leading to the transformed time interval denoted by 7 =
Aj (tix) — Aj (ti,k—l)- Supplementary Section D.3 illustrates the
consideration of this point. To achieve a fast convergence of
this algorithm, finding a helpful starting point (i.e., values of
parameter estimates) is necessary. This can be handled by sum-
marizing the ad-hoc results that treat each degradation path as
an independent realization from a simple (non)linear Wiener
process. The detailed instructions are presented in Supplemen-
tary Section D.4. In addition, the R codes for implementing our
proposed EM algorithms are available on the GitHub repository
https://github.com/hnasu-code/multi_wiener.

3.2. Interval Estimation

In addition to the point estimate 9, the confidence intervals
(CIs) of either 8 or a general function g(6) are often of interest
too. Typically, an interval estimator is established based on the
asymptotic theory, and it requires a large sample size to achieve
sufficiently accurate results. But, due to the difficulty of eval-
uating the Fisher’s information matrix of the proposed model,
accomplishing this task is not easy. Instead, the bias-corrected
percentile (BCp) bootstrap method (Efron and Tibshirani 1994;
Meeker, Escobar, and Pascual 2022) is adopted for interval esti-
mation. Supplementary Section E includes the details of this
method.

3.3. Model Validation and Selection

Quantile-quantile (Q-Q) plots can be used to assess the good-
ness of fit (GOF) of the proposed model to a certain degradation

dataset. It is noted that (y;jx — ,kbl]) /

iid as the standard normal distribution. Here, the estimate
bij = Ebilyio,i!;,if,é[bij] can be calculated based on the conclu-
sion implied by (8). If the significance of the initiation-growth
correlation is of concern, one could use the likelihood-ratio
(Wilks) test. Namely, to test if a degradation dataset favors model
M rather than the full model My, we define the test statistic
MR =2 [Z M, — ¢ Ml]’ where €)1, and £y, are the log-likelihood
of models M, and M, respectively. The null model (i.e., model
M) is rejected if Arr is greater than the Chi-square upper
percentile x j =8 Lastly, to compare various models, the Akaike
information criterion (AIC), AIC=2dim(f) — 2¢, is adopted,
where dim(#) is the total number of model parameters, and ¢
is the corresponding log-likelihood.

,ka is approximately
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Algorithm 1: An Outline of the EM Algorithm for Parameter Estimation.

Data: The dataset {Y(, D} in terms of the initial measurements, degradation increments, and measurement time intervals.
Input: The current EM estimate 8 (i.e., u(s) , Eg) , E;Sb), and DY),

b

Output: The updated EM estimate ¢ (i.e., ;LESH), ngﬂ), E((;bﬂ), and D&TD),

while Convergence criterion is not met do

n p m

v (s)

E-step: Define a function Q( 109) = Eb|Y0,D,0<S) [€ (0;Y, D, b)], which is the expected value of £ (8; Yo, D, b) with

respect to the current conditional distribution of b given Yo, D and 8. In summary, the function is given by

20 e () s ey =
) G2 = 2l o+ T B

i=1 j=1 k=1

n
Z[ln‘):b T S
i=1

n

Z [ln

i=1

P

n

s+ _1 -

Ko —;Z“bi’
i=1

n

i=1

n
(+D) _ (st $ Ly s+ 1 5 ©
L) =k, X Iy +;§:{Zbi+
i=1

. (s+1) (s+1) (s+1)
DY = diag (012 07 .. ,crpz ) ,
2(s+1) .

Q<0|0(5)>=—% Yy 1n(f,.kaj2)+(“""f

1
(s+1) _ A v (s) (s+1)
Zab 1 Z(}’io_ﬂa) (”’b; — My

> +1 +1) g1
[/Lﬁf)—ﬂ?f e A R (P

sz / ti

~—1 .

Y ((zb Sl zab)*lzi)) +

i~y — 0.5 (o — 1)) Bb — TS ) (1 =y — TS (e — A

Ry, — My baXe Vo — Ra)) (Tp baXig Xap) Ry, — Wp aXa (Vo — Ra)) [+
IRV | N

+(J’i0_ﬂa) X, (J’io_ﬂa)]}-

M-step: Find the parameters that maximize the quantity § ) = argmax, Q(#10'®). In summary, the result is given by
) /

- - +1 +1) oL ~ 1\
i) (i) = ™ = 308, (- )] | ane

qukﬁg,-?j + 95/ fiki|

2
n mp |z [ ~(s) T 20
Dim1 Dokt |:tik (Mbi,j) + likoy, ;
where o;

! Z?:l mi

end

4. Simulation Studies
4.1. Performance of the Inference Method

To assess the performance of the proposed inference method,
a Monte Carlo simulation study is carried out. In particular,
a model of a three-dimensional degradation process is used.
The model parameters are set as u, = (3,4,5), p, =
(5,4,3), vech(X,) = (1,0.5,0.5,1,0.5,1), vech(X,) =
(1,0.8,0.8,1,0.8,1)’, vec(X ) = (0.3,0.1,0.1, 0.1,0.3, 0.1,0.1,
0.1,0.3)’, and vech(D) = (4,0,0,5,0,6)’, where vec is a vec-
torization operator that stacks the column vectors of a matrix
into a single vector and vech is a half-vectorization operator that
stacks the lower triangular block of a symmetric p x p matrix

into a single vector of length p(p + 1)/2. It is assumed that the
degradation measurement is taken every one unit of time. To
understand the impact of sample size on the inference, three
choices on the number of test units with n = 10,20,30 and
two choices on the number of post-initial inspections with m =
15, 30 (i.e., identical across all units) are created. Thus, in total,
six combinations of sample size are explored. For each setting,
B = 1000 replications of data from the simulated model are
generated and fitted by model My using Algorithm 1. Figure 2
demonstrates some simulated degradation paths of the three
PCs with n = 10 and m = 15.

The EM algorithm takes less than one-quarter of a minute
to converge for each replication, regardless of the sample size
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Figure 2. Simulated degradation paths withn = 10and m = 15.
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Figure 3. RMSE (x1 0_3) of the EM estimators versus various sample sizes.

combination, on a laptop with an Apple M1 Max CPU. This
is a satisfactory performance for practical use. To quantify the
overall quality of the EM estimators, we calculate the root mean
square error (RMSE) for all parameter estimates over the 1000
replications. Supplementary Section FE1 includes the raw data.
To better summarize the result, we report the respective aver-
age RMSE over the elements in fi,, 63, pp, ,f)]‘-lb, ﬁ;?, and 62,

where i)]‘-‘b and b;f’ represent the initiation-growth correlation
within and between PCs, respectively. Figure 3 presents the
result graphically in dot plots. It shows that, for each estimator,

the RMSE decreases with the increase of # for a fixed m and vice
versa. This means that model estimation would get improved
by having more data. A further investigation shows that the
improvement of estimation accuracy for elements in u;, Xp,
and X, is more sensitive to the change of n than m. This is
unsurprising as the M-step in Algorithm 1 uses all sample units’
information to estimate these three components. Among the
three correlation estimators (o, ﬁ;’b, and f);]’/b) of correlations,
Py, performs the best in terms of the smallest RMSE under each
sample size combination. This can be understood intuitively
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Figure 4. Performance of reliability estimation versus sample sizes under various model settings.

because more “similar” data, resulting from the strong correla-
tion defined by p,, help improve the estimation accuracy.

To examine the effect of degradation curvature on model
estimation, we conduct another set of simulation studies with
y = 0.7,1,1.3, where the time scale is transformed by a
power function t”. The three parameter values correspond to
the concave, linear, and convex degradation trends. Similarly, the
impacts of both the PC-wise and initiation-growth correlation
at a low, medium, and high level are investigated. To explore
the scalability of the inference method for higher dimensions,
more simulation runs with three-, six-, and nine-dimensional
models are implemented. Lastly, the estimation performance
for models M,-M, is also validated. These additional stud-
ies indicate that our proposed inference method is effective
and efficient. For more details, please refer to Supplementary
Sections E2-F.5.

4.2. Model Comparison in Reliability Estimation

To evaluate the performance of reliability estimation, we
carry out an additional simulation study using two- or three-
dimensional process models (i.e., p = 2 or p = 3). Data are
generated from model My under m = 30 with two options for
the number of units (1 = 30 or 60). We consider three different
values (0.1, 0.5, or 0.9) for both the PC-wise correlation (pp)
and the initiation-growth correlation (o). Switching among
the three choices leads to a result of weak, medium, or strong
pairwise correlation. To be precise, p;, = pplpp—1)/2 and pyy, =
Pably2, where 1, represents the p-dimensional vector of ones.
The remaining parameters are set as u, = 31, ol = 1,,
Po = 091,p-1)/2, k) = 31y, 05 = 1p, and 6% = 0.51,.
For each model setting, B = 1000 replications of data are
generated and fitted by model My. Then, for each replication,
the system reliability is computed for the core period, during
which the true reliability gradually decays from 0.95 to 0.05. It
is assumed that the failure threshold for each PC is 80. Finally,

we obtain the average mean absolute percentage error (MAPE)
to evaluate the overall accuracy of the estimated reliability over
the entire time window of interest. Figure 4 presents the result in
dot plots. One can see that for all model settings, the reliability
estimation accuracy will improve as the sample size increases.
This conclusion stays consistent with the parameter estimation
result.

After reviewing Table 2, it becomes apparent that model M
is a generalized form that comprehensively accommodates the
features of random initial levels, random degradation rates, and
initiation-growth correlation. In contrast, the special variants
either incorporate only a part of these characteristics or hold
some restrictive assumptions. To investigate the consequences
of model misspecification, we extend the study above to cover
models M;, M3, and Mjy. Precisely, in addition to model My,
we fit these alternative models to each simulated dataset and
compute the average MAPE likewise. To quantify the relative
performance of reliability estimation by the alternatives com-
pared to the baseline model My, we calculate a metric called
the relative performance loss, defined as 100% X (MAPEMI —

MAPE),)/MAPE),,, where MAPEy, is the average MAPE of
model M, [ = 1,3,4.

Figure 5(a) shows the result for model M;. One can see that,
as the value of p, increases, the metric also increases, indicating
that the difference in the reliability estimation performance
between models M; and My becomes more significant. This
matches our expectation because model M; fails to capture the
feature of initiation-growth correlation. Additionally, a closer
look at the figure reveals that the performance gap widens as
the process dimension p increases. And the performance gap
does not seem to have any obvious relationship with the sample
size n.

Figure 5(b) shows the result for model Ms. Since model
M3 overlooks the PC-wise correlation, the accuracy of reliabil-
ity estimation would have a considerably larger loss with the
increase of p,. Moreover, having more data (i.e., larger n) or
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Table 3. Parameter point estimates and 90% C.I.s for model Mg regarding the transceiver degradation data.

Parameter Point estimate 90% C.I. Parameter Point estimate 90% C.I.

ta1 x 102 5.794 [1.904,9.990] pfz 0.988 [0.979,0.995]
Laa x 102 6.510 [1.637,11.479] pfo 0.870 [0.375,0.998]
ok x 103 5131 [2.120, 11.068] p$o 0.991 [0.980,0.999]
o x 103 7.788 [3.388, 17.606] e 0.920 [0.640,0.998]
/’102 0.840 [0.417,0.943] pgb 0.975 [0.949,0.997]
[y 0.885 [0.669, 1.080] 012 x 102 8.581 [7.571,9.932]
Iy 0.822 [0.571,1.078] 022 x 10 1.570 [1.392,1.792]
of x 10 4.024 [0.126,11.985] " 1.098 [0.984,1.210]
052 x 102 3.201 [0.029,9.213] %) 1.125 [1.004, 1.250]

PCH

PC2

-3 -2 -1 0 1 2

Figure 6. Normal Q-Q plots for model My regarding the transceiver degradation data.

process dimension (i.e., larger p) will exacerbate the perfor-
mance inferiority.

Figure 5(c) shows the result for model My, where we observe
a metric change pattern opposite to model M3. Specifically, as
we increase pp, a reduction in the performance loss is led to.
This is because the common random-effects attribute of model
M, implies that the PC-wise correlation always equals 1. Thus,
as pp increases, the true model becomes closer to model My.
However, similar to what we have observed above, model My
also exhibits an increasing pattern of performance loss as the
process dimension or sample size expands.

Overall, these simulation results clearly demonstrate the
importance of using a correct model that appropriately identifies
the variability features in a degradation process in order to
accurately estimate system reliability.

5. Case Studies
5.1. Application: Transceiver Degradation Data

In this section, we demonstrate the implementation of the pro-
posed methodology by analyzing the transceiver degradation
data that motivated this study. As described in Section 1.2, the
data exhibit three features of variability: unit-to-unit variation,

3 -2 -1 0 1 2 3

Theoretical

process dependency, and random initial observations, making
the general model M, appropriate for fitting the data. After
implementing the EM algorithm, we assess the convergence of
model inference by examining trace plots of parameter esti-
mates, presented in Figure G.1 in Supplementary Section G.
Table 3 gives the result of parameter estimation. In the table,
yj is the estimate of the parameter y; in the time scale transfor-
mation function A;(t) = t”. The results indicate a very strong
correlation between degradation rates for the two PCs. The
positive values of the cross-correlation elements (i.e., ﬁfb , /35’{’ ,
0%, and p§%) indicate that transceivers with higher degradation
measurements at the beginning tend to have larger degradation
rates.

The normal Q-Q plots, as depicted in Figure 6, show that
the majority of data points closely align with two straight lines,
indicating that the model offers a good fit to the dataset. We also
verify the significance of the initiation-growth correlation by
comparing the Wilks test statistic with the threshold associated
with the Chi-square percentile. Additionally, as a comparison,
we fit the data using alternative models listed in Table 2. The
resulting log-likelihood and AIC values, presented in Table 4,
indicate that Model My is preferred as it yields the smallest AIC
value.



Table 4. AICvalues for model selection regarding the transceiver degradation data.

Candidate models Log-likelihood AlC

Mo 1065.518 —2095.036
M 1047.436 —2066.871
M3 1058.945 —2089.889
My 1035.650 —2049.299
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Figure 7. Reliability curves for transceivers.

Table 5. AIC values for model selection regarding the IRLED degradation data.

Candidate models Log-likelihood AlC

Mo —284.155 604.310
M —286.920 601.840
M3 —305.507 639.013
My —303.874 629.748

To make reliability predictions, it is necessary to evaluate
(13) over a certain period. For illustration purposes, failure
thresholds of 1.2 dB and 1.0 dB are set for the two PCs. The
reliability predictions are made using the four different models
mentioned above. The evaluated reliability over time for these
models is presented by the various curves in Figure 7, where
point-wise C.Is through the BCp bootstrap method are also
shown. It can be seen that the predicted reliability between
models My and My is very similar. This is not surprising since the
default assumption of complete PC-wise dependence made by
model M, almost matches the strong correlation estimated from
model M. In contrast, the PC-wise independence assumption
causes the curve of model M3 to deviate significantly from
the curve of model M. For model M, the deviation of pre-
dicted reliability from the curve of model My lies somewhere in
between these two scenarios. This is because model M;, despite
incorporating PC-wise dependence, overlooks the strong pos-
itive initiation-growth correlation estimated from model M.
Therefore, it is crucial to examine the underlying dependence
structure carefully.

5.2. Additional Application: IRLED Degradation Data

In this section, we illustrate the use of our proposed method-
ology with another example—the degradation of GaAs/GaAs
infrared light-emitting diodes (IRLEDs), which was originally
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presented in Yang’s book (2007). This dataset, included in Table
G.1 in Supplementary Section G, describes the change in the
variation ratio of luminous power in percentage over time. Given
that the original data have a single PC, we randomly split the data
into two streams to mimic a multivariate flavor. The resulting
artificially made data contain 6 units and 10 observations for
each unit. Figure 8 shows the degradation paths of the two PCs.

Since the degradation starts from the status of zero damage,
we adopt model M; to fit the data and estimate the parameters
using the EM algorithm. The estimation result is included in
Table G.2, where both log-likelihood and AIC values are also
shown. The convergence of the EM algorithm is indicated by
trace plots of parameter estimates over iteration, which is pre-
sented in Figure G.3a in Supplementary Section G. The normal
Q-Q plots (shown in Figure G.2a) validate the fitted model.

Now, we consider a hypothetical scenario where a batch of
manufactured products, including these six units, undergoes a
6-hr burn-in test to screen out those with infant mortality. As
a result, the degradation paths of these units during the burn-
in period are unavailable, and the measurements at the end of
the burn-in duration become the initial observations when a
new degradation test officially starts. In Figure 8, the resulting
degradation paths are displayed, with the gray lines indicating
the masked observations during the burn-in period. We fit four
different models to the remaining data and compare their log-
likelihood and AIC values, which are given in Table 5. Based on
the lowest AIC value, model M; is chosen as the final model.

Lastly, we showcase how the proposed methodology can
make unit-specific future degradation predictions. Recall that
equation (9) provides the conditional distribution of the future
degradation increments for a certain interval given the existing
observations. Based on this property, we compute the expected
degradation increments of both PCs for the next 160 hr for
Unit 4. Figure 9 displays the predicted degradation paths for
the two PCs using purple dashed lines, with gray dashed lines
representing the 90% interval estimates.

6. Concluding Remarks

This article has systematically investigated a class of multivariate
Wiener processes for degradation data modeling. This model
is specified in a hierarchical fashion by incorporating multi-
normally distributed random effects concerning the initial val-
ues and degradation rates. This characteristic produces a num-
ber of nice properties, including closed-form marginal, joint,
and conditional (posterior) distributions. An EM algorithm has
been developed to estimate the unknown parameters in the
model, and the simulation and case studies show the effective-
ness of the proposed methodology. It is worth mentioning that
the model is flexible enough to accommodate different levels of
variability, leading to various special model variants that can be
selected to fit the degradation data in practice. Therefore, the
proposed model is versatile and represents a novel class of mul-
tivariate degradation models. Overall, the proposed modeling
framework is computationally tractable, physically meaningful,
and practically applicable.

A different way of process-dependency modeling (see Hong,
Ye, and Ling (2018a), Wang et al. (2020), and Sun, Ye, and
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Figure 9. Future degradation predictions for Unit 4 of IRLEDs.

Hong (2020b)) is to assume that the degradation observations
of any PC pairs are correlated directly through the diffusion
parameters in Wiener processes. To some extent, this approach
suggests a measure of the temporal variability that may be
attributed to various sources, including correlated measurement
noises and shared environmental conditions. Our model takes
a different approach by incorporating the dependency in the
drift parameters as random effects. This design choice allows
for a closer alignment with the inherent degradation physics
implied by material properties (Ye and Xie 2015). Therefore,
our approach conveys a specific physical interpretation, that
is, the dependency originates from the interaction between the
innate degradation mechanisms. Furthermore, the hierarchical
approach used in this article makes the formulation and direct
computation of multiple quantities of interest, such as condi-
tional distributions and lifetime prediction, possible. But the
conventional multi-dimensional Wiener process faces the prob-
lem of no explicit solutions to these quantities, especially the first

passage time distribution. Another direction of random effects
modeling in degradation analysis is the Bayesian approach, as
in Peng et al. (2016) and Fang, Pan, and Hong (2020). However,
the Bayesian approach requires some subjective priors for the
random-effects terms, whereas, in our hierarchical approach,
they are estimated from the data directly (Demidenko 2013).
Therefore, the proposed methodology provides solid physical
ground and allows ample data-fitting flexibility.

Based on the current research result, some future studies
can be pursued. For instance, the models for incorporating
additional considerations such as nonperfect measurements,
serial correlation, multi-phase degradation, and time-varying
covariates can be explored. Meanwhile, some practical consid-
erations warrant our attention. For example, in light of the
generality and complexity of the proposed model, ensuring data
sufficiency becomes the prerequisite for establishing a proper
model; therefore, for practitioners, carefully defining product
PCs and designing data collection schemes are critical steps.
Furthermore, how to apply the proposed model in planning
burn-in tests, scheduling preventative maintenance, and making
residual life predictions would require a lot of research effort.

Supplementary Materials

In the online supplementary materials of this article, we provide a PDF
file containing technical details (the miscellaneous proofs and inference
methods), additional numerical results of the simulation and case studies,
a list of notations, and a description of data and codes. Additionally, we
provide a zip file containing the R codes for reproducing Table 5 in this
article.
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