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Many engineering products have more than one failure mode and the evolution of each mode can
be monitored by measuring a performance characteristic (PC). It is found that the underlying multi-
dimensional degradation often occurs with inherent process stochasticity and heterogeneity across units,
as well as dependency among PCs. To accommodate these features, in this paper, we propose a novel
multivariate degradation model based on the inverse Gaussian process. The model incorporates random
effects that are subject to a multivariate normal distribution to capture both the unit-wise variability and
the PC-wise dependence. Built upon this structure, we obtain some mathematically tractable properties
such as the joint and conditional distribution functions, which subsequently facilitate the future degrada-
tion prediction and lifetime estimation. An expectation-maximization algorithm is developed to infer the
model parameters along with the validation tools for model checking. In addition, two simulation studies
are performed to assess the performance of the inference method and to evaluate the effect of model
misspecification. Finally, the application of the proposed methodology is demonstrated by two illustrative
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1. Introduction
1.1. Background

Modern engineering products are often highly reliable. For ex-
ample, according to the photovoltaic (PV) industry standard, so-
lar panels are designed to work with a performance reduction
of no more than 20% within the first 25 years if operated at
the standard test condition (Lindig, Kaaya, Weiss, Moser, & Topic,
2018). To accurately assess the quality of these products, degra-
dation tests that continuously monitor some performance charac-
teristics (PCs) over time are often applied to provide timely fail-
ure information. The PCs such as output power, cell crack size,
and the strength of encapsulant adhesion to glass for PV mod-
ules reveal some commonly-observed failure modes, including ma-
terial fatigue and delamination, etc. Along with the occurrence of
these failure modes, the stochastic nature of innate failure mecha-
nisms makes the degradation process develop with a considerable
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amount of uncertainty. In the meantime, heterogeneity across en-
gineering products is often observed due to variations in raw ma-
terials and manufacturing processes even if these products are pro-
duced according to a common industry standard. This type of vari-
ability leads to the unit-to-unit variation among observed degra-
dation processes. Besides this, it is further worth noting that any
likely correlation among different failure modes will cause the PCs
to behave not independently. Therefore, to analyze multivariate
degradation data, we need to establish a statistical model that ac-
counts for 1) the stochastic nature of each individual PC, 2) the
heterogeneity among different units, and more importantly, 3) any
possible dependence among these PCs. The main goal of this paper
is to develop such a multivariate degradation model.

1.2. A motivating example

As a motivating example, we present a real dataset - the coat-
ing data that was initially provided by Lu, Wang, Hong, & Ye
(2020). This dataset describes a 3-dimensional degradation process
of a type of polymeric material over time. By exposing several test
units to various environmental conditions of ultraviolet (UV) ra-
diation, temperature, and relative humidity (RH), the three differ-
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List of Notations

Indices:
n number of units (i € {1,2,..., n})
p number of performance characteristics (j € {1,2,..., )
m; number of measurements (k € {1,2,..., m;})
Random variables:
Yi(t) degradation values on unit i at time ¢, where Y;(t) = (Y1 (t), Yo (0), ..., Yip(t))/
§; element-wise inverse of the vector of the drift parameters (i.e. unobserved random effects), where &; = (8i1. . ..., 8p) = (ﬁ ;%2 N ‘%m)’
Data:
tix the elapsed time when the k-th measurement on unit i is taken
i measurement time interval with ¥ =t — tjx_1
Vijk degradation measurement of process j on unit i at time point k
Vijk degradation increment with ;. = Yijk — Yijk-1
[ collection of all the measurement time intervals, where = (i}, %, ..., ) and & = (§i1. %, ..., Eim, )’
vin Vi Vitm,
. o ; . Vior Vi Yiom,
Y collection of all the degradation increments, where Y = (Y1, Y2, ..., Yn) and Y; = i1, Viz» - - - » Yim) =
. Vipt  Vip2 Yipm;
D the total observed data with D = {V, t}
D vector of all PC failure thresholds with D = (D;,D,,...,Dy)’
Parameters:
n means of the random effects, where n = (91,72, ..., np)’
o standard deviations of the random effects, where o = (01,03, ..., 0p)’
p correlations of the random effects,where p = (p12, p13, .- -, Pp-1.p)
X variance-covariance matrix of the random effects, where
o} o1y O1p
o1z o} o2p
T =
o1p 02 o}
A the shape parameters, where A = (A1, A2, ..., Ap)
y the time-scale transformation parameters, where y = (y1, 72, ..., V)
[4 collection of all the unknown parameters, where 6 = (', 0", o/, ") or @ = (i ,¢’, p'. X", y') if applicable
Transformed Quantities:
Tijk transformed time scale with T = Aj(ty) — Aj(tir-1)
v; v = (t/yi1, t/Yias - - - t/yip)’
AMYin 0 0 0
0 A2Yip 0 0
Vi Vi= .
0 0 ApYip
; b = (5/%i1,S/Vi2s -+ - s/Yip)" o Eix/irk- tik/Yioks - - - » Eik/Yipk)'
MYi 0 0 0 MYik 0 0 0
: ; 0 Awip 0 0 0 AV 0 0
Vi Vi= . . . or . .
0 0 )‘p‘?ip 0 0 )"pg'ipk

ent PCs (change of chemical structures at the wavelength of 1250
cm~!, 1510 cm~?, 2925 cm~!) were measured every few days us-
ing Fourier transform infrared (FTIR) spectroscopy. For illustrative
purposes, we arbitrarily pick a subset of the data that was gen-
erated under the environmental setting - 60% UV intensity, 35°C,
and 0% RH. The resulting degradation paths are depicted in Fig. 1,
in which PC1, PC2, and PC3 represent the three PCs at the wave-
length of 1250 cm~!, 1510 cm~!, and 2925 cm™!, respectively. This
sub-dataset consists of a sample size of four test units and forty-
seven observations. As illustrated by Fig. 1, for each PC, disparate
degradation paths are shown, which clearly indicates the hetero-
geneity among different test units. Furthermore, the relative rank-
ing of the degradation paths among different units is preserved
across the PCs. This implies the possible existence of dependence
among the PCs. Thus, the desire for building a multivariate degra-
dation model naturally arises when one is concerned with such
monotonic degradation paths where both unit-wise variability and
PC-wise dependence are present.

1.3. Related work

In the statistical degradation modeling literature, numerous
studies have been conducted to model a single PC’'s degradation
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process. Typical frameworks include general path models and
stochastic process models (Ye & Xie, 2015), where a general path
model is a time-based regression model that incorporates both
fixed and random effects (Bae & Kvam, 2004; Fang, Rigdon, & Pan,
2018) and a stochastic process model assumes a random process
for PC measurements over time. In the literature, there are three
main classes of stochastic degradation processes - the Wiener
process (Hong, Tan, & Ye, 2020; Ye, Wang, Tsui, & Pecht, 2013), the
Gamma process (Lawless & Crowder, 2004; Ye, Xie, Tang, & Chen,
2014), and the inverse Gaussian (IG) process (Morita et al., 2020;
Peng, 2015; Wang & Xu, 2010; Ye & Chen, 2014).

Built upon these two major modeling frameworks, several re-
searchers have developed multivariate degradation models. Si,
Yang, Wu, & Chen (2018) proposed a multivariate general path
model to make reliability analysis for materials with deforma-
tion process. Xu, Shen, Wang, & Tang (2018a), Wang, Balakrish-
nan, & Guo (2015), and Liu, Al-Khalifa, Elsayed, Coit, & Hamouda
(2014) constructed either bivariate or multivariate degradation
models based on the Wiener process. More recent studies include
the works by Sun, Ye, & Hong (2020b), Lu et al. (2020), Hajiha, Liu,
& Hong (2020), and Liu, Pandey, Wang, & Zhao (2021). Sun et al.
(2020b) proposed a multivariate model with two-layer block ef-
fects based on the Wiener process to carry out an in-depth study
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Fig. 1. Degradation Paths of Polymeric Materials.

on a destructive degradation testing dataset. Lu et al. (2020) pro-
posed a multivariate general path model to analyze the aforemen-
tioned trivariate polymeric material’s degradation process. Hajiha
et al. (2020) used the Wiener process to analyze competing degra-
dation processes under dynamic operation conditions. Liu et al.
(2021) constructed a bivariate gamma process by trivariate reduc-
tion method to build condition-based maintenance policies. Be-
sides these works, an alternative approach to constructing multi-
variate degradation models is to take advantage of the copula the-
ory. Some developments in this regard have the articles based on
regular copulas by Fang, Pan, & Hong (2020), Fang & Pan (2021),
Xu et al. (2018b), Sun, Fu, Liao, & Xu (2020a), Palayangoda & Ng
(2021). It also includes ways of constructing multi-dimensional
Lévy processes with Lévy copulas, such as Shi, Feng, Shu, & Xiang
(2020a), Mercier & Pham (2012) and Li, Deloux, & Dieulle (2016).

Despite the previous studies, there is a lack of IG process-based
multivariate degradation modeling framework. This paper seeks to
bridge the gap. Particularly, the proposed novel degradation model
takes advantage of a structure of correlated random effects, which
brings tractable properties and facilitates easy application for the
future degradation prediction and lifetime estimation. Moreover,
we provide an efficient inference method and model validation
tools. With these nice features, our proposed methodology greatly
complements the family of multivariate degradation models, espe-
cially when the degradation process is monotone.

14. Outline

The remainder of this paper is organized as follows.
Section 2 elaborates on the IG process-based multivariate model-
ing framework and its derived lifetime distribution. Section 3 dis-
cusses the model parameters estimation and validation aspects.
Section 4 provides two simulation studies and Section 5 demon-
strates two illustrative examples. Finally, Section 6 concludes the
paper with a discussion of techniques of building multivariate
degradation models and remarks on future study. Some relevant
mathematical proofs, algorithm details, and additional results of
the illustrative examples are given in Appendices.
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2. Modeling framework and lifetime distribution
2.1. Model description

Many degradation processes, as accumulation of additive and
irreversible damages, demonstrate monotone paths (Ye & Chen,
2014). The IG process, as an attractive model to describe these pro-
cesses, has been well studied. An IG process, {Y(t),t > 0}, satisfies
the following properties:

e Y(t) has independent increments, i.e. Y(t + At) —Y(t) is inde-
pendent of Y(s), Vt > s> 0 and At > 0;

o Y(t+ At)—-Y(t) is subject to
IG(uAt, AAt?), ¥t >0 and At > 0.

an IG distribution

Thus, without loss of generality, let Y(0) = 0, then the probabil-
ity density function (pdf) of Y (t) is given by
oo

where > 0 is the drift parameter and A > 0 is the shape param-
eter.

Consider a degradation test with n test units and each unit
presents a p-dimensional multivariate degradation process. Denote
the degradation observations on unit i, i=1,2,...,n, at time t,
t >0, by Y;(t) = (Y (t). Yo (O). ..., Y,»p(t))/ with each individual ob-
servation Y;;(t), Vi=1,2,...,n,j=1,2,..., p. We assume Y;;(t) is
subject to the IG process as presented by Eq. (1). Meanwhile, it is
assumed that correlated random effects exist among these degra-
dation processes. In summary, we refer to the modeling framework
as Model My and it is represented by

N

— (851 S V(1 1
where §8; = (81,85, ..., 8p) = (u—“, g
wise inverse of the vector of the drift parameters and it is subject
to a multivariate normal (MVN) distribution with mean vector 3
and variance-covariance matrix X > 0, i.e. a positive definite (pd)

—A(y — put)®

2p2y (M

At2
Fro@: m, A t) = 21y exp

Yii(t) ~ IG(t /8y, Ajt?)
8 ~MVN(y, %) :

,-L) is the element-
Mip
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matrix. We denote the elements in  and X by

M 012 O12 O1p
2 o 03 - Oy
= and X = . . . B
Np Oip  O2p o}
respectively, where n; >0 and ajz >0, Vj=1,2,...,p, are the

mean and variance, respectively. Furthermore, oy = p;y0;0j,
V1<j<j <p, and it is the covariance with the Pearson cor-
relation coefficient p;; € [~1,1]. Under the extreme scenario of
n being fixed and ;= 0, Vj=1,2,...,p, the model reduces
to the routine IG process. We denote all the unknown pa-
rameters by 0= (y',0’, p’,\"), where o = (01,02,...,0p), p=
..... Pp-1p), and A = (A1, Ay Ap)'. The selection of
the joint distribution of §; is because of its natural conjugate prop-
erty of the IG distribution. This feature not only provides a good
fit for degradation data as illustrated by the subsequent illustrative
examples in Section 5, but also leads the proposed model to be
mathematically tractable.

Note that, for convenience, we directly make use of the original
time scale t in the formulas above. Instead, a more general nota-
tion is A(t), where A(-) is a function that transforms the origi-
nal time scale so as to model any possible nonlinear degradation
processes. Two popular choices of A(-) are the power law func-
tion and the exponential law function (Whitmore & Schenkelberg,
1997). We will illustrate how to incorporate A(-) in a later sec-
tion. Moreover, similar to the assumption made by Lu & Meeker
(1993) and Peng (2015), we assume that the probability of a neg-
ative u;; is negligible to avoid obtaining an infeasible degradation
rate. Concretely, if 7; > 0 and o is small, this problem is not a big
concern.

By constructing such a hierarchical modeling framework, the
aforementioned three features of variability among multivariate
degradation measurements have been accommodated. First, at the
top level, given p;;, a well-defined IG process is proposed to ex-
plain the evolution of each individual degradation process over
time with randomness. This type of randomness is usually pro-
duced by the inherent failure mechanism. Second, at the second
level, ;, a collection of the inverse of all w;;’s, is assumed to be
stochastically distributed. This type of randomness manifests the
latent variation of the drift parameters across units. Note that the
IG process Y;;(t) has mean pu;;t and variance /,c?jt/kj. where the
parameter ;; and the combined parameter u;”j/kj represent the
degradation rate and volatility, respectively. Therefore, through in-
corporating such random effects, a parsimonious model that could
explain the unit-to-unit variability of both the two attributes is
obtained. Finally, it is noted that, by modeling the random ef-
fects through a MVN distribution, a plausible way to incorporate
the dependence among PCs is also formed. This type of depen-
dence is associated with the drift parameters w;;’s that underpin
the underlying degradation mechanism. Meanwhile, given pu;;’s,
the marginal degradation processes are conditionally independent,
which brings many nice properties and facilitates the associated
inference as illustrated in later sections. Therefore, the proposed
modeling framework is applicable to the analysis of multivariate
degradation processes with both unit-wise heterogeneity and PC-
wise dependence.

.....

2.2. Derived properties

Next, we present some theoretical properties that can be de-
rived from Model My in terms of the marginal, joint, and condi-
tional pdf. Furthermore, the conditional distributions of both the
random-effects terms and the future degradation predictions given
the history of observations are specified, too.

1180

European Journal of Operational Research 300 (2022) 1177-1193

First, note that under such a modeling framework, the marginal
distribution of §;; is a normal distribution with mean 7; and vari-
ance sz. Thus, the marginal pdf of Y;;(t), after integrating out §;;,
is given by

At
S0 Wi 0,03 A, 0) = y
Fu@ O 03,9y 2. ) \/ 27y (07 Yij + 1)

<exp [_ ]

The derivation of Eq. (2) is given in Appendix A.
Next, the unconditional joint pdf of Y;(t) is given by

At = nyi)?
2yi(Ajotyi +1)

p
Frio 0.0 = o)~ 5P []

j=1

xexp =201 [1- A+ VD] (- v,

[I+V;x|"/?

3)

where v; = (t/yi1. t/Yip. ... t/yip)" and

0
0

0 0
Ay 0

A1Yin
0
Vi

ApYip
The derivation of Eq. (3) is given in Appendix B.

Suppose Y;(t) is divided into two mutually exclusive subsets —
Ya(t) and Y;p(t). And we denote the indices associated with the
two subsets by A= {j:Y;;(t) e Yia(£)} and B = {j:Y;;(t) e Yjp(D)},
respectively. Then, the conditional pdf of Y;4(t)|Y;g(t) after inte-
grating out § is given by

0 0

Fra@ivs© Vialyis: 0.1)
_ frio @ 0.6)
frpo @ip: 0.1)

_ )\.jtz |I+Vi2|_]/2
jeA

2rry} | I+ VigXp|~1/2
exp{—3(n—v)[I- A+ V;Z) |7 (- vy}
exp {—1(ng — vig)[I - I+ VipZp)~' %5 (5 — vig) }
where 1z, v;g, X, and Vg are the partitioned vector and matrices
for relevant elements in the subset B from 7, v;, X, and V;, respec-
tively.
With the observation y;(t) = (yir.¥i. --- ,y,-p)/, a vector of

degradation measurements at time t, the conditional distribution
of &; given y;(t) can be computed as

F(8ilyi(®) o f(y:(0)18) F(87)
ocexp 385 £ V) + 85+ Viw) |

(3)

The derivation of Eq. (5) is given in Appendix C. This result implies
that §;|y;(t) must be subject to a MVN distribution with mean vec-
tor ;= (Z'+Vv) 1 (= 'y +V;v;) and variance-covariance ma-
trix ¥; = '+ V;)~1. In fact, one could easily verify that the up-
dated distribution of §; is only dependent on the last measurement
y;(t) regardless of any intermediate measurements. This indicates
that the Markovian property of the process is preserved.

Finally, by making use of the current information of observed
degradation measurements y;(t) at time t, the conditional distribu-
tion of the future degradation increments y;(s) = (Vi1, Vio Yip)’
after an interval of time s is given by (note that y;(s) =y;(t +5) —

.....
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yi(®))

p
FE)yi(t) = @m)~tsP 1_[

j=1

|I+Vi2i|7]/2

1

1. . c e 11e 1y -
xexp -2 iy — 9 [1- A+ 05D E G-} ()
where ¥; = (s/¥i1,5/¥i2, - - -» S/g’ip)/ and
MYit 0 0 0
. 0 Ayip 0 0
V; =
0 0 ApYip

The derivation of Eq. (6) is given in Appendix D. In this paper,
we use y, ¥, t, t, v, and V, in normal mathematical fonts, to repre-
sent notations associated with degradation measurements, while y,
¥, %, &, , and V, in serif mathematical fonts with the tilde charac-
ter, for notations associated with degradation increments. We dis-
tinguish these two concepts mainly for the convenience of com-
putation because degradation increments are the input for model
inference as illustrated in Section 3. In fact, degradation measure-
ments are interchangeable with degradation increments since one
can always treat a measurement as an increment that is accumu-
lated from the commencement of degradation to the present as-
suming the initial measurement is zero.

2.3. Lifetime distribution

In engineering practice, product lifetime is of much interest. For
an individual degradation process j, the failure time Tp, is defined
as the first passage time of the process reaching a pre-defined fail-
ure threshold D;. Then, the failure time is denoted by

=inf{t : Y;(t) = D;}.

Here, we drop the subscript i to indicate that it is a population
characteristic; that is, Y;(t) denotes the population degradation
process for the j-th PC. Similar changes apply to other relevant no-
tations in this section.

Since the IG process produces monotone degradation paths, the
distribution of the failure time is P(TDj <t) =P(Y;(t) = D;). Then,
given §;, the cumulative distribution function (cdf) of the failure
time for an individual degradation process can be derived as

A
B €952 = 0 - 2 (03, -0)|
J
A
e @00 [ (0 +0)]
)

where ®(-) is the cdf of the standard normal distribution.

With consideration of the random effects that have been intro-
duced to §;, the marginal cdf of the failure time for an individual
degradation process is derived as

lﬁ t—]’]ij
D.
J /1+)»j0'j2Dj

A; t+1Dj+21j07Djt

Dj /1+)»0D

The derivation of Eq. (8) is given in Appendix E.
As a system has multiple competing risks (i.e. PCs) and each
of them degrades over time, the system is considered to be failed

(7)

F, (t;nj, 05,4, D)) = @

—exp [2A;t(n; + Ajoft)]

x® (8)
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when any of these PCs passes its threshold, so the system failure
time is defined by

Tp =inf{t : Y1(t) > Dy or---or Y,(t) > Dp},

where D = (Dy,D,,...,Dp)’ is a vector storing all PC failure
thresholds.
Given 4, the conditional cdf of system failure time is
F, (t|6; A, D) =1 - P(Y1(t) < D1,Y2(t) < Da, ..., Yp(t) < Dp)
P
=1-[[P;®) <D))
j=1
p
:1—“(1—5‘D1(t|31,)\,j,D])) (9)
j=1

Again, considering the random effects, the unconditional cdf of
the system failure time is provided by

Dy D,
Frp(fzo,D)=1—/0 fo fro@:0.6)dy, - -dy

Dy
:1_/
0

x exp {—%(n o [1- A+ Ve ET - v ays -y
(10)

The multivariate integral involved in Eq. (10) can be evaluated nu-
merically.

Dp ) p A
/ Qo) b (T2 ) m+ vzl
0 =\ Yi

3. Model estimation and validation

This section aims at providing the statistical inference proce-
dure for model parameters estimation and the tools for model val-
idation.

3.1. Point estimation

For a total of p x m; observations generated from the i-th test
unit, we denote the dataset of the corresponding degradation in-
crements by

Yi= (i1, Yizs - - -+ Yim,)
Yill Yi12 Yilm;
Y21 Yi22 Yi2m;
)71'1)1 yipz ;’ipm,v

pxm;

where the degradation measurement and increment of process j
on unit i at time point k are y;, and yijx = Yijk — Vijk-1, Vi=
1,2,..., n, j=1,2,..., p, k=1,2,..., m;, respectively. Without
loss of generality, the initial measurement y;jo is assumed to be
known. Then, the whole dataset of degradation increments across
all test units can be represented by ¥ = (Y1,Y>,...,¥n).
Meanwhile, we denote the vector of measuring time intervals
on unit i by
t= (. T2, ... Bimy)
Here, the interval time between two consecutive measurements on
unit i is denoted as ¥, where Ty =ty —t;, 1, Vi=1,2,...,
1,2,...,m;. ty, is the elapsed time when the k-th measurement on
unit i is taken. Obviously, we suppose tjg =0, Vi=1, 2, ..., n. Note
that the number of measurements may vary unit by unit. Without
loss of generality, we assume that measurements are conducted

over all individual degradation processes at a time. Thus, the whole
dataset of measurement time intervals across all test units can be
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represented by t = (i;,%,...,,). Furthermore, we let D = {¥,}
denote the total observed data.

Hence, based on Eq. (3), the total log-likelihood function is pro-
vided by

n m; )\’
e@D) =3">" { ZIn@2m) + pln(Ey) + = Zln =
i=1 k=1 ] 1 ijk

1 i 1. et -
—5 I+ Vy B| = = (= Py) LEX(ER7S N> ](ﬂvik)}:

(11)
where By = E/Vitk- tie/Vioko - - - » T/ Vipk)” and
A1Yitk 0 0 0
_ 0 Azypr 0 0
Vik = : :
0 0 )‘Pyipk

Due to the high dimensionality of # and the complexity of Eq.
(11), it is difficult to directly apply maximum likelihood estimation
(MLE). Therefore, we seek for an expectation maximization (EM)
algorithm to infer all the unknown parameters.

To carry out the EM algorithm, we treat the independently and
identically distributed (i.i.d.) random effects § = (§7.65....,8,) as
missing data or latent variables. In such case, the complete data
are assumed to be {D, 8} and the total log-likelihood function is
given by

£(0D, 8) = £(X, 8|D) + ¢(n, 0., p|9),

where
LS 1 (A 1 G Sid)?
£(A,8|D) = |:fln< J ik ),, ik — Yik%i)” | g
1;,;,; 2 zny?jk 2 Jip/Aj

- 1 1 fee

(.3, pl8) = ; [-g In@7) ~ 5 In|%| - o (8- n)'=" (8 - n)].

Then, if denoting 0 as the EM estimates of @ at the s-th
iteration, the EM algorithm is an iterative process consisting of
two steps, which are described by Algorithm 1 in brief. We de-
note 9% by  when the iteration stops (i.e. the algorithm con-
verges). Technical details about the EM algorithm are provided
in Appendix F1. To expedite the convergence of the algorithm, it
is important to start with a good guess of starting parameters.
The initial values can be obtained from a summary of data, while
treating each degradation path as an independent realization of
a simple IG process. The instructions for finding starting param-
eter values are given in Appendix F.2. Additionally, if a time scale
transformation is needed, inferring the unknown parameter in the
transformation function A(-) has to be carried out too. Denote
the transformed time interval by ;5 = Aj(ty) — Aj(tig_q), Vi=
1,2,...,n,j=1,2,...,p,k=1,2,...,m;, with an unknown param-
eter y;. In this setting, we assume the time scale transformation is
a fixed effect so that for a certain PC j, y; is identical across all
test units. The adaptation of the EM algorithm with this considera-
tion is given in Appendix F.3. Note that when the time scale trans-
formation is necessary, the set of unknown parameters becomes
0= o 0 A, y), where y = (1. v2..... ¥p).

.....

3.2. Interval estimation

In addition to the point estimation, the interval estimation of
some population properties, such as the failure time probability, or
a general function of model parameters, g(@), are often of inter-
est as well. To construct such confidence intervals (C.Is), a com-
mon routine is to make use of asymptotic theories. However, for
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Algorithm 1: The EM Algorithm (in brief) for Parameters Esti-
mation.

Data: The dataset D = {Y, &} in terms of degradation
increments and measurement time intervals.

Input: The current EM estimates 8 (ie. A), ), and =©).
Output: The updated EM estimates 1 (i.e. AC*1, y+1),
and T¢D),

Expectation step (E-step):Define a function

(016°)) = Eam 4o [€(0|ID), 8)], which is the expected value of
£(0|D, §) with respect to the current conditional distribution
of § given D and 6°. In summary, the function is given by

)y LEE
QO™ =>> %
i=1 j=1 k=1
2
x{1n (20w )1 ~
2 1‘1(27'ry3 ) 2 Vijk/Aj

n
+Y {-%In@7r) - 3 In|Z|
i=1
1w®)
—e(zE) a0 -z -]
Maximization step (M-step): Find the parameters that

maximize the quantity " = argmax,Q(8]6"). In
summary, the result is given by

5641 _ nm
j — {t thkyuk”;} *yuk[("m) (”1((51)) “
ZI 1Zk 1 yUk
n(s+1) _ Z V(S)’
£+ _ o 1[2(”+<n‘” )G ey |

n

the proposed model, it is difficult to evaluate its Fisher information
matrix. Instead, we adopt the bias-corrected percentile (BCp) boot-
strap method (Efron & Tibshirani, 1994; Meeker & Escobar, 2014).
The details about this method is given in Appendix G.

3.3. Model validation

In order to verify the goodness of fit (GOF) of Model
My, we extend the model validation techniques for univariate
IG processes to the multivariate case. According to Wang &
Xu (2010) and Ye & Chen (2014), if X ~IG(a,b), then b(X —
a)%/(a?X) ~ x#. Thus, for an individual PC in Model M,, the es-
timated quantity ij(r;ijyijk —ty)?/9ij are approximately iid. x?,
Vi=1,2,....n, j=1,2,...,p, k=1,2,...,m; Here, 7);; is the es-
timated sample inverse drift parameter for process j on unit i. The
resulting X12 quantile-quantile (Q-Q) plot can be used to visualize
the GOF of each PC's IG process model. In addition to test the
independence among all random effects (i.e. Hp:0y; =0, V1<
Jj/ < j=p), define U' = —[v—$(2p+5)]InU, where U is the de-
terminant of the estimated correlation matrix R (calculated from
%) with degrees of freedom v = n(m — 1). According to Rencher
& Christensen (2012), we can use U’ as a test statistic for test-
ing the null hypothesis of independent PCs. Hy is rejected if the
calculated value v’ is greater than an upper Chi-square percentile
value Xa o Where the degrees of freedom are as d = %p(p— 1).
Lastly, to compare the proposed model with other models such
as a model of multiple univariate IG processes without random
effects, the Akaike information criterion (AIC), AIC=2|0| - 2¢, is
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Fig. 2. Simulated Degradation Paths with n = 20 and m = 10.

adopted, where |0| is the total number of model parameters and
¢ is the corresponding log-likelihood.

4. Simulation studies
4.1. Performance of the inference method

In this section, we carry out a Monte Carlo simulation study
to evaluate the performance of the EM algorithm proposed in
Section 3.1. The model is a 3-dimensional degradation process
model given by

Yir (t) ~ IG(t /831, 6t2)
Yo (t) ~ IG(t/8;, 4t2)
Yi3(t) ~ IG(t /833, 2t2)

5 1 02 08 ’
§~MVN|[[4]. (02 1 0.5
3 08 05 1

where we assume the measurement is taken every one unit of
time and it is the same to each PC on all units. Meanwhile, we
suppose n = 20, 40, and 60 along with m = 10, 30, and 50. It re-
sults in a total of nine combinations of sample size. Fig. 2 demon-
strates a sample of simulated degradation paths that is generated
from the model above with n = 20 and m = 10. To carry out statis-
tical inference, the starting parameters are obtained according to
the instruction provided by Appendix F2 and the error tolerance
€ used in the EM algorithm is 10~3. It turns out the computation
time for the inference to meet the convergence criterion is within
one quarter of a minute under any sample size combination on a
personal computer with an Intel Core i7 2.9GHz CPU. We think it is
a satisfactory performance for practical use. In total, for each case,
we generate 1000 replications of data from its simulation model
and fit Model My to the data. The root mean squared errors (RM-
SEs) of model parameter estimators are given in Table 1.
According to these results, in general, the RMSE decreases with
the increase of sample size. It is found that among all the parame-
ters, p13 with much strong correlation is better estimated than the
others. This may be due to the phenomenon that stronger correla-
tion results in more “similar” data that could help improve the es-
timation accuracy. It is also noticed that the improvement of esti-
mation accuracy for 7 and X is much sensitive to n. This is not sur-
prising because, according to the M-step in the EM algorithm, the
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estimation accuracy of these two estimators heavily relies on the
number of test units. Therefore, the inference method proposed in
Section 3.1 performs more effectively when sample size is large.

4.2. Effect of model misspecification

In this section, we conduct another simulation study to assess
the effect of model misspecification. In degradation analysis, two
other IG process-based models, listed as models M; and M, below,
can be viewed as alternatives to My. Model M; assumes the ran-
domness completely originates from the stochastic nature of the
degradation process and each PC is governed by an individual IG
process. Model M, is a collection of classical IG process models
with random effects as proposed by Ye & Chen (2014). Both mod-
els do not involve any dependence structure among PCs.

My : YU(t) ~ IG(t/(S], )\.jtz),
M, : Yii(t) ~ IG(t /8y, Ajt?)
2] 8ij~Nmj.o?)
For simplicity, the simulation model we make use of is either a

2-dimensional or 3-dimensional degradation process (i.e. p=2 or
3) that is given by

Y;;(t) ~ IG(t/8;;, 6t%)

4 /1 p p
SinVN(Ci),(l ’;’)) or MVN[ [4).[p 1 »p
P 4 p p 1

Three different levels of correlation - p =0.2,0.5,0.8 - are
considered. Thus, we produce six different scenarios and for each
of them we fit four models - My, My, and M,. The sample size
of the simulation is chosen to be n=60 and m =50. A simu-
lated degradation observation is generated every one unit of time.
We replicate the simulation 1,000 times for each scenario. With
the simulated data in each replication, we perform model infer-
ences and calculate the model-based reliability prediction at the
time point where the reliability is equal to 0.5 implied by the true
model. The failure threshold is assumed to be 1.5 for each marginal
process. Egs. (7), (8), and (10) are involved in the calculation of re-
liability, where the “hcubature” function in R package - cubature
is utilized to perform multi-dimensional integration of integrands.
Note that the inference model for Model M; is a simple MLE pro-
cess. For Model M, similar to the work by Ye & Chen (2014), it is
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Table 1
RMSE (x10) of the EM Estimate for Each Parameter.
n m A =6 A =4 A3 =2 m=>5 nm =4 N3 =3 o =1 oy =1 o3 =1 p12 =02 p13 =038 p23 =0.5
20 10 6.501 4.432 2.185 2.337 2.319 2378 1.742 1.688 1.901 2.482 1.237 2.048
30 3.663 2.286 1.138 2.278 2.227 2.284 1.653 1.587 1.713 2.308 1.033 1.911
50 2.810 1.851 0.943 2.276 2.211 2.256 1.628 1.582 1.685 2.240 0.989 1.849
40 10 4.521 3.039 1.501 1.630 1.597 1.637 1.215 1.251 1.256 1.667 0.806 1.419
30 2.388 1.696 0.824 1.603 1.552 1.559 1.140 1.165 1.147 1.584 0.648 1.244
50 1.944 1.263 0.644 1.591 1.537 1.529 1.138 1.159 1.122 1.549 0.625 1.209
60 10 3.663 2.454 1.250 1.297 1.353 1.350 0.966 1.012 1.044 1.311 0.639 1.147
30 2.004 1.396 0.683 1.254 1.289 1.278 0.916 0.969 0.960 1.222 0.526 1.040
50 1.607 1.078 0.528 1.249 1.285 1.256 0.893 0.951 0.941 1.201 0.498 1.013

just a little variation of the aforementioned EM algorithm by treat-
ing the marginal degradation process independently. The adapta-
tion of the EM algorithm to fit Model M, is given in Appendix F.4.

Table 2 reports the absolute value of reliability gap on average
from the 1,000 replications of each simulation scenario. The met-
ric is a measure of the accuracy of the estimated reliability value

to its true value. As indicated by the result, compared with Model
My, the reliability estimate by the two alternatives is poor. The bad
performance comes from two sources: 1) the biases in modeling
the randomness existing in the data and 2) the overlooked PC de-
pendence structure that will lead to a skewed reliability calcula-
tion. Thus, correctly identifying random effects and any possible
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Table 2
Absolute Value of Reliability Gap (it is [R — 0.5] x 103) on Average for Various Fitted
Models.
p P Mo M M,
2 0.2 39.169 127.476 42.118
0.5 39.956 103.918 66.222
0.8 40.776 136.935 112.703
3 0.2 40.790 249.763 45.334
0.5 42.533 159.492 93.027
0.8 45.192 132.369 175.305

underlying PC dependence is critical to assessing system reliability
when a multivariate degradation process is present.

5. Two illustrative examples

In this section, we provide two illustrative examples to demon-
strate the implementation of the proposed multivariate analysis
method.

5.1. Coating data

First, we illustrate how the proposed methodology can be ap-
plied for the motivating example - the coating data. To accommo-
date the monotone increasing assumption implied by the IG pro-
cess negative increments (i.e. —y;;;) are computed and treated as
the raw data for analysis. After fitting the proposed model to the
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data, the result of parameters estimation is obtained as follows:

X = (2.09998, 0.39288, 1.61180)’,
7 = (0.97996, 1.15386, 0.96347)’,
i) = (0.35590, 0.68947, 0.54000),

. 1.59788  1.93898 3.07767
and £ =(1.93898 13.19950 13.32560 | x 107°,
3.07767 13.32560 23.86160

where p is the estimate of the parameter y in the time scale trans-
formation function A(t) =tY. Based on the result, the estimated
correlations are pip = 0.42, p13 =0.50, and po3 = 0.76. The esti-
mated correlations represent the dependent relationship existing
in the innate degradation mechanisms among the multiple PCs.
The convergence of the EM algorithm is indicated by plots of pa-
rameter estimates and log-likelihood over iteration, which are pre-
sented by Fig. 9a in Appendix H. The appendix also presents the
interval estimation of the model parameters in Table 4.

To validate the fitted model, we proceed with the X]Z Q-Q plot
and the test of independence as discussed in Section 3.3. From
the Q-Q plots in Fig. 3, one can see that most data points fall
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close to a straight line suggesting that the proposed model pro-
vides a roughly good fit to this dataset. Moreover, the indepen-
dence test indicates that u’ = 204.4376, which is greater than the
critical value X&ow = 11.34487. This result suggests that the cor-
relation among the degradation processes is significant.

Lastly, we carry out the reliability analysis by evaluating Eq.
(10) over a certain time period. For illustration, the failure thresh-
olds for the three wavelengths are identified at —0.60, —0.75,
and —0.40, respectively. Fig. 4 indicates both system reliability
and marginal reliability of the three PCs. Meanwhile, the point-
wise 95% C.I. for the system reliability through the BCp bootstrap
method is also shown.

5.2. Fatigue crack-size data

To facilitate more general applications, in this example, we uti-
lize a subset of the fatigue crack-size data, which was initially
given in Appendix Table C.14 of Meeker & Escobar’s book (2014).
This dataset describes an alloy’s crack growth over time. Similar to
the work of Wang et al. (2015), this dataset is split to three parts so
that a 3-dimensional degradation process is created with a sample
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size of six test units (i.e. n =6 and p = 3). The resulting degrada-
tion paths are depicted in Fig. 5, in which nine observations (i.e.
m =9) for each PC were taken on an individual test unit since the
start of the experiment. The corresponding data table is provided
in Appendix H.

After fitting the proposed model to this dataset, the result of
parameters estimation is obtained as follows:

X = (141.47632, 118.08734, 43.74568),

y = (1.32673,1.32303, 1.24242),
7 = (1.54561, 2.09412, 3.00609),
. 0.02859 0.03665 0.06335
and X = | 0.03665 0.04712 0.08135 ],
0.06335 0.08135 0.14072

where p is the estimate of the parameter y in the time scale
transformation function A(t) =t”. The convergence of the EM
algorithm is indicated by plots of parameters estimation and
log-likelihood over iteration, which are presented by Fig. 9b in
Appendix H. The appendix also presents the interval estimation of
the model parameters in Table 5.

By examining the Q-Q plots in Fig. 6, one can see that most
data points fall close to a straight line except a few ones locate
a little far away. This may result from the remaining uncertainty
in the mean estimator. Nevertheless, the proposed model provides
a reasonably good fit to this dataset. Moreover, the independence
test indicates that u’ = 567.45880, which is much greater than the
critical value X&om = 11.34487. This result suggests that the cor-
relation among the degradation processes is significant. In addi-
tion to Model My, we also fit models M; and M, to this dataset.
The estimated parameters of the two alternatives are given in
Appendix H. It turns out the AIC values for models My, M; and
M, are —1074.18600, —976.25580 and —1002.40500, respectively.
By comparison, Model My is chosen.

In engineering practice, making a prediction of future degrada-
tion values is often desired. To demonstrate this point, we carry
out one-period ahead degradation predictions of the three PCs for
Unit 1. Note that Eq. (6) provides the conditional distribution of
future degradation increments given the current observation. Thus,
based on the estimated model, it is easy to compute the expected
degradation increments for the next inspection interval. Accord-
ingly, Fig. 7 demonstrates the predicted degradation paths for the
three PCs using purple dashed lines for the next 0.01 millions of
cycles, where in contrast the real degradation paths of PC2 and PC3
indicated by the original data table are depicted in solid lines.

Moreover, when the degradation values of one or several PCs
are absent due to certain reasons such as lack of measuring instru-
ments, estimating the missing data is possible via borrowing the
information of the rest PCs by leveraging the dependence struc-
ture. Our proposed model provides an exact solution to this task.
Note that Eq. (4) is the conditional pdf of a subset of degradation
measures given the rest observations. Based on this equation, for
Unit 1, the expected value of PC1 at 0.1 millions of cycles can be
calculated given the observed PC2 and PC3 values. The darkblue
dot of PC1 in Fig. 7 shows the result, and one can see it is higher
than the previous prediction. This is because both observed values
of PC2 and PC3 are greater than the previous predictions and these
three PCs have strong positive correlations.

Finally, we carry out the reliability analysis by plugging the es-
timated parameters into Eqs (7), (8) and (10). Through evaluating
them over a certain time period, the estimated system reliability
functions of the three models - My, M; and M, - are depicted in
Fig. 8. The failure thresholds of the three PCs are assumed to be
1.8, 1.4, and 1.3 inches, respectively. It can be seen that making in-
dependence assumption by either model, M; or M, (i.e. PCs are in-
dependent with or without random effects), could greatly alter the
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predicted reliability function. Thus, care must be taken to examine
the underlying dependence among PCs. In Fig. 8, the point-wise
95% C.I. through the BCp bootstrap method is also shown.

6. Concluding remarks

In this paper, a novel multivariate degradation model is pro-
posed. The model is built upon multiple IG processes, where the
element-wise inverse of the vector of the drift parameters is as-
sumed to be subject to a MVN distribution. This approach facil-
itates the applicability and effectiveness of the model in accom-
modating the three common variability features in multivariate
degradation observations; they are the randomness of degrada-
tion process, heterogeneity among units, and dependence between
PCs. It also brings mathematically tractable properties to assist
with both lifetime estimation and degradation prediction. Further-
more, we provide the EM algorithm to help estimate the unknown
model parameters and the validation tools to check model ade-
quacy. Through case studies, we have demonstrated the applica-
tions of our proposed framework including the prediction of fu-
ture degradation values, the inference of missing degradation data
by leveraging the dependence structure, and the reliability function
evaluation.

It is further worth noting that unlike the conventional way of
modeling the PC-wise dependency by assuming correlations be-
tween degradation observations directly (i.e. Cov(Y;;(t),Y; (1)),
our approach incorporates the dependency in the drift parameters
as random effects. These unobserved frailties provide specific phys-
ical interpretations - the dependency originates from the correla-
tion existing in the innate degradation mechanisms among mul-
tiple PCs. This is because the drift parameters, which reflect the
degradation rate, have close relation with degradation physics as
shown by Ye & Chen (2014) and Peng (2015). As a comparison, the
conventional modeling technique containing the models based on
the copula theory (Fang & Pan, 2021; Palayangoda & Ng, 2021; Sun
et al,, 2020a) and the Wiener process (Hong, Ye, & Ling, 2018a;
Sun et al.,, 2020b; Wang, Gaudoin, Doyen, Bérenguer, & Xie, 2020)
is mainly a data-driven approach, as it suggests a comprehen-
sive measure of dependency that may be contributed from various
sources, including correlated measurement errors and shared envi-
ronmental conditions, etc. And as we have seen in the previous
sections, the tractability and flexibility in handling both hetero-
geneity and dependency further underpin the correlated random-
effects modeling technique as an attractive approach in modeling
multivariate degradation processes.

Beyond the current research effort, the following research di-
rections are worth of a future study:

o In this paper, calculating multivariate integrals is involved in
the reliability assessment. However, when high dimensionality
is present, numerical evaluation will become slow. Thus, it is
desired to develop more efficient ways to solve this problem.
Evidently, incorporating explanatory variables is a necessary
extension for the methodology to have broader applicability.
Two recent articles by Lu et al. (2020) and Xu, Zhou, & Tang
(2021) discussed a similar issue. Also, including measurement
errors is another aspect to be considered. See Hao, Yang, &
Berenguer (2019) for an example.

Besides of the unit-to-unit variability and dependency between
PCs, some other sources of random effects including the inspec-
tion effect and the block effect are of interest to be considered.
Incorporating these features into our model is desired. Relevant
research includes the works by Zhai & Ye (2018), Sun et al.
(2020b), and Zhao, Chen, Gaudoin, & Doyen (2021). Applying
the similar idea on accelerated life tests that consider multiple
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sources of random effects has been recently explored in Seo &
Pan (2020).

It is found in this paper quantifying the interval estimation of a
random-effects model’s parameters is of much difficulty. There
is a need to develop a method that could make the interval
computation more efficiently. The relevant methodologies have
been proposed by Chen & Ye (2018), Hong, Ye, & Sari (2018b),
and Wang, Wang, Hong, & Jiang (2021).

Furthermore, a more comprehensive investigation is desired to
study the applications of the proposed model in certain areas,
including the design of a degradation test (Fang, Pan, & Stufken,
2021; Shi, Xiang, Liao, Zhu, & Hong, 2020b), on-line monitoring
(Hu, Sun, Ye, & Zhou, 2020), and maintenance policy (Keizer,
Flapper, & Teunter, 2017; Liu et al., 2021; Mercier & Pham, 2012;
Wu & Castro, 2020), etc.

Finally, it is also of our interest to develop other types of
multivariate degradation model, including those improved ones
based on multi-dimensional Lévy processes with Lévy copulas
and non-normal random effects, etc.
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Appendix A. Derivation of Eq. (2)
To derive the unconditional marginal pdf of Y;;(t), we utilize an

existing conclusion (shown in Lemma 1 below) provided by Si &
Zhou (2014).

Lemma 1. If X ~ N(u, 02), and A,C,D, G € R, H € R*, then the fol-

[ £:)

GCo? +Hpu
Y;;(t) given &;; implied by Eq.
(t — yijdi)*

G202 +H
2yii/ A ]

Given Lemma 1, if setting A=1, C=t, D=0, G =Yij and
H =y;j/Aj, then the unconditional pdf of Y;;(t) is equivalent to
Esij [fyl]([) (_y,]|51], )u], t)], which is given by

Ait2
N O A ) = [ -
qu(I)(ylj 77] UJ ] ) znylg,}()\jo_fy”_’_ 1) eXp|:
Appendix B. Derivation of Eq. (3)
To derive the unconditional joint pdf of Y;(t), we utilize a
conclusion (shown in Lemma 2 below) indicated on page 108 of
Rencher & Schaalje’s book (2008).

(C—GX)?

Ex[(A — DX) exp |:— SH

H
:\/6202+H<A_D

Recall that the conditional pdf of
(1) can be reparameterized as

2
I~ _exp [—

(C - Gu)?
2(G202 +H)

o0 Wijl 8 2. 6) = !

A —njyi)?
2y;;(A oty +1)

Lemma 2. If x ~ MVN(u, X), the moment generating function (MGF)
of X¥Ax is
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Myax(t) = Ex[exp (tx'Ax) |
= |I-2tAZ| 2 exp [-p/[I - (I - 2tAZ)|Z 7' /2] teR.

Note that in this lemma, t is a real parameter in the MGF, not
the time in the degradation modeling. Then, based on Lemma 2,
the unconditional joint pdf of Y;(t) is provided by

fro@::0.1)
:/"'ffyi(t)(yi|8i§ A 0)f(8;m, 0, p)dd---dby

Es [ fr.oo 0185 1. 0)]
| |

()l 5
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J

]
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=

;) |I+V,‘Z|_1/2
]

xexp {5 00— w)[1- A+ vE) = (- v,

where v; = (t/yi1,t/Yi2, ..., t/yip)’ and
AYin 0 0 0
0 )\,Zyiz 0 0
V= .
0 0 )»pyl-p

This conclusion is based on the result that (8; — v;) ~ MVN(n —
Vi, Z)
Appendix C. Derivation of Eq. (5)

To derive the conditional distribution of §; given y;(t), we uti-
lize the Bayes’ rule. That is

f(8ily;(©))
= f(y:(0)18) f(8:)/ f i (1))
oc f(yi(6)18:) f(8)

= Qm) P (H )exp
i\ i

x (27) 5| Z| ? exp [—%(6,— - n)/):*l(& - n)]

o exp [—%(& - vi)/Vi(Si - vi)] exp [—%(81» - 17)/)3’1 (8 - n)]

o exp [—%6§v,~8i + 8§V,'v,] exp [—%6,{2_1&» + 8;):‘117]

>

Jj=1

A i (i — t/Yij)z]
2

= exp[ 38 + V)8 + 5+ V) |

The derivation is analogous to finding the posterior mean of
a MVN distribution when a semiconjugate prior for the mean is
given. For details, please refer to pages 107-108 of Hoff's book
(2009).
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Appendix D. Derivation of Eq. (6)

To derive the conditional distribution of the future degrada-
tion increments y;(s) given the current degradation measurements
y;(t), it is necessary to first condition on §; and then marginalize
over &;|y;(t). Also based on Lemma 2, the result is given by

FEi) |y ()
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Jj=1 ij

PoA .
= Q) it (T[22 | 1+ V%2
=1\ Yij

xexp {5 (-9 [1- A+ 950 G- 9,

where ¥; =

(8/Yi1,$/Yi2> - - 5/;’1';))/ and

)“pg’ip
This conclusion is based on the result that (§; —

u v yi(t) ~
MVN(®; — Vi, Xp).

Appendix E. Derivation of Eq. (8)

To derive the unconditional cdf of the failure time for an in-
dividual degradation process, we utilize an existing conclusion
(shown in Lemma 3 below) provided by Si & Zhou (2014).

Lemma 3. If X ~N(u,02), and A,C,DeR, then the following
holds:

2 2
Ex[exp(AX)® (C + DX)] = exp (Au + %02>¢<M>.

JT1D%?

Recall that the conditional cdf of the failure time for an individ-
ual degradation process implied by Eq. (7) is

e
Fr,, (¢1: 45, Dj) = q’[\/ . (D% — t)}
j
_eXp(Z)\j(ij)d>|:— gjl(’Dj(Sj—i-t):|,
V Dj

Given Lemma 3, if setting A=0, C =t,/A;/Dj, and D = —, /A ;D;

. by
for the first part (i.e. d>|:—, / D—JJ,(DJ-(SJ- - t):|) of Frpj (t:8;.1;.Dj) and
A=2xjt, C=—t,/Aj/Dj, and D = —,/A;D; for the remaining part,

then the unconditional cdf of the failure time is equivalent to
E(;j[FTD_(tlej; Aj, Dj)], which is given by
J

FTDj (t;nj,05,A;,Dj) =P

[Aj_t—nD;
D,
J /1+)\j0'j2Dj
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t+n,D +2Xj07Djt
—exp [2At (1 + Ajoft)|®
/14 0] 2p;
Appendix F. The EM algorithm for statistical inference

F1. Main technical details

To carry out the EM algorithm, we utilize a conclusion (shown
in Lemma 4 below) indicated on page 107 of Rencher & Schaalje’s
book (2008).

Lemma 4. If x is a random vector with mean g and variance-
covariance matrix ¥ and if A is a symmetric matrix of constants,
then

Ex[¥'AX] = tr(AZ) + W' Ap.

Recall that the complete data are {D, 8}, of which the total log-
likelihood function is

€D, 8) = £(X, 8|D) + £(n, 7, p[3),
where

n

Xp: L [ ( )‘j% )_ % (Eikjg’ij)liaij)z} and
i1 j=1 ket 27 Yiji/Aj

"(E-m) ]

(A, 8|D) =

Jj=
. 1 1 /
ey, 0, p|d) = Z[ pln(Zn)—§1n|):|—§(6,-_n) b

Given the current EM estimates ), which consists of 7, £©

(ile. 0@ and p©), and L), The EM algorithm is performed ac-
cording to the followings:

o E-step: First, according to the conclusion implied by Eq. (5),
8;|D, 0% is subject to a MVN distribution with mean vector

77!(5) = (nz(lS)’ ﬁz(ZS)’ . ﬁ'(;))/

-1
m;
-1 o (5)
= (E(S) =+ Zvik ) (E(S) 77(5) + Zvlk vlk)
k=1 k=1

and variance-covariance matrix

< (s)\2 < (s) 56

(01(,')) 012(1')2 T 910

< (5) ~(s) x(s)

$O _ O1201) (02(1‘)) GZp(i)
i = . . .

x (s) x (s) v(S)

%1p0i) Sty ( p(,))

RGN
= (¢ +kz]vl-,i) L

P xS E s Y
where ¥y = (Eie/Yitk- Tik/Yioks - - - » tik/Yipk)' and

)\( )YIlk 0 0 0
0 A% 0 0
0 0 )‘(S)}ﬁpk

Here, the conclusion implied by Eq. (5) is generalized to the
case that multiple inspections are taken. Then, we know that

v(s) (s) (s)
E6i|D,0‘S’[8U]_ ij ° E6|D0‘5’[8u] ( 1) +( 1(1)) and

Ey o0 | (8-) =7 (8- m) | = e (=7 E7)

+ @GP -G -,
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where the last equation is obtained through applying Lemma 4.

Therefore, Q(0]6°) is given by

Q016®)
SR ()
i=1 j=1 k=1 27T~3k
{ *thkyUkn,j +yz]k|:(771(js)) + (G]((Sl>)) ]}

1
2 Vijk/ A j

=

+ { 1n(2n)—71n|2|—7[tr<2 ):“))

=1
a0 - a0 -}

e M-step: In this step, we update the estimated parameters by
solving the equations that set the first derivative of Q(0|0(S))
equal to 0. And, based on some existing conclusions about ma-
trix differentiation, the results are given by

)L(s+1) _ Z?:l mi
J ~ T~ x(5), ~ s s ’
R {tgkfzt,vkyijm;i>+ygjk[(n;j>) (o) “
Zi:] Zk=1 Vijk
”(sﬂ) — 1 Xn:ﬁ{S)
n&=te
i=1
o _ YL 1[2 + @ - @G - n“*”)’]
b .
n
These two steps iterate until achieving convergence.
The criterion for convergence is wusually built upon
0V, 8) — (0 |D, 8)‘ <€ or max ‘0(5”) —0®| < ¢, where

max is the element-wise maximum of a vector and € is the error
tolerance.

F2. Good guess of starting parameters

To provide a good set of starting parameters, it is performed by
the following steps:

1. Treat the degradation increments of each degradation path,

ie.  ¥ij= Gijih Vi Yijm)'s
as an independent realization from a simple IG process,
IG(t/6;j, Aijtz) Fit the model to the data and obtain estimated

parameters 3,] and 7»1]- Vi=1,2,. , D-

...............

nj=1,2,...

2. Set )“](‘0) = H Yot Aijs n© = %Zi:] & and T = %(31' -
7©)($; — @) as the initial parameters feeding into the
E-step, where §; = (5; ;. Sil ..... S,—_p)’, Vi=1,2,...,n. Note that

sometimes the resulting >© may not be pd, its nearest pd
matrix (Higham, 2002) can be computed and fed into the
E-step instead.

F3. Incorporation of time scale transformation function

If denoting the transformed time interval by 7, = Aj(ty) —
Aj(t,;kf]), Vi=1,2,...,n,j=1,2,..., p.k=1,2,...,m; with an

unknown parameter y;, then Q(0|0(S)) in the E-step becomes

Q(016®))

n p m
)R LIy

i=1 j=1 k=1 ijk
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— 275 ) 4 2 ©)
Zkayukﬂ,-j + Yijk [(77,]

)+ @]
Yijk/ A

+§n:{ pln(Zn') *IHIZI——[tr(): ):(5)>

a0 - a0 -}

(s)
J@

1 {Tﬁk

2

where Py = (Tigr/Vitks Tizk/Vioks - -
And in the M-step, to obtain Y;
lowing equation

szk/g’lpl<)/~
+1) \e need to solve the fol-

nomo(z

ijk (s+1) > (s) (s+1) [ _
S5 A e | =0
i=1 k=1 L "k

where ti/jk is the derivative of 7;j with respect to y;. Solutions to
this equation can be found numerically.
In this paper we make use of the power transformatlon ie.

rl]kztyf Thus, Tt/ ik should be replaced with t Int;, —

lkl

,k 1Int; 4 in the equation above. Particularly, when ¢t;;_; =0,

we set Tijk = tfk .

F4. Adaptation of the EM algorithm to fit model M,

For Model M5,

o

we denote its parameters by 6= (6;.6,.....0,), where 0=
(Aj.nj.05), j=1.2..... p. Also, we denote the complete data for
process j by {D;,d;}, where D; is a subset of D associated with
process j and §; = (84, ;. ..., 8p;)". Then, the total log-likelihood
function for process j is

Yii(t) ~ IG(t /8y, Ajt?)
BUNN(ﬂstJZ) ’

(0,15, 8;) = (A}, 8;1D)) + £(nj, 018)).

where
n o m 2 * =~ 2
- 8D = 1 A\ 1 GEa—Sindiy)
(O imp = T3 [2 In (ma) g Caciudy? ] and
L 2
1 1 2 1
Z(T}j,O’lej): i;[—jln(Zn)—jlnoj —E((Sij—nj) :|
Given the current EM estimates 0;3), which consists of A(S) nj(s)

and aj(s). The EM algorithm is performed according to the follow-
ings:

o E-step: First, analogous to the conclusion implied by Eq. (5), a
routine calculation shows that §;;|D;, 0;5) is subject to a normal
distribution with mean

AT Tk 0?0
(@)’

and standard deviation
1

_\/)‘(S) 191]]{'1'1/( (S))z.

Then, we know that

3 (s) _
ij

3 (S)
9ij

E; 1D 0‘5’[811] =7 and Es. ;ID;. 0“’[5 (i (s)) + (61‘3'”)2'

u]
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Therefore, Q(0j|0j(-s>) is given by

Q(6,165)

2
{Efk*ﬁik?ukﬁ;ﬁ) +§7izjk|:<7ll(,s)) ( 1'(1'5)) ] ]

At

_ L) 1

= g kéjl 2 In <27Tyuk> T2 Vijk/*j
n

+> {-3In@m) - $In(a})

~ag )"+ @) - 20 + 7]

o M-step: In this step, we update the estimated parameters by

solving the equations that set the first derivative of Q(9j|0§.s) )

equal to 0. Therefore, the results are

)\‘(‘S+1) — ZZI 1M .
j v (BB ] ) )]
Zi:l qu yUk
(s+1) _ 1 % (s)
U "3 iy
> (s) (s) (s+1)
o &+ _ \V/Z?1 -(Gij ) (nu " ) |
i T n '

To estimate all the unknown parameters, we carry out the EM

algorithm for each individual process one at a time with a total of
p implementations. The conclusion by Appendix F.2 is still appli-
cable to provide a good guess of starting parameters except it is
necessary to check 0@ instead of £©. In terms of incorporation
of time scale transformation, the conclusion by Appendix E3 re-
mains the same. Thus, the inference for Model M, can be viewed
as an analogously univariate version of the inference for Model M.

Appendix G. The BCp bootstrap method

For illustrative purposes, we use the BCp bootstrap method to

demonstrate the computation of the C.. for F, (t: , D) of the pro-
posed model. It is performed according to the following steps:

1

Given the observed data D, implement the EM algorithm to ob-
tain the estimated parameters 0 and calculate the estimated
failure time probability F; (t;8,D) (abbreviated F(t)) at de-
sired values of t.

. Generate a large number B (say B=1,000) of bootstrap

samples that mimic the original sample and compute the

European Journal of Operational Research 300 (2022) 1177-1193

corresponding bootstrap estimates FT*D (t;@;,D)b (abbreviated

F*(t)p), b=1,2,...,B, according to the following steps:

(a) Generate n simulated realizations of the random mean vec-
tor, i.e. 8 ~MVN(#}, £),i=1,2,....n

(b) For each §;, generate p simulated degradation paths based
on y* =y;‘jvk_] +y;‘jk, Vi=1,2,....,n, j=1,2,...,p, k=

ijk
1,2,...,m;, where y;‘jo=0 and y;“jk is sampled from

IG(tik/é )"tlzk)
(c) Use the simulated degradatlon paths as inputs to produce
the bootstrap estimates 0b and compute F*(t), at desired

values of t.

3. For each desired value of t, the bootstrap C.I. for F, (t: 0, D) is

constructed as below:

(a) Sort the bootstrap estimates F*(t), ...,
order giving F*(t)), b=1.2,....B.

(b) The lower and upper bounds of point-wise approximate
100(1 — )% ClL are [F*(t) . F*(t) )], where

F*(t)p in increasing

L=Bx ®[207(q) + D' (a/2)],
U=Bx 207 1(q)+ P 1(1-a/2)].

and q is the proportion of the bootstrap estimates
{F*(t)p,b=1,2,...,B} that are less than F(t).

Appendix H. Additional results of the illustrative examples

Table 3 provides the data table of the fatigue crack-size data.

Tables 4 and 5 show the point estimates of model parameters and
their 95% bootstrap C.I.s (shown in the parentheses) for the coating
data and the fatigue crack-size data, respectively. Fig. 9a and b pro-
vide plots of parameter estimates and log-likelihood over iteration
for the coating data and the fatigue crack-size data, respectively.

For Model M;, the result of parameters estimation for the

fatigue crack-size data is obtained as follows:

2.07223,2.95884)’,

For Model

for the fatigue

§ = (1.52670,

M3,

X = (110.52359, 93.33662, 36.10819)/, and y=
(1.31943,1.31812, 1.23736)'.

the result
crack-size data

of parameters
is obtained

as

estimation
follows:

A= (135.90509, 111.83610, 40.43586)’,

y = (1.32563,1.32199,

(1.54283,2.08948, 2.98782)’,

and & = (0.15363,

1.24042), 7=
0.19554, 0.29746).

A A A A A A 3 »
A o s il A A2 As T
210 0.9815 j 443 1.8219
599 0390 1.604 0.9810 13321 120+ 44.1 13388
4 12251 i e
2oe1l  Jossodl ] tse ] 00800l T=——ru (AN S—— 118 T — 1 13285 ==
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0o 2 4 0o 2 4 0o 2 4 0o 2 4
» A A A A A A A
¥, s L i, T, 13 iy ‘ i,
0.3585 ]
1 12; gggg 073580 1 0.699 1.3234 1.2428 1.54650 2.0955
0968 g gg;g 0.696 1.3232 1.2426 1.54625 | 2.0050
1155 033651 0.693 1.3230 1.2424+ 1.54600 20945
0.964 ] : - r 1.54575
11844y e 035604, Th—— 08904, Ty ; ; 1.24224 ; v s 7 T ; 7 T
® 02 4 6 8 02 4 6 8 002 4 6 8 002 4 6 8 ¢ 0o 2 4 0o 2 4 o 2 4 0o 2 4
=] =)
< <
g fo & 8 & 3 f & e b
0552 0.0321 0.0370
4e-04 0.00075 4 0.00075 3.0070 0.0365 0.064
0.548 3e-04 0000504 0.00050 0.0314 00360 0.063
0.544 2e-04 0000251 0.00025 80065 0.0304 0.0355 0.062
Te-04 ! 3.0060{_—————] 00201 0.0350 0.061
0.540 | 06+00 4 p=————— 000000 4; ) 0.00000 L= | j—— — — —
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Fig. 9. Parameter Estimates and Log-likelihood over Iteration.
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Table 3
Fatigue Crack-size Data.

European Journal of Operational Research 300 (2022) 1177-1193

Millions of Cycles (x10)

Unit 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
PC1
1 0.90 0.95 1.00 1.05 1.12 1.19 1.27 1.35 1.48 1.64
2 0.90 0.94 0.98 1.03 1.08 1.14 1.21 1.28 1.37 1.47
3 0.90 0.94 0.98 1.03 1.08 1.13 1.19 1.26 1.35 1.46
4 0.90 0.94 0.98 1.03 1.07 1.12 1.19 1.25 1.34 143
5 0.90 0.94 0.98 1.03 1.07 1.12 1.18 1.23 133 1.41
6 0.90 0.94 0.98 1.02 1.07 1.11 1.17 1.23 1.32 1.41
PC2
1 0.90 0.93 0.97 1.00 1.06 1.11 1.17 1.23 1.30 1.39
2 0.90 0.92 0.97 1.01 1.05 1.09 1.15 1.21 1.28 1.36
3 0.90 0.92 0.96 1.00 1.04 1.08 1.13 1.19 1.26 1.34
4 0.90 0.93 0.96 1.00 1.04 1.08 1.13 1.18 1.24 1.31
5 0.90 0.92 0.97 0.99 1.03 1.06 1.10 1.14 1.20 1.26
6 0.90 0.93 0.96 1.00 1.03 1.07 1.12 1.16 1.20 1.26
PC3
1 0.90 0.92 0.96 0.99 1.03 1.06 1.10 1.16 1.21 1.27
2 0.90 0.92 0.95 0.97 1.00 1.03 1.07 1.10 1.16 1.22
3 0.90 0.93 0.96 0.97 1.00 1.05 1.08 1.11 1.16 1.20
4 0.90 0.92 0.94 0.97 1.01 1.04 1.07 1.09 1.14 1.19
5 0.90 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16
6 0.90 0.92 0.94 0.97 0.99 1.02 1.04 1.07 1.11 1.14
Table 4
Results of Point and Interval Estimates of Model Parameters for the Coating Data.
Parameter Estimation Estimation Estimation
by 1 = 2.09998 %y =0.39288 3 = 1.61180
(1.00035,4.19730) (0.19208,0.93007) (0.76006,3.18489)
y 71 = 0.97996 72 = 1.15386 73 = 0.96347
(0.91746,1.04835) (1.06981,1.21906) (0.90100,1.03169)
n i = 0.35590 fi, = 0.68947 fi3 = 0.54000
(0.25360,0.51402) (0.43220,0.98513) (0.38455,0.77688)
a? &12 =1.59788 x 106 622 =13.19950 x 10~ 633 =23.86160 x 10~
(8.43673 x 10-8,3.48284 x 10-5) (1.36569 x 10-5,2.86679 x 104) (7.42015 x 107, 1.10614 x 10-3)
o 612 = 1.93898 x 106 653 = 13.32560 x 106 613 = 3.07767 x 108
(—9.40336 x 1074, 19.93434 x 107%) (—9.82983 x 1074, 3.21900 x 10-3) (—4.50918 x 1074, 1.50048 x 103)
Table 5
Results of Point and Interval Estimates of Model Parameters for the Fatigue Crack-size Data.
Parameter Estimation Estimation Estimation
A A = 141.47632 A2 = 118.08734 A3 =43.74568
(94.70044,199.23721) (76.95887,165.63843) (28.09148,61.03539)
y 71 = 1.32673 7, = 1.32303 73 = 1.24242
(1.24922,1.40003) (1.25886,1.38871) (1.15558,1.32581)
n 711 = 1.54561 fz = 2.09412 fj3 = 3.00609
(1.37547,1.70408) (1.88137,2.29041) (2.62293,3.37090)
o? 62 = 0.02859 G2 =0.04712 33 =0.14072
(37.94254 x 1074, 10.64927 x 10-2) (60.37184 x 1074, 17.17543 x 1072) (17.28414 x 103, 51.81899 x 10-2)
oy 612 = 0.03665 653 = 0.08135 613 = 0.06335
(63.46901 x 1074, 11.93211 x 1072) (19.78837 x 103, 31.27065 x 10-2) (12.76516 x 103, 23.09770 x 10-2)
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