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a b s t r a c t 
Many engineering products have more than one failure mode and the evolution of each mode can 
be monitored by measuring a performance characteristic (PC). It is found that the underlying multi- 
dimensional degradation often occurs with inherent process stochasticity and heterogeneity across units, 
as well as dependency among PCs. To accommodate these features, in this paper, we propose a novel 
multivariate degradation model based on the inverse Gaussian process. The model incorporates random 
effects that are subject to a multivariate normal distribution to capture both the unit-wise variability and 
the PC-wise dependence. Built upon this structure, we obtain some mathematically tractable properties 
such as the joint and conditional distribution functions, which subsequently facilitate the future degrada- 
tion prediction and lifetime estimation. An expectation-maximization algorithm is developed to infer the 
model parameters along with the validation tools for model checking. In addition, two simulation studies 
are performed to assess the performance of the inference method and to evaluate the effect of model 
misspecification. Finally, the application of the proposed methodology is demonstrated by two illustrative 
examples. 

© 2021 Elsevier B.V. All rights reserved. 
1. Introduction 
1.1. Background 

Modern engineering products are often highly reliable. For ex- 
ample, according to the photovoltaic (PV) industry standard, so- 
lar panels are designed to work with a performance reduction 
of no more than 20% within the first 25 years if operated at 
the standard test condition ( Lindig, Kaaya, Weiss, Moser, & Topic, 
2018 ). To accurately assess the quality of these products, degra- 
dation tests that continuously monitor some performance charac- 
teristics (PCs) over time are often applied to provide timely fail- 
ure information. The PCs such as output power, cell crack size, 
and the strength of encapsulant adhesion to glass for PV mod- 
ules reveal some commonly-observed failure modes, including ma- 
terial fatigue and delamination, etc. Along with the occurrence of 
these failure modes, the stochastic nature of innate failure mecha- 
nisms makes the degradation process develop with a considerable 
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amount of uncertainty. In the meantime, heterogeneity across en- 
gineering products is often observed due to variations in raw ma- 
terials and manufacturing processes even if these products are pro- 
duced according to a common industry standard. This type of vari- 
ability leads to the unit-to-unit variation among observed degra- 
dation processes. Besides this, it is further worth noting that any 
likely correlation among different failure modes will cause the PCs 
to behave not independently. Therefore, to analyze multivariate 
degradation data, we need to establish a statistical model that ac- 
counts for 1) the stochastic nature of each individual PC, 2) the 
heterogeneity among different units, and more importantly, 3) any 
possible dependence among these PCs. The main goal of this paper 
is to develop such a multivariate degradation model. 
1.2. A motivating example 

As a motivating example, we present a real dataset – the coat- 
ing data that was initially provided by Lu, Wang, Hong, & Ye 
(2020) . This dataset describes a 3-dimensional degradation process 
of a type of polymeric material over time. By exposing several test 
units to various environmental conditions of ultraviolet (UV) ra- 
diation, temperature, and relative humidity (RH), the three differ- 
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List of Notations 
Indices: 
n number of units ( i ∈ { 1 , 2 , . . . , n } ) 
p number of performance characteristics ( j ∈ { 1 , 2 , . . . , p} ) 
m i number of measurements ( k ∈ { 1 , 2 , . . . , m i } ) 
Random variables: 
Y i (t) degradation values on unit i at time t , where Y i (t) = (Y i 1 (t) , Y i 2 (t) , . . . , Y ip (t) )′ 
δi element-wise inverse of the vector of the drift parameters (i.e. unobserved random effects), where δi = (δi 1 , δi 2 , . . . , δip ) ′ ≡ ( 1 

µi 1 , 1 
µi 2 , . . . , 1 

µip ) ′ 
Data: 
t ik the elapsed time when the k -th measurement on unit i is taken 
˜ t ik measurement time interval with ̃  t ik = t ik − t i,k −1 
y i jk degradation measurement of process j on unit i at time point k 
˜ y i jk degradation increment with ̃  y i jk = y i jk − y i j,k −1 
˜ t collection of all the measurement time intervals, where ̃  t = ( ̃ t ′ 1 , ̃ t ′ 2 , . . . , ̃ t ′ n ) ′ and ̃  t i = ( ̃ t i 1 , ̃ t i 2 , . . . , ̃ t im i ) ′ 
˜ Y collection of all the degradation increments, where ˜ Y = ( ̃ Y 1 , ̃  Y 2 , . . . , ̃  Y n ) and ˜ Y i = ( ̃ y i 1 , ̃ y i 2 , . . . , ̃ y im i ) = 

⎛ 
⎜ ⎜ ⎜ ⎝ 

˜ y i 11 ˜ y i 12 · · · ˜ y i 1 m i 
˜ y i 21 ˜ y i 22 · · · ˜ y i 2 m i 

. 

. 

. . 
. 
. . . . . 

. 

. 
˜ y ip1 ˜ y ip2 · · · ˜ y ipm i 

⎞ 
⎟ ⎟ ⎟ ⎠ 

D the total observed data with D = { ̃ Y , ̃ t } 
D vector of all PC failure thresholds with D = (D 1 , D 2 , . . . , D p ) ′ 
Parameters: 
η means of the random effects, where η = (η1 , η2 , . . . , ηp ) ′ 
σ standard deviations of the random effects, where σ = (σ1 , σ2 , . . . , σp ) ′ 
ρ correlations of the random effects,where ρ = (ρ12 , ρ13 , . . . , ρp−1 ,p ) ′ 
% variance-covariance matrix of the random effects, where 

% = 
⎛ 
⎜ ⎜ ⎜ ⎝ 

σ 2 
1 σ12 · · · σ1 p 

σ12 σ 2 
2 · · · σ2 p 

. 

. 

. . 
. 
. . . . . 

. 

. 
σ1 p σ2 p · · · σ 2 

p 

⎞ 
⎟ ⎟ ⎟ ⎠ 

λ the shape parameters, where λ = (λ1 , λ2 , . . . , λp ) ′ 
γ the time-scale transformation parameters, where γ = (γ1 , γ2 , . . . , γp ) ′ 
θ collection of all the unknown parameters, where θ = ( η′ , σ ′ , ρ′ , λ′ ) ′ or θ = ( η′ , σ ′ , ρ′ , λ′ 

, γ ′ ) ′ if applicable 
Transformed Quantities: 
τi jk transformed time scale with τi jk = ( j (t ik ) − ( j (t i,k −1 ) 
νi νi = (t /y i 1 , t /y i 2 , . . . , t /y ip ) ′ 
V i V i = 

⎛ 
⎜ ⎜ ⎜ ⎝ 

λ1 y i 1 0 0 0 
0 λ2 y i 2 0 0 
. 
. 
. . 

. 

. . . . . 
. 
. 

0 0 · · · λp y ip 

⎞ 
⎟ ⎟ ⎟ ⎠ 

˜ νi ˜ νi = (s/ ̃ y i 1 , s/ ̃ y i 2 , . . . , s/ ̃ y ip ) ′ or ( ̃ t ik / ̃ y i 1 k , ̃ t ik / ̃ y i 2 k , . . . , ̃ t ik / ̃ y ipk ) ′ 
˜ V i ˜ V i = 

⎛ 
⎜ ⎜ ⎜ ⎝ 

λ1 ̃ y i 1 0 0 0 
0 λ2 ̃ y i 2 0 0 
. 
. 
. . 

. 

. . . . . 
. 
. 

0 0 · · · λp ̃ y ip 

⎞ 
⎟ ⎟ ⎟ ⎠ or 

⎛ 
⎜ ⎜ ⎜ ⎝ 

λ1 ̃ y i 1 k 0 0 0 
0 λ2 ̃ y i 2 k 0 0 
. 
. 
. . 

. 

. . . . . 
. 
. 

0 0 · · · λp ̃ y ipk 

⎞ 
⎟ ⎟ ⎟ ⎠ 

ent PCs (change of chemical structures at the wavelength of 1250 
cm −1 , 1510 cm −1 , 2925 cm −1 ) were measured every few days us- 
ing Fourier transform infrared (FTIR) spectroscopy. For illustrative 
purposes, we arbitrarily pick a subset of the data that was gen- 
erated under the environmental setting – 60% UV intensity, 35 ◦C, 
and 0% RH. The resulting degradation paths are depicted in Fig. 1 , 
in which PC1, PC2, and PC3 represent the three PCs at the wave- 
length of 1250 cm −1 , 1510 cm −1 , and 2925 cm −1 , respectively. This 
sub-dataset consists of a sample size of four test units and forty- 
seven observations. As illustrated by Fig. 1 , for each PC, disparate 
degradation paths are shown, which clearly indicates the hetero- 
geneity among different test units. Furthermore, the relative rank- 
ing of the degradation paths among different units is preserved 
across the PCs. This implies the possible existence of dependence 
among the PCs. Thus, the desire for building a multivariate degra- 
dation model naturally arises when one is concerned with such 
monotonic degradation paths where both unit-wise variability and 
PC-wise dependence are present. 
1.3. Related work 

In the statistical degradation modeling literature, numerous 
studies have been conducted to model a single PC’s degradation 

process. Typical frameworks include general path models and 
stochastic process models ( Ye & Xie, 2015 ), where a general path 
model is a time-based regression model that incorporates both 
fixed and random effects ( Bae & Kvam, 2004; Fang, Rigdon, & Pan, 
2018 ) and a stochastic process model assumes a random process 
for PC measurements over time. In the literature, there are three 
main classes of stochastic degradation processes – the Wiener 
process ( Hong, Tan, & Ye, 2020; Ye, Wang, Tsui, & Pecht, 2013 ), the 
Gamma process ( Lawless & Crowder, 2004; Ye, Xie, Tang, & Chen, 
2014 ), and the inverse Gaussian (IG) process ( Morita et al., 2020; 
Peng, 2015; Wang & Xu, 2010; Ye & Chen, 2014 ). 

Built upon these two major modeling frameworks, several re- 
searchers have developed multivariate degradation models. Si, 
Yang, Wu, & Chen (2018) proposed a multivariate general path 
model to make reliability analysis for materials with deforma- 
tion process. Xu, Shen, Wang, & Tang (2018a) , Wang, Balakrish- 
nan, & Guo (2015) , and Liu, Al-Khalifa, Elsayed, Coit, & Hamouda 
(2014) constructed either bivariate or multivariate degradation 
models based on the Wiener process. More recent studies include 
the works by Sun, Ye, & Hong (2020b) , Lu et al. (2020) , Hajiha, Liu, 
& Hong (2020) , and Liu, Pandey, Wang, & Zhao (2021) . Sun et al. 
(2020b) proposed a multivariate model with two-layer block ef- 
fects based on the Wiener process to carry out an in-depth study 
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Fig. 1. Degradation Paths of Polymeric Materials. 
on a destructive degradation testing dataset. Lu et al. (2020) pro- 
posed a multivariate general path model to analyze the aforemen- 
tioned trivariate polymeric material’s degradation process. Hajiha 
et al. (2020) used the Wiener process to analyze competing degra- 
dation processes under dynamic operation conditions. Liu et al. 
(2021) constructed a bivariate gamma process by trivariate reduc- 
tion method to build condition-based maintenance policies. Be- 
sides these works, an alternative approach to constructing multi- 
variate degradation models is to take advantage of the copula the- 
ory. Some developments in this regard have the articles based on 
regular copulas by Fang, Pan, & Hong (2020) , Fang & Pan (2021) , 
Xu et al. (2018b) , Sun, Fu, Liao, & Xu (2020a) , Palayangoda & Ng 
(2021) . It also includes ways of constructing multi-dimensional 
Lévy processes with Lévy copulas, such as Shi, Feng, Shu, & Xiang 
(2020a) , Mercier & Pham (2012) and Li, Deloux, & Dieulle (2016) . 

Despite the previous studies, there is a lack of IG process-based 
multivariate degradation modeling framework. This paper seeks to 
bridge the gap. Particularly, the proposed novel degradation model 
takes advantage of a structure of correlated random effects, which 
brings tractable properties and facilitates easy application for the 
future degradation prediction and lifetime estimation. Moreover, 
we provide an efficient inference method and model validation 
tools. With these nice features, our proposed methodology greatly 
complements the family of multivariate degradation models, espe- 
cially when the degradation process is monotone. 
1.4. Outline 

The remainder of this paper is organized as follows. 
Section 2 elaborates on the IG process-based multivariate model- 
ing framework and its derived lifetime distribution. Section 3 dis- 
cusses the model parameters estimation and validation aspects. 
Section 4 provides two simulation studies and Section 5 demon- 
strates two illustrative examples. Finally, Section 6 concludes the 
paper with a discussion of techniques of building multivariate 
degradation models and remarks on future study. Some relevant 
mathematical proofs, algorithm details, and additional results of 
the illustrative examples are given in Appendices. 

2. Modeling framework and lifetime distribution 
2.1. Model description 

Many degradation processes, as accumulation of additive and 
irreversible damages, demonstrate monotone paths ( Ye & Chen, 
2014 ). The IG process, as an attractive model to describe these pro- 
cesses, has been well studied. An IG process, { Y (t) , t ≥ 0 } , satisfies 
the following properties: 
• Y (t) has independent increments, i.e. Y (t + )t) − Y (t) is inde- 

pendent of Y (s ) , ∀ t ≥ s > 0 and )t ≥ 0 ; 
• Y (t + )t) − Y (t) is subject to an IG distribution 

IG (µ)t , λ)t 2 ) , ∀ t ≥ 0 and )t > 0 . 
Thus, without loss of generality, let Y (0) = 0 , then the probabil- 

ity density function (pdf) of Y (t) is given by 
f Y (t) (y ;µ, λ, t) = √ 

λt 2 
2 πy 3 exp [−λ( y − µt ) 2 

2 µ2 y 
]
, y > 0 , (1) 

where µ > 0 is the drift parameter and λ > 0 is the shape param- 
eter. 

Consider a degradation test with n test units and each unit 
presents a p-dimensional multivariate degradation process. Denote 
the degradation observations on unit i , i = 1 , 2 , . . . , n , at time t , 
t ≥ 0 , by Y i (t) = (Y i 1 (t) , Y i 2 (t ) , . . . , Y ip (t ) )′ with each individual ob- 
servation Y i j (t) , ∀ i = 1 , 2 , . . . , n, j = 1 , 2 , . . . , p. We assume Y i j (t) is 
subject to the IG process as presented by Eq. (1) . Meanwhile, it is 
assumed that correlated random effects exist among these degra- 
dation processes. In summary, we refer to the modeling framework 
as Model M 0 and it is represented by 
M 0 : { Y i j (t) ∼ IG (t /δi j , λ j t 2 ) 

δi ∼ MV N( η, %) , 
where δi = (δi 1 , δi 2 , . . . , δip ) ′ ≡ ( 1 

µi 1 , 1 
µi 2 , . . . , 1 

µip ) ′ is the element- 
wise inverse of the vector of the drift parameters and it is subject 
to a multivariate normal (MVN) distribution with mean vector η
and variance-covariance matrix % > 0 , i.e. a positive definite (pd) 
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matrix. We denote the elements in η and % by 
η = 

⎛ 
⎜ ⎜ ⎝ 

η1 
η2 
. . . 

ηp 

⎞ 
⎟ ⎟ ⎠ and % = 

⎛ 
⎜ ⎜ ⎝ 

σ 2 
1 σ12 · · · σ1 p 

σ12 σ 2 
2 · · · σ2 p 

. . . . . . . . . . . . 
σ1 p σ2 p · · · σ 2 

p 

⎞ 
⎟ ⎟ ⎠ , 

respectively, where η j > 0 and σ 2 
j ≥ 0 , ∀ j = 1 , 2 , . . . , p, are the 

mean and variance, respectively. Furthermore, σ j j ′ = ρ j j ′ σ j σ j ′ , 
∀ 1 ≤ j < j ′ ≤ p, and it is the covariance with the Pearson cor- 
relation coefficient ρ j j ′ ∈ [ −1 , 1] . Under the extreme scenario of 
η being fixed and σ j → 0 , ∀ j = 1 , 2 , . . . , p, the model reduces 
to the routine IG process. We denote all the unknown pa- 
rameters by θ = ( η′ , σ ′ , ρ′ , λ′ ) ′ , where σ = (σ1 , σ2 , . . . , σp ) ′ , ρ = 
(ρ12 , ρ13 , . . . , ρp−1 ,p ) ′ , and λ = (λ1 , λ2 , . . . , λp ) ′ . The selection of 
the joint distribution of δi is because of its natural conjugate prop- 
erty of the IG distribution. This feature not only provides a good 
fit for degradation data as illustrated by the subsequent illustrative 
examples in Section 5 , but also leads the proposed model to be 
mathematically tractable. 

Note that, for convenience, we directly make use of the original 
time scale t in the formulas above. Instead, a more general nota- 
tion is ((t) , where ((·) is a function that transforms the origi- 
nal time scale so as to model any possible nonlinear degradation 
processes. Two popular choices of ((·) are the power law func- 
tion and the exponential law function ( Whitmore & Schenkelberg, 
1997 ). We will illustrate how to incorporate ((·) in a later sec- 
tion. Moreover, similar to the assumption made by Lu & Meeker 
(1993) and Peng (2015) , we assume that the probability of a neg- 
ative µi j is negligible to avoid obtaining an infeasible degradation 
rate. Concretely, if η j ≫ 0 and σ j is small, this problem is not a big 
concern. 

By constructing such a hierarchical modeling framework, the 
aforementioned three features of variability among multivariate 
degradation measurements have been accommodated. First, at the 
top level, given µi j , a well-defined IG process is proposed to ex- 
plain the evolution of each individual degradation process over 
time with randomness. This type of randomness is usually pro- 
duced by the inherent failure mechanism. Second, at the second 
level, δi , a collection of the inverse of all µi j ’s, is assumed to be 
stochastically distributed. This type of randomness manifests the 
latent variation of the drift parameters across units. Note that the 
IG process Y i j (t) has mean µi j t and variance µ3 

i j t/λ j , where the 
parameter µi j and the combined parameter µ3 

i j /λ j represent the 
degradation rate and volatility, respectively. Therefore, through in- 
corporating such random effects, a parsimonious model that could 
explain the unit-to-unit variability of both the two attributes is 
obtained. Finally, it is noted that, by modeling the random ef- 
fects through a MVN distribution, a plausible way to incorporate 
the dependence among PCs is also formed. This type of depen- 
dence is associated with the drift parameters µi j ’s that underpin 
the underlying degradation mechanism. Meanwhile, given µi j ’s, 
the marginal degradation processes are conditionally independent, 
which brings many nice properties and facilitates the associated 
inference as illustrated in later sections. Therefore, the proposed 
modeling framework is applicable to the analysis of multivariate 
degradation processes with both unit-wise heterogeneity and PC- 
wise dependence. 
2.2. Derived properties 

Next, we present some theoretical properties that can be de- 
rived from Model M 0 in terms of the marginal, joint, and condi- 
tional pdf. Furthermore, the conditional distributions of both the 
random-effects terms and the future degradation predictions given 
the history of observations are specified, too. 

First, note that under such a modeling framework, the marginal 
distribution of δi j is a normal distribution with mean η j and vari- 
ance σ 2 

j . Thus, the marginal pdf of Y i j (t) , after integrating out δi j , 
is given by 

f Y i j (t) (y i j ;η j , σ j , λ j , t) = 
√ 

λ j t 2 
2 πy 3 

i j (λ j σ 2 
j y i j + 1) 

× exp [−
λ j (t − η j y i j ) 2 

2 y i j (λ j σ 2 
j y i j + 1) 

]
. (2) 

The derivation of Eq. (2) is given in Appendix A . 
Next, the unconditional joint pdf of Y i (t) is given by 

f Y i (t) ( y i ; θ, t) = (2 π ) − p 
2 t p 

( 
p ∏ 

j=1 
√ 

λ j 
y 3 

i j 
) 

| I + V i %| −1 / 2 
× exp { 

−1 
2 ( η − νi ) ′ [I − ( I + V i %) −1 ]%−1 ( η − νi ) } 

, (3) 
where νi = (t /y i 1 , t /y i 2 , . . . , t /y ip ) ′ and 
V i = 

⎛ 
⎜ ⎜ ⎝ 

λ1 y i 1 0 0 0 
0 λ2 y i 2 0 0 
. . . . . . . . . . . . 
0 0 · · · λp y ip 

⎞ 
⎟ ⎟ ⎠ . 

The derivation of Eq. (3) is given in Appendix B . 
Suppose Y i (t) is divided into two mutually exclusive subsets –

Y iA (t) and Y iB (t) . And we denote the indices associated with the 
two subsets by A = { j : Y i j (t) ∈ Y iA (t) } and B = { j : Y i j (t) ∈ Y iB (t) } , 
respectively. Then, the conditional pdf of Y iA (t) | Y iB (t) after inte- 
grating out δ is given by 

f Y iA (t) | Y iB (t) ( y iA | y iB ; θ, t) 
= f Y i (t) ( y i ; θ, t) 

f Y iB (t) ( y iB ; θ, t) 
= 

( 
∏ 
j∈ A 

√ 
λ j t 2 

2 πy 3 
i j 
) 

| I + V i %| −1 / 2 
| I + V iB %B | −1 / 2 

×
exp {− 1 

2 ( η − νi ) ′ [I − ( I + V i %) −1 ]%−1 ( η − νi ) }
exp {− 1 

2 ( ηB − νiB ) ′ [ I − ( I + V iB %B ) −1 ] %−1 
B ( ηB − νiB ) } , (4) 

where ηB , νiB , %B , and V iB are the partitioned vector and matrices 
for relevant elements in the subset B from η, νi , %, and V i , respec- 
tively. 

With the observation y i (t) = (y i 1 , y i 2 , . . . , y ip )′ , a vector of 
degradation measurements at time t , the conditional distribution 
of δi given y i (t) can be computed as 

f (δi | y i (t) ) ∝ f (y i (t) | δi ) f ( δi ) 
∝ exp [ −1 

2 δ′ 
i ( %−1 + V i ) δi + δ′ 

i ( %−1 η + V i νi ) ] . (5) 
The derivation of Eq. (5) is given in Appendix C . This result implies 
that δi | y i (t) must be subject to a MVN distribution with mean vec- 
tor η̌i ≡ ( %−1 + V i ) −1 ( %−1 η + V i νi ) and variance-covariance ma- 
trix %̌i ≡ ( %−1 + V i ) −1 . In fact, one could easily verify that the up- 
dated distribution of δi is only dependent on the last measurement 
y i (t) regardless of any intermediate measurements. This indicates 
that the Markovian property of the process is preserved. 

Finally, by making use of the current information of observed 
degradation measurements y i (t) at time t , the conditional distribu- 
tion of the future degradation increments ˜ y i (s ) = ( ̃ y i 1 , ̃  y i 2 , . . . , ̃  y ip ) ′ 
after an interval of time s is given by (note that ˜ y i (s ) = y i (t + s ) −
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y i (t) ) 
f ( ̃ y i (s ) | y i (t) ) = (2 π ) − p 

2 s p 
( 

p ∏ 
j=1 

√ 
λ j 
˜ y 3 

i j 
) 

| I + ˜ V i ̌%i | −1 / 2 
× exp { 

−1 
2 ( ̌ηi − ˜ νi ) ′ [I − ( I + ˜ V i ̌%i ) −1 ]%̌−1 

i ( ̌ηi − ˜ νi ) } 
, (6) 

where ˜ νi = (s/ ̃ y i 1 , s/ ̃ y i 2 , . . . , s/ ̃ y ip ) ′ and 
˜ V i = 

⎛ 
⎜ ⎜ ⎝ 

λ1 ̃  y i 1 0 0 0 
0 λ2 ̃  y i 2 0 0 
. . . . . . . . . . . . 
0 0 · · · λp ̃ y ip 

⎞ 
⎟ ⎟ ⎠ . 

The derivation of Eq. (6) is given in Appendix D . In this paper, 
we use y , y , t , t , ν, and V , in normal mathematical fonts, to repre- 
sent notations associated with degradation measurements, while ˜ y , 
˜ y , ˜ t , ˜ t , ˜ ν, and ˜ V , in serif mathematical fonts with the tilde charac- 
ter, for notations associated with degradation increments. We dis- 
tinguish these two concepts mainly for the convenience of com- 
putation because degradation increments are the input for model 
inference as illustrated in Section 3 . In fact, degradation measure- 
ments are interchangeable with degradation increments since one 
can always treat a measurement as an increment that is accumu- 
lated from the commencement of degradation to the present as- 
suming the initial measurement is zero. 
2.3. Lifetime distribution 

In engineering practice, product lifetime is of much interest. For 
an individual degradation process j, the failure time T D j is defined 
as the first passage time of the process reaching a pre-defined fail- 
ure threshold D j . Then, the failure time is denoted by 
T D j = inf { t : Y j (t) ≥ D j } . 
Here, we drop the subscript i to indicate that it is a population 
characteristic; that is, Y j (t) denotes the population degradation 
process for the j-th PC. Similar changes apply to other relevant no- 
tations in this section. 

Since the IG process produces monotone degradation paths, the 
distribution of the failure time is P (T D j < t) = P (Y j (t) ≥ D j ) . Then, 
given δ j , the cumulative distribution function (cdf) of the failure 
time for an individual degradation process can be derived as 

F T D j (t| δ j ;λ j , D j ) = +[
−
√ 

λ j 
D j (D j δ j − t )]

− exp (2 λ j δ j t )+[
−
√ 

λ j 
D j (D j δ j + t )], (7) 

where +(·) is the cdf of the standard normal distribution. 
With consideration of the random effects that have been intro- 

duced to δ j , the marginal cdf of the failure time for an individual 
degradation process is derived as 

F T D j (t;η j , σ j , λ j , D j ) = +
⎛ 
⎝ √ 

λ j 
D j t − η j D j √ 

1 + λ j σ 2 
j D j 

⎞ 
⎠ 

− exp [2 λ j t(η j + λ j σ 2 
j t) ]

×+

⎛ 
⎝ −√ 

λ j 
D j t + η j D j + 2 λ j σ 2 

j D j t √ 
1 + λ j σ 2 

j D j 
⎞ 
⎠ . (8) 

The derivation of Eq. (8) is given in Appendix E . 
As a system has multiple competing risks (i.e. PCs) and each 

of them degrades over time, the system is considered to be failed 

when any of these PCs passes its threshold, so the system failure 
time is defined by 
T D = inf { t : Y 1 (t) ≥ D 1 or · · · or Y p (t) ≥ D p } , 
where D = (D 1 , D 2 , . . . , D p ) ′ is a vector storing all PC failure 
thresholds. 

Given δ, the conditional cdf of system failure time is 
F T D (t| δ;λ, D ) = 1 − P ( Y 1 (t) < D 1 , Y 2 (t) < D 2 , . . . , Y p (t) < D p ) 
= 1 − p ∏ 

j=1 P (Y j (t) < D j ) 
= 1 − p ∏ 

j=1 
(

1 − F T D j (t| δ j ;λ j , D j ) ). (9) 
Again, considering the random effects, the unconditional cdf of 

the system failure time is provided by 
F T D (t; θ, D ) = 1 − ∫ D 1 

0 · · ·
∫ D p 

0 f Y (t) ( y ; θ, t) dy 1 · · · dy p 
= 1 − ∫ D 1 

0 · · ·
∫ D p 

0 (2 π ) − p 
2 t p 

( 
p ∏ 

j=1 
√ 

λ j 
y 3 

j 
) 

| I + V %| −1 / 2 
× exp { 

−1 
2 ( η − ν) ′ [I − ( I + V %) −1 ]%−1 ( η − ν) } 

d y 1 · · · d y p . 
(10) 

The multivariate integral involved in Eq. (10) can be evaluated nu- 
merically. 
3. Model estimation and validation 

This section aims at providing the statistical inference proce- 
dure for model parameters estimation and the tools for model val- 
idation. 
3.1. Point estimation 

For a total of p × m i observations generated from the i -th test 
unit, we denote the dataset of the corresponding degradation in- 
crements by 

˜ Y i = ( ̃ y i 1 , ̃  y i 2 , . . . , ̃  y im i ) 
= 

⎛ 
⎜ ⎜ ⎝ 

˜ y i 11 ˜ y i 12 · · · ˜ y i 1 m i 
˜ y i 21 ˜ y i 22 · · · ˜ y i 2 m i 

. . . . . . . . . . . . 
˜ y ip1 ˜ y ip2 · · · ˜ y ipm i 

⎞ 
⎟ ⎟ ⎠ 

p×m i 
, 

where the degradation measurement and increment of process j
on unit i at time point k are y i jk and ˜ y i jk = y i jk − y i j,k −1 , ∀ i = 
1 , 2 , . . . , n, j = 1 , 2 , . . . , p, k = 1 , 2 , . . . , m i , respectively. Without 
loss of generality, the initial measurement y i j0 is assumed to be 
known. Then, the whole dataset of degradation increments across 
all test units can be represented by ˜ Y = ( ̃  Y 1 , ˜ Y 2 , . . . , ˜ Y n ) . 

Meanwhile, we denote the vector of measuring time intervals 
on unit i by 
˜ t i = ( ̃ t i 1 , ̃  t i 2 , . . . , ̃  t im i ) ′ . 
Here, the interval time between two consecutive measurements on 
unit i is denoted as ˜ t ik , where ˜ t ik = t ik − t i,k −1 , ∀ i = 1 , 2 , . . . , n, k = 
1 , 2 , . . . , m i . t ik is the elapsed time when the k -th measurement on 
unit i is taken. Obviously, we suppose t i 0 = 0 , ∀ i = 1 , 2 , . . . , n . Note 
that the number of measurements may vary unit by unit. Without 
loss of generality, we assume that measurements are conducted 
over all individual degradation processes at a time. Thus, the whole 
dataset of measurement time intervals across all test units can be 
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represented by ˜ t = ( ̃ t ′ 1 , ̃  t ′ 2 , . . . , ̃  t ′ n ) ′ . Furthermore, we let D = { ̃  Y , ̃  t } 
denote the total observed data. 

Hence, based on Eq. (3) , the total log-likelihood function is pro- 
vided by 

ℓ ( θ| D ) = n ∑ 
i =1 

m i ∑ 
k =1 

{
− p 

2 ln (2 π ) + p ln ( ̃ t ik ) + 1 
2 

p ∑ 
j=1 ln λ j 

˜ y 3 
i jk 

−1 
2 ln | I + ˜ V ik %| − 1 

2 ( η − ˜ νik ) ′ [I − ( I + ˜ V ik %) −1 ]%−1 ( η − ˜ νik ) }, 
(11) 

where ˜ νik = ( ̃ t ik / ̃ y i 1 k , ̃  t ik / ̃ y i 2 k , . . . , ̃  t ik / ̃ y ipk ) ′ and 
˜ V ik = 

⎛ 
⎜ ⎜ ⎝ 

λ1 ̃  y i 1 k 0 0 0 
0 λ2 ̃  y i 2 k 0 0 
. . . . . . . . . . . . 
0 0 · · · λp ̃ y ipk 

⎞ 
⎟ ⎟ ⎠ . 

Due to the high dimensionality of θ and the complexity of Eq. 
(11) , it is difficult to directly apply maximum likelihood estimation 
(MLE). Therefore, we seek for an expectation maximization (EM) 
algorithm to infer all the unknown parameters. 

To carry out the EM algorithm, we treat the independently and 
identically distributed (i.i.d.) random effects δ = ( δ′ 

1 , δ′ 
2 , . . . , δ′ 

n ) ′ as 
missing data or latent variables. In such case, the complete data 
are assumed to be { D , δ} and the total log-likelihood function is 
given by 
ℓ ( θ| D , δ) = ℓ ( λ, δ| D ) + ℓ ( η, σ, ρ| δ) , 
where 

ℓ ( λ, δ| D ) = n ∑ 
i =1 

p ∑ 
j=1 

m i ∑ 
k =1 

[
1 
2 ln 

(
λ j ̃ t 2 ik 

2 π ˜ y 3 
i jk 

)
− 1 

2 ( ̃ t ik − ˜ y i jk δi j ) 2 
˜ y i jk /λ j 

]
and 

ℓ ( η, σ, ρ| δ) = n ∑ 
i =1 

[ 
− p 

2 ln (2 π ) − 1 
2 ln | %| − 1 

2 (δi − η
)′ 

%−1 (δi − η
)] 

. 
Then, if denoting θ(s ) 

as the EM estimates of θ at the s -th 
iteration, the EM algorithm is an iterative process consisting of 
two steps, which are described by Algorithm 1 in brief. We de- 
note θ(s ) 

by ˆ θ when the iteration stops (i.e. the algorithm con- 
verges). Technical details about the EM algorithm are provided 
in Appendix F.1 . To expedite the convergence of the algorithm, it 
is important to start with a good guess of starting parameters. 
The initial values can be obtained from a summary of data, while 
treating each degradation path as an independent realization of 
a simple IG process. The instructions for finding starting param- 
eter values are given in Appendix F.2 . Additionally, if a time scale 
transformation is needed, inferring the unknown parameter in the 
transformation function ((·) has to be carried out too. Denote 
the transformed time interval by τi jk = ( j (t ik ) − ( j (t i,k −1 ) , ∀ i = 
1 , 2 , . . . , n, j = 1 , 2 , . . . , p, k = 1 , 2 , . . . , m i , with an unknown param- 
eter γ j . In this setting, we assume the time scale transformation is 
a fixed effect so that for a certain PC j, γ j is identical across all 
test units. The adaptation of the EM algorithm with this considera- 
tion is given in Appendix F.3 . Note that when the time scale trans- 
formation is necessary, the set of unknown parameters becomes 
θ = ( η′ , σ′ , ρ′ , λ′ 

, γ ′ ) ′ , where γ = (γ1 , γ2 , . . . , γp ) ′ . 
3.2. Interval estimation 

In addition to the point estimation, the interval estimation of 
some population properties, such as the failure time probability, or 
a general function of model parameters, g( θ) , are often of inter- 
est as well. To construct such confidence intervals (C.I.s), a com- 
mon routine is to make use of asymptotic theories. However, for 

Algorithm 1: The EM Algorithm (in brief) for Parameters Esti- 
mation. 

Data : The dataset D = { ̃  Y , ̃  t } in terms of degradation 
increments and measurement time intervals. 
Input : The current EM estimates θ(s ) 

(i.e. λ(s ) , η(s ) , and %(s ) ). 
Output : The updated EM estimates θ(s +1) 

(i.e. λ(s +1) , η(s +1) , 
and %(s +1) ). 
Expectation step (E-step) :Define a function 
Q( θ| θ(s ) 

) = E 
δ| D , θ(s ) [ℓ ( θ| D , δ) ], which is the expected value of 

ℓ ( θ| D , δ) with respect to the current conditional distribution 
of δ given D and θ(s ) 

. In summary, the function is given by 
Q( θ| θ(s ) 

) = n ∑ 
i =1 

p ∑ 
j=1 

m i ∑ 
k =1 

×

⎧ 
⎨ 
⎩ 1 2 ln ( λ j ̃ t 2 ik 

2 π ˜ y 3 
i jk 

)
− 1 

2 
{

˜ t 2 
ik −2 ̃ t ik ̃ y i jk ̌η(s ) 

i j + ̃ y 2 i jk [(
η̌(s ) 

i j )2 
+ (σ̌ (s ) 

j(i ) )2 ]}

˜ y i jk /λ j 
⎫ 
⎬ 
⎭ 

+ n ∑ 
i =1 {− p 

2 ln (2 π ) − 1 
2 ln | %| 

− 1 
2 [ tr (%−1 ̌%(s ) 

i )
+ ( ̌η(s ) 

i − η) ′ %−1 ( ̌η(s ) 
i − η) ] } 

. 
Maximization step (M-step) : Find the parameters that 
maximize the quantity θ(s +1) = argmax θQ( θ| θ(s ) 

) . In 
summary, the result is given by 
λ(s +1) 

j = n ∑ 
i =1 m i 

∑ n 
i =1 ∑ m i 

k =1 
{

˜ t 2 
ik −2 ̃ t ik ̃ y i jk ̌η(s ) 

i j + ̃ y 2 
i jk [( ̌η(s ) 

i j ) 2 + ( ̌σ (s ) 
j(i ) ) 2 ]}

˜ y i jk 
, 

η(s +1) = 1 
n n ∑ 

i =1 η̌(s ) 
i , 

%(s +1) = ∑ n 
i =1 [ ̌%(s ) 

i +( ̌η(s ) 
i −η(s +1) )( ̌η(s ) 

i −η(s +1) ) ′ ] 
n . 

the proposed model, it is difficult to evaluate its Fisher information 
matrix. Instead, we adopt the bias-corrected percentile (BCp) boot- 
strap method ( Efron & Tibshirani, 1994; Meeker & Escobar, 2014 ). 
The details about this method is given in Appendix G . 
3.3. Model validation 

In order to verify the goodness of fit (GOF) of Model 
M 0 , we extend the model validation techniques for univariate 
IG processes to the multivariate case. According to Wang & 
Xu (2010) and Ye & Chen (2014) , if X ∼ IG (a, b) , then b(X −
a ) 2 / (a 2 X ) ∼ χ2 

1 . Thus, for an individual PC in Model M 0 , the es- 
timated quantity ˆ λ j ( ̌ηi j ̃  y i jk − ˜ t ik ) 2 / ̃ y i jk are approximately i.i.d. χ2 

1 , 
∀ i = 1 , 2 , . . . , n, j = 1 , 2 , . . . , p, k = 1 , 2 , . . . , m i . Here, η̌i j is the es- 
timated sample inverse drift parameter for process j on unit i . The 
resulting χ2 

1 quantile-quantile (Q-Q) plot can be used to visualize 
the GOF of each PC’s IG process model. In addition, to test the 
independence among all random effects (i.e. H 0 : σ j ′ j = 0 , ∀ 1 ≤
j ′ < j ≤ p), define U ′ = −[

ν − 1 
6 (2 p + 5) ] ln U , where U is the de- 

terminant of the estimated correlation matrix ˆ R (calculated from 
ˆ %) with degrees of freedom ν = n (m − 1) . According to Rencher 
& Christensen (2012) , we can use U ′ as a test statistic for test- 
ing the null hypothesis of independent PCs. H 0 is rejected if the 
calculated value u ′ is greater than an upper Chi-square percentile 
value χ2 

α,d , where the degrees of freedom are as d = 1 
2 p(p − 1) . 

Lastly, to compare the proposed model with other models such 
as a model of multiple univariate IG processes without random 
effects, the Akaike information criterion (AIC), AIC =2 | θ| − 2 ℓ , is 
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Fig. 2. Simulated Degradation Paths with n = 20 and m = 10 . 
adopted, where | θ| is the total number of model parameters and 
ℓ is the corresponding log-likelihood. 
4. Simulation studies 
4.1. Performance of the inference method 

In this section, we carry out a Monte Carlo simulation study 
to evaluate the performance of the EM algorithm proposed in 
Section 3.1 . The model is a 3-dimensional degradation process 
model given by 
⎧ 
⎪ ⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎪ ⎩ 

Y i 1 (t) ∼ IG (t /δi 1 , 6 t 2 ) 
Y i 2 (t) ∼ IG (t /δi 2 , 4 t 2 ) 
Y i 3 (t) ∼ IG (t /δi 3 , 2 t 2 ) 
δi ∼ MV N 

( ( 
5 
4 
3 
) 

, 
( 

1 0 . 2 0 . 8 
0 . 2 1 0 . 5 
0 . 8 0 . 5 1 

) ) , 

where we assume the measurement is taken every one unit of 
time and it is the same to each PC on all units. Meanwhile, we 
suppose n = 20 , 40 , and 60 along with m = 10 , 30 , and 50 . It re- 
sults in a total of nine combinations of sample size. Fig. 2 demon- 
strates a sample of simulated degradation paths that is generated 
from the model above with n = 20 and m = 10 . To carry out statis- 
tical inference, the starting parameters are obtained according to 
the instruction provided by Appendix F.2 and the error tolerance 
ϵ used in the EM algorithm is 10 −5 . It turns out the computation 
time for the inference to meet the convergence criterion is within 
one quarter of a minute under any sample size combination on a 
personal computer with an Intel Core i7 2.9GHz CPU. We think it is 
a satisfactory performance for practical use. In total, for each case, 
we generate 10 0 0 replications of data from its simulation model 
and fit Model M 0 to the data. The root mean squared errors (RM- 
SEs) of model parameter estimators are given in Table 1 . 

According to these results, in general, the RMSE decreases with 
the increase of sample size. It is found that among all the parame- 
ters, ρ13 with much strong correlation is better estimated than the 
others. This may be due to the phenomenon that stronger correla- 
tion results in more “similar” data that could help improve the es- 
timation accuracy. It is also noticed that the improvement of esti- 
mation accuracy for η and % is much sensitive to n . This is not sur- 
prising because, according to the M-step in the EM algorithm, the 

estimation accuracy of these two estimators heavily relies on the 
number of test units. Therefore, the inference method proposed in 
Section 3.1 performs more effectively when sample size is large. 
4.2. Effect of model misspecification 

In this section, we conduct another simulation study to assess 
the effect of model misspecification. In degradation analysis, two 
other IG process-based models, listed as models M 1 and M 2 below, 
can be viewed as alternatives to M 0 . Model M 1 assumes the ran- 
domness completely originates from the stochastic nature of the 
degradation process and each PC is governed by an individual IG 
process. Model M 2 is a collection of classical IG process models 
with random effects as proposed by Ye & Chen (2014) . Both mod- 
els do not involve any dependence structure among PCs. 

M 1 : Y i j (t) ∼ IG (t/δ j , λ j t 2 ) , 
M 2 : { Y i j (t) ∼ IG (t /δi j , λ j t 2 ) 

δi j ∼ N(η j , σ 2 
j ) . 

For simplicity, the simulation model we make use of is either a 
2-dimensional or 3-dimensional degradation process (i.e. p = 2 or 
3) that is given by ⎧ 
⎪ ⎨ 
⎪ ⎩ 

Y i j (t) ∼ IG (t /δi j , 6 t 2 ) 
δi ∼ M V N ((

4 
4 
)

, (1 ρ
ρ 1 

))
or M V N 

( ( 
4 
4 
4 
) 

, 
( 

1 ρ ρ
ρ 1 ρ
ρ ρ 1 

) ) 

Three different levels of correlation – ρ = 0 . 2 , 0 . 5 , 0 . 8 – are 
considered. Thus, we produce six different scenarios and for each 
of them we fit four models – M 0 , M 1 , and M 2 . The sample size 
of the simulation is chosen to be n = 60 and m = 50 . A simu- 
lated degradation observation is generated every one unit of time. 
We replicate the simulation 1,0 0 0 times for each scenario. With 
the simulated data in each replication, we perform model infer- 
ences and calculate the model-based reliability prediction at the 
time point where the reliability is equal to 0.5 implied by the true 
model. The failure threshold is assumed to be 1.5 for each marginal 
process. Eqs. (7) , (8) , and (10) are involved in the calculation of re- 
liability, where the “hcubature” function in R package – cubature 
is utilized to perform multi-dimensional integration of integrands. 
Note that the inference model for Model M 1 is a simple MLE pro- 
cess. For Model M 2 , similar to the work by Ye & Chen (2014) , it is 

1183 



G. Fang, R. Pan and Y. Wang European Journal of Operational Research 300 (2022) 1177–1193 

Fig. 3. Q-Q Plots for the Coating Data. 

Fig. 4. Reliability Curves for the Coating Data. 
Table 1 
RMSE ( ×10 ) of the EM Estimate for Each Parameter. 

n m λ1 = 6 λ2 = 4 λ3 = 2 η1 = 5 η2 = 4 η3 = 3 σ1 = 1 σ2 = 1 σ3 = 1 ρ12 = 0 . 2 ρ13 = 0 . 8 ρ23 = 0 . 5 
20 10 6.501 4.432 2.185 2.337 2.319 2.378 1.742 1.688 1.901 2.482 1.237 2.048 

30 3.663 2.286 1.138 2.278 2.227 2.284 1.653 1.587 1.713 2.308 1.033 1.911 
50 2.810 1.851 0.943 2.276 2.211 2.256 1.628 1.582 1.685 2.240 0.989 1.849 

40 10 4.521 3.039 1.501 1.630 1.597 1.637 1.215 1.251 1.256 1.667 0.806 1.419 
30 2.388 1.696 0.824 1.603 1.552 1.559 1.140 1.165 1.147 1.584 0.648 1.244 
50 1.944 1.263 0.644 1.591 1.537 1.529 1.138 1.159 1.122 1.549 0.625 1.209 

60 10 3.663 2.454 1.250 1.297 1.353 1.350 0.966 1.012 1.044 1.311 0.639 1.147 
30 2.004 1.396 0.683 1.254 1.289 1.278 0.916 0.969 0.960 1.222 0.526 1.040 
50 1.607 1.078 0.528 1.249 1.285 1.256 0.893 0.951 0.941 1.201 0.498 1.013 

just a little variation of the aforementioned EM algorithm by treat- 
ing the marginal degradation process independently. The adapta- 
tion of the EM algorithm to fit Model M 2 is given in Appendix F.4 . 

Table 2 reports the absolute value of reliability gap on average 
from the 1,0 0 0 replications of each simulation scenario. The met- 
ric is a measure of the accuracy of the estimated reliability value 

to its true value. As indicated by the result, compared with Model 
M 0 , the reliability estimate by the two alternatives is poor. The bad 
performance comes from two sources: 1) the biases in modeling 
the randomness existing in the data and 2) the overlooked PC de- 
pendence structure that will lead to a skewed reliability calcula- 
tion. Thus, correctly identifying random effects and any possible 
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Fig. 5. Fatigue Crack-size Growth. 

Fig. 6. Q-Q Plots for the Fatigue Crack-size Data. 
Table 2 
Absolute Value of Reliability Gap (it is | ̂ R − 0 . 5 | × 10 3 ) on Average for Various Fitted 
Models. 

p ρ M 0 M 1 M 2 
2 0.2 39.169 127.476 42.118 

0.5 39.956 103.918 66.222 
0.8 40.776 136.935 112.703 

3 0.2 40.790 249.763 45.334 
0.5 42.533 159.492 93.027 
0.8 45.192 132.369 175.305 

underlying PC dependence is critical to assessing system reliability 
when a multivariate degradation process is present. 

5. Two illustrative examples 
In this section, we provide two illustrative examples to demon- 

strate the implementation of the proposed multivariate analysis 
method. 
5.1. Coating data 

First, we illustrate how the proposed methodology can be ap- 
plied for the motivating example – the coating data. To accommo- 
date the monotone increasing assumption implied by the IG pro- 
cess negative increments (i.e. −˜ y i jk ) are computed and treated as 
the raw data for analysis. After fitting the proposed model to the 
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Fig. 7. One-period Ahead Degradation Predictions. 

Fig. 8. Reliability Curves for the Fatigue Crack-size Data. 
data, the result of parameters estimation is obtained as follows: 

ˆ λ = (2 . 09998 , 0 . 39288 , 1 . 61180) ′ , 
ˆ γ = (0 . 97996 , 1 . 15386 , 0 . 96347) ′ , 
ˆ η = (0 . 35590 , 0 . 68947 , 0 . 540 0 0) ′ , 
and ˆ % = 

( 
1 . 59788 1 . 93898 3 . 07767 
1 . 93898 13 . 19950 13 . 32560 
3 . 07767 13 . 32560 23 . 86160 

) 
× 10 −6 , 

where ˆ γ is the estimate of the parameter γ in the time scale trans- 
formation function ((t) = t γ . Based on the result, the estimated 
correlations are ˆ ρ12 = 0 . 42 , ˆ ρ13 = 0 . 50 , and ˆ ρ23 = 0 . 76 . The esti- 
mated correlations represent the dependent relationship existing 
in the innate degradation mechanisms among the multiple PCs. 
The convergence of the EM algorithm is indicated by plots of pa- 
rameter estimates and log-likelihood over iteration, which are pre- 
sented by Fig. 9 a in Appendix H . The appendix also presents the 
interval estimation of the model parameters in Table 4 . 

To validate the fitted model, we proceed with the χ2 
1 Q-Q plot 

and the test of independence as discussed in Section 3.3 . From 
the Q-Q plots in Fig. 3 , one can see that most data points fall 

close to a straight line suggesting that the proposed model pro- 
vides a roughly good fit to this dataset. Moreover, the indepen- 
dence test indicates that u ′ = 204 . 4376 , which is greater than the 
critical value χ2 

0 . 01 , 3 = 11 . 34487 . This result suggests that the cor- 
relation among the degradation processes is significant. 

Lastly, we carry out the reliability analysis by evaluating Eq. 
(10) over a certain time period. For illustration, the failure thresh- 
olds for the three wavelengths are identified at −0 . 60 , −0 . 75 , 
and −0 . 40 , respectively. Fig. 4 indicates both system reliability 
and marginal reliability of the three PCs. Meanwhile, the point- 
wise 95% C.I. for the system reliability through the BCp bootstrap 
method is also shown. 
5.2. Fatigue crack-size data 

To facilitate more general applications, in this example, we uti- 
lize a subset of the fatigue crack-size data, which was initially 
given in Appendix Table C.14 of Meeker & Escobar ’s book (2014) . 
This dataset describes an alloy’s crack growth over time. Similar to 
the work of Wang et al. (2015) , this dataset is split to three parts so 
that a 3-dimensional degradation process is created with a sample 
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size of six test units (i.e. n = 6 and p = 3 ). The resulting degrada- 
tion paths are depicted in Fig. 5 , in which nine observations (i.e. 
m = 9 ) for each PC were taken on an individual test unit since the 
start of the experiment. The corresponding data table is provided 
in Appendix H . 

After fitting the proposed model to this dataset, the result of 
parameters estimation is obtained as follows: 

ˆ λ = (141 . 47632 , 118 . 08734 , 43 . 74568) ′ , 
ˆ γ = (1 . 32673 , 1 . 32303 , 1 . 24242) ′ , 
ˆ η = (1 . 54561 , 2 . 09412 , 3 . 00609) ′ , 
and ˆ % = 

( 
0 . 02859 0 . 03665 0 . 06335 
0 . 03665 0 . 04712 0 . 08135 
0 . 06335 0 . 08135 0 . 14072 

) 
, 

where ˆ γ is the estimate of the parameter γ in the time scale 
transformation function ((t) = t γ . The convergence of the EM 
algorithm is indicated by plots of parameters estimation and 
log-likelihood over iteration, which are presented by Fig. 9 b in 
Appendix H . The appendix also presents the interval estimation of 
the model parameters in Table 5 . 

By examining the Q-Q plots in Fig. 6 , one can see that most 
data points fall close to a straight line except a few ones locate 
a little far away. This may result from the remaining uncertainty 
in the mean estimator. Nevertheless, the proposed model provides 
a reasonably good fit to this dataset. Moreover, the independence 
test indicates that u ′ = 567 . 45880 , which is much greater than the 
critical value χ2 

0 . 01 , 3 = 11 . 34487 . This result suggests that the cor- 
relation among the degradation processes is significant. In addi- 
tion to Model M 0 , we also fit models M 1 and M 2 to this dataset. 
The estimated parameters of the two alternatives are given in 
Appendix H . It turns out the AIC values for models M 0 , M 1 and 
M 2 are −1074 . 18600 , −976 . 25580 and −10 02 . 4050 0 , respectively. 
By comparison, Model M 0 is chosen. 

In engineering practice, making a prediction of future degrada- 
tion values is often desired. To demonstrate this point, we carry 
out one-period ahead degradation predictions of the three PCs for 
Unit 1. Note that Eq. (6) provides the conditional distribution of 
future degradation increments given the current observation. Thus, 
based on the estimated model, it is easy to compute the expected 
degradation increments for the next inspection interval. Accord- 
ingly, Fig. 7 demonstrates the predicted degradation paths for the 
three PCs using purple dashed lines for the next 0.01 millions of 
cycles, where in contrast the real degradation paths of PC2 and PC3 
indicated by the original data table are depicted in solid lines. 

Moreover, when the degradation values of one or several PCs 
are absent due to certain reasons such as lack of measuring instru- 
ments, estimating the missing data is possible via borrowing the 
information of the rest PCs by leveraging the dependence struc- 
ture. Our proposed model provides an exact solution to this task. 
Note that Eq. (4) is the conditional pdf of a subset of degradation 
measures given the rest observations. Based on this equation, for 
Unit 1, the expected value of PC1 at 0.1 millions of cycles can be 
calculated given the observed PC2 and PC3 values. The darkblue 
dot of PC1 in Fig. 7 shows the result, and one can see it is higher 
than the previous prediction. This is because both observed values 
of PC2 and PC3 are greater than the previous predictions and these 
three PCs have strong positive correlations. 

Finally, we carry out the reliability analysis by plugging the es- 
timated parameters into Eqs (7) , (8) and (10) . Through evaluating 
them over a certain time period, the estimated system reliability 
functions of the three models – M 0 , M 1 and M 2 – are depicted in 
Fig. 8 . The failure thresholds of the three PCs are assumed to be 
1.8, 1.4, and 1.3 inches, respectively. It can be seen that making in- 
dependence assumption by either model, M 1 or M 2 (i.e. PCs are in- 
dependent with or without random effects), could greatly alter the 

predicted reliability function. Thus, care must be taken to examine 
the underlying dependence among PCs. In Fig. 8 , the point-wise 
95% C.I. through the BCp bootstrap method is also shown. 
6. Concluding remarks 

In this paper, a novel multivariate degradation model is pro- 
posed. The model is built upon multiple IG processes, where the 
element-wise inverse of the vector of the drift parameters is as- 
sumed to be subject to a MVN distribution. This approach facil- 
itates the applicability and effectiveness of the model in accom- 
modating the three common variability features in multivariate 
degradation observations; they are the randomness of degrada- 
tion process, heterogeneity among units, and dependence between 
PCs. It also brings mathematically tractable properties to assist 
with both lifetime estimation and degradation prediction. Further- 
more, we provide the EM algorithm to help estimate the unknown 
model parameters and the validation tools to check model ade- 
quacy. Through case studies, we have demonstrated the applica- 
tions of our proposed framework including the prediction of fu- 
ture degradation values, the inference of missing degradation data 
by leveraging the dependence structure, and the reliability function 
evaluation. 

It is further worth noting that unlike the conventional way of 
modeling the PC-wise dependency by assuming correlations be- 
tween degradation observations directly (i.e. Cov (Y i j (t) , Y i j ′ (t) )), 
our approach incorporates the dependency in the drift parameters 
as random effects. These unobserved frailties provide specific phys- 
ical interpretations – the dependency originates from the correla- 
tion existing in the innate degradation mechanisms among mul- 
tiple PCs. This is because the drift parameters, which reflect the 
degradation rate, have close relation with degradation physics as 
shown by Ye & Chen (2014) and Peng (2015) . As a comparison, the 
conventional modeling technique containing the models based on 
the copula theory ( Fang & Pan, 2021; Palayangoda & Ng, 2021; Sun 
et al., 2020a ) and the Wiener process ( Hong, Ye, & Ling, 2018a; 
Sun et al., 2020b; Wang, Gaudoin, Doyen, Bérenguer, & Xie, 2020 ) 
is mainly a data-driven approach, as it suggests a comprehen- 
sive measure of dependency that may be contributed from various 
sources, including correlated measurement errors and shared envi- 
ronmental conditions, etc. And as we have seen in the previous 
sections, the tractability and flexibility in handling both hetero- 
geneity and dependency further underpin the correlated random- 
effects modeling technique as an attractive approach in modeling 
multivariate degradation processes. 

Beyond the current research effort, the following research di- 
rections are worth of a future study: 
• In this paper, calculating multivariate integrals is involved in 

the reliability assessment. However, when high dimensionality 
is present, numerical evaluation will become slow. Thus, it is 
desired to develop more efficient ways to solve this problem. 

• Evidently, incorporating explanatory variables is a necessary 
extension for the methodology to have broader applicability. 
Two recent articles by Lu et al. (2020) and Xu, Zhou, & Tang 
(2021) discussed a similar issue. Also, including measurement 
errors is another aspect to be considered. See Hao, Yang, & 
Berenguer (2019) for an example. 

• Besides of the unit-to-unit variability and dependency between 
PCs, some other sources of random effects including the inspec- 
tion effect and the block effect are of interest to be considered. 
Incorporating these features into our model is desired. Relevant 
research includes the works by Zhai & Ye (2018) , Sun et al. 
(2020b) , and Zhao, Chen, Gaudoin, & Doyen (2021) . Applying 
the similar idea on accelerated life tests that consider multiple 
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sources of random effects has been recently explored in Seo & 
Pan (2020) . 

• It is found in this paper quantifying the interval estimation of a 
random-effects model’s parameters is of much difficulty. There 
is a need to develop a method that could make the interval 
computation more efficiently. The relevant methodologies have 
been proposed by Chen & Ye (2018) , Hong, Ye, & Sari (2018b) , 
and Wang, Wang, Hong, & Jiang (2021) . 

• Furthermore, a more comprehensive investigation is desired to 
study the applications of the proposed model in certain areas, 
including the design of a degradation test ( Fang, Pan, & Stufken, 
2021; Shi, Xiang, Liao, Zhu, & Hong, 2020b ), on-line monitoring 
( Hu, Sun, Ye, & Zhou, 2020 ), and maintenance policy ( Keizer, 
Flapper, & Teunter, 2017; Liu et al., 2021; Mercier & Pham, 2012; 
Wu & Castro, 2020 ), etc. 

• Finally, it is also of our interest to develop other types of 
multivariate degradation model, including those improved ones 
based on multi-dimensional Lévy processes with Lévy copulas 
and non-normal random effects, etc. 
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Appendix A. Derivation of Eq. (2) 

To derive the unconditional marginal pdf of Y i j (t) , we utilize an 
existing conclusion (shown in Lemma 1 below) provided by Si & 
Zhou (2014) . 
Lemma 1. If X ∼ N(µ, σ 2 ) , and A, C, D, G ∈ R , H ∈ R + , then the fol- 
lowing holds: 

E X [( A − DX ) exp [− ( C − GX ) 2 
2 H 

]]

= √ 
H 

G 2 σ 2 + H 
(

A − D GCσ 2 + Hµ
G 2 σ 2 + H 

)
exp 

[ 
− ( C − Gµ) 2 

2 (G 2 σ 2 + H )
] 

. 
Recall that the conditional pdf of Y i j (t) given δi j implied by Eq. 

(1) can be reparameterized as 
f Y i j (t) (y i j | δi j ;λ j , t) = 

√ 
λ j t 2 

2 πy 3 
i j exp [−

(t − y i j δi j ) 2 
2 y i j /λ j 

]
. 

Given Lemma 1 , if setting A = 1 , C = t , D = 0 , G = y i j , and 
H = y i j /λ j , then the unconditional pdf of Y i j (t) is equivalent to 
E δi j [ f Y i j (t) (y i j | δi j ;λ j , t)] , which is given by 
f Y i j (t) (y i j ;η j , σ j , λ j , t) = √ 

λ j t 2 
2 πy 3 

i j (λ j σ 2 
j y i j + 1) exp [−

λ j (t − η j y i j ) 2 
2 y i j (λ j σ 2 

j y i j + 1) 
]
. 

Appendix B. Derivation of Eq. (3) 
To derive the unconditional joint pdf of Y i (t) , we utilize a 

conclusion (shown in Lemma 2 below) indicated on page 108 of 
Rencher & Schaalje ’s book (2008) . 
Lemma 2. If x ∼ MV N( µ, %) , the moment generating function (MGF) 
of x ′ A x is 

M x ′ A x (t) = E x [exp (t x ′ A x )]
= | I − 2 t A %| −1 / 2 exp [−µ′ [I − ( I − 2 t A %) −1 ]%−1 µ/ 2 ], t ∈ R . 

Note that in this lemma, t is a real parameter in the MGF, not 
the time in the degradation modeling. Then, based on Lemma 2 , 
the unconditional joint pdf of Y i (t) is provided by 
f Y i (t) ( y i ; θ, t) 
= ∫ · · ·

∫ 
f Y i (t) ( y i | δi ;λ, t) f ( δi ;η, σ, ρ) dδ1 · · · dδp 

= E δi [ f Y i (t) ( y i | δi ;λ, t) ]
= 

( 
p ∏ 

j=1 
√ 

λ j t 2 
2 πy 3 

i j 
) 

E δi 
[ 

exp 
[ 

−
p ∑ 

j=1 
(t − y i j δi j ) 2 

2 y i j /λ j 
] ] 

= (2 π ) − p 
2 t p 

( 
p ∏ 

j=1 
√ 

λ j 
y 3 

i j 
) 

E δi 
[ 

exp 
[ 

−
p ∑ 

j=1 
λ j y i j (δi j − t/y i j ) 2 

2 
] ] 

= (2 π ) − p 
2 t p 

( 
p ∏ 

j=1 
√ 

λ j 
y 3 

i j 
) 

E δi [ exp [ −1 
2 ( δi − νi ) ′ V i ( δi − νi ) ] ] 

= (2 π ) − p 
2 t p 

( 
p ∏ 

j=1 
√ 

λ j 
y 3 

i j 
) 

| I + V i %| −1 / 2 
× exp { 

−1 
2 ( η − νi ) ′ [I − ( I + V i %) −1 ]%−1 ( η − νi ) } 

, 
where νi = (t /y i 1 , t /y i 2 , . . . , t /y ip ) ′ and 
V i = 

⎛ 
⎜ ⎜ ⎝ 

λ1 y i 1 0 0 0 
0 λ2 y i 2 0 0 
. . . . . . . . . . . . 
0 0 · · · λp y ip 

⎞ 
⎟ ⎟ ⎠ . 

This conclusion is based on the result that ( δi − νi ) ∼ MV N( η −
νi , %) . 
Appendix C. Derivation of Eq. (5) 

To derive the conditional distribution of δi given y i (t) , we uti- 
lize the Bayes’ rule. That is 
f (δi | y i (t) )
= f (y i (t) | δi ) f ( δi ) / f ( y i (t)) 
∝ f (y i (t) | δi ) f ( δi ) 
= (2 π ) − p 

2 t p 
( 

p ∏ 
j=1 

√ 
λ j 
y 3 

i j 
) 

exp 
[ 

−
p ∑ 

j=1 
λ j y i j (δi j − t/y i j ) 2 

2 
] 

× (2 π ) − p 
2 | %| − 1 

2 exp [ −1 
2 (δi − η

)′ 
%−1 (δi − η

)] 
∝ exp [ −1 

2 (δi − νi )′ 
V i (δi − νi )] exp [ −1 

2 (δi − η
)′ 

%−1 (δi − η
)] 

∝ exp [ −1 
2 δ′ 

i V i δi + δ′ 
i V i νi ] exp [ −1 

2 δ′ 
i %−1 δi + δ′ 

i %−1 η] 
= exp [ −1 

2 δ′ 
i ( %−1 + V i ) δi + δ′ 

i ( %−1 η + V i νi ) ] . 
The derivation is analogous to finding the posterior mean of 

a MVN distribution when a semiconjugate prior for the mean is 
given. For details, please refer to pages 107–108 of Hoff’s book 
(2009) . 
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Appendix D. Derivation of Eq. (6) 

To derive the conditional distribution of the future degrada- 
tion increments ˜ y i (s ) given the current degradation measurements 
y i (t) , it is necessary to first condition on δi and then marginalize 
over δi | y i (t) . Also based on Lemma 2 , the result is given by 
f ( ̃ y i (s ) | y i (t) ) 
= ∫ f (˜ y i (s ) | δi ) f (δi | y i (t) )d δi 
= E δi | y i (t) 

[ 
p ∏ 

j=1 
√ 

λ j s 2 
2 π ˜ y 3 

i j exp [−
(s − ˜ y i j δi j ) 2 

2 ̃ y i j /λ j 
]] 

= (2 π ) − p 
2 s p 

( 
p ∏ 

j=1 
√ 

λ j 
˜ y 3 

i j 
) 

E δi | y i (t) 
[ 

exp 
[ 

−
p ∑ 

j=1 
λ j ̃  y i j (δi j − s/ ̃ y i j ) 2 

2 
] ] 

= (2 π ) − p 
2 s p 

( 
p ∏ 

j=1 
√ 

λ j 
˜ y 3 

i j 
) 

E δi | y i (t) [ exp [ −1 
2 ( δi − ˜ νi ) ′ ̃  V i ( δi − ˜ νi ) ] ] 

= (2 π ) − p 
2 s p 

( 
p ∏ 

j=1 
√ 

λ j 
˜ y 3 

i j 
) 

| I + ˜ V i ̌%i | −1 / 2 
× exp { 

−1 
2 ( ̌ηi − ˜ νi ) ′ [I − ( I + ˜ V i ̌%i ) −1 ]%̌−1 

i ( ̌ηi − ˜ νi ) } 
, 

where ˜ νi = (s/ ̃ y i 1 , s/ ̃ y i 2 , . . . , s/ ̃ y ip ) ′ and 
˜ V i = 

⎛ 
⎜ ⎜ ⎝ 

λ1 ̃  y i 1 0 0 0 
0 λ2 ̃  y i 2 0 0 
. . . . . . . . . . . . 
0 0 · · · λp ̃ y ip 

⎞ 
⎟ ⎟ ⎠ . 

This conclusion is based on the result that ( δi − ˜ νi ) | y i (t) ∼
MV N( ̌ηi − ˜ νi , %̌i ) . 
Appendix E. Derivation of Eq. (8) 

To derive the unconditional cdf of the failure time for an in- 
dividual degradation process, we utilize an existing conclusion 
(shown in Lemma 3 below) provided by Si & Zhou (2014) . 
Lemma 3. If X ∼ N(µ, σ 2 ) , and A, C, D ∈ R , then the following 
holds: 
E X [ exp (AX )+(C + DX )] = exp (Aµ + A 2 

2 σ 2 )+

(
C + Dµ + ADσ 2 

√ 
1 + D 2 σ 2 

)
. 

Recall that the conditional cdf of the failure time for an individ- 
ual degradation process implied by Eq. (7) is 

F T D j (t| δ j ;λ j , D j ) = +[
−
√ 

λ j 
D j (D j δ j − t )]

− exp (2 λ j δ j t )+[
−
√ 

λ j 
D j (D j δ j + t )], 

Given Lemma 3 , if setting A = 0 , C = t √ 
λ j / D j , and D = −√ 

λ j D j 
for the first part (i.e. +[

−
√ 

λ j 
D j (D j δ j − t )]) of F T D j (t; δ j , λ j , D j ) and 

A = 2 λ j t , C = −t √ 
λ j / D j , and D = −√ 

λ j D j for the remaining part, 
then the unconditional cdf of the failure time is equivalent to 
E δ j [ F T D j (t| δ j ;λ j , D j )] , which is given by 

F T D j (t;η j , σ j , λ j , D j ) = +
⎛ 
⎝ √ 

λ j 
D j t − η j D j √ 

1 + λ j σ 2 
j D j 

⎞ 
⎠ 

− exp [2 λ j t(η j + λ j σ 2 
j t) ]+

⎛ 
⎝ −√ 

λ j 
D j t + η j D j + 2 λ j σ 2 

j D j t √ 
1 + λ j σ 2 

j D j 
⎞ 
⎠ . 

Appendix F. The EM algorithm for statistical inference 
F1. Main technical details 

To carry out the EM algorithm, we utilize a conclusion (shown 
in Lemma 4 below) indicated on page 107 of Rencher & Schaalje ’s 
book (2008) . 
Lemma 4. If x is a random vector with mean µ and variance- 
covariance matrix % and if A is a symmetric matrix of constants, 
then 
E x [x ′ A x ] = tr ( A %) + µ′ A µ. 

Recall that the complete data are { D , δ} , of which the total log- 
likelihood function is 
ℓ ( θ| D , δ) = ℓ ( λ, δ| D ) + ℓ ( η, σ, ρ| δ) , 
where 

ℓ ( λ, δ| D ) = n ∑ 
i =1 

p ∑ 
j=1 

m i ∑ 
k =1 

[
1 
2 ln 

(
λ j ̃ t 2 ik 

2 π ˜ y 3 
i jk 

)
− 1 

2 ( ̃ t ik − ˜ y i jk δi j ) 2 
˜ y i jk /λ j 

]
and 

ℓ ( η, σ, ρ| δ) = n ∑ 
i =1 

[ 
− p 

2 ln (2 π ) − 1 
2 ln | %| − 1 

2 (δi − η
)′ 

%−1 (δi − η
)] 

. 
Given the current EM estimates θ(s ) 

, which consists of η(s ) , %(s ) 
(i.e. σ(s ) and ρ(s ) ), and λ(s ) . The EM algorithm is performed ac- 
cording to the followings: 
• E-step: First, according to the conclusion implied by Eq. (5) , 

δi | D , θ(s ) 
is subject to a MVN distribution with mean vector 

η̌(s ) 
i ≡ ( ̌η(s ) 

i 1 , η̌(s ) 
i 2 , . . . , η̌(s ) 

ip ) ′ 
= 

( 
%(s ) −1 

+ m i ∑ 
k =1 ˜ V (s ) 

ik 
) −1 ( 

%(s ) −1 
η(s ) + m i ∑ 

k =1 ˜ V (s ) 
ik ˜ νik 

) 

and variance-covariance matrix 

%̌
(s ) 
i ≡

⎛ 
⎜ ⎜ ⎜ ⎜ ⎝ 

(
σ̌ (s ) 

1(i ) )2 
σ̌ (s ) 

12(i ) · · · σ̌ (s ) 
1 p(i ) 

σ̌ (s ) 
12(i ) (

σ̌ (s ) 
2(i ) )2 

· · · σ̌ (s ) 
2 p(i ) 

. . . . . . . . . . . . 
σ̌ (s ) 

1 p(i ) σ̌ (s ) 
2 p(i ) · · ·

(
σ̌ (s ) 

p(i ) )2 

⎞ 
⎟ ⎟ ⎟ ⎟ ⎠ 

= ( %(s ) −1 
+ m i ∑ 

k =1 ˜ V (s ) 
ik ) −1 , 

where ˜ νik = ( ̃ t ik / ̃ y i 1 k , ̃  t ik / ̃ y i 2 k , . . . , ̃  t ik / ̃ y ipk ) ′ and 
˜ V (s ) 

ik = 
⎛ 
⎜ ⎜ ⎜ ⎝ 

λ(s ) 
1 ˜ y i 1 k 0 0 0 

0 λ(s ) 
2 ˜ y i 2 k 0 0 

. . . . . . . . . . . . 
0 0 · · · λ(s ) 

p ˜ y ipk 

⎞ 
⎟ ⎟ ⎟ ⎠ . 

Here, the conclusion implied by Eq. (5) is generalized to the 
case that multiple inspections are taken. Then, we know that 

E 
δi | D , θ(s ) [ δi j ] = η̌(s ) 

i j , E 
δi | D , θ(s ) [ δ2 

i j ] = (η̌(s ) 
i j )2 

+ (σ̌ (s ) 
j(i ) )2 

, and 
E 
δi | D , θ(s ) [ (δi − η

)′ 
%−1 (δi − η

)] 
= tr (%−1 ̌%(s ) 

i )

+ ( ̌η(s ) 
i − η) ′ %−1 ( ̌η(s ) 

i − η) , 
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where the last equation is obtained through applying Lemma 4 . 
Therefore, Q( θ| θ(s ) 

) is given by 
Q( θ| θ(s ) 

) 
= n ∑ 

i =1 
p ∑ 

j=1 
m i ∑ 

k =1 
{

1 
2 ln ( λ j ̃ t 2 ik 

2 π ˜ y 3 
i jk 

)

− 1 
2 

{ ̃ t 2 
ik − 2 ̃ t ik ̃ y i jk ̌η(s ) 

i j + ̃  y 2 
i jk [ (η̌(s ) 

i j )2 
+ (σ̌ (s ) 

j(i ) )2 ] } 
˜ y i jk /λ j 

⎫ 
⎬ 
⎭ 

+ n ∑ 
i =1 

{ 
− p 

2 ln (2 π ) − 1 
2 ln | %| − 1 

2 
[ 

tr (%−1 ̌%(s ) 
i )

+ ( ̌η(s ) 
i − η) ′ %−1 ( ̌η(s ) 

i − η) ] } 
. 

• M-step: In this step, we update the estimated parameters by 
solving the equations that set the first derivative of Q( θ| θ(s ) 

) 
equal to 0. And, based on some existing conclusions about ma- 
trix differentiation, the results are given by 
λ(s +1) 

j = ∑ n 
i =1 m i 

∑ n 
i =1 ∑ m i 

k =1 
{

˜ t 2 
ik −2 ̃ t ik ̃ y i jk ̌η(s ) 

i j + ̃ y 2 i jk [(
η̌(s ) 

i j )2 
+ (σ̌ (s ) 

j(i ) )2 ]}

˜ y i jk 
, 

η(s +1) = 1 
n 

n ∑ 
i =1 η̌(s ) 

i , 
%(s +1) = 

∑ n 
i =1 [ ̌%(s ) 

i + ( ̌η(s ) 
i − η(s +1) )( ̌η(s ) 

i − η(s +1) ) ′ ] 
n . 

These two steps iterate until achieving convergence. 
The criterion for convergence is usually built upon ∣∣∣ℓ ( θ(s +1) | D , δ) − ℓ ( θ(s ) | D , δ) ∣∣∣ < ϵ or max ∣∣∣θ(s +1) − θ(s ) ∣∣∣ < ϵ, where 
max is the element-wise maximum of a vector and ϵ is the error 
tolerance. 
F2. Good guess of starting parameters 

To provide a good set of starting parameters, it is performed by 
the following steps: 
1. Treat the degradation increments of each degradation path, 

i.e. ˜ y i j = ( ̃ y i j1 , ̃  y i j2 , . . . , ̃  y i jm i ) ′ , ∀ i = 1 , 2 , . . . , n, j = 1 , 2 , . . . , p
as an independent realization from a simple IG process, 
IG (t/δi j , λi j t 2 ) . Fit the model to the data and obtain estimated 
parameters ˆ δi j and ˆ λi j , ∀ i = 1 , 2 , . . . , n, j = 1 , 2 , . . . , p. 

2. Set λ(0) 
j = 1 

n ∑ n 
i =1 ˆ λi j , η(0) = 1 

n ∑ n 
i =1 ˆ δi , and %(0) = 1 

n ( ̂ δi −
η(0) )( ̂ δi − η(0) ) ′ as the initial parameters feeding into the 
E-step, where ˆ δi = ( ̂  δi, 1 , ̂  δi, 2 , . . . , ̂  δi,p ) ′ , ∀ i = 1 , 2 , . . . , n . Note that 
sometimes the resulting %(0) may not be pd, its nearest pd 
matrix ( Higham, 2002 ) can be computed and fed into the 
E-step instead. 

F3. Incorporation of time scale transformation function 
If denoting the transformed time interval by τi jk = ( j (t ik ) −

( j (t i,k −1 ) , ∀ i = 1 , 2 , . . . , n, j = 1 , 2 , . . . , p, k = 1 , 2 , . . . , m i with an 
unknown parameter γ j , then Q( θ| θ(s ) 

) in the E-step becomes 
Q( θ| θ(s ) 

) 
= n ∑ 

i =1 
p ∑ 

j=1 
m i ∑ 

k =1 
{

1 
2 ln ( λ j τ 2 

i jk 
2 π ˜ y 3 

i jk 
)

− 1 
2 

{ 
τ 2 

i jk − 2 τi jk ̃  y i jk ̌η(s ) 
i j + ̃  y 2 

i jk [ (η̌(s ) 
i j )2 

+ (σ̌ (s ) 
j(i ) )2 ] } 

˜ y i jk /λ j 
⎫ 
⎬ 
⎭ 

+ n ∑ 
i =1 

{ 
− p 

2 ln (2 π ) − 1 
2 ln | %| − 1 

2 
[ 

tr (%−1 ̌%(s ) 
i )

+ ( ̌η(s ) 
i − η) ′ %−1 ( ̌η(s ) 

i − η) ] } 
. 

where ˜ νik = (τi 1 k / ̃ y i 1 k , τi 2 k / ̃ y i 2 k , . . . , τipk / ̃ y ipk ) ′ . 
And in the M-step, to obtain γ (s +1) 

j , we need to solve the fol- 
lowing equation 

n ∑ 
i =1 

m i ∑ 
k =1 

{
τ ′ 

i jk 
τi jk + λ(s +1) 

j η̌(s ) 
i j τ ′ 

i jk − λ(s +1) 
j τi jk τ ′ 

i jk / ̃ y i jk } = 0 , 
where τ ′ 

i jk is the derivative of τi jk with respect to γ j . Solutions to 
this equation can be found numerically. 

In this paper, we make use of the power transformation, i.e. 
τi jk = t γ j 

ik − t γ j 
i,k −1 . Thus, τ ′ 

i jk should be replaced with t γ j 
ik ln t ik −

t γ j 
i,k −1 ln t i,k −1 in the equation above. Particularly, when t i,k −1 = 0 , 

we set τi jk = t γ j 
ik . 

F4. Adaptation of the EM algorithm to fit model M 2 
For Model M 2 , 

M 2 : { Y i j (t) ∼ IG (t /δi j , λ j t 2 ) 
δi j ∼ N(η j , σ 2 

j ) , 
we denote its parameters by θ = ( θ′ 

1 , θ′ 
2 , . . . , θ′ 

p ) ′ , where θ′ 
j = 

(λ j , η j , σ j ) ′ , j = 1 , 2 , . . . , p. Also, we denote the complete data for 
process j by { D j , δ j } , where D j is a subset of D associated with 
process j and δ j = (δ1 j , δ2 j , . . . , δn j ) ′ . Then, the total log-likelihood 
function for process j is 
ℓ ( θ j | D j , δ j ) = ℓ (λ j , δ j | D j ) + ℓ (η j , σ j | δ j ) , 
where 

ℓ (λ j , δ j | D j ) = n ∑ 
i =1 

m i ∑ 
k =1 

[ 
1 
2 ln ( λ j ̃ t 2 ik 

2 π ˜ y 3 
i jk 

)
− 1 

2 ( ̃ t ik −˜ y i jk δi j ) 2 
˜ y i jk /λ j ] 

and 
ℓ (η j , σ j | δ j ) = n ∑ 

i =1 
[ 
− 1 

2 ln (2 π ) − 1 
2 ln σ 2 

j − 1 
2 σ 2 

j (δi j − η j )2 ] 
. 

Given the current EM estimates θ(s ) 
j , which consists of λ(s ) 

j , η(s ) 
j , 

and σ (s ) 
j . The EM algorithm is performed according to the follow- 

ings: 
• E-step: First, analogous to the conclusion implied by Eq. (5) , a 

routine calculation shows that δi j | D j , θ(s ) 
j is subject to a normal 

distribution with mean 
η̌(s ) 

i j = λ(s ) 
j ∑ m i 

k =1 ̃  t ik + η(s ) 
j / (σ (s ) 

j )2 
1 / (σ̌ (s ) 

i j )2 
and standard deviation 
σ̌ (s ) 

i j = √ 
1 

λ(s ) 
j ∑ m i 

k =1 ̃  y i jk + 1 / (σ (s ) 
j )2 . 

Then, we know that 
E 
δi j | D j , θ(s ) 

j [ δi j ] = η̌(s ) 
i j and E 

δi j | D j , θ(s ) 
j [ δ2 

i j ] = (η̌(s ) 
i j )2 

+ (σ̌ (s ) 
i j )2 

. 
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Therefore, Q( θ j | θ(s ) 

j ) is given by 
Q( θ j | θ(s ) 

j ) 
= n ∑ 

i =1 
m i ∑ 

k =1 
⎧ 
⎨ 
⎩ 1 2 ln ( λ j ̃ t 2 ik 

2 π ˜ y 3 
i jk 

)
− 1 

2 
{

˜ t 2 
ik −2 ̃ t ik ̃ y i jk ̌η(s ) 

i j + ̃ y 2 i jk [(
η̌(s ) 

i j )2 
+ (σ̌ (s ) 

i j )2 ]}

˜ y i jk /λ j 
⎫ 
⎬ 
⎭ 

+ n ∑ 
i =1 {− 1 

2 ln (2 π ) − 1 
2 ln (σ 2 

j ) 
− 1 

2 σ 2 
j 
[ (

η̌(s ) 
i j )2 

+ (σ̌ (s ) 
i j )2 

− 2 η j ̌η(s ) 
i j + η2 

j ] } 
. 

• M-step: In this step, we update the estimated parameters by 
solving the equations that set the first derivative of Q( θ j | θ(s ) 

j ) 
equal to 0. Therefore, the results are 
λ(s +1) 

j = ∑ n 
i =1 m i 

∑ n 
i =1 ∑ m i 

k =1 
{

˜ t 2 
ik −2 ̃ t ik ̃ y i jk ̌η(s ) 

i j + ̃ y 2 
i jk [( ̌η(s ) 

i j ) 2 + ( ̌σ (s ) 
i j ) 2 ]}

˜ y i jk 
, 

η(s +1) 
j = 1 

n n ∑ 
i =1 η̌(s ) 

i j , 
σ (s +1) 

j = 
√ 

∑ n 
i =1 [(

σ̌ (s ) 
i j )2 

+ (η̌(s ) 
i j −η(s +1) 

j )2 ]
n . 

To estimate all the unknown parameters, we carry out the EM 
algorithm for each individual process one at a time with a total of 
p implementations. The conclusion by Appendix F.2 is still appli- 
cable to provide a good guess of starting parameters except it is 
necessary to check σ(0) instead of %(0) . In terms of incorporation 
of time scale transformation, the conclusion by Appendix F.3 re- 
mains the same. Thus, the inference for Model M 2 can be viewed 
as an analogously univariate version of the inference for Model M 0 . 
Appendix G. The BCp bootstrap method 

For illustrative purposes, we use the BCp bootstrap method to 
demonstrate the computation of the C.I. for F T D (t; θ, D ) of the pro- 
posed model. It is performed according to the following steps: 
1. Given the observed data D , implement the EM algorithm to ob- 

tain the estimated parameters ˆ θ and calculate the estimated 
failure time probability ˆ F T D (t; ˆ θ, D ) (abbreviated ˆ F (t) ) at de- 
sired values of t . 

2. Generate a large number B (say B = 1 , 0 0 0 ) of bootstrap 
samples that mimic the original sample and compute the 

corresponding bootstrap estimates ˆ F ∗T D (t; ˆ θ∗
b , D ) b (abbreviated 

ˆ F ∗(t) b ), b = 1 , 2 , . . . , B , according to the following steps: 
(a) Generate n simulated realizations of the random mean vec- 

tor, i.e. δ∗
i ∼ MV N( ̂  η, ˆ %) , i = 1 , 2 , . . . , n . 

(b) For each δ∗
i , generate p simulated degradation paths based 

on y ∗
i jk = y ∗

i j,k −1 + y ∗
i jk , ∀ i = 1 , 2 , . . . , n, j = 1 , 2 , . . . , p, k = 

1 , 2 , . . . , m i , where y ∗
i j0 = 0 and y ∗

i jk is sampled from 
IG (t ik /δ∗

i j , ̂  λ j t 2 ik ) . 
(c) Use the simulated degradation paths as inputs to produce 

the bootstrap estimates ˆ θ∗
b and compute ˆ F ∗(t) b at desired 

values of t . 
3. For each desired value of t , the bootstrap C.I. for F T D (t; θ, D ) is 

constructed as below: 
(a) Sort the bootstrap estimates ˆ F ∗(t) 1 , . . . , ̂  F ∗(t) B in increasing 

order giving ˆ F ∗(t) (b) , b = 1 , 2 , . . . , B . 
(b) The lower and upper bounds of point-wise approximate 

100(1 − α)% C.I. are [ ̂  F ∗(t ) (L ) , ̂  F ∗(t ) (U) ] , where 
L = B × +

[
2+−1 (q ) + +−1 (α/ 2) ], 

U = B × +
[
2+−1 (q ) + +−1 (1 − α/ 2) ], 

and q is the proportion of the bootstrap estimates 
{ ̂  F ∗(t) b , b = 1 , 2 , . . . , B } that are less than ˆ F (t) . 

Appendix H. Additional results of the illustrative examples 
Table 3 provides the data table of the fatigue crack-size data. 

Tables 4 and 5 show the point estimates of model parameters and 
their 95% bootstrap C.I.s (shown in the parentheses) for the coating 
data and the fatigue crack-size data, respectively. Fig. 9 a and b pro- 
vide plots of parameter estimates and log-likelihood over iteration 
for the coating data and the fatigue crack-size data, respectively. 

For Model M 1 , the result of parameters estimation for the 
fatigue crack-size data is obtained as follows: ˆ δ = (1 . 52670 , 
2 . 07223 , 2 . 95884) ′ , ˆ λ = (110 . 52359 , 93 . 33662 , 36 . 10819) ′ , and ˆ γ = 
(1 . 31943 , 1 . 31812 , 1 . 23736) ′ . 

For Model M 2 , the result of parameters estimation 
for the fatigue crack-size data is obtained as follows: 
ˆ λ = (135 . 90509 , 111 . 83610 , 40 . 43586) ′ , ˆ γ = (1 . 32563 , 1 . 32199 , 
1 . 24042) ′ , ˆ η = (1 . 54283 , 2 . 08948 , 2 . 98782) ′ , and ˆ σ = (0 . 15363 , 
0 . 19554 , 0 . 29746) ′ . 

Fig. 9. Parameter Estimates and Log-likelihood over Iteration. 
1191 



G. Fang, R. Pan and Y. Wang European Journal of Operational Research 300 (2022) 1177–1193 
Table 3 
Fatigue Crack-size Data. 

Millions of Cycles ( ×10 ) 
Unit 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
PC1 
1 0.90 0.95 1.00 1.05 1.12 1.19 1.27 1.35 1.48 1.64 
2 0.90 0.94 0.98 1.03 1.08 1.14 1.21 1.28 1.37 1.47 
3 0.90 0.94 0.98 1.03 1.08 1.13 1.19 1.26 1.35 1.46 
4 0.90 0.94 0.98 1.03 1.07 1.12 1.19 1.25 1.34 1.43 
5 0.90 0.94 0.98 1.03 1.07 1.12 1.18 1.23 1.33 1.41 
6 0.90 0.94 0.98 1.02 1.07 1.11 1.17 1.23 1.32 1.41 
PC2 
1 0.90 0.93 0.97 1.00 1.06 1.11 1.17 1.23 1.30 1.39 
2 0.90 0.92 0.97 1.01 1.05 1.09 1.15 1.21 1.28 1.36 
3 0.90 0.92 0.96 1.00 1.04 1.08 1.13 1.19 1.26 1.34 
4 0.90 0.93 0.96 1.00 1.04 1.08 1.13 1.18 1.24 1.31 
5 0.90 0.92 0.97 0.99 1.03 1.06 1.10 1.14 1.20 1.26 
6 0.90 0.93 0.96 1.00 1.03 1.07 1.12 1.16 1.20 1.26 
PC3 
1 0.90 0.92 0.96 0.99 1.03 1.06 1.10 1.16 1.21 1.27 
2 0.90 0.92 0.95 0.97 1.00 1.03 1.07 1.10 1.16 1.22 
3 0.90 0.93 0.96 0.97 1.00 1.05 1.08 1.11 1.16 1.20 
4 0.90 0.92 0.94 0.97 1.01 1.04 1.07 1.09 1.14 1.19 
5 0.90 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16 
6 0.90 0.92 0.94 0.97 0.99 1.02 1.04 1.07 1.11 1.14 

Table 4 
Results of Point and Interval Estimates of Model Parameters for the Coating Data. 

Parameter Estimation Estimation Estimation 
λ ˆ λ1 = 2 . 09998 ˆ λ2 = 0 . 39288 ˆ λ3 = 1 . 61180 

(1.00035,4.19730) (0.19208,0.93007) (0.76006,3.18489) 
γ ˆ γ1 = 0 . 97996 ˆ γ2 = 1 . 15386 ˆ γ3 = 0 . 96347 

(0.91746,1.04835) (1.06981,1.21906) (0.90100,1.03169) 
η ˆ η1 = 0 . 35590 ˆ η2 = 0 . 68947 ˆ η3 = 0 . 540 0 0 

(0.25360,0.51402) (0.43220,0.98513) (0.38455,0.77688) 
σ2 

j ˆ σ 2 
1 = 1 . 59788 × 10 −6 ˆ σ 2 

2 = 13 . 19950 × 10 −6 ˆ σ 3 
3 = 23 . 86160 × 10 −6 

(8 . 43673 × 10 −8 , 3 . 48284 × 10 −6 ) (1 . 36569 × 10 −6 , 2 . 86679 × 10 −4 ) (7 . 42015 × 10 −7 , 1 . 10614 × 10 −3 ) 
σ j j ′ ˆ σ12 = 1 . 93898 × 10 −6 ˆ σ23 = 13 . 32560 × 10 −6 ˆ σ13 = 3 . 07767 × 10 −6 

(−9 . 40336 × 10 −4 , 19 . 93434 × 10 −4 ) (−9 . 82983 × 10 −4 , 3 . 21900 × 10 −3 ) (−4 . 50918 × 10 −4 , 1 . 50048 × 10 −3 ) 
Table 5 
Results of Point and Interval Estimates of Model Parameters for the Fatigue Crack-size Data. 

Parameter Estimation Estimation Estimation 
λ ˆ λ1 = 141 . 47632 ˆ λ2 = 118 . 08734 ˆ λ3 = 43 . 74568 

(94.70044,199.23721) (76.95887,165.63843) (28.09148,61.03539) 
γ ˆ γ1 = 1 . 32673 ˆ γ2 = 1 . 32303 ˆ γ3 = 1 . 24242 

(1.24922,1.40003) (1.25886,1.38871) (1.15558,1.32581) 
η ˆ η1 = 1 . 54561 ˆ η2 = 2 . 09412 ˆ η3 = 3 . 00609 

(1.37547,1.70408) (1.88137,2.29041) (2.62293,3.37090) 
σ2 

j ˆ σ 2 
1 = 0 . 02859 ˆ σ 2 

2 = 0 . 04712 ˆ σ 3 
3 = 0 . 14072 

(37 . 94254 × 10 −4 , 10 . 64927 × 10 −2 ) (60 . 37184 × 10 −4 , 17 . 17543 × 10 −2 ) (17 . 28414 × 10 −3 , 51 . 81899 × 10 −2 ) 
σ j j ′ ˆ σ12 = 0 . 03665 ˆ σ23 = 0 . 08135 ˆ σ13 = 0 . 06335 

(63 . 46901 × 10 −4 , 11 . 93211 × 10 −2 ) (19 . 78837 × 10 −3 , 31 . 27065 × 10 −2 ) (12 . 76516 × 10 −3 , 23 . 09770 × 10 −2 ) 
References 
Bae, S. J. , & Kvam, P. H. (2004). A nonlinear random-coefficients model for degrada- 

tion testing. Technometrics, 46 (4), 460–469 . 
Chen, P. , & Ye, Z.-S. (2018). Uncertainty quantification for monotone stochastic 

degradation models. Journal of Quality Technology, 50 (2), 207–219 . 
Efron, B. , & Tibshirani, R. (1994). An introduction to the bootstrap (1st ed.). New York: 

CRC Press . 
Fang, G. , & Pan, R. (2021). On multivariate copula modeling of dependent degrada- 

tion processes. Computers & Industrial Engineering, 159 , 107450 . 
Fang, G. , Pan, R. , & Hong, Y. (2020). Copula-based reliability analysis of degrading 

systems with dependent failures. Reliability Engineering & System Safety, 193 , 
106618 . 

Fang, G. , Pan, R. , & Stufken, J. (2021). Optimal setting of test conditions and allo- 
cation of test units for accelerated degradation tests with two stress variables. 
IEEE Transactions on Reliability, 70 (3), 1096–1111 . 

Fang, G. , Rigdon, S. E. , & Pan, R. (2018). Predicting lifetime by degradation tests: A 
case study of ISO 10995. Quality and Reliability Engineering International, 34 (6), 
1228–1237 . 

Hajiha, M. , Liu, X. , & Hong, Y. (2020). Degradation under dynamic operating condi- 
tions: Modeling, competing processes and applications. Journal of Quality Tech- 
nology, 0 (0), 1–22 . 

Hao, S., Yang, J., & Berenguer, C. (2019). Degradation analysis based on an ex- 
tended inverse Gaussian process model with skew-normal random effects 
and measurement errors. Reliability Engineering & System Safety, 189 , 261–
270. https://doi.org/10.1016/j.ress.2019.04.031 . https://www.sciencedirect.com/ 
science/article/pii/S095183201831442X . 

Higham, N. (2002). Computing the nearest correlation matrix – a problem from fi- 
nance. IMA Journal of Numerical Analysis, 22 , 329–343 . 

Hoff, P. D. (2009). A first course in Bayesian statistical methods . Springer . 
Hong, L. , Tan, M. H. Y. , & Ye, Z.-S. (2020). Nonparametric link functions with shape 

constraints in stochastic degradation processes: Application to emerging con- 
taminants. Journal of Quality Technology, 52 (4), 370–384 . 

Hong, L. , Ye, Z.-S. , & Ling, R. (2018a). Environmental risk assessment of emerging 
contaminants using degradation data. Journal of Agricultural, Biological and Envi- 
ronmental Statistics, 23 (3), 390–409 . 

Hong, L. , Ye, Z.-S. , & Sari, J. K. (2018b). Interval estimation for wiener processes 
based on accelerated degradation test data. IISE Transactions, 50 (12), 1043–
1057 . 

1192 

http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0008
https://doi.org/10.1016/j.ress.2019.04.031
https://www.sciencedirect.com/science/article/pii/S095183201831442X
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0012
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0012
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0012
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0012
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0012
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0014


G. Fang, R. Pan and Y. Wang European Journal of Operational Research 300 (2022) 1177–1193 
Hu, J. , Sun, Q. , Ye, Z. , & Zhou, Q. (2020). Joint modeling of degradation and lifetime 

data for RUL prediction of deteriorating products. IEEE Transactions on Industrial 
Informatics . 1–1 

Keizer, M. C. A. O. , Flapper, S. D. P. , & Teunter, R. H. (2017). Condition-based main- 
tenance policies for systems with multiple dependent components: A review. 
European Journal of Operational Research, 261 (2), 405–420 . 

Lawless, J. , & Crowder, M. (2004). Covariates and random effects in a gamma process 
model with application to degradation and failure. Lifetime Data Analysis, 10 (3), 
213–227 . 

Li, H., Deloux, E., & Dieulle, L. (2016). A condition-based maintenance policy for 
multi-component systems with Lévy copulas dependence. Reliability Engineering 
& System Safety, 149 , 44–55. https://doi.org/10.1016/j.ress.2015.12.011 . 

Lindig, S. , Kaaya, I. , Weiss, K. , Moser, D. , & Topic, M. (2018). Review of statisti- 
cal and analytical degradation models for photovoltaic modules and systems 
as well as related improvements. IEEE Journal of Photovoltaics, 8 (6), 1773–
1786 . 

Liu, B., Pandey, M. D., Wang, X., & Zhao, X. (2021). A finite-horizon 
condition-based maintenance policy for a two-unit system with depen- 
dent degradation processes. European Journal of Operational Research . 
https://doi.org/10.1016/j.ejor.2021.03.010 . https://www.sciencedirect.com/ 
science/article/pii/S03772217210 020 09 . 

Liu, X. , Al-Khalifa, K. N. , Elsayed, E. A. , Coit, D. W. , & Hamouda, A. S. (2014). Criti- 
cality measures for components with multi-dimensional degradation. IIE Trans- 
actions, 46 (10), 987–998 . 

Lu, C. J. , & Meeker, W. O. (1993). Using degradation measures to estimate a time–
to-failure distribution. Technometrics, 35 (2), 161–174 . 

Lu, L. , Wang, B. , Hong, Y. , & Ye, Z. (2020). General path models for degradation data 
with multiple characteristics and covariates. Technometrics, 0 (0), 1–16 . 

Meeker, W. Q. , & Escobar, L. A. (2014). Statistical methods for reliability data . John 
Wiley & Sons . 

Mercier, S. , & Pham, H. H. (2012). A preventive maintenance policy for a contin- 
uously monitored system with correlated wear indicators. European Journal of 
Operational Research, 222 (2), 263–272 . 

Morita, L. H. M. , Tomazella, V. L. , Balakrishnan, N. , Ramos, P. L. , Ferreira, P. H. , & 
Louzada, F. (2020). Inverse Gaussian process model with frailty term in reliabil- 
ity analysis. Quality and Reliability Engineering International, 37 (2), 763–784 . 

Palayangoda, L. K., & Ng, H. K. T. (2021). Semiparametric and nonparametric eval- 
uation of first-passage distribution of bivariate degradation processes. Reliabil- 
ity Engineering & System Safety, 205 , 107230. https://doi.org/10.1016/j.ress.2020. 
107230 . https://www.sciencedirect.com/science/article/pii/S0951832020307304 . 

Peng, C.-Y. (2015). Inverse Gaussian processes with random effects and explanatory 
variables for degradation data. Technometrics, 57 (1), 100–111 . 

Rencher, A. C. , & Christensen, W. F. (2012). Methods of multivariate analysis . John 
Wiley & Sons . 

Rencher, A. C. , & Schaalje, G. B. (2008). Linear models in statistics . John Wiley & Sons . 
Seo, K. , & Pan, R. (2020). Planning accelerated life tests with multiple sources of 

random effects. Journal of Quality Technology, 0 (0), 1–22 . 
Shi, Y. , Feng, Q. , Shu, Y. , & Xiang, Y. (2020a). Multi-dimensional Lévy processes with 

Lévy copulas for multiple dependent degradation processes in lifetime analysis. 
Quality Engineering, 32 (3), 434–448 . 

Shi, Y. , Xiang, Y. , Liao, Y. , Zhu, Z. , & Hong, Y. (2020b). Optimal burn-in policies for 
multiple dependent degradation processes. IISE Transactions, 53 (11), 1281–1293 . 

Si, W. , Yang, Q. , Wu, X. , & Chen, Y. (2018). Reliability analysis considering dynamic 
material local deformation. Journal of Quality Technology, 50 (2), 183–197 . 

Si, X.-S. , & Zhou, D. (2014). A generalized result for degradation model-based relia- 
bility estimation. IEEE Transactions on Automation Science and Engineering, 11 (2), 
632–637 . 

Sun, F. , Fu, F. , Liao, H. , & Xu, D. (2020a). Analysis of multivariate dependent acceler- 
ated degradation data using a random-effect general Wiener process and d-vine 
copula. Reliability Engineering & System Safety, 204 , 107168 . 

Sun, Q. , Ye, Z.-S. , & Hong, Y. (2020b). Statistical modeling of multivariate destructive 
degradation tests with blocking. Technometrics, 62 (4), 536–548 . 

Wang, X. , Balakrishnan, N. , & Guo, B. (2015). Residual life estimation based on non- 
linear-multivariate Wiener processes. Journal of Statistical Computation and Sim- 
ulation, 85 (9), 1742–1764 . 

Wang, X. , Gaudoin, O. , Doyen, L. , Bérenguer, C. , & Xie, M. (2020). Modeling mul- 
tivariate degradation processes with time-variant covariates and imperfect 
maintenance effects. Applied Stochastic Models in Business and Industry, 37 (3), 
592–611 . 

Wang, X., Wang, B. X., Hong, Y., & Jiang, P. H. (2021). Degradation data anal- 
ysis based on gamma process with random effects. European Journal of Op- 
erational Research, 292 (3), 1200–1208. https://doi.org/10.1016/j.ejor.2020.11.036 . 
https://www.sciencedirect.com/science/article/pii/S0377221720309826 . 

Wang, X. , & Xu, D. (2010). An inverse Gaussian process model for degradation data. 
Technometrics, 52 (2), 188–197 . 

Whitmore, G. A. , & Schenkelberg, F. (1997). Modelling accelerated degradation data 
using Wiener diffusion with a time scale transformation. Lifetime Data Analysis, 
3 (1), 27–45 . 

Wu, S., & Castro, I. T. (2020). Maintenance policy for a system with a weighted lin- 
ear combination of degradation processes. European Journal of Operational Re- 
search, 280 (1), 124–133. https://doi.org/10.1016/j.ejor.2019.06.048 . https://www. 
sciencedirect.com/science/article/pii/S0377221719305417 . 

Xu, A. , Shen, L. , Wang, B. , & Tang, Y. (2018a). On modeling bivariate Wiener degra- 
dation process. IEEE Transactions on Reliability, 67 (3), 897–906 . 

Xu, A., Zhou, S., & Tang, Y. (2021). A unified model for system reliability evaluation 
under dynamic operating conditions. IEEE Transactions on Reliability, 70 (1), 65–
72. https://doi.org/10.1109/tr.2019.2948173 . 

Xu, D. , Xing, M. , Wei, Q. , Qin, Y. , Xu, J. , Chen, Y. , & Kang, R. (2018b). Failure behavior 
modeling and reliability estimation of product based on Vine-copula and accel- 
erated degradation data. Mechanical Systems and Signal Processing, 113 , 50–64 . 

Ye, Z.-S. , & Chen, N. (2014). The inverse Gaussian process as a degradation model. 
Technometrics, 56 (3), 302–311 . 

Ye, Z.-S. , Wang, Y. , Tsui, K.-L. , & Pecht, M. (2013). Degradation data analysis us- 
ing Wiener processes with measurement errors. IEEE Transactions on Reliability, 
62 (4), 772–780 . 

Ye, Z.-S. , & Xie, M. (2015). Stochastic modelling and analysis of degradation for 
highly reliable products. Applied Stochastic Models in Business and Industry, 31 (1), 
16–32 . 

Ye, Z.-S. , Xie, M. , Tang, L.-C. , & Chen, N. (2014). Semiparametric estimation of 
Gamma processes for deteriorating products. Technometrics, 56 (4), 504–513 . 

Zhai, Q. , & Ye, Z.-S. (2018). Degradation in common dynamic environments. Techno- 
metrics, 60 (4), 461–471 . 

Zhao, X., Chen, P., Gaudoin, O., & Doyen, L. (2021). Accelerated degradation tests 
with inspection effects. European Journal of Operational Research, 292 (3), 1099–
1114. https://doi.org/10.1016/j.ejor.2020.11.041 . https://www.sciencedirect.com/ 
science/article/pii/S0377221720310 0 06 . 

1193 

http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0017
https://doi.org/10.1016/j.ress.2015.12.011
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0019
https://doi.org/10.1016/j.ejor.2021.03.010
https://www.sciencedirect.com/science/article/pii/S0377221721002009
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0026
https://doi.org/10.1016/j.ress.2020.107230
https://www.sciencedirect.com/science/article/pii/S0951832020307304
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0028
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0028
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0030
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0030
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0030
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0030
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0031
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0031
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0031
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0031
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0036
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0039
https://doi.org/10.1016/j.ejor.2020.11.036
https://www.sciencedirect.com/science/article/pii/S0377221720309826
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0041
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0041
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0041
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0041
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0042
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0042
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0042
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0042
https://doi.org/10.1016/j.ejor.2019.06.048
https://www.sciencedirect.com/science/article/pii/S0377221719305417
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0044
https://doi.org/10.1109/tr.2019.2948173
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0046
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0046
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0046
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0046
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0046
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0046
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0046
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0046
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0046
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0047
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0047
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0047
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0047
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0049
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0049
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0049
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0049
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00898-5/sbref0051
https://doi.org/10.1016/j.ejor.2020.11.041
https://www.sciencedirect.com/science/article/pii/S0377221720310006

	Inverse Gaussian processes with correlated random effects for multivariate degradation modeling
	1 Introduction
	1.1 Background
	1.2 A motivating example
	1.3 Related work
	1.4 Outline

	2 Modeling framework and lifetime distribution
	2.1 Model description
	2.2 Derived properties
	2.3 Lifetime distribution

	3 Model estimation and validation
	3.1 Point estimation
	3.2 Interval estimation
	3.3 Model validation

	4 Simulation studies
	4.1 Performance of the inference method
	4.2 Effect of model misspecification

	5 Two illustrative examples
	5.1 Coating data
	5.2 Fatigue crack-size data

	6 Concluding remarks
	Acknowledgment
	Appendix A Derivation of Eq. (2)
	Appendix B Derivation of Eq. (3)
	Appendix C Derivation of Eq. (5)
	Appendix D Derivation of Eq. (6)
	Appendix E Derivation of Eq. (8)
	Appendix F The EM algorithm for statistical inference
	F1 Main technical details
	F2 Good guess of starting parameters
	F3 Incorporation of time scale transformation function
	F4 Adaptation of the EM algorithm to fit model 

	Appendix G The BCp bootstrap method
	Appendix H Additional results of the illustrative examples
	References


