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ARTICLE INFO ABSTRACT
Keywords: Material Jetting (MJ) process is an additive manufacturing process that is able to produce structures with high
Material jetting resolutions. The performance and quality of the MJ printed parts extensively rely on the droplet morphology
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Tensor time series

Deep learning

and behavior. However, obtaining consistent and stable droplet morphology and behavior is difficult because
the droplets are very sensitive to different material and process parameters. Testing/studying all these
parameter combinations is time-consuming due to the high-experimental and high-computational costs. We
thus study the prediction of droplet behaviors under different material and process parameters. To achieve this,
we propose to leverage the underlying relationships shared across droplet evolution behaviors with diverse
material and process parameters (referred to as “cross-linked” relationship hereafter) as well as the spatial-
temporal relationships of droplet evolution, and capture these with the Network of Tensor Time Series (N T?).
The distinct droplet behaviors are regarded as co-evolving time series (i.e., Tensor Time Series (TTS)) since they
share the same physics principles. In particular, we capture the cross-linked and spatial relationships of TTS by
the Tensor Graph Convolutional Network (TGCN), and capture the temporal relationship of TTS by the Tensor
Recurrent Neural Network (TRNN), respectively. The features from TGCN and TRNN are passed to Multilayer
Perceptron (MLP) for predicting future droplet behaviors. The proposed methodology is demonstrated with
simulated (i.e., physics-based models) and experimental (i.e., MJ printing observation with vision system)
droplet evolution videos and is able to accurately and efficiently make predictions for seen (i.e., forecasting
for a future time) and unseen (i.e., new droplet evolution sequence prediction) material/process parameters.

1. Introduction humidity) variations [11]. Fig. 1(c) shows different simulated (Fig. 1
(c.1)) and experimental (Fig. 1 (c.2)) droplet evolution behaviors. Thus,

Additive Manufacturing (AM) processes are able to produce intricate achieving consistent droplet behaviors becomes paramount. The print-
parts and products that were not possible with traditional manufac- ing process success or failure has been studied by classifying droplet
turing processes [1,2]. Material jetting, i.e., Inkjet Printing (IJP), has ejection into single spherical droplet, satellite droplets, etc. [12]; nev-
been able to produce functional parts with complex structures [3] ertheless, understanding the full droplet evolution in the LJP process is

for electronics [4], energy [5], biomedical [6], etc., applications. For
instance, high-performance transistor arrays and circuits [7], electrodes
for microbatteries [8], scaffolds [9], have been successfully tested.
The IJP process (see Fig. 1), a material jetting-based AM technique,
jets droplets of inks/solutions either continuously or in a Drop-On-
Demand (DOD) fashion on the top of a substrate to additively create
a part. In particular, the Piezo-electric Inkjet (P1J) printing technol-
ogy accurately supplies droplets in DOD mode [10] and is shown in
Figs. 1 (a-b). Specifically, the individual droplet formation mechanism
(i.e., droplet evolution) extensively determines the process performance
and product quality. However, having consistent and stable droplets is
difficult to achieve since they are prone to instabilities due to process
parameters (e.g., electrical waveform, back-pressure), material proper- the analysis of empirical dimensionless numbers, namely Ohnesorge
ties (e.g., density, viscosity), and ambient conditions (e.g., temperature, (Oh), Weber (We), and Reynolds (Re) numbers [20]. These numbers are

crucial to obtain droplet with desirable characteristics, such as, volume,
velocity, and shape, and to perform process analysis [13].
Traditionally, researchers have studied droplet evolution behav-
iors experimentally/empirically and numerically [14,15]. With the
advent of advanced sensing technology, specifically vision systems
(e.g., Charged Coupled Device (CCD) and high-speed cameras), ex-
perimental approaches have been possible to study the IJP droplet
behaviors [16,17]. For instance, several researchers have focused on
analyzing the influence of process parameters and ink/solution proper-
ties on piezoelectric inkjet droplet formation by using cameras coupled
with amplification systems [18,19]. In addition, vision systems support
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Fig. 1. An Illustration of the Inkjet Printing (IJP) Process: (a) Piezoelectric inkjet (P1J) printing process, (b) P1J printing experimental setup, and (c) Droplet behaviors: (c.1)

simulated and (c.2) experimental.

mainly used to determine the jettability regime in the IJP process [21,
22]. However, these numbers disregard the shape of the droplets
(i.e., droplet evolution behaviors), which considerably influences the
quality of the printed parts. These approaches utilize several snapshots
to perform their analyses and performing such analyses for different
material/process parameters can be time-consuming and expensive.
In addition, these methods neglect the temporal relationship, which
can be useful to make predictions of the droplet evolution during the
printing process.

Numerical methods have also shown their potential for a better
understanding of the droplet formation process [23]. Particular atten-
tion has been given to the Volume of Fluid (VOF) method [24] and
lattice Boltzmann method [25] . For the first, the Navier-Stokes (NS)
equations are solved via VOF method to study and evaluate the effect
of operating parameters (i.e., material properties) on the droplet forma-
tion in the IJP process [23,24]. The mesoscopic kinetic equations are
considered to simulate the droplet formation and coalescence processes
in microfluidics [25,26]. These approaches have shown good agree-
ment with reality; however, they lack fluid flow pattern identification,
which makes the droplet evolution forecasting and prediction for new
material/process parameters difficult.

In this paper, we focus on the single droplet behavior prediction
for both seen (i.e., forecasting for a future time) and unseen (i.e., new
droplet evolution sequence prediction) material/process parameters.
Generally, droplet evolution prediction is hard to achieve in the LJP
process [27]. In particular, the droplet evolution phenomenon can be
regarded as a time series with spatial-temporal relationships [27].
Here, the spatial relationship refers to relationship of pixels within a
video frame; while the temporal relationship refers to the relationship
in pixels from one frame to other frames (see Fig. 1 (c)). Several meth-
ods, such as Autoregressive Integrated Moving Average (ARIMA) and
Kalman filtering, have been widely used to forecast time series [28,29].
Nevertheless, these approaches do not capture the complex non-linear
spatial-temporal relationships in the droplet evolution. The emergence
of Deep Learning (DL) has allowed to capture complex and hidden
information from massive data (e.g., droplet evolution videos) [30].
For instance, Convolutional Neural Networks (CNNs) have been used
to predict the velocity field around a cylinder using the pressure field
on the cylinder [31]. In addition, deep CNN and Multilayer Perceptron
(MLP) have been deployed to forecast incompressible laminar steady
flow field over airfoils [32]. Nonetheless, most of the existing DL archi-
tectures are mainly used for dimensionality reduction or current time
flow reconstruction, which are effective to focus mainly on sequence

learning or spatial learning [33], but fail to model the spatial-temporal
dynamics simultaneously.

Recently, DL architectures able to capture spatial-temporal relation-
ships have been studied [34,35]. An attempt to simultaneously model
the spatial-temporal droplet dynamics in the PIJ printing process is
presented in [27]. In particular, an unsupervised learning method is
deployed for the droplet evolution prediction using a deep recurrent
neural network. However, it is not able to capture the cross-linked re-
lationships (i.e., shared relationships across different droplet behaviors
generated with the same forming mechanism) among the droplet evo-
lution behaviors at various material/process parameters, and requires
large datasets (e.g., 4500 droplet sequences were used in [27]).

The objective of this paper is to forecast and predict the droplet
evolution in the P1J printing process by capturing the cross-linked rela-
tionships of different material/process parameters and spatial-temporal
relationships of droplet evolution. Here, various droplet evolution be-
haviors (see Fig. 1(c)) from either simulated or experimental data under
diverse material/process parameters can be regarded as co-evolving
time series (i.e., Tensor Time Series (TTS)) since they share the same
forming mechanism. The main contributions of this paper are as fol-
low: (a) The cross-linked relationships of the co-evolving time series
are simultaneously captured by Tensor Graph Convolutional Network
(TGCN) and Tensor Recurrent Neural Network (TRNN) in Network of
Tensor Time Series (NeT?) [36]. The TGCN is in charge of capturing
the spatial relationship within and cross-linked relationship among the
co-evolving time series. The TRNN captures the temporal dynamics
of the different droplet evolution behaviors in the TTS. (b) Predicting
droplet behavior sequences for unseen material/process parameters is
feasible by exploiting the synergy among different networks. To our
best knowledge, this is the first study dedicated to modeling the droplet
evolution forming mechanism in the P1J printing process that system-
atically capture the cross-linked, spatial and temporal relationships to
predict the unseen and seen material/process parameters. An overall
prediction evaluation was performed by means of Structural Similarity
(SSIM) and Mean Square Error (MSE) indexes.

The paper is organized as follows. Section 2 will briefly discuss
related studies on data-driven modeling for IJP and time series analysis.
The deployed methodology will be presented in Section 3. Section 4
will show the results. Finally, Section 5 will conclude the paper and
discuss the future work.
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2. Literature review
2.1. Data-driven modeling for inkjet printing

Several Machine Learning (ML) methodologies have been explored
in IJP. For example, Wu et al. [37] proposed an ensemble learning
method which combined random forest, least absolute shrinkage and
selection operator, eXtreme Gradient Boosting (XGBoost) and Sup-
port Vector Regression (SVR) to predict droplet velocity and volume
during the droplet formation process of inkjet-based bioprinting. Pan
et al. [38] modeled the effects of waveform voltage amplitude on
droplet deposition errors, droplet volume and droplet velocity during
IJP process by using Kriging, radial basis function and SVR. Stoyanov
et al. [39] developed a state-space model to predict the thickness of
printed products and realized model predictive control based on the
captured dynamic behavior of the IJP process. Other similar studies
can be seen in [40,41].

Due to the powerful capability of dealing with non-linear rela-
tionships, applying DL techniques for IJP process modeling is getting
researchers’ attention. For instance, Tourloukis et al. [42] proposed a
nonlinear autoregressive neural network model to forecast the layer
thickness of inkjet-printed products. Inyang-Udoh et al. [43] proposed
a Recurrent Neural Network (RNN) to forecast the layer height profiles.
The RNN incorporated a physical-based model to reduce the large num-
ber of required data for model training. Based on the proposed model,
a feedback control of IJP process was further developed. Shi et al. [44]
tried to address the challenges of inkjet-based bioprinting, such as
satellite generating, too-large droplet diameter, and too-low droplet ve-
locity by using fully connected neural networks. Ogunsanya et al. [45]
developed a video-based in-situ IJP monitoring framework to classify
the droplet modes (i.e., normal, satellite and no-droplet) by using a
back-propagation neural network, and the satellite droplets, droplets
aspect ratio, the size of droplet as well as the droplet velocity were
extracted from video frames as input features. More examples can be
seen in [46,47]

Even though the aforementioned approaches have shown to be
effective at improving the IJP process by analyzing single droplet
dynamic behaviors (e.g., droplet velocity), they do not exploit the
synergy of co-evolving behaviors to make predictions of unseen ma-
terial/process parameters.

2.2. Time series analysis

As mentioned before, the droplet evolution can be considered as
a time series with spatial-temporal relationships. We thus review the
methods in time series analysis here. Time series analysis aims at
discovering the patterns of data collected over time. Conventional
time series analysis methods include autoregressive, moving-average,
autoregressive moving-average, ARIMA, etc. These methods cannot
capture the complex non-linear relationships that are present in the
1JP process. Recently, the rising of ML techniques enable the modeling
of complex time series data. By considering the time series forecasting
problems as supervised learning problems, several ML techniques, such
as SVR, Gaussian Process, have been applied in the time series analy-
sis [48-50]. In addition, DL techniques are also applied to deal with
time series data, in order to handle non-linear relationships. Various
neural network architectures have been proposed to model different
time series data across different domains. For instance, seriesNet [51],
WSAEs-LSTM [52], and RCLSTM [53]. [54,55] give good summaries
on applying DL techniques in time series analysis. We refer interested
readers to [56,57]. Although ML and DL techniques are able to capture
complex non-linear relationships, they often ignore the networked
relationships among co-evolving time series.

It is worth to mention that the majority of the DL methods for time
series analysis have focused on analyzing individual time series [27];
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therefore, neglecting the benefits of capturing the synergy among co-
evolving time series. Co-evolving time series structures (i.e., TTS) can
be exploited to learn the cross-linked and spatial-temporal relation-
ships of the time series [36]. In particular, Jing et al. [36] integrated
the TGCN and TRNN in a novel model called NeT? to jointly capture the
relationships. In this paper, to investigate the droplet evolution among
co-evolving time series, we model the simulated and experimental
droplet videos based on the NeT?, and perform the evolution prediction
for the seen and unseen material/process parameters.

3. Proposed framework
3.1. Overview of the proposed framework

A scheme of the proposed framework for the IJP droplet evolution
prediction is presented in Fig. 2. In the printing process, the droplet
formation is crucial towards the performance and quality of the printed
parts. The droplet evolution behaviors substantially depend on the
material properties and process settings. Computational Fluid Dynamics
(CFD) and vision systems are used to study and capture, respectively,
the different droplet behaviors. In particular, simulated and experi-
mental data (i.e., droplet videos) are collected as shown in Fig. 2(a).
Each droplet video is considered as a time series and different droplet
videos are regarded as co-evolving time series because they share the
same forming mechanism. Hence, data preparation is necessary to
form a network of TTS (see Fig. 2(b)). Subsequently, the new data
structure is analyzed via NeT? [36], which deploys TGCN and TRNN
to jointly capture the cross-linked and spatial-temporal relationships
of the TTS (see Fig. 2(c)). After this, predictions for seen and unseen
material/process parameters are possible (see Fig. 2(d)). Finally, the
predicted droplet sequences are compared with the original sequences
from the simulated and experimental droplet videos.

In the proposed method, the simulation data generated from the
physics-based model and the training of NeT? model are performed
offline. The method is applied independently to the simulated and
experimental data. Directly training a network by combining the ex-
periment and simulation data, even from the same parameters, will not
achieve a good performance. This is because the resolution discrepancy
and morphology discrepancies between the simulations and experi-
ments. Since the purpose of this study is to capture the cross-linked
relationships and spatial-temporal relationships in material jetting,
two separate networks are trained for the experimental and simulated
data, respectively, to demonstrate the proposed framework. Once the
models are trained, fast droplet evolution predictions for simulated and
experimental video data can be achieved.

3.2. Simulation and experimental data acquisition

3.2.1. Simulated data collection

For the simulated videos, the droplet formation process is modeled
by a CFD model. The Navier-Stokes equations govern the physical
model mass and momentum conservation for the liquid-gas interface
(see the modeled system in Fig. 1 (c.1)), and it is assumed that the fluids
are viscous, axisymmetric, and incompressible. Details of the model
formulation can be seen in our previous work [27].

The CFD model is solved in ANSYS-Fluent. Additionally, the VOF
approach, which allows to track the shape and position of droplets,
is utilized. We then generate simulated droplet videos with various
material properties (i.e., density, viscosity, surface tension), such as
water, glycerol, graphene oxide-based inks, shown in Table 1.

3.2.2. Experimental data collection
The hardware of our video collection system is shown in Fig. 1(b).
The droplets are generated by a piezo-based micro-dispensing nozzle
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Designed Framework for the IJP Droplet Evolution Prediction
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Fig. 2. An Illustration of the Proposed Methodology for the IJP Droplet Evolution Prediction: (a) Simulated and experimental data collection, (b) Data preparation, (c) Construction

of the network of tensor time series, and (d) Droplet evolution predictions.

Table 1
Ranges of the material properties for simulated data collection.

Material properties Low levels High levels
Density (kg/m?) 800 8000
Viscosity (kg/m.s) 0.0005 0.15
Surface tension (dyn/cm) 50 80

Table 2
Process settings ranges for experimental data collection.

Process settings Low levels High levels
Back-pressure (in H,0) ) -3

Dwell time (ps) 28.2 35.8

Echo time (ps) 56.5 71.6
Dwell voltage (V) 48.1 70

Echo voltage (V) -70 —48.1

(MicroFab Inc.). This print-head system is suitable for typical Newto-
nian materials, such as water and glycerol. The nozzle’s diameter is
100 pm. The process settings for the experimental video generation are
specified in Table 2. The droplet videos are captured by a CCD camera
(Sensor Technologies Inc.) coupled with a magnification lens. The video
resolution is 480 x 640 pixels. Finally, strobing technology is utilized
to capture the droplet evolution behavior after the droplet is ejected,
as shown in Fig. 1 (c.2).

3.3. Network of tensor time series

The droplet evolution behaviors (i.e., droplet time series) are crucial
in the IJP process, and capturing their inherited spatial-temporal dy-
namics for droplet morphology predictions is challenging. This becomes
even more evident when distinct droplet evolution behaviors (i.e., co-
evolving time series) are considered. Co-evolving time series structures
(i.e., TTS) can be exploited to capture the synergy among individual
droplet behaviors corresponding to different material/process param-
eters by constructing graphs/networks [36]. In general, a network
of tensor time series is composed of a tensor time series {S,} €
RNX-xNuxT (j e  co-evolving droplet videos in our case) and a set of
adjacency matrices A,, € RV»*Nu, where m € [, ..., M] is associated
with the non-temporal modes (i.e., material/process parameters and
spatial location adjacency matrices, hence M =2 in this study). Fig. 3
displays an illustration of the data structure in a 2nd mode network of

Time Series
12 3

L

Material/Process
Parameters Network

20430\
uonedo [eneds

Co-evolving
Vectorized Frames

Fig. 3. A Schematic Illustration of a 2nd Mode Network of Tensor Time Series.

tensor time series. The data in Fig. 3 is used to learn the cross-linked
and spatial-temporal relationships of the network of tensor time series
in NeT? [36].

An overview of the NeT? is displayed in Fig. 4. Here, the cross-linked
and spatial relationships, and temporal relationships are captured by
the TGCN and TRNN modules, respectively. At every time step ¢, the
tth snapshot S, € RN>**Nu along with its adjacency matrices {4, €
RNwXNn }'}:I: , are inputted to the TGCN to extract the node embedding
tensor M, and encode the cross-linked and spatial relationships of each
snapshot. After that, the H, tensor is used to encode the temporal
dynamics via TRNN and produce the reconstructed hidden tensor R,.
Finally, the output module takes the M, and R, tensors to predict the
future snapshot.

3.3.1. Tensor graph convolutional network

TGCN [36] extends Graph Convolutional Network (GCN) [58] for
flat graphs to tensor graphs based on multi-dimensional convolution,
so that the graphs for both material/process parameters and spatial
location can be jointly captured. Given a snapshot S, € RN1>X*Nu
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Fig. 4. A Scheme of the NET® Applied to a 2nd Mode Network of Tensor Time Series.

(i.e., input snapshots in Fig. 4) and its adjacency matrices {4, €
RNwXNn }mle, the tensor graph Fourier transform is given by:

M

S, meqﬁm

m=1

S, =

@
where @, is the eigenvector matrix of the graph Laplacian matrix
L, = ®,A,®T,
A,,, and x,, denotes the m-mode product. The spectral convolution for
tensor graphs is defined as:

here A,, € R¥»*Num is the matrix of eigenvalues for

M
G x5, =85, H X, @1 diag(g,)®, @)
m=1

where G, € R¥NX*Nu js a multi-dimensional filter, g, = @Tg, is the
Fourier transformed filter for the mth mode, and * is the convolution
operation. To simplify the multi-dimensional spectral convolution op-
erations and be able to parameterize the free parameters in the filters
G,, Chebyshev approximation is deployed. In particular, this is given
by approximating the Fourier transformed filters g, with Chebyshev
polynomials.

M P
Go * S, =S, H de); < o T (AM)> D,
m=1 Pm=0
M P (3)
=S, H Xm¢£ Z 6m»PmTPm (Lm)
m=1 Pm=0

where G,, denotes the convolution filter parameterized by 6, T, () is
the Chebyshev polynomials defined by T, () = 2xT, _1(x) =T, _5(x)
with Tj(x) = 1 and T; (x) = x, A,, is the normalized eigenvalues matrix,
and p,, is the order of the polynomials. Notice that the same polyno-
mials degree P are used for all the non-temporal modes (i.e., mate-
rial/process parameters and spatial location in our case). Once spectral
graph convolution on tensor graphs/networks is possible, the layer-wise
updating function is established by exploiting the linearity of the m-
mode product in Eq. (3); details of the derivation can be seen in [36],
and is expressed as:

gB,t * 3t = Z epl,..A,pMSt H ><mA'm + 90 ,,,,, OSI
Ip,=1

4

where 4, = Dfé AmD’% is the convolutional filter. Here, p,
[p1s---»Pp] € [0,11M works as an indicator on whether applying 4,, to
S, or not. Finally, based on Eq. (4), the node embedding tensors H, €
RNv<xNyxd that condense the cross-linked and spatial relationships of
the input snapshots (see Fig. 4) can be computed as follows:

H,

TGCN (S {An}o,)

6( z St H ><mAMm ><M+l @p],.“,pM +Sr ><M+l @0>
Ap,,=1

Pm=1

(5)

where O is the parameter matrix and o(-) is activation function.

3.3.2. Tensor recurrent neural network

Once the spatial relationships are captured in H, via TGCN, it is
necessary to incorporate the temporal dynamics to H, (see Fig. 4).
TRNN is deployed for this purpose [36]. We first perform Tucker
decomposition for H, to reduce the dimension. After tensor decom-
position, the temporal dynamics among the co-evolving time series
(i.e., different droplet behaviors) are embedded into its core tensors:
Z, = M, I, x,,UL, where U, € RN»*Nn denotes the orthonormal
parameter matrix. Here, Z, € RV*"*Vn*? and N’ < N,,. To achieve
this, a Tensor Linear Layer (TLL) is defined as:

M+1
TLL(Z,)=Z, [[ xaWn+b

m=1

(6)

where W,, is the linear transition parameter matrix and b is the bias vec-
tor. By replacing the linear functions in the Long Short-Term Memory
(LSTM) architecture with the TLL, the updated functions for the TRNN
are: F, =o (TLL;, (Z,)+TLL;,(Y,)), L, =0 (TLL;,(Z,)+TLL;,
(Y1), 0, =0 (TLL,, (Z,)+TLL,, (Y,_,)), ¢, =tanh (TLL,, (Z,) +
TLL,(Y,)),C =F,0C_+1,0(, and Y, = O, ® 6(C,), where
Y, € RV NiX? s the hidden state tensor at the time step f; 7, I,
and O, are the forget gate, input gate, and output gate, respectively; C,
is the tensor that updates the cell memory C,; tanh denotes the tangent
activation function, and © is the Hadamard product.

To make predictions of each time series (i.e., different droplet
evolution behaviors), tensor reconstruction is performed via R, =
Y, H,]Y: | XmU,, so that the original tensor dimensions are obtained
(i.e., R, € RN1XXNyxd) The temporal dynamics are encoded in the
reconstructed tensor R,.

Once the spatial and temporal dynamics are encoded in H, and R,,
respectively, the output module allows to predict the next snapshot S, ;
(see Fig. 4) via MLP: S‘,H = MLP ([M,,R,]). Because it is impractical
to train the entire TTS at once [36], a sliding window strategy [16] —
composed of w historical and = future steps — is used for the training
process. In this way, the objective function to solve is given by:

)13

M
I Hy = Zo [T XU 7

. 3 t +t
argmin || NyT ( St =Sy
oW .B { 7 }t’—t w+l { 7 }t’—H—I

t

+I41 Z

@]
t'=t—w+1 m=1
M
T 2
+ 1y Y N ULUL =1, I
m=1
where || - || is the Frobenius norm, B are the bias vectors, and

and u, are tuning parameters for the tensor reconstruction error and
orthonormality regularization for U,,, respectively. As a result, the ¢
future steps are recurrently predicted as the sliding window progresses
until the entire TTS is analyzed.

4. Case study
In this section, we demonstrate the proposed methodology for

the accurate droplet evolution prediction for unseen and seen mate-
rial/process settings in the IJP process.
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Fig. 5. A Schematic Illustration of the Simulated Data Collection, Pre-processing, and Network of Tensor Time Series Construction.

4.1. Network of tensor time series construction

We collected simulated and experimental video data as specified in
Sections 3.2.1 and 3.2.2, respectively. Fig. 5 shows an illustration of
the data collection, pre-processing, and network of tensor time series
construction for the simulated data. The original simulated (7 ;s) S
R3*1X1277) and experimental (7'© € R*80%640) data frames were pro-
cessed in a similar fashion. During the pre-processing (see Fig. 5(b)),
we first converted the original color images to grayscale and then
extracted the sub-area corresponding to the shape of the evolving
droplet and further downsampled (in terms of resolution) the images
in both cases. As a result, we obtained T E") e R and T Ee) €
R!3*40 after the pre-processing. We then vectorized the pixel values
(see Fig. 5(c)) of each frame in the different time series (i.e., one time
series per set of material/process settings), yielding T" € R**? and
T e R, respectively. Subsequently, we formed co-evolving time
series for both simulated and experimental droplet evolution cases by
stacking the vectorized frames of individual time series corresponding
to distinct material/process parameters (see Fig. 5(c)); resulting in
{S;S)} € R39ZA0xIT0 apd {S;e)} € R320x20x173 Here, the first dimension
corresponds to the vectorized frames, the second dimension is the
number of samples (i.e., different material/process settings), and the
third dimension indicates the number of time steps. Once the tensor co-
evolving time series are established, two networks are formed, namely
network of vectorized pixel value locations (e.g., adjacency matrix
Aﬁs) € R3¥2%392) and network of material/process parameters (e.g., ad-
jacency matrix A;s) € R40*40) " as shown in Fig. 5(c). The adjacency
matrices are computed as follows:

X x|2
i . .
A, = exP( - ) i @)

0 i=j
where x; and x; are pair of vectors allocating either material/process
parameters or pixel value locations. Fig. 5 (c) shows how these net-
works constrain the within and across material/process parameters
pixel values of the different time series. We have {Sﬁs)} € R392x40x170.
AW g R392x392 gnd AW e RA0X40 and { S("’)} e R520x20x173 40 o
1 2 t >

RY20%520 and A;Z) € R20%20 for the simulated and experimental analysis,
respectively.

4.2. Simulated video data prediction results

We first analyze the simulated droplet evolution video data. The
presented framework is deployed to perform droplet evolution predic-
tion for unseen and seen material parameters. As for the TGCN and
TRNN specifications, we use one layer TGCN and one layer TRNN. The

hidden dimension (i.e., d dimension of the node embeddings tensor H
in Eq. (5)) for the hidden features (i.e., TTS cross-linked and spatial
relationships) in the TGCN is set to 40. Since TRNN performs faster
for lower tensor dimensions, we use 0.3 of the original dimensions for
the Tucker decomposition ranks; resulting in [118 12], respectively.
Additionally, we specify the window size w to 10, the learning rate of
Adam optimizer to 0.01, and the stride size to 1. The reconstruction
coefficient x4, and orthogonal regularization coefficient u, are le™’ in
both cases. Finally, the training process is executed in batches of 60
frames.

4.2.1. Prediction results for unseen material properties

The proposed methodology is able to perform droplet evolution
predictions for unseen material/process parameters, as shown in Fig. 6.
We randomly split the TTS in 80% training data set, 10% validation
data set, and 10% testing data set. Here, the validation data set is
used to further tune the model parameters (0, W, and B). As an
illustration, we perform the prediction at sample 20 with material
properties 1600 kg/m?, 0.0018 kg/m s, and 50 dyn/cm, for density,
viscosity, and surface tension, respectively. The prediction results are
similar regardless of the sample location in the TTS. Fig. 6 shows the
underlying truth (see Fig. 6 (a)) and predicted frames of the unseen
sequence for different initialization schemes (see Figs. 6 (b)). For the
prediction, we initialize the method with 20 frames: (1) from the
droplet evolution sequence with the closest material parameters to the
original one (Fig. 6 (b.1)) and (2) from the weighted average droplet
evolution sequence, where the weight is controlled by the Oh number

(Fig. 6 (b.2)). In particular, we use the Oh number (Oh = F

where yu is viscosity, y is surface tension, p is the density of the ﬂ
and ¢ is a characteristic length, i.e., the diameter of the nozzle) since
it relates the viscosity, inertia of the fluid, and surface tension, and is
a good indicator of the jettability regimen in the IJP [59].

It can be observed that the unseen droplet evolution is predicted
with relatively good accuracy (see Fig. 6(b)). This is achieved by the
synergetic action of TGCN and TRNN modules, which make it feasible
to capture the cross-linked and spatial-temporal dynamics of the co-
evolving droplet evolution time series. Even though the recovered
droplets’ shapes are alike to the original ones as they evolve, the
presence of the static stain (see dark pixels aside the predicted droplet
shapes in Fig. 6(b)) disturbs the underlying truth and predicted frames
comparison. We presume the stain appears due to two reasons: (1) there
are substantially different droplet evolution shapes (see Fig. 5) in the
tensor time series that disturb the performance of the TGCN, which
is in charge of capturing the relationship among the networks, and (2)
the initialization scheme determines how the spatial-temporal relation-
ships among the co-evolving time series are captured at initial stages; in
this regard, the weighted average initialization scheme, which involves
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Fig. 6. Unseen Droplet Evolution Sequence Prediction Results: (a) Underlying truth, (b) Predicted frames for different initialization schemes: (b.1) Initialization scheme based on
sequence with the closest material parameters to the original one and (b.2) Initialization scheme based on Oh number weighted average.
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Fig. 7. Unseen Droplet Evolution Sequence Prediction Performance for Different Initialization Schemes: (a) Initialization scheme based on sequence with the closest material
parameters to the original one: (a.1) SSIM and (a.2) MSE and (b) Initialization scheme based on Oh number weighted average: (b.1) SSIM and (b.2) MSE.

all the samples in the tensor time series, dissipates better the stain
formation as the droplets evolve (see pixel intensity in Fig. 6 (b.2)).
The stain disappears at the final frames of the sequence (e.g., frames
150 to 170); resulting in good approximations of the original frames.
Complementary to Fig. 6, we numerically evaluate the prediction
performance of unseen material properties via Structural Similarity
Index Measurement (SSIM) and Mean Square Error (MSE), as shown in
Fig. 7. SSIM performs a pixel-wise comparison between the actual and
predicted images. The closer SSIM is to 1, the better the approximation
is [60]. MSE is defined as: MSE = = 3" || T, -7, ||%. Figs. 7 (a-
b) display the numerical performance for the unseen droplet evolution
sequence prediction with different initialization schemes. From the fig-
ure, we can observe that the unseen sequence prediction performance
decays up to around the 60th frame. Then, the prediction performance
stabilizes until the entire unseen sequence is predicted (see Fig. 7).

4.2.2. Prediction results for seen material properties

For the droplet evolution prediction task with observed material
properties, we performed one-step and multi-step ahead predictions
(Fig. 8). We split the TTS (i.e., co-evolving droplet evolution videos)
as follow: the last 10% time steps as test data set and the remaining is
distributed for training (80%) and validation (10%) data sets. In Fig. 8,
we can observe representative examples of one-step and multi-step
ahead predictions of the droplet evolution time series. We randomly
pick sample 1 from the TTS, to show the prediction performance of
our framework in both cases. In particular, Fig. 8(a) displays the one-
step ahead droplet evolution prediction. Here, we can observe accurate
prediction by comparing the predicted and underlying truth frames.

We further explore long-term predictions (i.e., several steps ahead)
by feeding the network with predicted frames recursively. Fig. 8(b)

shows the multi-step ahead prediction of a representative droplet evolu-
tion time series. We can observe that the underlying truth and predicted
droplet shapes are similar along with all the presented frames (i.e., 1
to 10 steps ahead), which does not occur in our previous study [27].
This is due to the captured synergy from the co-evolving time series via
TGCN. Although the droplet shapes are preserved for all the displayed
droplet evolution time series, we can also observe that around the
8th-step ahead prediction the droplet is not advancing, and this is
more obvious at the 10th-step ahead predictions (see Fig. 8(b)). From
this experiment, it is evident that the learned temporal dynamics is
depleted as the droplet evolves and no actual observations are present
to inform the process that changes occur. Notice that 7, is frame
153, which is the last frame of the training data set. 7, is the first
frame of the testing data (last 10% of the droplet evolution). Accurately
anticipating the droplet evolution process gives users/system potential
to take correction actions for subsequent droplets, thus preventing the
process and products from possible errors and defects.

Similar to the prediction for unseen material properties case, we
numerically evaluate the performance of the prediction of seen material
properties via SSIM and MSE as shown in Fig. 8(c). In particular, the
average SSIM and MSE over all samples are 0.92 (standard deviation
0.04) and 0.0063 (standard deviation 0.0016), respectively, for the one-
step ahead predictions. This corroborates the prediction accuracy of the
proposed methodology. Furthermore, Fig. 8(c) shows how the SSIM and
MSE measures change for multi-step ahead predictions. The SSIM and
MSE measures linearly decay and increase, respectively, as the droplet
evolves several steps ahead. At the 8th-step ahead prediction the SSIM
and MSE are 0.71 and 0.032 (as also indicated in Fig. 8(b)), which
can still be considered good for process monitoring and root cause
analysis [61]; and beyond this point the prediction performance may
not be good.
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Fig. 8. Seen Droplet Evolution Sequence Prediction Results: (a) One-step ahead prediction sample in the simulated droplet evolution videos, (b) Multi-step ahead prediction sample
in the simulated droplet evolution videos, and (c) Prediction performance of multi-step ahead prediction: (c.1) SSIM and (c.2) MSE.

(@
e 1
| Frame10 Framell Frame20 Frame40 Frame60 Frame 80 Frame100 Frame120 Framel40 Frame160|
Ll?n(lerl_ving Truth p [ - [— ] =D =y =0
_________________________________________________________ 2l
(b)
__________________________________________________________ |
: ®.1) Predicted } » [ - ] - = = —y By = |
| |
! I
: (.2) Predicted ¥ | 3 > - [— ] = — — E— == |

Fig. 9. Experimental Unseen Droplet Evolution Sequence Prediction Results: (a) Underlying truth, (b) Predicted frames for different initialization schemes: (b.1) Initialization
scheme based on sequence with the closest material parameters to the original one and (b.2) Initialization scheme based on Oh number weighted average.

4.3. Experimental video data prediction results

Alike to the simulated data prediction, we inputted the experimental
network of tensor time series (i.e., {SEE)}, A(le) and A(;) ) to the NeT?
framework. Here, we use one layer TGCN and one layer TRNN. The
hidden dimensions for the hidden features in the TGCN are set to 40
for the predictions of seen and unseen process settings, respectively. For
the Tucker decomposition ranks, we use 0.9 of the original dimensions
for unseen and seen scenarios (i.e., [468 18]), respectively. In addition,
w, learning rate, stride size, u;, u,, and batch size are specified as in
Section 4.2.

4.3.1. Prediction results for unseen process settings

Similar to Section 4.2.1, we performed droplet evolution predictions
for unseen process settings, as shown in Fig. 9. As an illustration,
we perform the prediction of sample 10 with process settings —5 in
H,0, 34 ps, 68 ps, 70 V, and —70 V, for back-pressure, dwell time,
echo time, dwell voltage, and echo voltage, correspondingly. Fig. 9
shows the underlying truth and predicted frames of the experimental
unseen sequence. For the prediction, we initialize the entire unseen
droplet evolution sequence with frames: (1) from the droplet evolution
sequence with the closest process parameters to the original one (Fig. 9
(b.1)) and (2) from the Oh number based weighted average droplet
evolution sequence (Fig. 9 (b.2)). Notice that we used the same material
(i.e., distilled water) and nozzle diameter (i.e., 100 pm) for all the
experiments; thus, the Oh number is the same for all the co-evolving
time series.

From Fig. 9(b), it can be observed that the experimental unseen
droplet evolution frames are predicted with good accuracy. Unlike

the simulated unseen scenario prediction in Section 4.2.1, the stain is
almost completely dissipated for both initialization schemes; neverthe-
less, there is a minimal stain at initial stages (see frames 10 to 20 in
Fig. 9 (b.1)) of the predicted droplet frames with the Oh number based
initialization scheme. This may be imputed to the variable lighting
conditions when performing data collection.

Numerical evaluation is also developed via SSIM and MSE, as shown
in Fig. 10. For the prediction that is initialized with the closest mate-
rial parameters to the original one (i.e., unseen sequence), it can be
concluded that the prediction performance is steadily decreasing as the
number of frames are predicted since only one sample from the entire
TTS is considered for the predictions, and this may not represent the
overall TTS droplet behaviors (see SSIM and MSE indexes in Figs. 10
(a.1-a.2)). On the other hand, the Oh number based initialization
scheme better condenses the information of the overall TTS; resulting
in more stable predictions in the long term (see SSIM and MSE indexes
in Figs. 10 (b.1-b.2)).

4.3.2. Prediction results for seen process settings

We performed one-step and multi-step ahead predictions (see
Fig. 11) in a similar fashion as in Section 4.2.2. Here, we randomly
chose sample 5 for the predictions evaluation. In Fig. 11(a), we can
observe that the model accurately (i.e., overall SSIM and MSE are
0.96 (standard deviation 0.03) and 0.0062 (standard deviation 0.0041),
respectively) predicts one frame ahead of the current observation.
In addition, Fig. 11(b) displays examples of underlying truth and
predicted frames for the multi-step ahead predictions of a represen-
tative droplet evolution time series. Similar to what occurred in the
simulated multi-step ahead predictions, the predicted experimental
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material parameters to the original one: (a.1) SSIM and (a.2) MSE and (b) Initialization scheme based on Oh number weighted average: (b.1) SSIM and (b.2) MSE.
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Fig. 11. Experimental Seen Droplet Evolution Sequence Prediction Results: (a) One-step ahead prediction sample in the experimental droplet evolution videos, (b) Multi-step ahead
prediction sample in the experimental droplet evolution videos, and (c) Prediction performance of experimental multi-step ahead prediction: (c.1) SSIM and (c.2) MSE.

droplet evolution suffers a delay that starts around the 8th-step ahead
and is more evident at the 14th-step ahead predictions (see Fig. 11(b)).
Notice that 7', is frame 156, which is the last frame of the training
data set. 7, is the first frame of the testing data (last 10% of the
droplet evolution). Fig. 11(c) shows, in terms of SSIM and MSE, how
the captured temporal dynamics deteriorates as the predicted droplets
evolve. The droplet shapes are conserved during the full evolution
process (see Fig. 11(b)). In particular, the 8th-step ahead SSIM and MSE
are 0.77 and 0.0389, respectively. The numerical and visual evaluation
reveal that the proposed framework is able to perform one-step and
multi-step ahead predictions in the IJP droplet evolution experimental
video data.

Finally, the proposed framework is able to perform analysis for new
scenarios very fast (see Table 3) compared to CFD analysis, where each
simulation takes on average 1584.90 s (standard deviation 16.19 s) and
only simulated future prediction scenarios are possible. The simulations
were performed in a desktop with the following characteristics: Intel(R)
Xeon(R) W-2145 CPU @ 3.70 GHz and 64.0 GB of RAM. In summary,
the proposed framework can accurately and rapidly perform droplet
evolution predictions in the IJP process.

Table 3
Average (Standard Deviation) computational time of network of tensor time series
predictions for different scenarios.

Scenario Time (s)/Predicted frame
Simulated seen prediction 3.49 5 (0.11)
Simulated unseen prediction 3.48 5 (0.10)
Experimental seen prediction 4.36 s (0.17)
Experimental unseen prediction 2.76 s (0.08)

4.4. Proposed framework applications

Several applications have been identified from our proposed unseen
and seen droplet evolution prediction framework. In particular, the
unseen droplet evolution prediction scenario learns the relationships
between material/process parameters and droplet evolution behavior,
which supports printing exploration without the need to do time-
consuming physical simulations and experimentations. The prediction
also helps ink materials design. For instance, Nallan et al. [62] showed
that stable droplet formation and jettability are crucial for the IJP
process, and takes a lot of resources (e.g., time and experiments) to
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explore the space of ink material properties (e.g., density, viscosity,
and surface tension). Our framework opens the possibility of extensive
material properties exploration with minimal effort. On the other hand,
the seen droplet evolution prediction scenario can accurately forecast
the future droplet evolution (e.g., one-step and multi-step ahead pre-
dictions), compared with prior work in [27]. With the forecast results,
one can perform root cause analysis to identify the process problems
by comparing the forecast and actual videos [61].

5. Conclusion and discussion

1JP is able to produce complicated structures with high-quality and
high-resolution. Nevertheless, the part quality and process performance
can be harmed by the instability of the different droplet morphologies
and behaviors during the printing process. These instabilities mainly
occur due to different material and process parameters, and studying all
the parameter combinations is time-consuming. In this paper, we pro-
pose a framework that is capable of making droplet morphologies and
behaviors predictions for seen and unseen scenarios. This is achieved
by the systematic capture of the cross-linked, spatial and temporal
relationships of the co-evolving time series (i.e., droplet evolution
behaviors with different material/process parameters). The proposed
framework shows promising results at making accurate predictions for
simulated and experimental IJP droplet evolution videos. The proposed
framework can also be applied to a broad range of material/process
parameters as long as the forming mechanisms (i.e., NS principles
and/or LJP setup) are preserved.

There are several research directions that can be pursued in the
future. One direction is to further increase the prediction accuracy
by incorporating generative adversarial networks to generate plausible
droplet evolution frames to improve the training process. Another di-
rection is to incorporate a graph/network to study ambient parameters’
(e.g., temperature and humidity) influence on the droplet deposition.
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