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Teeth Mold Point Cloud
Completion Via Data
Augmentation and Hybrid RL-GAN
Teeth scans are essential for many applications in orthodontics, where the teeth structures
are virtualized to facilitate the design and fabrication of the prosthetic piece. Nevertheless,
due to the limitations caused by factors such as viewing angles, occlusions, and sensor res-
olution, the 3D scanned point clouds (PCs) could be noisy or incomplete. Hence, there is a
critical need to enhance the quality of the teeth PCs to ensure a suitable dental treatment.
Toward this end, we propose a systematic framework including a two-step data augmenta-
tion (DA) technique to augment the limited teeth PCs and a hybrid deep learning (DL)
method to complete the incomplete PCs. For the two-step DA, we first mirror and
combine the PCs based on the bilateral symmetry of the human teeth and then augment
the PCs based on an iterative generative adversarial network (GAN). Two filters are
designed to avoid the outlier and duplicated PCs during the DA. For the hybrid DL, we
first use a deep autoencoder (AE) to represent the PCs. Then, we propose a hybrid approach
that selects the best completion to the teeth PCs from AE and a reinforcement learning (RL)
agent-controlled GAN. Ablation study is performed to analyze each component’s contribu-
tion. We compared our method with other benchmark methods including point cloud
network (PCN), cascaded refinement network (CRN), and variational relational point com-
pletion network (VRC-Net), and demonstrated that the proposed framework is suitable for
completing teeth PCs with good accuracy over different scenarios.
[DOI: 10.1115/1.4056566]
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1 Introduction
A misaligned tooth can be treated with proper cosmetic dentistry

products, also known as teeth aligners [1]. 3D printing of teeth
aligners is promising since no patient has a similar set of teeth
with the same dimensions and form of misalignment. Thus, 3D
printed teeth aligners have been recently predominant in orthodon-
tics as an alternative to traditionally manufactured teeth aligners [2].
The key advantages of 3D printed teeth aligners include fewer clin-
ical emergencies and improved aesthetics, comfort, oral hygiene,
periodontal health, and lack of soft tissue irritation. In addition,
the 3D printed aligners have high-resolution digitally designed
borders, smoother edges that do not need post-processing polishing,
and customizable intra-aligner thickness, compared with traditional
fabrications [2].
As shown in Fig. 1, teeth scans are required for many applica-

tions in restorative dentistry and orthodontics [3]. In particular, den-
tists use teeth scans to define a suitable treatment and design the
aligner, which includes annotation, segmentation, alignment, and
rotation [4]. Most 3D data are acquired using laser scanners, three-
dimensional cameras, and computed tomography (CT)/magnetic
resonance imaging scanners in the form of point clouds (PCs)
[5,6]. PCs are highly memory efficient and preserve fine surface
details [7,8]. Several deep learning (DL) approaches have addressed
the shape completion problem for 3D PCs [6,7,9–11]. However, DL
models generally require a significant amount of data for their train-
ing [12], which hampers their applications in some medical domains
with limited data [13]. Therefore, there is a need for an efficient PC
completion framework that works with limited data. To address

these problems, we propose a two-step data augmentation (DA)
technique, followed by a hybrid DL approach to complete the PCs.
To start, we use the human bilateral symmetry to split and recom-

bine the teeth PCs to enlarge our dataset (see Fig. 2(a.1)). However,
some combined PCs could be problematic. Specifically, if the com-
bined PCs are too similar to other PCs (i.e., redundant PCs), the
dataset could become redundant, which may result in model perfor-
mance degradation [14]. Meanwhile, if the combined PCs are too
different from the raw PCs (i.e., outlier PCs), the trained model
may not be accurate [15]. Consequently, we develop two filters to
discard the defective (i.e., redundant or outlier) PCs by comparing
the raw and combined PCs using chamfer distance dCH.
In addition, generative adversarial networks (GANs) have been

used as a DA technique [13,16,17]. GANs can create fake data
that resemble the real data from a random vector (seed z) [18]
and are particularly useful in the medical domain [16]. Hence,
in the second DA step, we train a latent space GAN (l-GAN) to
generate fake PCs iteratively. In each iteration, we create fake
PCs from a set of seed z. Then, we use our filters to isolate the
useful PCs’ seed z distribution and apply the new distribution to
generate new PCs in the next iteration (see Fig. 2(a.2)). Conse-
quently, an augmented dataset is obtained and then used to train
a deep autoencoder (AE) and a reinforced-learning agent-
controlled GAN (RL-GAN) [6].
RL is used to optimize system performance based on training so

that the system can automatically learn to solve complex tasks from
the input and the reward [19–21]. Then, we use the AE and
RL-GAN to complete the incomplete PCs and select the best com-
pletion by comparing their similarity with the incomplete PCs (see
Fig. 2(b)).
An ablation study is performed to analyze each component’s con-

tribution [22]. We compared our method with other benchmark
methods including point cloud network (PCN), cascaded refinement
network (CRN), and variational relational point completion
network (VRC-Net).
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The main contributions of this study are summarized as follows:

(1) We propose customized data augmentation and filtering
methods that exploit the human teeth’ bilateral symmetry
and iterative l-GAN for fake PC generation.

(2) We use a hybrid AE and RL-GAN framework to identify the
best teeth PC completion.

This paper is organized as follows. In Sec. 2, we review the
related studies. Then, in Sec. 3, we discuss the proposed approach.
In Sec. 4, we introduce our models’ implementation and show the
experimental results. Finally, in Sec. 5, we conclude the paper
and discuss future work.

2 Literature Review
2.1 Teeth Molds and Intraoral Scans. Teeth molds/dental

impressions are transcendental for patient dental diagnosis and
treatment [23]. Traditionally, dental impressions have been per-
formed on elastomers [24], alginates [25], wax [23], plaster [26],
etc. For instance, Megremis et al. [24] evaluated eight elastomeric
occlusal registration models for restorative dental procedures. Hell-
mann et al. [25] obtained dental impressions made from alginate for

bite recording and prosthetic reconstruction planning. See also Refs.
[27,28]. Although traditional dental impressions have benefited
dental diagnosis and treatment, these methods are invasive, time-
consuming, and produce high material waste.
Current digitization technology has enabled one to obtain digital

impressions for subsequent diagnosis and procedure planning (e.g.,
orthodontia and surgery planning) [29,30]. Several scanning
methods have been used to digitize the dental impressions, such
as X-ray [31], optical scanning [32], and computer tomography
(CT) [33]. For instance, Kamegawa et al. [34] measured dental
casts with a micro-focus X-ray for a 3D morphological assessment
of occlusion treatment. Kang et al. [35] used 3D optical scanning of
dental casts for bite registration. See other examples in Refs.
[36,37]. These methods have helped to ameliorate the limitations
of conventional teeth molds/dental impressions, however, they
still need conventional dental impressions as a starting point.
Intraoral scanning (IOS) can produce digital impressions with

minimum patient invasion. Current IOS technologies include light
projection, distance object determination, and reconstruction [38].
Ireland et al. [39] described the utilization of light projection
(e.g., digital fringe) to obtain accurate digital dental impressions.
Pradíes et al. [40] used stereophotogrammetric technology for
obtaining intraoral digital impressions of implants. See similar
studies in Refs. [41,42]. Generally, scanning technology has
proven to be effective at representing 3D objects and facilitating
the utilization of traditional manufacturing processes (e.g.,
milling) and additive manufacturing in the dentistry industry.
However, irrespective of the scanning methods, the teeth molds/
dental impressions suffer from outliers, occlusion, irregularity,
and unstructuredness [43].

2.2 Point Cloud Shape Denoising and Completion. PCs
have become popular to represent 3D objects in various fields,
such as robotics, autonomous driving, and 3D modeling and fabri-
cation [44]. The PCs need to undergo denoising and completion to
represent an entire 3D object (e.g., teeth mold) [5,44].

Fig. 2 Proposed framework: (a) data augmentation, (a.1) point cloud combination and, (a.2) iterative l-GAN1, and (b) hybrid
RL-GAN

Fig. 1 Illustration of teeth alignment treatment procedures
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Conventional methods, such as density-based and geometry-
based methods, have been deployed for PC denoising and
completion, respectively [45]. Ester et al. [46] developed a density-
based algorithm for discovering clusters in large spatial databases
with noise. Zhao et al. [47] presented a robust hole-filling algorithm
for triangular mesh. Here, new vertices are re-positioned by solving
the Poisson equation. See other similar studies in Refs. [48,49].
These methods heavily rely on assumptions, such as symmetry
and shape similarity, which are not suitable for unstructured data,
as is the case of PCs.
Machine learning (ML) approaches have also demonstrated

important progress for PC denoising and completion via dimen-
sional reduction and regression techniques [50–52]. Duan et al.
[50] applied a principal component analysis-based approach for
low-complexity PC denoising for LiDAR data. Sarkar et al. [51]
developed a structured low-rank matrix factorization for PC denois-
ing. Gandler et al. [52] presented an object shape estimation
approach based on sparse Gaussian process implicit surfaces com-
bining visual data and tactile exploration. See also Refs. [53,54].
Although ML methods are robust, their performances are limited
for complex shapes or considerably large missing areas in the PCs.
DL methods have demonstrated good performance for PC

denoising and completion [6,44]. For instance, Yuan et al. [55] pro-
posed a point cloud completion network (PCN). This pioneering
work consists of an encoder–decoder network to reconstruct
dense and complete point sets from an incomplete point cloud.
Pan et al. [56] exploited multi-scale local point features to recon-
struct point clouds with fine-grained geometric details to predict
local and thin shape structures in their VRC-Net. In addition, AE
and GAN-based approaches have outperformed traditional
methods [57,58]. Zong et al. [59] proposed a denoising AE for
learning robust local region features from partial inputs. Wang
et al. [60] developed a CRN for point cloud completion. See also
Refs. [7,61]. The performance of these methods is affected by
small sample sizes and robustness during training [62].
In addition, training a GAN is an unstable process and may suffer

from model collapse [6]. To address these issues, Sarmad et al. [6]
presented an RL-GAN network for real-time PC completion.
However, the model performance is still insufficient for small
sample sizes and can be improved by deploying DA techniques
and l-GAN-based fake PC generation, which will be addressed in
this paper.

3 Proposed Framework
Figure 2 shows our proposed framework to complete the 3D PCs

with a limited number of PCs. First, we propose a two-step DA
technique to enlarge the quantity and diversity of the PCs. In the
first step, we generate new PCs by splitting and recombining the
raw PCs based on the bilateral symmetry of human teeth, as
shown in Fig. 2(a.1). Then, we apply two filters to remove the out-
liers and the redundant PCs from the combined PCs. In the second
step, we use the raw and filtered combined PCs to train AE1. AE1
creates a latent representation of the PCs, which are used to train the
l-GAN1. The l-GAN1 can generate new PC’s encoded representa-
tions from a random vector (i.e., seed z). To make sure the generated
PCs are consistent with the teeth molds, we propose to use filters to
isolate the useful PCs and modify the seed z distribution iteratively
(see Fig. 2(a.2)).
Second, we deploy a hybrid approach that completes the PCs

using two methods, namely, AE2 and RL-GAN, as shown in
Fig. 2(b). In the first method, AE2 takes the encoded representation
and decodes it back into a completed teeth PC (PCAE2). Conse-
quently, in the second method, the RL agent uses the encoded rep-
resentation from AE2 to control the l-GAN2 generator to get
RL-GAN encoded representation which is turned into a complete
PC (PCGAN2) using the AE2 decoder. Finally, we select the best
completion by computing the similarity between the output PCs
(PCAE2 and PCGAN2) and the input PC (i.e., incomplete PC). We
then perform the ablation study to investigate the contribution of

each component. We introduce details of the proposed framework
in the following sections.

3.1 Point Cloud Combination. A small training dataset may
cause overfitting and can significantly affect the generalization
capability of a neural network [63]. Data augmentation is a
general technique to alleviate the problems caused by data sparsity
[64]. Hence, after mirroring our dataset, we combine our raw PCs
following the procedure described in Fig. 2(a.1). To start, we take
two PCs (aa′ and bb′, where aa′ ≠ bb′) from the raw dataset and
divide them into left (i.e., a and b) and right sides (i.e., a′ and b′)
by the median plane. A median plane is a sagittal plane placed in
the center of the human body that divides it into two symmetrical
parts [65].
The median plane is determined as follows: (1) The PCs are

translated to be centered and scaled to unit length. (2) We
compute the principal component axes of the first PC using princi-
pal component analysis and then aligned the x-, y-, and z-axis with
the principal component axes. This step allows us to align the PC
with a reference [66]. Since the PCs of teeth molds are symmetric,
after the alignment, the y–z plane coincides with the median plane.
(3) Finally, we register the remaining PCs to the first PC using an
iterative closes point algorithm [54]. The relative positions of the
teeth point cloud and the median plane are determined based on
the Euclidean distance of the scaled PCs to the origin of the x-,
y-, and z-axis. Then, we combine the right halves with the left
halves (i.e., a with b′ and b with a′) to obtain two new PCs per com-

bination. Hence, we generate ng = 2
T
2

( )
= T(T − 1) combined

samples, where T is the number of PCs in the raw dataset.
PC combination helps to enlarge our dataset. However, some

generated PCs can be outliers or redundant PCs. To address this
issue, we design two filters to discard outliers and redundant PCs.
We use chamfer distance (dCH), a broadly adopted metric to
measure the similarity between two PCs [67], to quantify the differ-
ences between PCs. The dCH between two PCs (P1 and P2) is
defined as

dCH(P1, P2) =
1

|P1|
∑

x∈P1

min
y∈P2

∥x − y∥22 +
1

|P2|
∑

y∈P2

min
x∈P1

∥x − y∥22 (1)

where each point x∈P1 finds its nearest neighbor y∈P2 and vice
versa. All the point-level pairwise distances are averaged to
produce the shape-level distance [67].
We compute the dCH between every pair of PCs in the raw dataset

and define the min and max thresholds as the minimum and
maximum dCH, respectively. These thresholds are used in our
designed filters to remove redundant and outlier PCs. In particular,
the first filter (F1) is designed to remove outliers. We first calculate
the dCH between the generated PCs and the first PC in the raw
dataset. Then F1 removes the outlier PCs that have dCH larger
than the max threshold. Here, only the first sample is picked to
avoid the computational burden otherwise incurred in comparing
with all raw PCs. Then, the second filter (F2) iteratively removes
the redundant PCs by maintaining a pairwise matrix of dCH of gen-
erated PCs. In each iteration, F2 removes the PC with the maximum
number of redundant samples (i.e., dCH that are smaller than the min
threshold) with other PCs. Then, it updates the pairwise distance
matrix. The filtering process is repeated until all the redundant
PCs have been removed (i.e., there is no dCH in the pairwise dis-
tance matrix that is less than the min threshold).
Consequently, the final number (nf) of generated PCs is nf = ng−

nF1− nF2, where ng is the original number of generated PCs and nF1
and nF2 are the number of PCs removed by F1 and F2, respectively.
Finally, we group the gathered data (i.e., raw, mirrored, and nf com-
bined PCs) as the l-GAN1 dataset, which is used to train our itera-
tive l-GAN1 network for the second step of DA.
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3.2 Iterative L-GAN1. As shown in Fig. 3, we propose an
iterative l-GAN framework to iteratively generate PCs, remove
outlier and redundant PCs, isolate the useful PCs’ seed z distribu-
tion, and use the new distribution to generate fake PCs for DA.
The above steps are repeated until a certain number of iterations
is achieved.

3.2.1 Autoencoder 1. An AE is composed of an encoder (E)
and a decoder (E−1). The E is a network unit through which the
input (i.e., PC) is transformed into a multidimensional array referred
to as a global feature vector (GFV) (i.e., latent representation). On
the other hand, the decoder E−1 is a fully connected network that
reverts the process by transforming the GFV back into the raw
PC space. To train our AE, we implement a weighted loss function:

LAE = ωCHLCH + ωGFVLGFV (2)

where LCH is the dCH between the input (PCin) and output (PCout)
PCs and LGFV is the L2 distance between the input and output
PC’s GFV (i.e., E (PCin) and E (PCout)). ωCH and ωGFV are the cor-
responding weights.
To train our AE, we use the Adam stochastic gradient descent

optimizer [68]. The detailed architecture, momentum, learning
rate, and other parameters will be introduced in Sec. 4.3.1. To
train the AE1, we use the l-GAN1 dataset (i.e., raw, mirrored,
and combined PCs). Then, we use the AE1’s encoder (E1) to gen-
erate a latent representation of our l-GAN1 dataset.

3.2.2 Latent Space Generative Adversarial Network 1. Several
studies have shown that training a GAN on a latent representation
leads to more stable results compared to training on raw PCs
[6,9]. Here, we apply our pre-trained AE1 to obtain our l-GAN1
dataset’s GFVs. Then, we use the GFVs to train the l-GAN1 (see
Fig. 2(a.2)).
An l-GAN is composed of two separate deep neural networks

trained against each other. One network, the generator, is responsi-
ble for generating the actual output. The other network, the discri-
minator, is responsible for distinguishing between the generator’s
output and the ground truth data. To train our l-GAN, we apply a

self-attention framework [69] with a Wasserstein GAN gradient
penalty (WGAN-GP) adversarial loss [70] as proposed by Sarmad
et al. The discriminator (D) and generator (G) loss functions are
described in Eqs. (3) and (4), respectively.

LD = E
x̃∼Pg

[D(x̃)] − E
x∼Pr

[D(x)] + λ E
x̂∼Px̂

[(∥∇x̂D(x̂)∥2 − 1)2] (3)

LG = − E
x̃∼Pg

[D(x̃)] (4)

where E is the expectation, Pr is the encoded raw input data distri-
bution, Pg is the distribution for x̃ = G(z), z is a seed z, λ is a regu-
larization parameter, x̂ = εx + (1 − ε)x̃ is an intermediate variable
computed at each training step using a random number ε, and Px̂
is the distribution of x̂ [70]. LD is a modified Earth-Mover distance
constructed using the Kantorovich–Rubinstein duality and a gradi-
ent penalty to circumvent tractability issues [70]. Since D estimates
the probability that a sample comes from the real data, LG is large
when G produces GFVs that do not resemble the real data. The
detailed l-GAN architecture, learning rate, and other parameters
will be introduced in Sec. 4.3.2.

3.2.3 Iterative L-GAN1. Once trained, the l-GAN1 generator
(G1) transforms a noise vector (i.e., seed z) into the desired target
distribution (i.e., fake GFV). The fake GFV can be decoded into
a fake PC with E1−1. Hence, we propose to use our pre-trained
l-GAN1 and filters to iteratively modify the seed z’s distribution
and generate the fake PCs.
An overview of the iterative l-GAN1 algorithm is shown in Algo-

rithm 1. We first use the pre-trained G1 to generate ng fake GFVs
from ng seeds zs. Then, we apply our E1−1 to the fake GFVs to
decode them into fake PCs. We then use F1 and F2 to remove the
outlier and redundant PCs, and isolate useful seed zs (Z1) from the
filtered PCs and store the remaining PCs in an accumulator PCT.
Consequently, we estimate the Z1’s distribution by fitting its mean
and covariance matrix and use them to generate a new set of ng
GFVs. The above processes are repeated for itmax iterations.
Finally, we remove the potential redundant PCs by applying F2 to
the accumulated data in PCT (see Algortithm 1). By using the pre-
trained l-GAN1 iteratively, we produce nl−GAN1 fake PCs. Then,
we group the raw and the generated data (i.e., mirrored, combined,
and nl−GAN1 l-GAN1 PCs) into an RL-GAN dataset that is used to
train the hybrid RL-GAN.

Algorithm 1 Training iterative l-GAN1

Input models:
Pre-trained AE1 decoder: E−1

1
Pre-trained l-GAN1 generator: G1
Input functions:
Filter-1 (removes the outliers): F1
Filter-2 (removes the redundant PCs): F2
Input data:
Number of iterations: itmax
Number of PCs generated per iteration: ng
Final output:
Set of l-GAN1 PCs: PCf
1: Initialize the mean: μ = 0
2: Initialize the covariance matrix: Cov = I
3: Initialize an empty array to store the generated PCs: PCT
4: for it < itmax do
5: Use μ and Cov to randomly generate a matrix containing ng seed

vectors z: Z0
6: Obtain ng GFVs: GFV0 = G1(Z0)
7: Obtain ng PCs: PC0 = E−1

1 (GFV0)
8: Remove the outliers with F1: PC1 = F1(PC0)
9: Remove the redundant PCs with F2: PC2 = F2(PC1)
10: Store the PC ′

1s corresponding seed z: Z1
11: Store the PC2 on PCT
12: Update the mean: μ = mean(Z1)
13: Update the covariance matrix: Cov = cov(Z1)
14: end for
15: Remove the redundant PCs with F2: PCf = F2(PCT )

Fig. 3 Iterative l-GAN1 for data augmentation
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3.3 Hybrid RL-GAN. Our hybrid RL-GAN has three compo-
nents, AE2, l-GAN2, and RL agent. We use the RL-GAN dataset to
train the AE2 and l-GAN2 following the procedures described in
Secs. 3.2.1 and 3.2.2, respectively. We will introduce the RL and
hybrid RL-GAN in the next.

3.3.1 Reinforcement Learning. The objective of the RL agent
is to learn behavior through trial-and-error interactions with the
dynamic environment [71]. In this study, the environment is com-
posed of the pre-trained AE2 and l-GAN2, while the action is the
input (seed z) for the l-GAN2 generator (G2). We train our RL
agent using the RL-GAN dataset, following the procedures shown
in Algorithm 2 [6]. To start, the agent obtains an input state by
encoding the input PC and picks a suitable seed z. Then, G2 uses
the seed z to create an RL-GAN GFV, and the decoder (E2−1) trans-
forms the GFV into a complete PC. Depending on the quality of the
action, the environment gives a reward (r) back to the agent. As
shown in Fig. 4, the reward for the completion is the combination
of negated loss functions that evaluate the intermediate results com-
puted along the process. Specifically, we include the rCH=−LCH to
ensure that the complete PCs resemble the input PCs, the rGFV =
−LGFV to quantify the similarity between the input and output
latent representations, and rD=D(GFV) to guarantee that the fake
GFV follows the encoded real data distribution. The final combined
reward function is shown in Eq. (5), where ωCH, ωGFV, and ωD are
the corresponding weights to each reward.

r = ωCHrCH + ωGFVrGFV + ωDrD (5)

Algorithm 2 Training RL-GAN [6]

Input models:
Pre-trained AE2 encoder: E2
Pre-trained AE2 decoder: E−1

2
Pre-trained l-GAN2 generator: G2
Pre-trained l-GAN2 discriminator: D2
Input data:
Number of iterations: tmax
Starting time: t0
Final output:
Completed PC: PCRL-GAN
1: Initialize the environment Env: E2,E−1

2 ,G2 D2
2: Initialize the policy π withDDPG, actor A, critic C, and replay buffer R
3: for t < tmax do
4: Get PCin
5: if t > 0 then
6: Train actor A and critic C with R
7: end if
8: Get state: st = E2(PCin)
9: if t < t0 then
10: Obtain a random action: at
11: else
12: Obtain action: at = A(st)
13: end if
14: Implement action: GFVRL-GAN = G2(at)
15: Obtain final PC: PCRL-GAN = E−1

2 (GFVRL-GAN)
16: Compute the reward with Eq. (5): rt
17: Obtain new state: st+1 = E2(PCRL-GAN)
18: Store transition (st, at, rt, st+1) in R
19: end for

To train the RL agent, we use a deep deterministic policy gradient
(DDPG) [72]. The DDPG algorithm relies on a parameterized actor
and a critic network. The actor–network specifies the current policy
(π) by deterministically mapping states to a specific action [72]. On
the other hand, the critic network provides a measure of the quality
of action concerning the input state [6].

3.3.2 Hybrid RL-GAN. RL-GANs can complete the incom-
plete PCs but the completed PCs may not always preserve the

local details well [6]. In contrast, a pre-trained AE can accomplish
shape completion but its performance degrades drastically as the
percentage of missing data increases [9]. To address these problems,
we use a hybrid RL-GAN to select the best completion between
RL-GAN and AE. In particular, we complete a PC using AE2 to
get PCAE2 and RL-GAN to get PCRL−GAN. Then, we compute the
dCH of PCAE2 and PCRL−GAN to the incomplete PC, respectively,
and select the smaller dCH between the two as the completion
output.

3.4 Ablation Study
In deep learning, an ablation study involves measuring the per-

formance of a system after removing one or more of its components
to help understand the relative contribution of the ablated compo-
nents to overall performance [73–75].
To run our ablation study, we divide the framework into five

modules (i.e., PC combination, filters, iterative l-GAN1,
RL-GAN, and hybrid RL-GAN), as shown in Fig. 5. Then, we
remove one module at a time and compare the ability of the
ablated system to perform the reconstruction task against the origi-
nal framework. To evaluate the ablated system performance, we
compare it to the original system performance and calculate the rel-
ative increase in the chamfer distance (%IncCH), as shown in Eq.
(6).

%IncCH(%A) =
!dCHas(%A) − !dCHos(%A)

!dCHos(%A)
(6)

Fig. 4 RL-GAN for PCs completion

Fig. 5 Ablation Study Modules
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where %A is the percentage of missing area, !dCHas is the average
chamfer distance on the ablated system, and !dCHos is the average
chamfer distance on the original system. The larger the %IncCH,
the more important the module is to the framework.

4 Case Study
To start, we use the open-source library Open3D [76] to down-

sample, translate, and align our raw PCs. Then, we employ
Pytorch [77] and Pytorch 3D [78] to implement our DL models.
We train and evaluate our models on Google Colab Pro using an
NVIDIA Tesla P100 server graphics card.

4.1 Data Acquisition and Preparation. Figure 6 shows the
data acquisition and preparation procedures, including 3D printing,
3D scanning, and processing. We introduce the details below.

4.1.1 3D Printing and 3D Scanning. The lower jaw teeth
molds were printed with an Ender Creality Pro printer. The
printer specifications are: nozzle size 0.4mm, infill density 20%,
printing speed 50 mm/s, wall thickness 0.8mm, and extruder tem-
perature 200 °C. Forty-five teeth molds are printed in total. After
the printing, a 3D light-based scanner, Solutionx C500 3D, with
an incorporated base plate was used to scan the printed parts. The
parameters used for the scanner are set to scanning area FOV350
(diagonal distance up to 350mm), scanning volume 264× 218×
120 mm, and point spacing 0.110. A customized scan path is
used to optimize the scanning process time and improve the PC
quality, following the steps proposed in Ref. [79]. A total of
forty-five positions were used to finish a teeth mold scan. To
obtain a single 3D mesh from a scan path, a multi-step registration
was applied to the scanning sequence.

4.1.2 Data Preparation. We apply a voxel downsampling [76]
to reduce the PCs’ dimension to 2048 points. The downsampled
PCs are translated to be centered and scaled to unit length. Addi-
tionally, to allow the combination process, we register our down-
sampled PCs by applying an iterative closest point algorithm
[76], where all the PCs are registered to the first PC in the training
dataset.
Once we process and prepare our raw data, we obtain 45 PCs,

referred to as raw PCs. The raw PCs are then randomly and
equally split into training, validation, and testing datasets. We
apply the DA techniques described in Secs. 3.1 and 3.2 to our train-
ing data, and use this enlarged dataset to train the hybrid RL-GAN.
Since the framework works in a latent representation, we must
ensure that our AEs perform well for the encoding of new PCs.

Consequently, we use the validation dataset to select the best
AE1 and AE2 for the l-GAN1 and l-GAN2, respectively.

4.2 Point Cloud Combination. We then perform the first step
of the DA. In particular, we duplicated our training dataset by mir-
roring the 15 raw PCs. After that, we combined our 15 raw PCs and
generated ng= 210 PCs. Then, we computed the dCH between every
pair of PCs in our raw dataset to get the minimum (min= 5.141 ×
10−5) and the maximum (max= 4× 10−4) dCH allowed distance.
Consequently, we applied our F1 and F2 to remove outliers and
redundant PCs. Since we combined the raw PCs by their plane of
symmetry (i.e., median plane), the generated data resembled the
real PCs; hence, F1 identified no outliers (i.e., nF1= 0). However,
the combination process inevitably created redundant data, and
F2 discarded nF2= 35 PCs. Through the first DA step, we generated
nf = 175 final combined PCs.
Finally, we grouped the raw (i.e., 15 training PCs) and generated

data (i.e., 15 mirrored and 175 final combined PCs) into an l-GAN1
dataset to train our iterative l-GAN model.

4.3 Iterative L-GAN1

4.3.1 Autoencoder 1. The encoder architecture follows the
design principle described by Ref. [80]. Specifically, 1D convolu-
tional layers with kernel size one and an increasing number of fea-
tures. Max-pooling layers are used in the encoder network for
spatial downsampling of input data [81]. In our implementation,
the encoder is composed of five 1D convolutional layers with
128, 128, 256, 128, and 128 channels. The decoder is a fully con-
nected neural network (FCN) with four layers of 128, 128, 256,
and 6144 neurons. Both networks use batch normalization and
ReLU activation functions. We trained our AE models by minimiz-
ing the combined loss function described in Eq. (2) with ωCH= 100
and ωGFV= 30. We used a batch size b= 49, Adam optimizer with
β1= 0.8, β2= 0.99, and a learning rate lr= 5× 10−4 for 10,000 iter-
ations. To select the final AE, we evaluate our model performance
(i.e., LAE) with the validation dataset.
Then, we apply the selected AE1 encoder E1 to obtain the latent

representation of the l-GAN1 data.

4.3.2 Latent Space Generative Adversarial Network 1. To
train the l-GAN (i.e, generator and discriminator) models, we imple-
mented the self-attention framework described in Refs. [6,69]. Both
models were trained using a WGAN-GP adversarial loss with λ=
10, Adam optimizer with β1= 0.8, β2= 0.99, and lr= 5× 10−4 for
10,000 iterations [70]. During this process, we use b= 41 (i.e.,
batch size) 32-dimensional seed zs, randomly sampled from a mul-
tivariate normal distribution with the initial μ = 0 and Cov= I.

Fig. 6 Data acquisition and preparation

Fig. 7 Iterarive l-GAN results. ngi, nF1i, nF2i, and |PCT| are the
number of PCs generated, removed by F1, removed by F2, and
accumulated per iteration
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4.3.3 Iterative L-GAN1. We apply our iterative l-GAN1
itmax = 10 iterations and generate ngi = 1000 PCs per iteration.
After each iteration, we remove the outlier and redundant PCs by
applying F1 and F2 filters and store the filtered PCs (nfi) in an accu-
mulator PCT. Figure 7 shows the number of PCs removed by F1 and
F2 (i.e., nF1i and nF2i) and the number of PCs (|PCT|) accumulated
over iterations. Since we update the seed z distribution after apply-
ing F1 in each iteration, we can observe that the number of outliers
(i.e., nF1i) decreases in each iteration. However, most of the remain-
ing PCs were redundant, so the number of PCs removed by F2
increased in each step. In the end, we generated |PCT|= 285 PCs;
however, after removing the redundant PCs with F2, our dataset
is reduced to nfT = 49 PCs.

4.4 Hybrid RL-GAN

4.4.1 Reinforcement Learning Agent. To train our RL agent,
we adopted the actor-critic method proposed by Sarmad et al. [6].
This network has four layers of 400, 400, 300, and 300 neurons,
with ReLU activation for the first three layers and Tanh activation
for the last layer. Similarly, the critic is an FCN with four layers
of 400, 432, 300, and 300 neurons, with the ReLU activation func-
tion in the first three layers and no activation function in the last
layer.
The training process of the agent is composed of two steps [6].

First, we collect experience using one sample at a time. Towards
this end, the agent picks a seed z and we evaluate its performance
using Eq. (5) with ωCH= 100, ωGFV= 10, and ωD= 0.001 [6]. In
the second step, we train our actor-critic network using DDPG
with b= 100 [6]. In this study, the total number of iterations was
tmax= 20, 000 with a starting time of t0= 1000. The state dimension
is the GFV size (i.e., 128), while the action dimension is the number
of elements in the seed z (i.e., 32).

4.4.2 Hybrid RL-GAN. We use the RL-GAN dataset (i.e., 15
raw, 15 mirrored, 175 combined, and 49 l-GAN PCs) to train our
hybrid RL-GAN. We trained our AE2, l-GAN2, and RL Agent fol-
lowing the procedures described in Secs. 4.3.1, 4.3.2, and 4.4.1,
respectively. To evaluate the completion performance, we use our
testing samples (i.e., 15 PCs) to generate six incomplete datasets

(N = 5, 10, 15, . . . , 30% missing area), where N random locations
are selected, and an area of 1% is removed at each location. We
use the incomplete datasets to evaluate the hybrid RL-GAN perfor-
mance against benchmark models PCN [55], CRN [60], VRC-Net
[56], AE1 trained for the iterative l-GAN1, AE2, and RL-GAN.
Figures 8(a)–8( f ) display the shape completion results for

5–30% missing area for an example sample in the testing dataset.
The first column shows the raw PCs as the ground truth, while
the second column shows the incomplete PCs. The other columns
show the performance of the hybrid RL-GAN and benchmark
methods.
Figure 8 corroborates that VRC-Net and CRN reconstructions

miss the detailed PC structure, and only the general teeth shape is
obtained. PCN-completed PCs are more uniformly distributed com-
pared to the VRC-Net and CRN approaches. Compared with the
benchmark models, the hybrid RL-GAN framework improves the
accuracy of missing PC data completion. On the other hand, one
can see that both AE2 and RL-GAN can complete the shape well
when the missing area is small. However, the AE’s performance
degrades when the missing area is big (see Fig. 9), while
RL-GAN is more stable when the missing area is increased.
Hybrid RL-GAN selects the best completion between the AE2
and the RL-GAN outputs by evaluating their dCH to the incomplete
PC. The hybrid RL-GAN selection is marked in Fig. 8 with a black
star.
Furthermore, we quantify the PC completion performance for the

proposed and benchmark methods using dCH. The smaller the dis-
tance, the better the completion. Figure 9 shows the average dCH
between the completed PCs and the ground truth PCs in the
testing dataset. One can see that VRC-Net has the highest dCH, fol-
lowed by the CRN. This could happen because the amount of train-
ing PCs is not enough for these methods since they need massive
datasets for training [56,60]. Although PCN generates better
results than VRC-Net and CRN, our approach outperforms the
state-of-the-art methods, as displayed in Fig. 9. By including the
l-GAN1 PCs, we reduced the AE’s completion error; hence AE2
outperforms AE1.
Similar to the previous study [6], the AEs’ performance degrades

drastically and becomes unstable as the percentage of missing data
increases. This behavior can be caused by the high GFV variability

Fig. 8 Shape completion results for a testing PC under various methods, where the hybrid RL-GAN results are marked with a
star: (a) 5% missing area, (b) 10% missing area, (c) 15% missing area, (d ) 20% missing area, (e) 25% missing area, and ( f ) 30%
missing area
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when the missing area is getting bigger. On the other hand, the
RL-GAN’s completion error is much more stable, yet the generated
RL-GAN PCs may fail to preserve local details. Consequently, by
selecting the best completion, the hybrid approach addresses the
AE and RL-GAN problems and reduces the dCH to the ground truth.

4.5 Ablation Study. In the ablation study, we remove one
module at a time and obtained five ablated systems. Then, we
compute the %IncCH using Eq. (6). In all cases, we evaluate the
ablated systems and the original system’s performance using the
validation dataset.
For the first ablated system (AS1), we remove the

PC-Combination module. After mirroring our dataset, we directly
run the iterative l-GAN1 (Sec. 4.3.3). However, since 30 PCs is
not enough to train a suitable AE, the iterative l-GAN1 could not
produce any useful data. Therefore, we use 30 PCs to train
RL-GAN (i.e., l-GAN2 and RL Agent) and reconstruct the incom-
plete data following the procedure described in Secs. 4.4.1 and
4.4.2, respectively. As shown in Table 1, when we remove the
PC Combination, the average chamfer distance for all the missing
areas increases by 233.34%.
In the second ablated system (AS2), we do not use the filters that

control the data augmentation. Thus, we perform PC-Combination
(Sec. 4.2) and obtain 210 PCs. Without the filters, we cannot control
the l-GAN1’s seed z distribution, so we generate 1000 PCs in a
single step. Then, we follow Secs. 4.4.1 and 4.4.2 to train the
remaining modules and reconstruct the incomplete PCs accord-
ingly. Table 1 shows that when we remove the filters, the average
chamfer distance for all the missing areas increases by 38.34%.
For the third ablated system (AS3), we remove the iterative

l-GAN1. Therefore, we augment our data using PC-Combination
(Sec. 4.2). Then, we use our data to train RL-GAN (i.e., l-GAN2
and RL Agent) following Sec. 4.4.1. Finally, we process the

incomplete PCs and select the best reconstruction between the
RL-GAN2 and the AE2 as described in Sec. 4.4.2. Table 1 shows
that without the iterative l-GAN1, the average chamfer distance
for all the missing areas increases by 43.20%.
In the fourth ablated system (AS4), we remove the RL-GAN

module. Therefore, after augmenting our data following Secs. 4.2
and 4.3.3, finally, we process the incomplete data as described in
Sec. 4.4.2. Without the RL-GAN model, the hybrid RL-GAN
always chooses the AE2 reconstruction. As shown in Table 1,
when we remove the RL-GAN module, the average chamfer dis-
tance increases by 13.42%.
For the final ablated system (AS5), we remove the hybrid

RL-GAN module. We start by augmenting our dataset following
Secs. 4.2 and 4.3.3. After that, we train RL-GAN (i.e., l-GAN2
and RL Agent) as described in Sec. 4.4.1 and use RL-GAN to
reconstruct the incomplete data. Table 1 shows that without the iter-
ative l-GAN1, the average chamfer distance for all the missing areas
increases by 5.34%.
As shown in Table 1, the ablation study demonstrated that all the

modules in the proposed framework are helpful in PC completion.

5 Conclusion and Future Work
3D scanned PCs are more and more widely used in orthodontics

applications. One critical issue of the PCs is the missing areas due to
factors such as limited viewing angles and occlusions. In this paper,
we proposed a systematic framework for 3D PC completion with
limited data. The framework consists of (1) a two-step data augmen-
tation technique based on the bilateral symmetry of human teeth and
an iterative GAN, and (2) a hybrid RL-GAN method that selects the
best completion from AE and RL-GAN. Through the demonstration
in the 3D teeth mold PCs, the proposed framework can achieve
accurate PC completion. The proposed PC completion framework
can be applied to other PC completion scenarios with limited data
and complex shapes.
In the future, based on the completed 3D PCs, we will explore the

forecast of the teeth alignment of a patient over time. This forecast
will help the dentists in the monitoring and planning of the align-
ment procedures. Another direction is to consider the biographic
information, habit, etc. for the personalized PC completion and
forecast.
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