
Reliability Engineering and System Safety 237 (2023) 109332

Available online 5 May 2023
0951-8320/© 2023 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

A two-stage data-driven approach to remaining useful life prediction via long
short-termmemory networks
Huixin Zhang a, Xiaopeng Xi a,<, Rong Pan b
a College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
b School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA

A R T I C L E I N F O

Keywords:
Remaining useful life
Prognostic
Health indicator
Long short-term memory
Time delay neural network

A B S T R A C T

Accurate remaining useful life (RUL) prediction is of great importance for predictive maintenance. With
the recent advancements in sensor technology and artificial intelligence, the data-driven approaches to RUL
prediction of industrial equipment have gained a lot of attention. However, past researches have not adequately
considered the variety of degradation rates and the accumulated information in degradation processes. To deal
with this problem, a novel two-stage machine learning approach of RUL prediction is proposed in this paper.
A set of nonlinear health indicator functions are constructed to guide the training process of a long short-term
memory learner of degradation processes, then a time delay neural network is utilized for RUL prediction. The
superiority of the proposed approach in terms of prediction accuracy and conservativeness is demonstrated by
a case study of rolling element bearing dataset.

1. Introduction

Modern industries regard the accurate equipment remaining use-
ful life (RUL) prediction technology as a critical asset for ensuring
operation safety, equipment availability, and maintenance cost re-
duction [1–6]. In general, there are two groups of RUL prediction
methodologies, i.e., the model-based prediction methodology and the
data-driven prediction methodology [7,8]. Model-based methods inves-
tigate physical failure mechanisms to establish the degradation process
model of machinery. Obtaining the physical failure mechanism of a
high-reliability machinery is labor-intensive and time-consuming due
to the complexity and increasing durability of equipment nowadays.
Obtaining an accurate failure physics-grounded degradation model,
although highly desirable, is often illusive in practice. In recent years,
data-driven methods, which rely on the powerful pattern recognition
capabilities of machine learning (ML) algorithms to extract hidden
information from equipment sensor data, have been showing promising
prospects in the field of prognostics and health management (PHM).

ML technologies, including support vector machine (SVM) [9,10],
random forest [11], neural networks [12] and ensemble methods [13],
are the most fast-growing areas in PHM. These methods map time series
data from sensors to a hidden machine degradation process so as to
estimate the RUL of the system at any given moment. In the era of big
data and cloud computing, this ML-assisted RUL prediction approach is
gaining popularity in both academic research and industrial practice.
For example, Berghout et al. [14] proposed a new data-driven method
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based on the online sequential extreme learning machine algorithm for
RUL prediction. Yan et al. [15] used the SVM classifier to evaluate the
degradation stage of the bearings and achieved the best RUL results
for different degradation stages through a hybrid degradation tracking
model. Pan et al. [16] developed a performance degradation evaluation
method based on the deep belief neural network and the self-organizing
maps to denoise and merge multi-sensor vibration signals, then used the
improved particle filtering optimization algorithm to predict the RUL.
Yao et al. [17] combined an improved one-dimensional convolutional
neural network (CNN) and a simple cyclic unit to overcome some short-
comings of traditional RUL prediction methods for rolling bearings. Liu
et al. [18] proposed a double attention-based data-driven framework
for RUL prediction, where a channel attention-based CNN and a trans-
former were applied to significant features. Overall, ML technologies,
particularly deep neural networks that compose of multiple layers
of nonlinear processing units [19] for recognizing complicated data
patterns, have been successfully applied on RUL prediction in industrial
PHM activities.

The degradation processes are non-Markov, that is, the current mo-
ment state depends on the previous moment. Because the mathematical
basis of the recurrent neural network (RNN) can be regarded as Markov
chain, in which the subsequent value is determined by the former in a
certain probability. Thus, the RNN is regarded as a natural tool for time-
series prediction in many studies. However, the gradient disappearance
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will appear in traditional RNNs if the sequence is too long, i.e., the
parameters can only capture the local relationship and cannot learn the
long-term relationship. Long short-term memory (LSTM) [20] can avoid
this problem to some extent due to the internal gating mechanism.
Therefore, among a variety of neural networks, the LSTM learner has
achieved very promising results by the virtue of its representation learn-
ing ability to time series. Yuan et al. [21] compared several variants
of recurrent neural network, including traditional RNN, LSTM, gated
recurrent unit LSTM, and AdaBoost-LSTM, and showed that LSTM was
more effective than others for RUL prediction. Similarly, Wu et al. [22]
demonstrated that LSTM is a natural fit for RUL prediction and could
outperform other RNNs. Zhang et al. [23] proposed an LSTM-fusion
architecture, where the LSTM was allowed to capture both local and
global characteristics of the data from multiple sensors. These existing
studies fully demonstrate that LSTM can play an important role in RUL
prediction.

Nevertheless, a regular LSTM learner is prone to overfitting because
of its long-term memory effect. Therefore, some researchers focused
on combining LSTMs with other networks or analytical models or on
improving the LSTM itself. Zheng et al. [24] proposed to use two LSTM
layers, two feed-forward neural layers, and an output layer. Da Costa
et al. combined an LSTM learner with a domain adversarial neural net-
work (or the global attention layers) to learn the RUL relationships to
time-series sensor data [25,26]. Wu et al. [27] presented a degradation-
aware LSTM autoencoder scheme that could model degradation factors
and explore latent variables, then predicted the RUL in multiple states.
In addition, the LSTM RNN has been combined with elastic nets,
empirical mode decomposition, clustering analysis, or CNNs to improve
the accuracy and the robustness of RUL prediction [28–31]. Forward
LSTM and backward LSTM were synthesized to generate a bidirectional
LSTM, then integrated handshake rules, attention mechanisms, as well
as change-point detection methods, had been proposed for the RUL
prediction on physical systems [32–34]. These approaches utilized the
additional information of equipment operation conditions, attention
mechanisms and other neural network architectures to improve the
prediction performance of LSTM learners.

However, the difference in time series length arising from various
service times of equipment has not been considered adequately in the
current LSTM-based RUL prediction studies. Either filling or truncating
data will break the original data. Besides, the large difference in
time series length will influence the adjustment of network weight,
as the long-term memory of various sequence length may introduce
a partially weakly dependent prediction series, and then affect the
overall prediction accuracy of the learner. Therefore, it is necessary
to concentrate on the short-term memory and to set the length of
‘memory’ dynamically. The short-term memory is usually offered by
a neural network with time-delay structure, such as the nonlinear au-
toregressive exogenous (NARX) neural network [35] or the time delay
neural network (TDNN) [36]. The inputs of these networks consist
of finite time series, thus with less irrelevant information in long-
term memory and producing more accurate predictions [37–39]. Rai
et al. [40] proposed a data-driven prognostic approach based on the
NARX neural network for RUL prediction of bearings, in which wavelet
and MD-CUMSUM filter were used to process the raw signals and fuse
features, respectively. Furthermore, the NARX neural network is also
applied on stock price prediction [41], air pollutant prediction [42],
and lithium-ion battery life prediction [43]. Compared with NARX,
TDNN is more robust because its outputs at present moment are not
utilized as inputs for subsequent moments. Zhu et al. [44] compared a
TDNN with a multi-layer perceptron neural network for modeling of a
wastewater system and found the TDNN is superior to the multi-layer
perceptron network. Lipu et al. [45] used a TDNN to estimate the state
of charge of lithium battery. Zhou et al. [46] presented a prediction
approach based on physical aging model, autoregressive and moving
average model, and a TDNN, and demonstrated that TDNN provided a
higher level of predictive accuracy and robustness.

In addition to the aforementioned sequence’s length of data and
memory problem, the degradation characteristics of equipment usually
are masked by a large amount of noisy sensor data, which makes it
difficult to obtain a clear representation of equipment health state.
The traditional one-stage methods establish the mapping between the
original data and the RUL directly. However, due to the complex and
changeable mapping relationship, the one-stage methods are difficult to
obtain the ideal effect. From this perspective, the core of characterizing
an equipment health degradation is to construct a health indicator
(HI), which should be a smooth function of time and can represent the
degradation trend intuitively and effectively. In this way, the complex
mapping is broken down into two stages, from the raw data to HIs,
then to the RULs. Most existing studies constructed a single HI based
on feature fusion methods [40,47–49]. However, mechanical parts un-
der various working conditions generally exhibit varying degradation
behaviors due to the influence of external factors and the complexity
of the parts themselves. To deal with these problems, a two-stage RUL
prediction approach via LSTM and TDNN is proposed in this paper.
The time-domain features extracted from sensor data are used as the
inputs of an LSTM learner. Then, with the consideration of individual
equipment degrading under different operation conditions and envi-
ronments, a set of nonlinear HI functions are constructed to guide the
LSTM learning. In order to refine and retain limited past information
in the prediction process, a TDNN is utilized to map between HIs
and RULs to mine the potential and time-varying state dependence
relationship. Finally, the proposed LSTM-TDNN-based RUL prediction
approach is tested on an accelerated degradation dataset of rolling
element bearings.

Our LSTM approach to RUL prediction is novel because (1) a set
of nonlinear HI functions are constructed to guide LSTM learners so
as to accommodate the diverse degradation processes of industrial
equipment; (2) an ensemble of LSTM learners are established from
training, which compress or stretch time series to achieve the time scale
alignment and maximize the retention of the original information; and
(3) a time delay mechanism is introduced to fuse past feature informa-
tion dynamically through a time window and to reduce the detrimental
long-term memory effect on RUL prediction. Given multiple possible
operating conditions of industrial equipment, these modeling strategies
can provide more accurate RUL predictions.

The rest of this paper is organized as follows. Section 2 briefly
introduces the elements of LSTM and TDNN. The proposed LSTM-
TDNN-based RUL prediction approach is presented in detail in Sec-
tion 3. Section 4 analyzes a public dataset of rolling element bearings
to demonstrate the effectiveness of the proposed predictor and the
superiority of its performance. The conclusions are drawn in Section 5.

2. Preliminaries

In this section, the elements of LSTM and TDNN are described
briefly. For more information about these two neural network archi-
tectures and how they work, the readers are referred to [20,36]. An
LSTM learner has several gating mechanisms with corresponding data
compositions in each unit to handle the memory effect of a time series,
while a TDNN learner has a relatively simple architecture for processing
time series.

2.1. LSTM modeling

LSTM is a variant of RNNs that is capable of processing long-term
information, and it is proposed by Hochreiter and Schmidhuber in
1997 [20]. Compared with traditional RNNs, the information of a time
series at current and past moments can be selectively remembered,
forgotten or updated by the gating mechanism employed in an LTSM
unit, which consists of an input gate, an output gate, a forget gate and
a memory cell. As a result, the problems of gradient disappearance and
gradient explosion in a traditional RNN are avoided to a certain extent.
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The mathematical formulas of these gates and memory cells are given
below:
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The function, � (�), is the activation function, which generally employs
a sigmoid function. Note that x

t
is the input to an LSTM unit at time

t, while h
t
is the output of LSTM unit. As shown in Fig. 1, the forget

gate f
t
regulates the memory cell c

t*1 to determine the extent to which
a memory cell state can be retained from previous moments. The input
gate i

t
controls which information enters at time t and updates the

cell state. The output gate c
t
combines with o

t
to produce the hidden

state h
t
. In our application, x

t
is the raw time series data from sensors,

h
t
is the hidden memory state of the LSTM unit. A sequence of HIs

are obtained through a series of weighted operations on h
t
in a fully

connected layer.

2.2. TDNN modeling

TDNN is a dynamic form of RNNs proposed by Waibel et al. in
1989 [36] and it has been successfully applied for modeling nonlinear
systems. Both of its input and output are time series. Let HI

t*1 be the
input of the system at previous moment and d be the memory period
that the network can retain historical data, then the mathematical
formulation of TDNN can be expressed as
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a neural network. It should be seen that L
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where f
h (�) and f

o (�) are the activation functions of the hidden and
output layer, W

ih
and W

ho
are the network weight vectors, and b

h
and

b
o
are the corresponding bias, respectively.

3. Proposed approach

This section describes the proposed LSTM-TDNN architecture for
RUL predictor. The LSTM neural network is trained to obtain the HIs
using the raw sensor data features from equipment condition monitor-
ing. Then, the memories of past states of an equipment are stored in
the LSTM cell for future state prediction. Now, the sequence of HIs
are fed into the TDNN, and relying on the time delay effect of TDNN,
RULs are predicted. Fig. 1 shows the architecture of the proposed
LSTM-TDNN-based RUL predictor.

Table 1
Feature sets.
Time-domain features

Max Min Peak
Peak to peak Mean Average amplitude
Root amplitude Variance Standard deviation
Rms Kurtosis Skewness
Shape factor Peaking factor Pulse factor
Margin factor Kurtosis factor Clearance factor

3.1. Stage one– From data to HI

3.1.1. Data preprocessing
To make full use of sensor data and to reduce the computational

burden caused by noisy data, it is necessary to extract several key
time-domain features from the raw data. These features are simple
and general enough that they can be automatically extracted without
any specially designed algorithm. In our application, 18 time-domain
features of the monitoring time series are extracted at each sampling
time stamp. These features are listed in Table 1.

Considering that these features may possess values over a wide
range and this can lead to a problem of underfitting if they were
directly used as the inputs of a neural network, we need to normalize
each feature in the training sets to the interval [0,1] by the following
equation:
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where x
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is the ith feature of jth sample with i = 1, 2,… ,m, j =

1, 2,… , n. Here, m is the number of features and n is the number of
samples. Let x
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and x
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of the ith feature, respectively, and x
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.

Furthermore, for each training time series, all of its normalized feature
values are stored in the feature matrix X

(l), and l = 1, 2,… , q denotes
distinct training sets.

In addition, different training sets may have different time series
lengths. When this time series is the series of an equipment degradation
measures up to its failure, then the total series length corresponds to the
life spans of the equipment. Using original RULs as the desired output
of an LSTM neural network will result in a poor fitting. To deal with this
issue, the RUL of each training time series is normalized by dividing it
by its whole life span, i.e.,

ÉL
�

t
k

�

=
t
n
* t

k

t
n

, (5)

where t
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is the sampling time at the kth time stamp with 1 Õ k Õ n,

and t
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is the life span of one training series. In other words, ÉL
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be interpreted as the percentage of remaining useful life at time t

k
.

3.1.2. HI construction
Mechanical parts typically go through three health stages – nor-

mal, degradation, and failure – over their entire service period. The
degradation rate is usually small at first, followed by an instantaneous
jump or a fast increase. With this consideration, a group of nonlinear HI
functions are proposed in this paper, which not only cover the impacts
of varying working conditions and different equipment deterioration
rates, but also have good representations in practical applications.
These functions can be viewed as functions of latent states of equipment
health in the proposed LSTM-TDNN-based RUL predictor.

The constructed HI is given by

HI
(l)
p

(t) = V
(l)
p

�

✓
(l) (t)

�

, (6)

where p = 1,… , u indicates individual HI functions, and HI
(l)
p denotes

the HI of the lth equipment, which is used in the training dataset, with
the pth function. Function V (�) is the mapping function, and ✓

(l) (t) is
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Fig. 1. Architecture of the proposed LSTM-TDNN-based RUL predictor.
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Four deterioration functions – the exponential function, power-law

function, logarithmic function and composite function – are proposed.
They are given by, respectively,
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where r À N
<. Parameter r is introduced to stretch the time scale and to

make the shape of these functions more prominent. The value of this
parameter should be set as small as possible while ensuring that the
constructed HI represents the changes in degradation rate. In such way,
the function HI

(l)
p (t) over the whole time series lifespan is obtained. To

standardize the HI, normalization is also employed,
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respectively.
Taking the feature set X(l) and the constructed HI set °HI
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p
as the

input and output of an LSTM learner respectively, the loss function, L2,

is minimized by adjusting the preset hyperparameters.
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where °HI
(l)
po
(t) is an output of the LSTM model, and °HI

(l)
pa
(t) is the

constructed HI by Eqs. (7)–(9). To weaken the problem of different
time series lifespans and to improve the transfer learning ability of
trained networks, each training time series will establish an individual
HI model

°HI
(l)
p
(t) = F
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�

X
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, (11)

where F
(l)
p is the nonlinear mapping function from features to the

constructed pth HI of the lth training equipment.

3.2. Stage two– From HI to RUL

To map a normalized series of HIs to the RUL percentage, a mapping
function G

p
needs to be established. In our study, TDNN is such a

mapping function, where the series of °HI
(l)
p
(t) of the training sets and

the corresponding ÉL
(l)
p (t) are its inputs and outputs, respectively. To

prevent the occurrence of over-fitting and improve accuracy, the whole
training dataset is divided into a training subset, a validation subset
and a testing subset. The termination condition of training process
is set at the time when the error of the validation experiment is no
longer reduced or even increased. After multiple training iterations,
the LSTM-TDNN-based RUL predictor is obtained for several neural
network architecture hyperparameter combinations, which include the
time delay step d, the number of hidden layersM2, the number of nodes
in each layer Q2, and the validation check P .
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. (12)
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To summarize the proposed two-stage RUL prediction approach, the
pseudo-code of the whole process is provided in Algorithm 1 and a
flowchart is shown in Fig. 2. To use this predictor, the time-domain
features of a testing time series are extracted. Feeding the feature set
of the testing dataset, i.e., the normalized X

(T est) into the LSTM-based
HI model, the outputs of q LSTM learners are averaged to obtain the
HIs, which are subsequently fed into the TDNN model to produce RUL
predictions.

Algorithm 1 LSTM-TDNN-based RUL prediction approach
Training Phase
for each type of constructed HI do
STEP 1. Extracting and normalizing the time-domain features of
the raw condition monitoring data of the training set, obtain X

(l)

by Eq. (4).
STEP 2. The preliminary HIs are constructed by Eqs. (7)-(9).
STEP 3. According to Eq. (11), taking X(l) and°HI

(l)
(t) as the input

and output of the LSTM, and the optimal LSTM-based HI model
is selected by fine-tuning the parameters and minimizing the loss
function in Eq. (10).

end for
STEP 4. The output °HI

(l)
(t) and ÉL

(l) (t) of the training sets are
seen as the inputs and outputs of the TDNN by Eq. (12), then the
optimal TDNN-based RUL prediction model is obtained by training
the network iteratively and minimizing the verified performance.

Testing Phase
for each type of HI do
STEP 1. Obtain X

(T est) by preprocessing the raw condition
monitoring data.
STEP 2. The optimal LSTM-based HI model is further modified by
comparing the output HI of the validation set and the constructed
HI by Eqs. (7)-(9).
STEP 3. Taking X

(T est) as the input of the optimized LSTM-based
HI model, then calculate the HI (t) by Eq. (13).
STEP 4. The ÉL

pre (t) is given by inputting HI (t) into the
TDNN-based RUL prediction model.

end for

4. Case study

In this section, the XJTU-SY rolling element bearing dataset is
employed to validate the effectiveness of the proposed two-stage LSTM-
TDNN-based RUL predictor. Moreover, the superiority of the proposed
approach is illustrated by comparing it with six other data-driven
neural networks previously used for time series RUL prediction.

4.1. Data description and feature extraction

Fig. A.1 displays the block diagram of a rolling element bearing
degradation testbed. The experimental platform is composed of an
alternating current (AC) motor, a motor speed controller, a support
shaft, two support bearings, a hydraulic loading system and tested
bearings. Complete run-to-failure vibration data are collected by two
single acceleration sensors of type PCB 352C33, which are fixed in
horizontal and vertical directions of the tested bearings. The sampling
frequency is 25.6 kHz, i.e., 32,768 data points are collected per minute.
For a full description of the configuration of this testbed, please refer
to [8,50].

There are three accelerated degradation conditions and five bearing
systems are tested under each conditions. In our study, four bearing
datasets are randomly selected as the training datasets and the re-
maining one is the testing dataset for each operating condition. The
details are presented in Table 2. Fig. A.2 shows the vibration sensor
data recorded over the whole life cycles of three different training
datasets. As one can see from these figures, the trends of vibration
magnitudes from horizontal and vertical signals of a single bearing are
consistent; however, the degradation degrees at different times among
these bearings are quite distinct from each other. To fully utilize these
raw data, the feature data extracted from both vertical and horizontal
vibration data are used as the inputs of the LSTM neural network,
thus m = 36. As examples, the four horizontal time-domain features
of bearing 1-1, including max, peak, peak to peak and rms before and
after normalization are presented in Figs. 3 and 4, respectively. The am-
plitudes of these features gradually increase along the bearing running
experiment, indicating that the bearing degradation process has been
represented effectively. In addition, these features vary in the same
range after normalization, making the LSTM allocate approximately
equal weights for them to adjust parameters. Therefore, the utilization
rate of LSTM-based HI model for various features is improved.

4.2. LSTM-TDNN construction

Both LSTM and TDNN are feed-forward neural networks, which
consist of an input layer, at least one hidden layer and an output
layer. The hidden layers of different networks are made up of multiple
neurons of a certain kind. The neuron is the LSTM unit in the LSTM
network, and is the ordinary artificial neuron in the TDNN. The value
of the output layer is calculated by a series of weighted calculations
of the output of the hidden layer. The number of hidden layers and
the number of neurons in the network should be analyzed based on
specific data. In general, the number of hidden layers and neurons has
a positive correlation with the data volume.

For an LSTM learner, the labels of outputs are obtained from
Eqs. (7)–(9), i.e., the training process is guided by a set of presumed
system health degradation functions. The parameter r has been adjusted
manually, but it needs to be kept low as much as possible. It is found
that there is already a clear shape of HI curve for r = 3. As examples,
the four constructed HI functions of bearing 1-1, 2-2, 3-3 are presented
in Fig. 5. The slopes of these functions all change from small to big,
but they still exhibit differences in curvature.

The number of hidden layers M1, the number of nodes in each
layer Q1, initial learning rate L, learning rate decay D, max epoch B,
and other hyperparameters of neural network are selected according
to empirical knowledge. The Adam optimization algorithm [51] with a
mini-batch size of 8 or 16 is applied to train the LSTM learner. It adapts
the sparse gradient to alleviate the problem of gradient oscillation. A
dropout layer is added after the LSTM layer with a dropout rate of S
to ease the overfitting issue and to improve the generalization ability
of the neural network. At the end, a fully connected layer is stacked to
calculate softmax activation function by matrix multiplication so as to
obtain HIs. Finally, the LSTM-based HI model is acquired by fine-tuning
the above hyperparameters via minimizing the loss function of Eq. (10).

For the TDNN learner, the number of validation check P is set as
15 to prevent incomplete training and overtraining. The test results
are obtained on the validation subset after the end of each epoch.
As the epochs increase, if the error curve no longer decreases for
15 consecutive iterations, the training is stopped. Based on expert
experience, P is usually set between 10 and 20. Here it is set to
15. Considering the learning ability of neural network and the total
quantity of data, the time delay window d is set to be 5 and the
number of hidden layers M2 to be 2 or 3. Finally, the proportions
of the sub-training, sub-validation and sub-testing sets are set to be
8:1:1. The Levenberg–Marquardt algorithm [52] is applied in TDNN
training, which has the advantage of fast convergence to global optima
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Fig. 2. Flowchart for the proposed LSTM-TDNN-based RUL predictor.

Table 2
Descriptions of XJTU-SY rolling element bearing datasets [8].
Operating condition Rotating speed Radial force/kN Bearing dataset

Training dataset Testing dataset

1 2100 12 Bearing 1-1 Bearing 1-2 Bearing 1-3Bearing 1-4 Bearing 1-5

2 2250 11 Bearing 2-1 Bearing 2-2 Bearing 2-5Bearing 2-3 Bearing 2-4

3 2400 10 Bearing 3-1 Bearing 3-3 Bearing 3-2Bearing 3-4 Bearing 3-5
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Fig. 3. The raw horizontal time-domain features of bearing 1-1 (a) max (b) peak (c) peak to peak (d) rms.

Fig. 4. The normalized horizontal time-domain features of bearing 1-1 (a) max (b) peak (c) peak to peak (d) rms.
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Fig. 5. Constructed HIs of 3 training bearings (a) bearing 1-1 (b) bearing 2-2 (c) bearing 3-3.

and achieving high precision solution. The configuration details of
the LSTM-TDNN-based RUL predictors for the three bearing operation
conditions are summarized in Tables 3–5. The size of each layer is
shown in Tables A.1–A.3 in the Appendix.

The training processes of the LSTM and TDNN are completed by
the computer, the trained network is considered reasonable when the
error of training dataset decreases and converges with the increase
of epochs. Generally, the establishment of the model can meet the
above requirements by initializing learning rate L, max epoch B and
other basic hyperparameters according to expert experience. Taking
condition 1 as an example, the change of the loss function of the LSTM
learner in the training process of bearing 1-2 with the number of epochs
is shown in Table A.4 under HI2. The loss function decreases and
converges with the training. The errors in the training of the TDNN
learner are shown in Fig. A.3. To further evaluate the performance of
the RUL prediction model, the coefficient of determination, i.e., R is
introduced, whose value is located in the [0,1]. The fitting ability of
the model has a positive correlation with R. The value of the R of the
training subset, validation subset, and testing subset are displayed in
Fig. A.4, which are around 0.99. This reveals the good generalization
ability of the RUL prediction model.

4.3. Evaluation metrics

The superiority of intelligent methods is difficult to prove in prin-
ciple. The neural network is just a tool to deal with problems. The
existing research is often based on its application scenario and appli-
cation object, and relies on accuracy and other indicators to evaluate
the effectiveness of the structure of the network. In this paper, the
performance of LSTM-TDNN-based RUL predictor is evaluated by root
mean square error (RMSE) and scoring function. RMSE is a commonly
used evaluation metric in the field of PHM. With the RUL prediction
results, the RMSE can be calculated by

RMSE =

y

x

x

w

1
N

N
…

z=1

�

ÉL
pre (z) * ÉL

act (z)
�2
, (14)

where N is the number of the testing samples, ÉL
pre (z) and ÉL

act (z)
are the predicted RUL and the actual RUL of the zth testing sample,
respectively.

Table 3
Configuration of the LSTM-TDNN RUL predictor in condition 1.
Con. 1 LSTM TDNN

M1 Q1 L D B S P d M2 Q2

HI1 3 (4,3,3)
(4,7,9)
(4,5,5)
(4,3,2)

0.1 0.2 600 0.001 15 5 2 (15,20)

HI2 3 (4,3,3)
(5,7,9)
(8,6,3)
(4,3,2)

0.1 0.2 600 0.0015 15 5 2 (15,25)

HI3 3 (4,3,2)
(5,7,7)
(8,6,4)
(4,5,5)

0.01 0.2 600 0.001 15 5 2 (15,20)

HI4 3 (4,3,2)
(5,7,7)
(8,6,4)
(4,5,5)

0.08 0.5 600 0.005 15 5 2 (15,18)

The scoring function used in this paper was originally given in the
2008 PHM Data Challenge [53], which is characterized by

score =

h

n

n

l

n

n

j

N
…

z=1
exp

H

ÉL
act (z) * ÉL

pre (z)
13

I

* 1 ÉL
pre (z) f ÉL

act (z)

N
…

z=1
exp

H

ÉL
pre (z) * ÉL

act (z)
10

I

* 1 ÉL
pre (z) > ÉL

act (z) .

(15)

Inspired by [54], Fig. 6 shows RMSE and score as the functions of
the error between ÉL

pre (z) and ÉL
act (z), in which the error ranges from

*40 to 40. It is clearly seen that the bigger the absolute error value
is, the higher RMSE and score are. Besides, because the score grows
exponentially as the error increases, a large absolute error may result
in a single outlier. However, when RMSE is applied, the effect from
outliers is reduced because it is linear with absolute error. Nevertheless,
both score and RMSE are small when the error is in interval [*1,1].
Thus, the influence of outliers on the RUL prediction is also reduced by
the RUL normalization used in this paper. Generally speaking, ÉL

pre (z) f
ÉL
act (z) is believed to achieve a conservative prediction in case of
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Table 4
Configuration of the LSTM-TDNN RUL predictor in condition 2.
Con. 2 LSTM TDNN

M1 Q1 L D B S P d M2 Q2

HI1 3 (5,4,3)
(4,4,3)
(5,4,3)
(4,3,2)

0.08 0.5 800 0.001 15 5 2 (15,20)

HI2 3 (5,5,4)
(5,4,3)
(4,4,3)
(3,3,2)

0.01 0.2 600 0.001 15 5 2 (15,25)

HI3 3 (6,4,3)
(4,4,3)
(5,4,3)
(4,3,2)

0.01 0.5 600 0.001 15 5 2 (15,20)

HI4 3 (5,5,4)
(4,4,3)
(5,4,3)
(4,3,2)

0.01 0.2 400 0.0015 15 5 2 (15,20)

Table 5
Configuration of the LSTM-TDNN RUL predictor in condition 3.
Con. 3 LSTM TDNN

M1 Q1 L D B S P d M2 Q2

HI1 3 (4,3,3)
(5,3,2)
(8,7,7)
(3,4,4)

0.08 0.5 400 0.001 15 5 2 (23,25)

HI2 3 (4,2,2)
(2,3,5)
(7,4,3)
(3,3,4)

0.2 0.5 800 0.001 15 5 2 (28,25)

HI3 3 (4,3,2)
(2,3,5)
(3,2,2)
(3,4,5)

0.01 0.5 450 0.001 15 5 2 (20,20)

HI4 3 (5,5,2)
(2,3,5)
(8,7,3)
(3,4,4)

0.2 0.5 800 0.001 15 5 2 (15,12)

ensuring accuracy, because a maintenance plan can be implemented in
advance to prevent the occurrence of catastrophic failures. According to
Fig. 6, the score value on the left side of the origin is smaller than that
on the right side under the same absolute error. Therefore, the smaller
the score, the more conservative the prediction would be.

4.4. Experimental results

The comparison of the ÉL
act

and ÉL
pre

for the three testing bearings
in the late stage are illustrated in Figs. 7–12. The predicted RULs
deviate significantly from actual RULs at the beginning, but along with
the bearing running experiment, as more useful information would
be obtained, the predicted RUL will quickly get close to the actual
RUL. In fact, the degradation of a bearing at its late life stage is
significantly faster than its early life stage. It is essential to achieve an
accurate estimation of the RUL percentage in the late stage to prevent
a sudden catastrophic failure [40]. Our experimental results satisfy this
requirement.

Prediction performance of the proposed predictor is provided in
Table 6. The RMSE and score of bearing 3-2 are bigger than those
of bearing 1-3 and 2-5. In particular, the predicted RUL of bearing
3-2 deviates greatly from the actual RUL twice as shown in Fig. 12,

Fig. 6. Comparison between Score and RMSE under different error values.

indicating the existence of abnormal signals or faults in the raw vibra-
tion monitoring data. This is a general drawback of any data-driven
methods, as they rely on the accuracy of monitoring data for accurate
decision-making.

To further demonstrate the superiority of the proposed LSTM-TDNN
predictor, six data-driven predictive approaches to time series pre-
diction – LSTM, TDNN, LSTM-LSTM, TDNN-TDNN, TDNN-LSTM, and
LSTM-NARX – are used for comparison. These networks can mine
potential degradation information relying on memory structure, and
are often used in the field of RUL prediction. However, there are
differences in the length of memory and data processing. Moreover,
the hyperparameters of these six prognostic networks, such as the
number of epochs, the number of hidden layers, the number of time
delay steps, and the number of validation checks, are all fine-turned
and optimally selected after multiple iterations. Because the above
models are constructed based on the same training data and empirical
knowledge, the uncertainty is the same.

The comparisons of the prediction results and average training times
of different neural network models are presented in Tables 6 and 7.
The service time of the three testing bearing datasets varies with the
operating conditions and the bearings themselves. Compared with the
one-stage LSTM learner or one-stage TDNN learner, which building
mapping relations from time domain features to RUL directly, two-
stage approaches achieve better prediction results, although some of
them require longer training times. This validates the importance of
the constructed HI functions in guiding the process of RUL prediction.
On one hand, it reduces the dimension of the data reasonably and maps
the degradation features of different bearings into a unified space; on
the other hand, it explores the hidden state of the degradation process
effectively and makes the degradation trend of bearings more explicit.

Furthermore, among the five two-stage approaches, the proposed
LSTM-TDNN-based predictor achieves the smallest RMSE and score,
although it is more time-consuming in training compared with the
TDNN-LSTM, TDNN-TDNN and LSTM-NARX. Based on the LSTM-TDNN
model, the RMSEs of RUL for the three testing bearings are mostly
around 0.02, and the maximum is less than 0.05. The average scores of
these three test cases are 0.0630, 0.1385, and 1.7116, respectively.

Specifically, at the stage of obtaining HI, the TDNN-based models
consume less time, but the outputs fluctuate greatly, especially when
there is a large amount of monitoring data, just as the bearing 3-2. This
is because there are no cell states in TDNN to store long sequences of
information, only multiple delay units. Due to this unique structure,
the calculation of TDNN is speeded up compared with long-memory
neural networks. Besides, its ‘memory’ length changes dynamically with
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Fig. 7. Comparison of RUL prediction results for bearing 1-3 between one-stage and two-stage approaches.

Fig. 8. Comparison of RUL prediction results for bearing 2-5 between one-stage and two-stage approaches.

Table 6
Prognostic performance comparisons of different predictors.
Testing bearing Proposed LSTM-LSTM TDNN-LSTM TDNN-TDNN LSTM-NARX LSTM TDNN

RMSE Score RMSE Score RMSE Score RMSE Score RMSE Score RMSE Score RMSE Score

Bearing 1-3

HI1 0.0217 0.0674 0.0291 0.0945 0.0904 0.3242 0.1234 0.3135 0.0675 0.1442

0.0602 0.2039 0.1147 0.3237HI2 0.0177 0.0545 0.0214 0.0694 0.0263 0.0885 0.0344 0.0964 0.0460 0.1426
HI3 0.0277 0.0824 0.0313 0.0899 0.0282 0.0851 0.1227 0.3779 0.2496 0.1333
HI4 0.0142 0.0479 0.0172 0.0520 0.0262 0.0874 0.0854 0.2376 0.1083 0.2119

Bearing 2-5

HI1 0.0245 0.1407 0.0314 0.1830 0.0348 0.2201 0.1187 0.7324 0.0499 0.4008

0.0652 0.4623 0.1194 0.7789HI2 0.0195 0.1181 0.0366 0.2177 0.0314 0.1833 0.0561 0.3813 0.0757 0.4335
HI3 0.0239 0.1698 0.0364 0.1960 0.0327 0.2114 0.0718 0.4369 0.0313 0.2142
HI4 0.0225 0.1254 0.0326 0.1898 0.0450 0.2556 0.0610 0.3610 0.0541 0.3583

Bearing 3-2

HI1 0.0293 1.3031 0.0299 1.3335 0.1200 6.1015 0.2294 10.8897 0.0600 2.9740

0.1135 4.6700 0.2531 11.5018HI2 0.0492 2.1436 0.0515 2.2815 0.0834 3.8648 0.1262 5.9765 0.0504 2.3792
HI3 0.0313 1.4271 0.0328 1.5885 0.1192 4.9011 0.2059 7.7929 0.0469 2.5969
HI4 0.0426 1.9727 0.0440 2.0624 0.1271 5.2722 0.1721 2.5969 0.0854 3.3394
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Fig. 9. Comparison of RUL prediction results for bearing 3-2 between one-stage and two-stage approaches.

Fig. 10. RUL prediction results of bearing 1-3 by different predictors (a) RUL in HI1 (b) RUL in HI2 (c) RUL in HI3 (d) RUL in HI4.

Table 7
Comparison of average training time for seven different predictors.

Operating condition Proposed LSTM-LSTM TDNN-LSTM TDNN-TDNN LSTM-NARX LSTM TDNN

Training time (s)

Condition 1 60.25 94.25 51 7.38 60.51 33.39 16.11
Condition 2 133.25 210.25 91 13.44 132.25 82.26 31.57
Condition 3 487.26 807 431.56 58.72 477.03 281.46 131.29
Total 680.76 1111.5 573.56 79.54 669.79 397.11 178.97
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Fig. 11. RUL prediction results of bearing 2-5 by different predictors (a) RUL in HI1 (b) RUL in HI2 (c) RUL in HI3 (d) RUL in HI4.

Fig. 12. RUL prediction results of bearing 3-2 by different predictors(a) RUL in HI1 (b) RUL in HI2 (c) RUL in HI3 (d) RUL in HI4.
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Fig. A.1. Test bed of the rolling element bearings [8,50].

Fig. A.2. The raw vibration monitoring data of three training bearings (a) Horizontal vibration data of bearing 1-1 (b) Vertical vibration data of bearing 1-1 (c) Horizontal
vibration data of bearing 2-2 (d) Vertical vibration data of bearing 2-2 (e) Horizontal vibration data of bearing 3-3 (f) Vertical vibration data of bearing 3-3.

the time delay step, i.e., the partial past information is fused only
selectively within a time window. In LSTM neural networks, however,
there are gating mechanism and state storage units, resulting in the
capture of the long-term historical information. Thus, the HI outputs of
the LSTM-based model have stronger correlation at different moments
and there are no big jumps between different working conditions. The
predicted RUL curves are also smooth, regardless of which learner is
subsequently used to build the RUL prediction model, as shown in
Figs. 10–12. As a result, the LSTM learner is superior to the TDNN
learner in learning information from multi-dimensional features and
obtaining smooth low-dimensional HI curve. As to the RUL prediction
property of a learner, due to the long-term memory of LSTM, some
irrelevant information that interferes with the prediction results may
continue to be stored, resulting in a relatively large deviation between
the predicted RUL and the actual RUL. However, adding a TDNN
stage reduces the influence of redundant information, thus effectively

increases the accuracy of prediction. In addition, compared with LSTM
learner, TDNN learner achieves prediction one step ahead. Although
NARX neural network can set dynamic delay step and achieve predic-
tion ahead as well, it needs to rely on the output value fed back to the
input, so the next output might be affected if there was an abnormal
output value. In extreme, the prediction error could explode as the
component or system approaches the failure moment.

A more detailed examination of Table 6 shows that the minimum
RMSEs and scores for the three testing bearings are provided by the
HIs constructed in composite, power-law and exponential function,
respectively. Therefore, it is necessary to consider the difference in
the degradation rate between bearings while predicting the RUL. More
importantly, other approaches sometimes fail to achieve consistently
accurate and conservative prediction results. For example, RMSE under
HI2 of bearing 3-2 based on the LSTM-LSTM model is bigger than that
based on the LSTM-NARX model, but the score is smaller. Similarly,
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Table A.1
The size of the LSTM-TDNN RUL predictor in condition 1.
Con. 1 LSTM TDNN

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Output
layer

Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

HI1 1 ù 36 36 ù 4
36 ù 4
36 ù 4
36 ù 4

4 ù 3
4 ù 7
4 ù 5
4 ù 3

3 ù 3
7 ù 9
5 ù 5
3 ù 2

3 ù 1
9 ù 1
5 ù 1
2 ù 1

1 ù 1 1 ù 15 15 ù 20 20 ù 1

HI2 1 ù 36 36 ù 4
36 ù 5
36 ù 8
36 ù 4

4 ù 3
5 ù 7
8 ù 6
4 ù 3

3 ù 3
7 ù 9
6 ù 3
3 ù 2

3 ù 1
9 ù 1
3 ù 1
2 ù 1

1 ù 1 1 ù 15 15 ù 25 25 ù 1

HI3 1 ù 36 36 ù 4
36 ù 5
36 ù 8
36 ù 4

4 ù 3
5 ù 7
8 ù 6
4 ù 5

3 ù 2
7 ù 7
6 ù 4
5 ù 5

2 ù 1
7 ù 1
4 ù 1
5 ù 1

1 ù 1 1 ù 15 15 ù 25 25 ù 1

HI4 1 ù 36 36 ù 4
36 ù 5
36 ù 8
36 ù 4

4 ù 3
5 ù 7
8 ù 6
4 ù 5

3 ù 2
7 ù 7
6 ù 4
5 ù 5

2 ù 1
7 ù 1
4 ù 1
5 ù 1

1 ù 1 1 ù 15 15 ù 25 25 ù 1

Table A.2
The size of the LSTM-TDNN RUL predictor in condition 2.
Con. 2 LSTM TDNN

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Output
layer

Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

HI1 1 ù 36 36 ù 5
36 ù 4
36 ù 5
36 ù 4

5 ù 4
4 ù 4
5 ù 4
4 ù 3

4 ù 3
4 ù 3
4 ù 3
3 ù 2

3 ù 1
3 ù 1
3 ù 1
2 ù 1

1 ù 1 1 ù 15 15 ù 20 20 ù 1

HI2 1 ù 36 36 ù 5
36 ù 5
36 ù 4
36 ù 3

5 ù 5
5 ù 4
4 ù 4
3 ù 3

5 ù 4
4 ù 3
4 ù 3
3 ù 2

4 ù 1
3 ù 1
3 ù 1
2 ù 1

1 ù 1 1 ù 15 15 ù 25 25 ù 1

HI3 1 ù 36 36 ù 6
36 ù 4
36 ù 5
36 ù 4

6 ù 4
4 ù 4
5 ù 4
4 ù 3

4 ù 3
4 ù 3
4 ù 3
3 ù 2

3 ù 1
3 ù 1
3 ù 1
2 ù 1

1 ù 1 1 ù 15 15 ù 20 20 ù 1

HI4 1 ù 36 36 ù 5
36 ù 4
36 ù 5
36 ù 4

5 ù 5
4 ù 4
5 ù 4
4 ù 3

5 ù 4
4 ù 3
4 ù 3
3 ù 2

4 ù 1
3 ù 1
3 ù 1
2 ù 1

1 ù 1 1 ù 15 15 ù 20 20 ù 1

Fig. A.3. The training process of the TDNN learner in condition 1 under HI2.

in terms of the LSTM-NARX model, the RMSE of bearing 1-3 under
HI1 is smaller than that under HI3, but the score is bigger. With
the TDNN-LSTM model, the RMSE under HI4 of bearing 3-2 is bigger
than that under HI1, but the score is smaller. However, the proposed
LSTM-TDNN predictor achieves the consistency at all three operating
conditions.

In practice, an appropriate type of HI function at a certain working
condition can be determined based on the monitoring data of existing
failed equipment. After that, the RUL is further predicted conservatively
based on the proposed RUL predictor, providing early warning for safe
operation and for predictive maintenance.

5. Conclusions

In this paper, a novel two-stage LSTM-TDNN-based RUL predictor
is proposed for complicated industrial equipment. A set of nonlinear
HI functions are constructed to guide LSTM model building. Compared
with the traditional feature fusion-based HI construction methods, the
proposed approach considers various degradation rates and can be
applied to a variety of working conditions. A series of LSTMs are used to
build the mapping relations from individual time-series feature sets to
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Fig. A.4. The coefficient of determination of the TDNN learner in condition 1 under HI2.

Table A.3
The size of the LSTM-TDNN RUL predictor in condition 3.
Con. 3 LSTM TDNN

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Output
layer

Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

HI1 1 ù 36 36 ù 4
36 ù 5
36 ù 8
36 ù 3

4 ù 3
5 ù 3
8 ù 7
3 ù 4

3 ù 3
3 ù 2
7 ù 7
4 ù 4

3 ù 1
2 ù 1
7 ù 1
4 ù 1

1 ù 1 1 ù 23 23 ù 25 25 ù 1

HI2 1 ù 36 36 ù 4
36 ù 2
36 ù 7
36 ù 3

4 ù 2
2 ù 3
7 ù 4
3 ù 3

2 ù 2
3 ù 5
4 ù 3
3 ù 4

2 ù 1
5 ù 1
3 ù 1
4 ù 1

1 ù 1 1 ù 28 28 ù 25 25 ù 1

HI3 1 ù 36 36 ù 4
36 ù 2
36 ù 3
36 ù 3

4 ù 3
2 ù 3
3 ù 2
3 ù 4

3 ù 2
3 ù 5
2 ù 2
4 ù 5

2 ù 1
5 ù 1
2 ù 1
5 ù 1

1 ù 1 1 ù 20 20 ù 20 20 ù 1

HI4 1 ù 36 36 ù 5
36 ù 2
36 ù 8
36 ù 3

5 ù 5
2 ù 3
8 ù 7
3 ù 4

5 ù 2
3 ù 5
7 ù 3
4 ù 4

2 ù 1
5 ù 1
3 ù 1
4 ù 1

1 ù 1 1 ù 15 15 ù 12 12 ù 1

the HIs, aligning time scales of data and solving the problem of unequal
length sequences to some extent. By introducing the TDNN stage, the
historical information of HI in a finite time window is fused to achieve
further refinement of prediction. The proposed predictor is compared
with six other data-driven ML approaches on the XJTU-SY rolling ele-
ment bearing accelerated life cycle datasets. Our experimental results

reveal that the proposed predictor has a clear advantage in accuracy
and conservativeness in RUL prediction. This is invaluable to proper
maintenance scheduling and equipment service life extension.

Although satisfactory results have been obtained in this paper, the
training of LSTM-TDNN model will be affected by the service time of
the application object. For example, the HI of the testing individual
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Table A.4
RMSE and Loss of the minibatch of the LSTM learner during training.

Epoch

1 50 100 150 200 250 300 350 400 450 500 550 600

RMSE 0.96 0.07 0.04 0.04 0.08 0.03 0.01 0.01 0.01 0.08 8.54e*3 8.05e*3 8.00e*3
Loss 0.5 2.6e*3 7.5e*4 8.3e*4 3.3e*3 4.2e*4 7.3e*5 6.1e*5 5.2e*5 3.1e*3 3.6e*5 3.2e*5 3.1e*3

output by the LSTM-based model deviates from the HI constructed by
the functions when there is large difference in actual life cycle between
the testing individual and the training individual, thus affecting the
prediction accuracy of the RUL. Therefore, it is still challenging under
small sample to apply a common transfer learning technique to migrate
the RUL predictor from one equipment to another one with different
application scenarios and/or different machinery physics. Effective
transferring learning approaches to equipment RUL prediction will be
researched in the future.
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Appendix

Fig. A.1 shows the test bad of the rolling element bearings. Fig. A.2
displays the raw vibration monitoring data of three training bearings.
Tables A.1–A.3 show the size of the proposed LSTM-TDNN RUL predic-
tor in conditions 1-3. Table A.4 is the RMSE and Loss of the minibatch
of the LSTM learner during training. The errors in the training of the
TDNN learner are shown in Fig. A.3. Fig. A.4 displays the coefficient of
determination of the TDNN learner in condition 1 under HI2.
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