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Multiclass Reinforced Active
Learning for Droplet Pinch-Off
Behaviors Identification in Inkjet
Printing

Inkjet printing (IJP) is one of the promising additive manufacturing techniques that yield
many innovations in electronic and biomedical products. In IJP, the products are fabricated
by depositing droplets on substrates, and the quality of the products is highly affected by the
droplet pinch-off behaviors. Therefore, identifying pinch-off behaviors of droplets is criti-
cal. However, annotating the pinch-off behaviors is burdensome since a large amount of
images of pinch-off behaviors can be collected. Active learning (AL) is a machine learning
technique which extracts human knowledge by iteratively acquiring human annotation and
updating the classification model for the pinch-off behaviors identification. Consequently, a
good classification performance can be achieved with limited labels. However, during the
query process, the most informative instances (i.e., images) are varying and most query
strategies in AL cannot handle these dynamics since they are handcrafted. Thus, this
paper proposes a multiclass reinforced active learning (MCRAL) framework in which a
query strategy is trained by reinforcement learning (RL). We designed a unique intrinsic
reward signal to improve the classification model performance. Moreover, how to extract
the features from images for pinch-off behavior identification is not trivial. Thus, we used
a graph convolutional network for droplet image feature extraction. The results show
that MCRAL excels AL and can reduce human efforts in pinch-off behavior identification.
We further demonstrated that, by linking the process parameters to the predicted droplet
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1 Introduction

Additive manufacturing (AM) techniques draw great attentions
recently. Among various AM techniques, inkjet printing (IJP) is
undergoing enormous research development owing to its merits
such as cost-effectiveness, high-resolution, and suitability to print
different materials. Therefore, IJP shows great application potential
in fabricating various electronic and biomedical products such as
sensors and biochips [1-4].

Specifically, IJP deposits a sequence of micro-scale liquid-phase
materials (i.e., droplets) on the substrate. Then, the deposition is
solidified and the final products are formed [5]. Depending on the
way that droplets drop off, IJP can be categorized into continuous
dropping and drop-on-demand (DOD), and the latter method can
achieve higher printing resolution [6]. In this paper, we focus on
a popular DOD method, piezoelectric IJP, as shown in Fig. 1(a).
During the piezoelectric 1IJP process, the ink (i.e., liquid material)
fills the chamber, and the droplets are “squeezed” out from the
nozzle when an electrical signal is applied to the piezoelectric actu-
ator. The piezoelectric IJP process is governed by many controllable
factors, such as process parameters (e.g., voltage and back-pressure)
and ink properties (e.g., viscosity and density); and uncontrollable
factors, such as environmental conditions (e.g., temperature, humid-
ity) [7]. These factors together constitute a highly dynamic system
and result in the difficulty of achieving consistent and stable drop-
lets. The droplet behaviors can be categorized into droplet forma-
tion (e.g., droplet initiation, thinning, necking), droplet pinch-off,
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pinch-off behaviors, the droplet pinch-off behavior can be adjusted based on MCRAL.
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and droplet evolution. Among them, the droplet pinch-off behaviors
play an important role in the droplet generation, which heavily
affect the quality of the final printed products [8]. Therefore, iden-
tifying the droplet pinch-off behaviors is critical for guaranteeing
the reliability and stability of the IJP process.

Based on the location of the first pinch-off position, four types of
pinch-off behaviors can be specified, which are front pinching,
hybrid pinching, exit pinching, and middle pinching, as shown in
Fig. 1(b) [8]. Since the droplet pinch-off behaviors are critical for
different applications, such as IJP and microfluidics, several empir-
ical studies of the pinch-off behaviors have been conducted based
on different material properties and application scenarios. For
instance, Thiévenaz et al. studied the onset of heterogeneity in the
pinch-off behaviors of suspension droplets [9]. Zhu et al. studied
the dynamics of pinch-off behaviors under the influence of pressure
fluctuations [10]. Roché et al. studied the effect of surface tension
variations on the pinch-off behaviors with the presence of surfac-
tants [11].

However, the actual droplet pinch-off behaviors can deviate from
those expected under a combination of material properties and
process parameters. Meanwhile, one can easily collect a large
amount of images of droplets and try to train a machine learning
(ML) model for classifying different droplet pinch-off behaviors.
However, the training of the classification model requires labels
of images, and annotating the images can be time-consuming for
human experts. In addition, extracting features of pinch-off behav-
iors from images can be difficult since there are no well-defined fea-
tures. Thus, the objective of this paper is to help researchers identify
(i.e., classify) the droplet pinch-off behaviors by proposing a
limited-label-required ML approach integrated with an automatic
feature extraction method.
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Fig.1 The demonstrations of (a) piezoelectric IJP system (MicroFab Inc., reprinted from Ref. [5] with permission from Elsevier)
and (b) different droplet pinch-off behaviors. The upper left figure in (a) shows the piezoelectric IJP process. The different droplet
pinch-off behaviors in (b) are (i) front pinching, (ii) hybrid pinching, (iii) exit pinching, and (iv) middle pinching. The dashed
circles are the locations where the pinch-off behaviors happen. The small binary images in the bottom-right are the processed

images for the GCN feature extraction.

In this work, we adopt a graph convolutional network (GCN) to
overcome the challenge of no well-defined features for droplet
pinch-off behaviors. Graphs represent a data structure that can
model objects in nodes and their relationships in edges. As a
unique non-Euclidean data structure, a graph can model free-form
data structures without extensive feature engineering [12], hence
making the analysis highly adaptive across different morphologies
in IJP. Specifically, graph-based convolution extracts multiscale
localized spatial features over non-Euclidean domains and com-
poses them to re-construct highly expressive representations.

Furthermore, given the limitation on data labels, we leverage
active learning (AL) to iteratively acquire labels of droplet pinch-off
behaviors from human experts and update the classification model.
This process will terminate until the classifier reaches a satisfactory
performance. Meanwhile, only a limited amount of instances (i.e.,
images) are expected to be annotated to yield a certain classification
performance, which reduces the manual annotation effort. In AL,
the query strategy plays an important role since it decides which
instance to annotate. The commonly used handcrafted query strate-
gies can be classified into heterogeneity-based, performance-based,
representativeness-based, and hybrid approaches [13]. However,
most of them are rigid and not suitable to the potential dynamics
where the selected annotated instance may deviate from the most
informative one during the annotating and updating iterations
[14]. To compensate for the inflexibility of handcrafted query strat-
egies, machine-learned query strategies draw researchers’ attention
recently. By considering the query process of AL as a sequential
decision-making problem and modeling it as a Markov decision
process (MDP), reinforcement learning (RL) is used to learn a
query strategy directly from the data. Several works in different
fields have utilized AL with RL-based query strategies, for instance,
Refs. [14,15].

In this paper, we propose a multiclass reinforced active learning
(MCRAL) framework for identifying (i.e., classitying) the droplet
pinch-off behaviors in the IJP process. In particular, a multilayer
perceptron (MLP) classifier is trained in a pool-based AL fashion.
RL is used to train an intelligent agent to learn a policy based on
the interaction with the environment, i.e., iteratively annotating
unlabeled images and retraining the classifier. The deep
Q-network (DQN) with several improvements including dueling
structure, double Q-learning, and prioritized experience replay is
used for training the agent [16—19]. An intrinsic reward is further
proposed to improve the model capacity by forcing the agent to
achieve some inherent goals (i.e., intrinsic motivation). The pool
containing all of the unlabeled images is considered as the environ-
ment, and the policy determines the agent’s actions in the environ-
ment. During the training process, each time after a (batch of) new
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unlabeled image(s) is annotated by human experts, the MLP classi-
fier is retrained using all of the labeled images.

The designs of state, action, and reward are critical to RL. The
state is used to characterize the unlabeled data pool (i.e., environ-
ment) and store the information of labeled images. In AL, the explo-
ration and exploitation of the unlabeled data pool are considered as
a dilemma and need to be jointly considered [20]. In this paper,
graph density and margin are used to account for them, respectively.
The former captures the similarity of images in the unlabeled data
pool by a graph structure, and the latter captures the uncertainty
of the images in the unlabeled data pool. Besides, the labeled
images are also considered in the state to restrict their repeated
selections. The action of the agent is to update the current labeled
images by selecting an unlabeled image and annotating it with the
help of human experts in each query iteration. The reward measures
the goodness of actions and we use the difference of the cross-
entropy between two consecutive actions as a reward. Since the
agent will receive the reward from the environment during each
query iteration, we refer it as an extrinsic reward. Besides, we
further propose an intrinsic reward that is only assigned to the
agent when some conditions are satisfied (see details in Sec. 4.5).
This intrinsic reward mimics the “self-rewarding” phenomenon.
The case study shows the effectiveness of the intrinsic reward in
improving the classifier performance. The final reward consists of
the extrinsic and intrinsic rewards. By maximizing the expected
cumulative reward during the training, the agent can learn to take
actions (i.e., update the current labeled images) that improve the
classifier performance ultimately.

To illustrate the advantage of the proposed method (i.e., MCRAL
with intrinsic reward), we compare it with several benchmarks
including unsupervised ML (i.e., k-means), the classical AL with
uncertainty sampling, MCRAL without intrinsic reward, and super-
vised ML (i.e., the same classifier trained by all the data from the
training set). The results suggest that compared to AL with uncer-
tainty sampling, MCRAL achieves a better performance and the
intrinsic reward can further enhance the model performance. Unsu-
pervised ML achieves the worst classification result and supervised
ML achieves the best classification result as expected, since no label
and all labels are required, respectively. Finally, by linking the
process parameters to the droplet pinch-off behaviors predicted
from the proposal MCRAL classifier, we demonstrate the droplet
pinch-off behavior adjustments based on MCRAL.

The main contributions of this paper include:

(1) We extract features of IJP images by GCN which considers

the multiscale localized spatial features among pixels of
images.
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(2) We propose an AL framework with RL-based query strategy
to compensate for the rigidity of handcrafted query strategies.

(3) We introduce the novel intrinsic reward in reinforced
active learning (RAL) framework for multiclass image
classification.

(4) We apply the proposed method to the droplet pinch-off beha-
vior adjustments based on the learned MCRAL.

The reminders of the paper are organized as follows. We first
review related works in Sec. 2. Then, in Sec. 3, we introduce the
proposed method. In Sec. 4, the experimental details and results
are presented. Finally, we conclude the paper in Sec. 5.

2 Literature Review

2.1 Inkjet Printing Droplet Behaviors. The IJP process per-
formance is substantially dependent on the droplet behaviors [5].
Different behaviors will produce different formations of the
printed parts; hence, affecting the product consistency and repeat-
ability [21]. However, identifying these behaviors, for example,
droplet formation and droplet pinch-off behaviors is difficult to
achieve. Several empirical, analytical, and ML methods have
been explored to study the IJP droplet behaviors for process perfor-
mance enhancement [22-25].

Considerable attention has been given to empirical numbers,
namely Onhesorge (Oh), Weber (We), and Reynolds (Re) to
analyze the IJP process jettability. For instance, Jiao et al. studied
the influence of ink properties and voltage parameters on piezoelec-
tric inkjet droplet formation [22]. Here, the droplet behaviors are
correlated to material rheological properties and dimensionless
empirical numbers (i.e., Oh, We, and Re). Xu et al. developed a
phase diagram of pinch-off behaviors for piezoelectric 1JP [8].
Four types of pinch-off behaviors were devised for different algi-
nate solution concentrations. Although beneficial to understand
the droplet behaviors in IJP, the empirical methods are not suitable
for large-scale and fast droplet behaviors classification.

Analytical methods have also been implemented to study the IJP
droplet behaviors. The majority of the studies have focused on
solving the Navier-Stokes equations via the volume of fluid
approach [23,26]. For instance, Tofan et al. modeled the droplet
motion and interaction with flat surfaces in the IJP process [23].
Besides, special attention has also been given to the lattice
Boltzmann method. Zhang et al. proposed a numerical investigation
of multidroplets deposited lines’ morphology with a multiple-
relaxation-time lattice Boltzmann model [27]. These methodologies
have shown potential to analytically describe the droplet behaviors
in IJP, but they are computationally inefficient and do not consider
the uncertainties that are present in the real-world process.

Lately, ML methodologies have been demonstrated in the IJP
process. Andalib et al. used classification and regression methods
to analyze the time-dependent behavior of a methanol droplet at dif-
ferent levels of environmental humidity and temperature of the sub-
strate [28]. Wang et al. tried to estimate the droplet volume in IJP by
a data-driven autoregressive exogenous (ARX) model with the help
of a droplet volume adjuster [29]. They modeled the droplet pinch-
off instants and droplet velocities in polynomials with respect to the
drive waveform. Huang et al. proposed a spatiotemporal fusion
network to identify the droplet formation behaviors in the IJP
process using video data [24]. Two streams of the networks were
used to deal with spatial and temporal features of droplet formation
behaviors, respectively.

It can be seen that though there are some empirical studies of the
droplet pinch-off behaviors in the IJP process, the identification of
them through ML models with limited labels is not studied.

2.2 Graph Convolutional Networks for Image
Classification. Extracting proper features plays an important role
in image classification tasks, and researchers usually use user-
defined features to incorporate domain knowledge [30] or use con-
volutional neural networks (CNNs) for general feature extraction
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[31]. However, the former one is limited to specific tasks, and the
latter one suffers from the fixed number of neighboring pixels for
one pixel and the fixed scanning order when conducting convolu-
tion operation, which cannot deal with spatial relationships
among different pixels [32].

The power of tackling irregular spatial information enables graph
convolutional networks (GCNs) to address the aforementioned dif-
ficulty that CNNs faced. Extensive studies have been performed on
GCN-based hyperspectral image classification. For instance, Hong
et al. proposed a minibatch GCN to address the large-scale training
issue of GCNs [33]. They used GCN to extract the middle- and
long-range spatial correlations between samples. Since CNNs can
extract different features (i.e., short-range spatial correlations) com-
pared with GCN, they also tried to fuse CNN and GCN features to
further improve the model capacity. Mou et al. proposed a nonlocal
GCN framework, of which the whole hyperspectral image was rep-
resented as a nonlocal graph [34]. Specifically, each vertex in the
graph represented a pixel in the image. Then, the graph convolution
was performed on the nonlocal graph. In this paper, we use GCN to
exact features for the morphologies of the droplet pinch-off
behaviors.

2.3 Reinforced Active Learning. AL is getting more and more
attentions due to its ability to reduce annotating efforts in different
domains, such as image classification [35], experimental design
[36], and manufacturing field [37,38]. For instance, Yue et al. incor-
porated the measurements’ uncertainties into AL to improve the
model prediction capacity for the shape control of composite fuselage
[37]. Lee et al. developed a new AL method considering the physics
constraints of engineering systems [38]. In the classical AL frame-
work, the query strategy is always fixed and may not be appropriate
during the dynamic query process. Many researchers try to address
this issue by combining RL with AL. This is because AL can be
viewed as a sequential decision-making task whereas RL can be
used as a query strategy. Several works have been proposed to
demonstrate the feasibility of combining RL with AL. For instance,
Liu et al. studied the person re-identification task by performing
RAL [39]. They used a graph structure captured the similarity of
images as the state, and selecting the next image was considered as
the action. The reward was a hard triplet loss which measured the
uncertainty value of the selected image. Casanova et al. used RAL
for image segmentation [40]. The predictions and the prediction
uncertainties of the segmentation model on a representative subset
were used as the state. The action was to annotate a pixel-wise unla-
beled region. The improvement of the segmentation performance
measured by Intersection-over-Union on another subset after updat-
ing the segmentation model was used as the reward signal.

The combination of RL with AL also has been applied to other
tasks, for example, anomaly detection [41]. Since different tasks
require different designs of state, action, and reward, there is no uni-
versal RAL framework. Besides, inspired by how human beings or
animals learning skills, the concept of intrinsic motivation is intro-
duced in RL to encourage the agent exploration [42]. Some studies
have incorporated an additional intrinsic reward to help the agent
obtain more information of the environment, such as Refs.
[43,44]. However, the intrinsic motivation has not been introduced
in RAL works reviewed above.

In summary, the identification of droplet pinch-off behaviors in
the IJP process has not been well studied yet. To address the draw-
backs that the existing supervised ML methods rely on a large
number of labels and there are no well-defined features to describe
the droplet pinch-off behaviors from images, we perform GCN to
extract features and propose an MCRAL framework enhanced by
the intrinsic reward for the pinch-off behaviors classification.

3 Multiclass Reinforced Active Learning

3.1 Opverview of the Proposed Framework. Figure 2 shows
the proposed MCRAL framework. After data collection, we first
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Fig. 2 The proposed MCRAL framework

perform feature extraction on the collected images by using GCN
(see details in Sec. 4.1). Then, we perform MCRAL to train a multi-
class classifier for the pinch-off behaviors identification task. The
agent will select the most informative image during each iteration.
Since DQN has shown its success for the tasks with discrete action
space, we develop a variant of DQN which incorporates several
improvements including dueling structure to improve the estimation
precision, double Q-learning to mitigate the overestimation, and pri-
oritized experience replay to train the agent [16-19].

Algorithm 1 Multi-class Reinforced Active Learning (MCRAL)

Input : The environment X,, and the query budget
Output: Updated MLP classifier
Initialize: The MLP classifier, the state, and the

reward
1 for each query process do
2 for each query iteration in the query process do
3 Select x; from X, following e-greedy policy
and receive its label from human expert;
4 Update the MLP classifier using all the

current labeled images;
Observe S;41 according to Egs. (7) - (8) and
Ry according to Egs. (9) - (13);

o

6 Save the tuple (S;,A;,R;,S;+1) into the
replay buffer;

7 for each update step of Dueling Double DQN

do

8 Sample a minibatch of tuples from the
replay buffer according to priority;

9 Calculate the target according to Eq. (6);

10 Perform stochastic gradient descent to solve
Eq. (3);

11 Update the parameters of the online
Q-network;

12 Update the parameters of the target

Q-network every T steps.

As shown in Algorithm 1, the proposed framework begins with
several initialization including initializing the -classifier (i.e.,
MLP), the state, etc., with the randomly selected unlabeled
images. Next, during each query iteration in a query process (i.e.,
exhaust the query budget), the agent will take action A, i.e.,
select an unlabeled image following its policy # and annotate it as

071002-4 / Vol. 145, JULY 2023
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either “front pinching,” “hybrid pinching,” “exit pinching,” or
“middle pinching.” After the classifier is updated by using all the
current labeled images, the agent will observe a new state Sy
and a reward signal

R, Then, the transitions, i.e., S;, A;, R;, S;;1, will be saved into the
replay buffer. Once exhausting the query budget, the query process
will be terminated. Meanwhile, the agent will update its parameters
by performing stochastic gradient descent. The algorithm ends until
the predefined number of query processes is reached. The details of
the proposed framework will be introduced as follows.

3.2 Active Learning. AL is a type of ML technique that aims
at using a small number of labels to train a model with good perfor-
mance [13]. It provides a general framework to involve human
intervention during model training for both classification and
regression tasks. Specifically, AL is comprised three components,
model (i.e., classifier or regressor), query strategy, and human
expert. Model can be any supervised ML method and it is selected
or developed based on the certain task. Query strategy is the core of
AL and it is responsible for selecting the most informative instances
to maximize the model’s improvement. Human expert helps with
annotating the instances selected from the query strategy. Because
of the ability of AL that reduces the required amount of labeled
data for training a model, it gains great attention in many fields in
which annotating costs are high. We utilize the AL framework for
identifying the droplet pinch-off behaviors and integrate RL into
it as the query strategy, which will be introduced later.

3.3 Graph Convolutional Network. Graphs are a kind of data
structure for dealing with unstructured data via representing data
points by a set of nodes and their relationships by edges. GCN
first transforms the graph to the spectral domain by conducting
the graph Fourier transform and performing the convolution opera-
tion. Then, the results are transformed back from the spectral
domain by conducting the inverse graph Fourier transform [45].

Given an undirected graph G with N nodes, where each node has a
D-dimensional feature vector, the node feature matrix of G can be
formed as X € R™P. Besides, an adjacency matrix A of the graph G
characterizes the relationships among nodes. Then, considering a mul-
tilayer GCN model, its layer-wise propagation rule is defined as [45]

1/2~ ~-1/2

H"D = (D™ "AD™ ""HOW") (1)

where A = A + Iy. I is the identity matrix with the dimension of N x
N. D is the degree matrix of A and is calculated as Djj = Z_;Aij- H"e
R™P is the extracted features of G in the ith layer of GCN and H® =

Transactions of the ASME

NUBW/6825669/200 1 20/2/SY L /pd-ajonue/eousiosbulinioenuew/B10 swse: uoios||ooje)bipswse//:dpy wolj papeojumod

L Svl

€202 1990300 6 U0 Jasn qi elb10e9 JO Aun Aq ypd-z001 L0



X. W is the wei ght matrix for the /th layer. o(-) is the activation func-
tion, for example, rectified linear unit (ReLU).

Thanks to the capacity of GCN in extracting irregular spatial
information, we apply GCN to each droplet pinch-off behavior
image to obtain the droplet pinch-off morphology features. These
morphology features will be used in the later MCRAL framework.

3.4 Deep Reinforcement Learning. The success of DQN that
achieved human-level control in several video games draws great
attention [16]. By combining neural networks with a classical RL
algorithm, i.e., Q-learning, DQN is able to handle high dimensional
action/state space. Specifically, DQN is comprised two Q-networks
with the same network structure, which are named as online
Q-network and target Q-network, as shown in Fig. 2. The online
Q-network Q(S,, A; 6,) is used to calculate Q-values at each time-
step t. The target Q-network is used to freeze the target value
when training the online Q-network via stochastic gradient
descent. The target is defined as [17]

YtDQN =R + J/méix O(Si41, a; 0,) )

where y discounts the future rewards. @, is the parameter copied
from 6, in online Q-network every 7 steps, and a is the selected
action. The loss function for training the online Q-network is

defined as

L@) = (Y, — O, a; 0,))° A3)

where Y, = Y,D ON The calculated Q-values are used to measure how

good (or bad) to take an action under the current state. Then, the
policy #(A/S,) is derived from the Q-values. In particular, DQN
uses e-greedy policy which randomly selects an unlabeled image
with probability e or selects an unlabeled image according to the
maximum Q-value with probability 1 — e. Besides, an experience
replay is performed for DQN which saves the collected transitions
(i.e., S;, A, R;, S;41) during the online Q-network training. By ran-
domly sampling a batch of transitions from the experience replay to
train the online Q-network, the correlations in the transitions can be
reduced. The experience replay also enables the agent to learn from
the preceding policies.

Though DQN has a powerful capacity, several improvements are
proposed to further enhance it. Double DQN has the same network
structure as DQN but only changes the target definition as [17]

Y = Ryt + YQ(St+ls arg max O(Si+1, a; 0,); 0,‘) 4)

The loss function for training the agent is the same as DQN (i.e.,
Eq. (3)), other than replacing Y, with YPPN 1t incorporates the idea
from double Q-learning which uses two different networks to eval-
uate and select actions. This decoupling of the evaluation and the
selection of actions mitigates the overestimation problem of
DQN, where the max operator uses the same network to select
and evaluate an action.

Dueling structure further improves the estimation of Q-values via
replacing the last fully connected layer of the Q-networks by two
fully connected layers which are used to separately estimate the
state value function and the advantage function [18]. The intuition
of the dueling structure is that the estimation of each action may not
be necessary at some time-steps. By aggregating the two estimates
of the state and the advantage, the estimation of the Q-values can be
more precise. Specifically, it is defined as [18]

oSy, a; 0, ay, ﬂ;) =V(S; 6, ﬂ;) +A(S;, a; 6,, &)

1
] 2o A1 2 0 a) ®)

where V(S;; 0,, B,) and A(S,, a; 0,, «,) represent the state value func-
tion and the advantage function, respectively. @, and f, are the
parameters of the two fully connected layers.

Journal of Manufacturing Science and Engineering

The prioritized experience replay improves the way that DQN
samples transition [19]. In DQN, the transitions are randomly
sampled which ignores their priority. However, the transitions are
not of the same importance for training the agent. The main idea
of the prioritized experience replay is to increase the sampling prob-
ability of the transitions from whom the agent can learn more. This
results in a faster learning speed and a better policy.

By combining all the above-mentioned improvements with the
original DQN, we get our final target Q-value defined as

VI = Ryyt +70(Sivr, argmax O(Suv1, a 0, i, 8); 07 a7 ;)
©

where a; and §, are the parameters of dueling structure when com-
bining with double Q-learning.

3.5 State, Action, Reward. We introduce the details of the
designs of state, action, and reward in the following.

3.5.1 State. The state consists of two parts, the characterization
of the unlabeled data pool by graph density and margin, and an indi-
cator vector indicating whether the image is annotated or not. The
former one is used to select the next unlabeled image to be anno-
tated, and the latter one is used to restrict the repeated selections
of the already labeled images. We introduce the details next.

Graph density (Gra) captures the exploration of the unlabeled
data pool by introducing a k-nearest neighbor graph, where k repre-
sents the amount of nearest neighbors and each node of the graph
represents one image. Gra is defined as [20]

D Wi
2 Hj
x;€ R denotes the features of image i in the unlabeled data pool.
H;j = max (I:Iij, H i) where ﬁ,y = 1 indicates the Manhattan distance
d(x;, x;) between x; and x; is among the k smallest distances of x;. W
is calculated as W;;= Hexp(—d(x;, xj)/202), The graph density is
updated by Gra(x;)= Gra(x;) — Gra(x;)H; [20]. This operation
reduces the weights of the directly connected neighbors for the
selected x;. Thus, it avoids the repeated selection from the same
region of the unlabeled data pool.

Margin (Mar) characterizes the exploitation of the unlabeled data
pool based on the prediction uncertainty since instances with larger
uncertainty are near the classification boundary. Considering the
predicted labels of image i for multiclass classification task with
the highest probability J;; and the second-highest probability J;,
margin is defined as [20]

Mar(x;) = Pi11x;) — PG |x:) (8

Besides, an indicator vector of the same length of the unlabeled
data pool is used to keep track of which of them are being
labeled, and to avoid the repeated selections of them. If one
image is being labeled, then the corresponding entry of the indicator
vector equals to 1, otherwise, 0.

Finally, the graph density, the margin, and the indicator vector
together constitute the state, which is a three-column matrix and
the number of rows is the same as the number of images.

Gra(x;) = (@)

3.5.2 Action. We refer actions to the updates of current labeled
images by first selecting an unlabeled image from the unlabeled data
pool according to the query strategy, and then annotating it by
human experts. It is worth noting that the initial action space is
the same as the unlabeled data pool. Since the unlabeled images
can only be selected and annotated once, the indicator vector in
the current query process is used to restrict the repeated selections.
Once the query number reaches the budget, the query process will
be terminated.
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3.5.3 Reward. RL learns a good policy by maximizing the
cumulative discounted future reward, thus, the design of the
reward is of importance to achieve a good model performance.
Here, the reward is defined as

Rf = RZEXU"IHSIC + R;lelﬂSlC (9)

where R represents the extrinsic reward the agent received
from the environment at each time-step 7 (i.e., during each query
iteration), and Rit“"i“Sic denotes the proposed intrinsic reward,
where the intuition is the “self-rewarding” of the agent.

The extrinsic reward is calculated as the difference of the cross-
entropy on a validation data set between two consecutive query iter-
ations:

RS = CF,_| — CE, (10)
where CE = — ZCC:I riclog(gi.) is cross-entropy. Here, C repre-
sents the number of different classes and 7, is a binary indicator
which equals to 1 if the classification for the instance i of class ¢
is correct, otherwise, 0. g;. is the prediction probability for the
instance 7 of class c. The utilization of the validation data set for cal-
culating the extrinsic reward can also be seen in other RAL works,
for example, Refs. [15,40]. Since the extrinsic reward will be pos-
itive if the cross-entropy is reduced, therefore, it will promote the
agent to take actions (i.e., select unlabeled images and annotate
it) that can improve the classification performance.

Besides, the agent will receive an intrinsic reward if some condi-
tions are satisfied during each query iteration. To define this intrin-
sic reward, let us first visit some terms to quantify the classification
performance, i.e., F1, F1¥9€" and F1™" F] represents F1 score
and is calculated as

2 x precision * recall
Fl= — an
precision + recall

where precision =true positive/true positive + false positive and
recall =true positive/true positive + false negative, respectively.
F1veiehed represents weighted F1 score and it considers sample
imbalance:

C
FIMEed =% " 5 F (12)

where r; is the ratio of instances for each class among the total
instances, and F1; is the F1 score for the ith class. F1™" is the
minimum F'1 score among all classes.

Since the pinch-off behaviors identification task is a multiclass
classification task, we are not only interested in the overall perfor-
mance of the classifier but also its lower-bound performance.
Thus, we use F1%€" to measure the overall classifier perfor-
mance and F1™" to measure the worst performance of the classifier
on one class. Then, the intrinsic reward is defined as

m, Flweighted(t) > n, Flmin(l‘) >z

0, otherwise (13)

R;nlrmslc = {
Here, m is the amount of the intrinsic reward. F1'€"*%(r) repre-
sents the F'1 score weighted by the number of instances in each class
of the validation data set during query iteration 7. F1™"(¢) is the
minimum F1 score among all of the classes of the validation data
set durmdg query iteration ¢. n and z refer to the thresholds of
F1¥eighted(ry and F1™™(r), respectively. See details about the mech-
anism of the proposed intrinsic reward as well as the selections of
m, n, and z in Sec. 4.5.

3.6 Multilayer Perceptron Classifier. MLP is a kind of artifi-
cial neural networks which mimics the biological neural networks
[46]. It consists of three different layers of neurons, including
input layer, hidden layer, and output layer. During the calculation,
the nonlinear activation function enables the MLP to capture the

071002-6 / Vol. 145, JULY 2023

Table 1 The ranges of the IJP process parameters for data
collection

Process parameters Low levels High levels
Back-pressure (in H,O) -6 -3
Dwell voltage (V) 48.1 70
Dwell time (us) 28.2 35.8
Echo voltage (V) =70 —48.1
Echo time (us) 56.5 71.6

nonlinearity of the input data, which improves the inference capac-
ity of the MLP. MLP is fully connected, in other words, all the
neurons in the current layer are connected to all the neurons in
the following layer with certain weights. MLP is trained in a back-
propagation way, in which the gradient of the loss function is used
to update the weights (and the biases) of the neurons. MLP is flex-
ible and powerful since the number and the breadth of the hidden
layers can be modified to adapt to different data complexity.

4 Case Study

4.1 Data Acquisition and Preprocessing. We collect the
images by performing the experiments under diverse combinations
of process parameters shown in Table 1. As shown in Fig. 1(b), the
droplets are “squeezed” out from the micro-dispensing nozzle
(100 pm diameter) when an electric signal with trapezoidal wave-
form is applied to the piezoelectric actuator. In total, 94 experiments
with different combinations of parameters are conducted. A CCD
camera (Sensor Technologies Inc.) enhanced by a magnifica-
tion lens is used to capture the droplet images with a resolution of
480 x 640 pixels. For one experiment, the image stream includes
droplet generation, pinch-off, and evolution. Since we focus on
the pinch-off phenomenon, only the frames where the pinch-off
phenomenon happens are collected. In total, we obtain 436
images including 157 exit pinching, 150 front pinching, 81
hybrid pinching, and 48 middle pinching. The original data set
can be accessed at the link shown below.”

After data collection, the acquired images are processed and go
through feature extraction. First, the original images are resized
and binarized to reduce the number of pixels and remove the back-
ground (see Fig. 1(b)). Then, a graph based on the pixel coordinate
pairwise Manhattan distance is built for each processed image. Intu-
itively, the pixels that have a smaller distance on the image should
have a stronger connection on the graph. Therefore, for each image,
the adjacency matrix (A) of the corresponding graph is calculated as
A(l, j)=exp((liy —ji1 +1i» —jzl)”z), where i represents the ith pixel
of the image, and i; and i, represent the x and y coordinates
of the pixel. Also, we define A(i, j)=0, if A, j)<0.0001 or
A(i, j)=1. By doing so, the pixels that are too far away from
each other will be considered as having no linkage, and the pixels
have no linkage with themselves.

It should be noticed that the intuition of converting original
pinch-off images to graphs is that different droplet pinch-off behav-
iors have no explicit features but have similar topologies (i.e., geo-
metric features). Since GCN is powerful to deal with nonstructural
data (e.g., graph), therefore, we next perform GCN on the built
graphs to extract geometric features. Specifically, a GCN with
two convolutional layers and one global sum pooling layer is con-
ducted on each graph to extract features from each processed image.
256 channels and the ReLU activation function are used in each
convolutional layer. By stacking multiple convolutional layers,
the center nodes can be updated by the distant nodes with no
direct linkage. As a result, GCN is able to extract high-level abstract
features of the graph.

2htlps://ereaLm.eng.buffalo.edu/publicfdata/D1'0plc=,17Datzlset.zip
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To fully utilize the label information of the validation data set, it
is not only used for calculating the rewards but also used for training
the GCN. Specifically, the validation data set which includes five
images for each class is randomly split into GCN training and
GCN testing data set by the ratio of 6:4 every 50 GCN training iter-
ations. Such a re-splitting of the validation data set every 50 itera-
tions will exploit full information of the validation data set to
train the GCN. Then, an MLP classifier with two hidden layers
(128 neurons in each layer and ReLU as the activation function)
is trained on the GCN training data set every 10 GCN training iter-
ations. During other GCN training iterations, the weights of the
MLP classifier are fixed. This delayed update of the MLP classifier
avoids the oscillation of the loss for training the GCN. The cross-
entropy loss of the MLP classifier on the GCN testing data set is
used to update the GCN weights via stochastic gradient descent.
Both the learning rates for training the GCN and the MLP classifier
are set to 0.001.

After 1000 GCN training iterations, the GCN features that result
in the highest weighted F1 score on the GCN testing data set are
used for the following MCRAL experiments. Finally, we get 256
features for each graph (i.e., image).

It should be pointed out that though some works visualized GCN
features to help interpret their results, in most of them, the nodes
have features that support node-level interpretation and enable
feature visualization [47-49]. However, in our case, the nodes in
the graphs are the pixels in the corresponding images, thus, those
nodes do not have node features. Besides, the obtained GCN fea-
tures are high-level abstract and each entry in the feature vector
does not have physical meaning. Therefore, the visualization of
these features is challenging.

4.2 Experimental Details. We implement our proposed
MCRAL framework based on modAL [50] and Tianshou [51].
The main parameters of MCRAL are shown in Table 2. The
Adam optimizer and ReLU activation function are used for the
Q-networks in RL.

For conducting the experiment, we randomly split the images
excluding the validation data set into the training data set and the
testing data set by the ratio of 8:2. 8 randomly selected images
(i.e., two images from each class) from the unlabeled data pool
are used for the initialization of the MLP classifier (i.e., two
hidden layers with 128 neurons in each layer and ReLU as the acti-
vation function). 30 query iterations are conducted for one query
process and five query processes in total are conducted for the train-
ing of MCRAL. We repeat the above procedures for 50 replications
and report the average and standard deviation of the classification
results over replications.

To fairly compare MCRAL (i.e., MCRAL without intrinsic
reward) with AL (i.e., AL with uncertainty sampling), we allow
AL to obtain the same number of labels and be initialized by the
same images as MCRAL does. Then, the classifier is trained
based on all the labeled images including those in the validation

Table 2 Parameters of MCRAL

Parameters Values
Number of hidden layers 3
Number of neurons in each hidden layer 256, 256, 256
Number of nearest neighbors in graph density (k) 10
Query budget 30
Learning rate for the agent 0.001
Discount factor 0.99
Batch size for updating the agent 8
Size of the prioritized replay 500
Prioritization exponent of the prioritized replay 0.5
Importance sample soft coefficient of the prioritized replay 0.5

e for the e-greedy policy 0.1
Agent update frequency (z) 10

Journal of Manufacturing Science and Engineering

data set, the initialization images, and the queried images. The clas-
sification performance is obtained by applying the classifier to the
testing data set. To examine the contribution of the intrinsic
reward, we directly incorporate it (m=0.5, n=0.45, and z=0.2,
see Sec. 4.5 for justifications) in MCRAL without intrinsic
reward with other setup remains the same. The added intrinsic
reward will affect the selection of unlabeled images as well as the
number of required labels.

4.3 Experimental Results. As mentioned above, we first
obtain tuned GCN features of images and then conduct the experi-
ments. Specifically, we compare our proposed MCRAL framework
(i.e., MCRAL with intrinsic reward, denoted as MCRAL_intrinsic)
with several benchmarks including AL with uncertainty sampling
(denoted as AL) and MCRAL without intrinsic reward (denoted
as MCRAL). Furthermore, unsupervised ML (i.e., clustering by
k-means) and supervised ML (i.e., exhausting all the labels of train-
ing data set) are applied to the data set, which serve as the lower
bound and the upper bound of the classification performance,
respectively. For unsupervised ML, since the labels and the clusters
are not one-to-one correspondence, its result is selected as the
highest weighted F1 score among all the label combinations [30].
Besides, to demonstrate the effectiveness of training GCN using
the validation data set, we perform the same supervised ML as
above using the untuned GCN features (i.e., the features extracted
with randomly initialized GCN weights) and compare it with super-
vised ML using tuned GCN features.

The classification results and label utilization comparisons are
shown in Fig. 3. The boxplots are the weighted F1 score for differ-
ent methods over 50 replications. The triangles and the short hori-
zontal lines represent the means and the medians of the weighted
F1 score, respectively. The histogram shows the average number
of labels used by each method. We can observe that unsupervised
ML has the worst classification result since no label is used.
MCRAL achieves a higher weighted F1 score than AL when the
same number of labels are used due to its ability of handling the
dynamics during the query process. The intrinsic reward can
further improve the classifier performance. Supervised ML
reaches the best classification performance as expected since it
requires annotating all of the unlabeled images. On the contrary,

Average Weighted F1 Score on Testing Data Set for Different Methods
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Fig. 3 Model performance and number of labels used for differ-
ent methods. The boxplots are the weighted F1 score for each
method, and for the clustering, it is the highest weighted F1
score among all the possible label combinations. The histogram
is the number of required labels used in training each method.
The last two columns show the results of the same supervised
ML setting by using untuned GCN features and tuned GCN fea-
tures, respectively. The exact weighted F1 score and the stan-
dard deviation (i.e., numbers in the parentheses) are shown in
the figure.
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F1 Score on Testing Data Set of Each Droplet Pinch-off Behavior Class for Different Methods
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Fig.4 The F1 score on the testing data set of each droplet pinch-off behavior class for different methods with 50 replications.
Different colors represent different droplet pinch-off classes, and the numbers in the parentheses are the number of images of
that class. In each class, the boxplots from left to right show the classification results of AL, MCRAL, MCRAL with intrinsic

reward, and supervised ML, respectively.

only around 18% (including the validation data set) labels of the
unlabeled images are required by MCRAL. The results show the
ability of MCRAL to achieve a relatively good classification perfor-
mance with a limited number of annotated labels. Besides, the fifth
column is the result for supervised ML using untuned GCN fea-
tures. By comparing it with the last column, it shows the effective-
ness of training GCN by using the validation data set.

The detailed classification performance of AL, MCRAL, MCRAL
with intrinsic reward, and supervised ML on the testing data set of
each droplet pinch-off behavior class is shown in Fig. 4. In Fig. 4,
each box represents one droplet pinch-off behavior class and the
numbers in the parentheses are the number of images in that class.
The boxplots represent the F1 score of different methods with 50 rep-
lications under the same experimental setting described above. It can
be seen that all of these four methods have a higher F1 score for the
exit pinching and the front pinching, compared to the hybrid pinching
and the middle pinching. This is because the numbers of images of
the exit pinching and the front pinching classes are much larger
than the hybrid pinching and the middle pinching classes. In addition,
the phenomenon that the exit pinching and the front pinching only
have one pinch-off position while the middle pinching and the
hybrid pinching have multiple pinch-off positions leads to the
easier classification of the former two pinch-off classes and more
classification difficulty in the later two pinch-off classes. Besides,
compared to AL, the main improvement of MCRAL and MCRAL _
intrinsic also occurs in the exit pinching and front pinching, where the
F1 score is increased dramatically. This phenomenon suggests that
the RL-based query strategy is able to dynamically select the
instances that benefit the classifier most. The supervised ML classifi-
cation results show the upper bound F1 score for each class.

4.4 Pinch-Off Behavior Adjustment Based on Trained
MCRAL Classifier. In this section, we further apply the trained
MCRAL classifier to the inkjet printing droplet pinch-off behavior
adjustments, by linking the IJP process parameters to the droplet
pinch-off behaviors.

To achieve this, we first predict labels of the testing data set by
using the trained MCRAL classifier. Then, we build another MLP
classifier to link the process parameters (i.e., back-pressure, dwell
voltage, and dwell time) to droplet pinch-off behaviors. In addition

071002-8 / Vol. 145, JULY 2023

to the testing data set, all of the available labels during the query
process are also used including validation data set and queried
data set. This MLP classifier is learned by stochastic gradient
descent. Then, one can adjust the process parameters to change
the pinch-off behaviors according to the learned MLP classifier.
As an illustration, Fig. 5(a) shows the phase diagram at back-
pressure of —4.5 (see phase diagrams under other back-pressures
in Supplemental Material Fig. S1 available in the Supplemental
Materials on the ASME Digital Collection). Figure 5(b) shows
our experimental demonstration to adjust the pinch-off behaviors.
At the back-pressure of —4.5, we adjust the dwell voltage and the
dwell time to make the droplet front pinch-off. Then, we adjust
the dwell voltage and the dwell time to change the droplet pinch-off
behavior in the order of exit pinching, hybrid pinching, and middle
pinching. In Fig. 5(a), the pentagrams are the parameters for dem-
onstrating different pinch-off behaviors, and the Roman numerals
show the parameter changing order. The corresponding pinch-off
behavior images are shown in Fig. 5(b). This application demon-
strates the feasibility of adjusting droplet pinch-off behaviors and
the significance of identifying droplet pinch-off behaviors in IJP.

It should be noticed that the phase diagram can be considered as a
reference for pinch-off adjustment rather than ground truth since it
is generated using the collected data at our specific setup. Besides,
as long as the printing mechanism is the same, based on our expe-
rience and previous experimental results, the phase diagram will be
similar if we change the nozzles and the printer from the same
vendor.

4.5 Analysis of Intrinsic Reward. We provide a detailed
explanation of the intrinsic reward and its parameter selection in
this section. To select the parameters of the intrinsic reward, a
small number (e.g., five) of experiments of MCRAL without intrin-
sic reward are needed. In a nutshell, the intrinsic reward can provide
the agent with additional information when some conditions are sat-
isfied, and these information will help the agent select those more
valuable unlabeled images for annotation. Specifically, the intrinsic
reward increases the final reward according to Eq. (9) and further
increases the target Q-value according to Eq. (6). When performing
stochastic gradient descent to train the agent by solving Eq. (3), the
online Q-network will tend to update its parameters close to the
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(a) Phase Diagram (Back-pressure=-4.5)
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Fig.5 Demonstration of droplet pinch-off behavior adjustments: (a) the phase diagram when
the back-pressure equals to —4.5. (See phase diagrams under other back-pressures in Supple-
mental Material Fig. S1 available in the Supplemental Materials) Different colors represent dif-
ferent droplet pinch-off classes. The pentagrams are the parameters for demonstrating
different pinch-off behaviors. The dashed arrows and the Roman numerals show the parame-
ter changing order and (b) the corresponding pinch-off behavior images when changing
parameters: (i) front pinching, (ii) exit pinching, (iii) hybrid pinching, and (iv) middle pinching.
The dashed circles mark the pinch-off positions.
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Fig.6 The sensitivity study of m, n, and z of the intrinsic reward: (a)—(c) the boxplots of the weighted F1 score of MCRAL with an
intrinsic reward on testing data set when changing m, n, and z: (d)—(f) the distribution of rewards, the weighted F1 score on the
validation data set, and the minimum F1 score among all the classes on the validation data set after each query iteration when

conducting MCRAL without intrinsic reward.

target Q-value. If the transitions (i.e., S;, A;, R, S;41) including the
intrinsic reward are sampled during the training, then the agent
will tend to update its parameters to take those actions that can gen-
erate larger Q-values due to the help of the intrinsic reward.

A sensitivity study is further conducted for the justifications of
selecting the parameters of the intrinsic reward (i.e., m, n, and z),
as shown in Fig. 6. Each column is the sensitivity study for one
parameter. First, we study the impact of the amount of the intrinsic
reward, namely m. We fix n=0.45 and z=0.2, and set m equals to
0.125, 0.25, 0.5, 1, and 2, which cover the range of the rewards. The
corresponding classification results are shown in Fig. 6(a). The tri-
angles and the short lines in the boxplots represent the average

Journal of Manufacturing Science and Engineering

weighted F1 scores and the median scores, respectively. The hori-
zontal dashed line is the average weighted F1 score when m=
0.5. We can observe that m=0.5 results in the best classification
performance. It can be explained with Fig. 6(d), which shows the
distribution of the reward that the agent received after each query
iteration when performing MCRAL without intrinsic reward. In
Fig. 6(d), we can observe that most rewards fall into the range of
—1.5 to 1.5 and they are all extrinsic rewards according to
Eq. (9). m=0.5 can offset the majority of negative extrinsic
rewards (see the location of —0.5 represented by the vertical
dashed line) and can be comparable with most positive extrinsic
rewards. In other words, the intrinsic reward can play a role in
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Eq. (9), which provides a positive feedback to the agent when the
predefined conditions are satisfied, even if the selected unlabeled
image leads to the increase of the cross-entropy.

Next, we study n by fixing m = 0.5 and z=0.2, and vary n from 0.3
to 0.6 with an interval of 0.05. n is the threshold of the average
weighted F1 score which represents the overall classification perfor-
mance of the classifier, and these numbers are the potential targets.
The corresponding classification results are shown in Fig. 6(b). It
can be seen that n=0.45 (see the horizontal dashed line) results in
the best classification performance. This result can be explained in
Fig. 6(e), which shows the distribution of the weighted F1 score of
the validation data set after each query iteration when performing
MCRAL without intrinsic reward. We can observe that in Fig. 6(e),
an appropriate amount of the weighted F1 score can achieve the
threshold if n#=0.45 (represented by the vertical dashed line). In
other words, receiving the intrinsic reward is not too difficult or too
easy for the agent, which assures no abuse of the intrinsic reward.

Finally, we focus on the worst classification performance among
all the classes measured by the minimum F1 score and z is the
threshold. Similar as the study of m and n, we first fix m=0.5
and n=0.45, respectively, then set z to be 0, 0.1, 0.2, 0.3, and
0.4. Figure 6(c) shows the corresponding classification results. It
can be seen clearly that z=0.2 leads to the best classification perfor-
mance. Figure 6(f) is responsible for the interpretation of this result
and it shows the distribution of the minimum F1 score among all the
classes on the validation data set after each query iteration when
performing MCRAL without intrinsic reward. The vertical dashed
line represents the location of z=0.2. Similar as the previous dis-
cussion, this value leads to a proper number of intrinsic reward
being assigned to the agent, which makes the intrinsic reward
play a role but not overwhelm the extrinsic reward.

5 Conclusion

IJP is a promising AM technique that is highly dynamic and the
droplet pinch-off behaviors heavily affect the quality of the printed
products. There is a need to identify the classes of pinch-off behav-
iors from the droplet pinch-off images. However, the labeling of
these images can be burdensome if done manually. In this paper,
we use GCN to extract features from the images. Furthermore, we
propose an MCRAL framework with a unique intrinsic reward to
train a multiclass classifier for the droplet pinch-off behaviors iden-
tification, which saves the annotation efforts. The classification
results show the ability of MCRAL to achieve a relatively good clas-
sification performance with limited annotating effort. Based on the
trained MCRAL, we further link the pinch-off behaviors with the
inkjet printing process parameters and demonstrate the pinch-off
behavior adjustments during the inkjet printing guided by MCRAL.

There are several directions that we will pursue in the future. First,
we will build the process-quality model between the process param-
eters, the droplet pinch-off behaviors, and the morphology of 1JP
printed products. Second, we will perform the process control by
building controllers based on the process-quality model.
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