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ABSTRACT

Inkjet printing (IJP) is an additive manufacturing process ca-
pable to produce intricate functional structures. The IJP process
performance and the quality of the printed parts are considerably
affected by the deposited droplets’ volume. Obtaining consistent
droplets volume during the process is difficult to achieve because
the droplets are prone to variations due to various material prop-
erties, process parameters, and environmental conditions. Ex-
perimental (i.e., IJP setup observations) and computational (i.e.,
computational fluid dynamics (CFD)) analysis are used to study
the droplets variability; however, they are expensive and compu-
tationally inefficient, respectively. The objective of this paper is to
propose a framework that can perform fast and accurate droplet
volume predictions for unseen IJP driving voltage regimes. A
two-step approach is adopted: (1) an emulator is constructed
from the physics-based droplet volume simulations to overcome
the computational complexity and (2) the emulator is calibrated
by incorporating the experimental IJP observations. In particu-
lar, a scaled Gaussian stochastic process (s-GaSP) is deployed
for the emulation and calibration. The resulting surrogate model
is able to rapidly and accurately predict the IJP droplets volume.
The proposed methodology is demonstrated by calibrating the
simulated data (i.e., CFD droplet simulations) emulator with ex-
perimental data from two distinct materials, namely glycerol and
isopropyl alcohol.
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1. INTRODUCTION

Additive manufacturing (AM) is an advanced manufactur-
ing technique that has undergone extensive development since it
emerged in 1987 [1]. Moreover, some AM techniques (e.g., mate-
rial extrusion, inkjet printing, etc.) have been extensively applied
since they have overcome the limitations of traditional manufac-
turing techniques (e.g., material waste, geometrics design, etc.);
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hence, expanding the AM applications spectrum. However, AM
still suffers from defects, such as dimensional inconsistency and
stair-stepping effect, as a result of the layered structure, which af-
fects the quality of the printed parts. Here, multiple efforts have
been proposed to ameliorate the AM deffects [2-5]. Among the
different AM technologies, the inkjet printing (IJP) process has
attracted attention in various application fields, such as health,
electronics, energy, biomedical areas, etc. [6-9], due to its ca-
pability to produce complicated features with high-resolution,
high-flexibility, and low-cost [10].

Two 1JP-based methods have been widely explored, namely
continuous and drop-on-demand (DOD) 1JP processes [11]. The
DOD method can achieve the highest resolution at a low produc-
tion cost [12]; and a suitable technique for droplet generation in
DOD fashion is the piezoelectric technology. Fig. 1 shows a
scheme of the piezoelectric IJP process. Droplets are generated
by the action of a piezoelectric transducer [13]. In response to the
applied voltage, the piezoelectric movement contracts the volume
in the nozzle and this causes the droplet ejection and deposition
onto a substrate [14]. The droplet behavior is sensitive to mate-
rial properties (e.g., surface tension, viscosity, and density) [15],
process parameters (e.g., contact angle, substrate temperature)
[16, 17], and environmental conditions (e.g., humidity, temper-
ature) [18]; hence, obtaining consistent droplet features, such as
droplet size, shape, and volume, for optimal product quality is
challenging [19].

A variety of studies have been devoted to investigating
droplet features, such as formation [20], evolution [21], and vol-
ume [22]; however, understanding their governing mechanism
is burdensome. Empirical methods have attempted to improve
process quality and reliability by collecting and analyzing in-situ
process data. Vision systems (e.g., borescope, charged-couple
device (CCD) camera, etc.) have been widely used since droplet
features can be obtained from their images [23]. For example,
an imaging system was used to analyze droplet formation in a
IJP process [24]. Wu et al. [25] developed an approach to pre-
dict droplet velocity and volume from process images. Although
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FIGURE 1: Piezoelectric IJP Process Scheme.

empirical methods can help to predict and control the droplet
features in the IJP process, they generate material waste and can
be costly due to large amount of data requirements. Additionally,
the empirical methods do not consider the governing physics of
the droplets [26], which may harm the accuracy of the analysis.

Physics-based methods have been explored to study and op-
timize the IJP process. For instance, several researchers used
computational fluid dynamics (CFD) to study the different 1JP
droplet features (e.g., volume) under the influence of different
material properties (e.g., viscosity) [27] and process parameters
(e.g., driving voltage) [16]. Wu et al. [28] analyzed the droplet
behavior based on a solution algorithm scheme coupled with the
volume of fluid and continuum surface force models. Impor-
tant progress in IJP process understanding has been achieved;
however, physics-based models (e.g., CFD) heavily rely on as-
sumptions, such as axisymmetric droplets and Newtonian fluids,
which may not accurately reflect the reality and are computa-
tionally expensive [29]. This prevents researchers from extensive
material and process parameters exploration.

Model emulation and calibration have been explored to ad-
dress the computational efficiency and accuracy limitations from
computer models (e.g., physics-based models), respectively. It is
paramount to systematically integrate experimental observations
(i.e., [JP droplet images) and simulated data (i.e., IJP droplet CFD
images) to enhance statistical models (i.e., emulators) efficiency
and accuracy so that a wide range of material and process parame-
ters can be explored. In particular, experimental observations are
required to obtain important accuracy improvement after model
calibration [30]. For instance, Tuo et al. [31] proposed an L,
calibration framework for imperfect computer models. However,
the majority of calibration approaches require large experimental
observations [32] to estimate unknown parameters (e.g., density,
viscosity, etc.) for specific applications [30] and the model pa-
rameters may be unidentifiable due to poor experimental data
fit.

The objective of this paper is to build a surrogate modeling
framework that performs fast and accurate droplet volume pre-
dictions on the IJP process. An emulator is constructed from the
simulated data and calibrated with the experimental data of IJP
droplets. This is achieved via implementing a scaled Gaussian

stochastic process (s-GaSP) for computer model calibration and
prediction, proposed in [32]. Specifically, the s-GaSP models
the discrepancy between the computer model and experimental
data with a Gaussian stochastic process constrained to a scal-
ing space [32]. The proposed framework is able to: (1) handle
limited experimental observations (i.e., IJP droplets volume) for
computer model calibration, (2) reduce the high-computationally
burden of physics-based models, and (3) increase prediction ac-
curacy to better reflect reality.

As will be demonstrated in the Case Study section, the pro-
posed framework is able to accurately and rapidly predict the
droplet volume in the IJP process for unobserved driving voltage
regimes. The accuracy of the proposed framework is evalu-
ated by computing the testing normalize root mean square error
(NRMSE). The results showed that the proposed framework has
high accuracy and efficiency. This framework can be applied to
other processes, such as electrospinning and electrohidrodynam-
ics IJP.

The paper is structured as follows. Section 2 briefly discusses
related studies. The proposed framework will be described in
Section 3. Section 4 will show the experimental results. Finally,
Section 5 will conclude the paper and discuss future work.

2. LITERATURE REVIEW
2.1 Process Improvements in IJP

The IJP process has shown to be an effective technique to
produce scalable, efficient, and low-cost parts [33, 34]. More-
over, the IJP process is capable to use a variety of materials, such
as carbon nanotubes, metallic nanoparticles, graphene, biopoly-
mers, among others [35, 36]. Hence, 1JP has become an in-
creasingly attractive option for the production of parts for a wide
variety of applications (e.g., electronics, biomedical, and phar-
maceutical fields). However, controlling the uniformity of droplet
features (e.g., size, volume) is challenging, which affects the qual-
ity of the produced parts. Thus, experimental, data-driven, and
physics-based modeling methods have been realized in order to
ensure the droplet’s features consistency [22].

Experimental approaches have been widely explored in the
IJP process. Particular attention was paid to materials and pro-
cess parameters to improving the IJP process performance. Cao
et al. [22] developed a method to reveal the effect of printing
parameters on the drop volume uniformity. Similarly, Laurila et
al. [26] analyzed printing parameter effects on Ag-nanoparticle
ink droplet size. Zhang et al. [37] showed the variation of the
satellites’ volume of the droplets maintaining the nozzle size.
See other similar studies in [38, 39]. Although the experimen-
tal methods have shown the impact of the parameters in the IJP
process, they do not consider the governing physics of the 1JP
process.

Furthermore, data-driven models have been applied to pre-
dict and control the IJP process. Generally, these methods have
integrated vision systems and advanced computational algorithms
to generate the model. For instance, Huang et al. [21] imple-
mented an unsupervised learning method by deploying a deep
recurrent neural network to study the droplet jetting behavior
based on IJP process video data. Wu et al. [25] introduced an
ensemble learning algorithm to predict droplet velocity and vol-
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ume during IJP process. Ball et al. [40] developed a framework
based on neural network algorithms to predict the ink droplets’
diameter. See others in [41, 42]. Although data-driven models
have been beneficial to improve the IJP processes, they require a
large amount of data to perform well.

Physics-based modeling approaches have been developed
to represent and optimize the IJP process. In particular, 1JP
droplet ejection, formation, and impingement have been mainly
explored [21, 41]. Ramakrishnan et al. [43] analyzed the droplet
formation in the ceramic IJP process by solving the mass and
momentum conservation equations via commercial CFD-ACE+
software. Park et al. [44] simulated the forming of uniform inkjet-
printed quantum dots, where the Navier-Stokes (NS) equations
are solved to reduce the coffee ring effect. See also [45, 46].
These models have shown good performance; however, they rely
on assumptions, i.e., Newtonian fluid, which may deplete their
accuracy.

2.2 Model Calibration Approaches

Physics-based models (i.e., CFD) have demonstrated good
performance at encoding complex behaviors in the IJP pro-
cess [47]. However, they are computationally expensive, which
prevents researchers from exploring a large variety of material and
process parameters. To partially mitigate this limitation, model
emulation has been explored since it can deliver fast predictions;
hence, enabling the exploration of a wide range of material and
process parameters in short periods of time [48]. Nevertheless,
emulators may be inaccurate since they rely on physics-based
approximations (i.e., IJP CFD droplet simulations in our case),
which are already estimations of the IJP physical observations.
In addition, for specific applications, the values of necessary
parameters (e.g., density, viscosity, and surface tension) may
be unknown; therefore, experimental observations of the system
(i.e., IJP process droplets) are used to learn the unknown param-
eters [30]. Model calibration is achieved by fitting the emula-
tor’s parameters to the experimental observations; consequently,
model accuracy is considerably increased to better reflect reality.

Several calibration techniques have been implemented to im-
prove computer models performance. Statistical methods have
been widely explored. For instance, Tuo et al. [31] develop a
calibration framework for limited data processes. Sargsyan et
al. [49] deployed a Bayesian statistical method to calibrate a
chemical model. See also [50, 51]. In addition, neural network-
based approaches have been also studied. Bhatnagar et al. [52]
showed a calibration framework based on a deep neural network
with long short-term memory layers. Tian et al. [53] performed
inference of model parameters based on reinforcement learning.
See others in [54, 55]. However, these methods have limita-
tions in predicting the reality when the number of observations is
small and the calibrated models fit the experimental data poorly
since the calibration parameters become unidentifiable [32]. To
address this, the s-GaSP has modified the discrepancy function
(i.e., the difference between the simulation model and experimen-
tal data) to obtain an emulator that more accurately approximates
the real process response [32]. In this paper, we implemented the
s-GaSP approach to efficiently calibrate the unknown parameters
(i.e., density, viscosity, and surface tension) of specific printing

TABLE 1: Process and Material Properties Ranges for the IJP Sim-
ulation Data Generation.

Variable Range
Voltage (V) [10, 50]
Surface Tension (N/m) [0.02, 0.09]
Viscosity (cP) [0.5, 2]
Density (g/ml) [0.5, 1.2]

scenarios with limited observations; hence, accurate droplets’
volume predictions are possible in the IJP process.

3. PROPOSED FRAMEWORK
3.1 Overview of the Proposed Framework

An illustration of the proposed framework is presented in
Fig. 2. Figs. 2 (a)-(b) show the IJP simulation and experimental
setups, respectively. Droplet images are collected from the simu-
lated and experimental setups. Subsequently, image processing is
deployed to calculate the volume of the jetted droplets, as shown
in Fig. 2 (c). Different driving voltage regimes (i.e., voltage (V)
range [18, 38]) were analyzed to obtain various droplet behaviors
in the experimental setup, while distinct voltage regimes and ma-
terial properties, i.e., density, viscosity, and surface tension (see
Table 1), were explored in the simulation setup. n simulated and
m experimental samples were collected for droplet volume emu-
lator construction and subsequent calibration (see Figs. 2 (¢)-(d)),
correspondingly. After emulation and calibration, our framework
is able to rapidly and accurately predict the IJP droplets’ volume
for unseen voltage regimes.

3.2 Experimental Setup

The hardware of the IJP experimental setup is shown in
Fig. 2 (b). In this system, a piezo-based nozzle (MicroFab Inc.)
is used as the inkjet print-head with typical Newtonian fluids to
generate droplets. A CCD camera (Sensor Technologies Inc.)
integrated with magnification lens works as the image-capturing
device. In order to collect images of the droplet generation pro-
cess, a strobing lighting technology, also known as synchronized
illumination, is utilized to control the exposure time and obtain
multi-image accumulation. It is assumed that the droplet shapes
are axisymmetric to obtain the droplets’ volume from the IJP
images (see Fig. 2 (c)).

3.3 Simulated Setup

The NS equations govern the physical model mass and mo-
mentum conservation for the liquid-gas interface, and it is as-
sumed that the fluid is viscous, axisymmetric, and incompress-
ible. The mass conservation condition is established by,

V-u=0 (D

where u is the fluid velocity vector. Eq. (1) indicates that the
amount of substance (ink) remains the same during the printing
process. The momentum conservation, which is derived from the
second Newton’s law, is represented by,

ou

o “Vo+f @

e

(u-Vju
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FIGURE 2: A Schematic lllustration of the Proposed Framework: (a) IJP Simulation Setup, (b) IJP Experimental Setup, (c) Volume Extraction

and Data Preparation, and (d) Model Calibration.

where p is the density, [% +(u- V)u] is the acceleration compo-
nent, and Vo + f is the total force that entails shear stress (Vo)
and other external forces (f). Vo can be divided into pressure-
related and viscosity-related components, which are represented
as —Vp and uV?u, respectively. The constitutive model that de-
scribes the inkjet droplet formation process is solved in ANSYS-
Fluent. The volume-of-fluid (VOF) approach is utilized to track
the droplet position and shape. In order to solve the pressure-
velocity coupling problem, we use the fractional step scheme, the
least squares cell-based gradient evaluation, the pressure stagger-
ing option scheme, and the QUICK scheme for quadrilateral and
hexahedral meshes. The general mesh size used was 2 x 10 > m.
The geometry design was developed based on the assumption
that the whole inkjet droplet generation process is axisymmetric;
thus, we only defined half of the cross area of the geometry. The
inner part of the printhead ink undergoes a wave propagation in-
duced by the piezoelectric deformation. The piezoelectric action
is determined by the applied voltage. The relation between the ap-
plied voltage and the piezoelectric actuator displacement can be
approximated as a lineal relation, defined by Ad,44ia1 = d33 - V,
where Ad, qqiq1 1S the radial displacement, d33 is the piezoelectric
coeflicient and V is the voltage. See more details in [56].

Since ANSYS-Fluent permits to create materials with vari-
ous physical property values (i.e., density, viscosity, surface ten-
sion, etc.), we explore several material properties of the most
widely available ink materials for the simulation (see Table 1).
Additionally, we used the Ohnesorge (Oh) number to define the
jettability regime of the IJP process and explored the Oh number
range between 0.0067 to 0.1579.

3.4 Scaled Gaussian Stochastic Process (s-GaSP)

Obtaining consistent droplet volume is crucial for the I1JP
process, and it is challenging to achieve. Having surrogate models
that permit a wide range of materials and process parameters
exploration is important to have a better process understanding
that may derive in substantial quality improvements. The s-
GaSP approach is able to efficiently support the construction of
a calibrated surrogate model from simulated and experimental
data, which will deliver fast and accurate predictions [32].

We first construct an emulator from the physics-based sim-
ulated IJP data. Let x} € X the input variables (i.e., material
and process parameters) that will influence the droplets’ volumes
yf eR,i=1,...,n, and can be modeled as:

¥() ~ GaSP (" (). 0% (). ©)

where % (+) is the mean function and o?c(-, -) is the covariance
function with variance o2 and correlation function c(-,-). For
any inputs X, the outputs (y*(x}),...,y* (xfl))T follow a multi-

variate normal distribution, [(y5 (x3), ..y (x5)) " |uS, 02, R] ~
MN ((,u“(xf), ...,u“(xf,))T,a'zR>. R denotes the correlation
matrix with the (7, j) entry c(x}, x; ). The mean function is de-
fined as: u*(x*) = ES [y*(x%)] = h*(x%)6° = Z?:] hi (x%)67,
here h*(x%) = (hf(xs), o By (XS)) is g-dimensional vector of

basis functions and 8° = (6%, ..., ij)T with 67 being an unknown
regression parameter for the basis function i7. See [57] for de-
tails. The resulting emulator can make fast and accurate physics-
based model 1JP droplets’ volume predictions for unseen material
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and process parameters.

Since some parameters, such as density, viscosity, and sur-
face tension, are unobservable in experiments (IJP experimental
setup data), we need to calibrate the unknown parameters until
the outputs of the emulator fit the experimental data. Let xi be
the inputs (i.e., IJP driving voltage) that will influence the ex-
perimental droplets’ volume y*(x}), k = 1, ..., m. The computer
model (i.e., emulator) outputs, defined as f M (XZ’ @), are evalu-
ated at variable input x® € X and calibration parameter . The
s-GasP statistical model calibration is defined as [32]:

ye(x) = (x4, 0) + 0 (x) +6,(x%) +e, 4)

6.(x) = {6()‘6)' fgegre 5(£)%d¢ = Z}, o) ~
GaSP (0,02¢°(-,+)), € ~ N(0,03). In particular, given Z = z,
the new process d,(-) is a GaSP §(-) constrained at the space of
[eeae 6(62d€ = 2 [32]. ud(x%) = WO (x)B° = %, b (x*)B}
is the mean discrepancy, which is modeled by regression. Here,
h? is a known gs-dimensional vector of basis functions and 8¢
is an unknown ¢gs-dimensional vector with each ,Bf being the
regression parameter of hl‘s (x¢)forl=1,...,qs.

The marginal distribution of discrepancy 6, =
(62(x9), ... xi))T is a multivariate normal distribution:

where

5|® ~ N (0, agkz) 5)

where O denotes the model parameters and R, is the covariance
-l
function R, = (B +(R?) 1) . Here, B is an n x n real-valued

matrix and R is a correlation matrix such that its (i, j) entry is
defined as Rf ;= c‘s(xf, xf) The power exponential correlation

U6
is defined as: ¢f(d)) = exp {— (%) ! } di = |xa — xp1] is
1

the distance of the /'" coordinate of the input vectors. Uf is a

roughness parameter typically held fixed and yf is an unknown
range parameter to be estimated. The Matérn correlation with
the roughness parameter is vf = (ZtTH) for t+ € N has a closed-
form expression, and can be seen in [32]. The model parame-
ters @ = [0, B‘S,’y‘s, 0'52, 0'5] are obtained through the Markov
Chain Monte Carlo (MCMC) sampling from the posterior distri-

bution [57]

p (B]y°) « p (©) p (y°|®) (6)

where p (®) is the prior distribution of the unknown parame-
ters and it is assumed to be uniform over the parameters space.
Closed-form expressions of the posterior distribution and MCMC
algorithm are provided in [32, 57, 58]. After obtaining the poste-
rior distribution, one can predict the $¢,,, (x&,,,) at new process
setting X,
4. CASE STUDY

As mentioned in the Introduction, droplet volume consis-
tency is crucial for the quality preservation of printed parts in the
IJP process. Having a rapid and accurate mechanism to make
volume predictions will help to obtain consistent droplet volume
during the process. In this section, we demonstrate that after
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-

==

Q
[e]

=

Glycerol IPA

FIGURE 3: FFCV NRMSE for the No Discrepancy and s-GaSP Dis-
crepancy Models Using the Two Distinct Materials (Glycerol and
IPA).

unknown material parameters (i.e., density, viscosity, and sur-
face tension) calibration, the proposed framework makes fast and
accurate droplet volume predictions.

The simulated data are obtained by solving the mass and
momentum conservation equations as presented in 3.3. The sim-
ulations are run by setting 4 cores, time step size equals 9x 10735,
1200 time steps, contact angle of 90°, and nozzle diameter of 50
um. To systematically investigate the impact of the input fac-
tors, a Latin hypercube sampling design is established. Different
material (e.g., density and viscosity) and process (e.g., driving
voltage) parameters are explored. 20 simulation samples are used
to show the performance of the model using limited data. For
the experimental measurements, we analyzed two ink materials
(20% glycerol solution and isopropyl alcohol (IPA)). Here, both
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FIGURE 4: LOOCYV Results of the Droplet Volume Prediction Based
on the Voltage Applied for Two Materials: (a) Glycerol, and (b) IPA.
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experimental fluids are considered to have a Newtonian behavior.
We obtain 21 and 15 samples of glycerol and IPA, respectively,
for the analysis. The ink materials are jetted with a piezo-driven
dispenser of 40 um nozzle diameter. The proposed framework
is run in a computer with an AMD Ryzen 7 4800H CPU @ 2.89
GHz, and 16.0 GB.

To evaluate the overall performance of the proposed frame-
work, we perform five-fold cross validation (FFCV) with 10
replications for each material, where the normalized root mean
squared error (NRMSE) is obtained by using NRMSE = ”y”ey_j”e I
y¢ is the ground truth droplet volume, and $° is the predicted
droplet volume. The FFCV evaluation is performed with two
variations of the calibration model. First, we try a model without
the discrepancy function (i.e., the experimental data is modeled
with the emulation response and the measurement error) and a
model including the discrepancy function (s-GaSP). Fig. 3 il-
lustrates the error obtained in each iteration of the FFCV for the
No Discrepancy (purple) and s-GaSP discrepancy (blue) models
using the two distinct materials (glycerol and IPA). From Fig. 3,
the NRMSE is reduced when integrating the s-GaSP discrepancy
function in the calibration model. In particular, this is more evi-
dent in the IPA material. Fig. 3 suggests that the s-GaSP calibra-
tion model produces low-variability errors for both ink materials,
which implies more consistent predictions. In addition, the mod-
eling and prediction time is captured for the s-GaSP calibration.
The average computational time for emulation and calibration is
2.8162 seconds, meanwhile, the average computation time for
prediction was 0.4448 seconds. Based on the average modeling
and prediction times, the proposed framework response is much
faster than CFD model simulations.

Furthermore, we implement leave-one-out cross validation
(LOOCYV) to obtain a robust estimation of the model’s perfor-

mance and to evaluate the model’s sensibility using a single test
set. The results of the LOOCYV for glycerol and IPA are shown
in Fig. 4 (a)-(b), respectively. The measured droplet volume
(ground truth) (gray) and the model prediction (blue) for various
input voltage values are presented. One can see that the high-
est NRMSE is obtained using glycerol (2.506%). This could
happen because of the high non-linearity of the droplet volume.
However, model prediction accuracy is acceptable because the
model performs reliable estimations of the droplet volume for
both materials.

The marginal posterior densities of the calibration param-
eters (i.e., ink properties) for glycerol and IPA are obtained by
the posterior samples in the MCMC algorithm. The distribution
for the surface tension, viscosity, and density are displayed in
Figs. 5 (a)-(c), respectively. Fig. 5 (a) suggests a surface tension
for the glycerol solution around 0.08 N/m, which is close to the
experimental measurement (0.07093 N/m at 20 °C). Similarly,
the IPA’s surface tension is around 0.04 N/m, approaching the
experimental value (0.02179 N/m at 15 °C). The posterior mass
of the viscosity spreads widely throughout its domain for both
materials, see Fig. 5 (b). The uncertainties of the viscosity seem
quite large, for both materials, given that it depends on environ-
mental conditions. From Fig. 5 (c), the posterior median of the
ink’s density for glycerol is around 1.15 g/ml, meanwhile, the
experimental measurement is 1.05 g/ml at 20 °C. Moreover, the
IPA’s density posterior median is 0.6 g/ml, which comes near
0.77 g/ml (i.e., the experimental measurement). Thus, both cal-
ibrated density values are close to the physical property value of
each analyzed material.

Concisely, the proposed model calibration framework can
accurately and efficiently predict the droplet volume and can es-
timate the unknown parameters in the IJP process. The proposed
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framework can be applied to a broad range of ink/solution mate-
rials and other complex-behavior processes.

5. CONCLUSION

IJP is able to produce multi-material parts with high resolu-
tion for an extensive variety of application fields, which require
droplets’ volume consistency. However, the droplets’ volume de-
pends critically on fluid and process parameters. Predicting the
droplet volume, based on the input parameters, is predominant
but has been difficult since some 1JP’s parameters are unknown.
In this paper, we propose a framework that is capable to calibrate
the unknown process parameters and fulfilling fast and accurate
droplet volume predictions via s-GaSP modeling. The proposed
calibration framework can be applied to other AM processes with
limited data and complex dynamics.

In the future, we will extend this framework by integrating
multiple source auxiliary observations so that it can identify the
measurement bias and model discrepancy for the IJP process,
and provide better estimates of unknown parameters. Another
research direction that can be explored is the calibration of the IJP
process using nanoparticles-based inks since the nanoparticles
affect the ink physical properties; and, this lead to modification
in the droplet size, shape, and volume.
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