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Abstract
The assumption of normality is usually tied to the design and analysis of an
experimental study. However, when dealing with lifetime testing and censor-
ing at fixed time intervals, we can no longer assume that the outcomes will be
normally distributed. This generally requires the use of optimal design tech-
niques to construct the test plan for specific distribution of interest. Optimal
designs in this situation depend on the parameters of the distribution, which
are generally unknown a priori. A Bayesian approach can be used by plac-
ing a prior distribution on the parameters, thereby leading to an appropriate
selection of experimental design. This, along with the model and number of pre-
dictors, can be used to derive the D-optimal design for an allowed number of
experimental runs. This paper explores using this Bayesian approach on various
lifetime regressionmodels to select appropriate D-optimal designs in regular and
irregular design regions.

KEYWORDS
Bayesian design, coordinate exchange algorithm, irregular design region, life testing, optimal
design

1 INTRODUCTION

Suppose we are planning an experiment where the outcome is a lifetime and is subject to censoring at a fixed time. The
settings of the predictor variable are constrained to be in some region 𝑅 of the design space. Given a fixed sample size 𝑛
(which is equivalent to the number of experimental runs), how should the levels of the predictor variables be selected in
each experimental run so as to provide the greatest information from the experiment? This problem of optimal experimen-
tal design has been studied thoroughly when the outcome can be assumed to be normally distributed (see, e.g., Refs.1–5).
But, for lifetimes, the normal distribution is usually unreasonable; in addition, life testing experiments must deal with
censoring, that is, the termination of testing before all units have failed.
For the normal theory case, the situation is simplified in that the optimal design is often dependent on themodel, but not

on the parameters in the model. For example, an optimal design for a first-order model in two variables is independent
of the intercept 𝛽0 and the slope parameters, 𝛽1 and 𝛽2. It is also independent of the error variance 𝜎2. When we step
outside of the normal-linear model, the situation becomesmore complicated. For instance, assuming that the lifetime has
a Weibull distribution (a useful and widely applicable reliability model for life test planning), the optimal design depends
on the value of the shape parameter. This creates a catch: an experimenter is running the experiment so as to learn about
the parameters of the assumed distribution, but only to realize that, to obtain the desirable optimal experimental design,
the values of these parameters must be known beforehand.
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2 TAYLOR et al.

Roy and Pradhan6 consider designs for life-time plans by developing a D-optimal Bayesian censoring scheme focusing
on the estimation precision of a particular lifetime quantile. They propose a generic algorithm to obtain the optimal
censoring schemes under two different scenarios for the Weibull and log-normal models but do not address predictor
variables as we do in our paper. Zhobi et al.7 develop an algorithm for finding D-optimal designs when the response is a
lifetime following a Weibull distribution. While censoring is taken into account, they assume a fixed and known shape
parameter for theWeibull distribution, which is a strong assumption. Our approach described here assumes that the shape
parameter 𝜅 is unknown and must be estimated from the data.
The Bayesian approach can be applied to this situation where the optimal design depends on unknown parameters.

The Bayesian approach involves selecting a prior distribution to reflect our knowledge about parameters before data are
collected, and then after data are collected, applying Bayes theorem to give the updated probability distribution of the
parameters given the data. It forces us to quantify our belief about parameters in terms of their uncertainties. This knowl-
edge can then be used to select a robust experimental design. Additional details in the construction of Bayesian models
have been explored in Refs.8–11.
Suppose that the lifetime of the 𝑖th run is 𝑇𝑖 and the vector of predictor variables is 𝒙𝑖 = [𝑥𝑖1,𝑥𝑖2, … ,𝑥𝑖𝑝]𝑡. We assume a

model of the form

𝑇𝑖|𝒙𝑖 ∼WEIBULL(𝜃 = exp(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯ + 𝛽𝑝𝑥𝑖𝑝, 𝜅)) (1)

This is equivalent to assuming that the logarithm of lifetime has a smallest extreme value (SEV) distribution with location
parameter 𝜇 and scale parameter 𝜎. If we let 𝑌𝑖 = log𝑇𝑖 , then we are effectively assuming

𝑌𝑖|𝒙𝒊 ∼ SEV(𝜇 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯ + 𝛽𝑝𝑥𝑖𝑝,𝜎 = 1∕𝜅). (2)

The method for finding D-optimal designs that we propose in this article can be applied to models of any order. We
illustrate the method in Section 5, for situations of up to a two predictors and a full second-order model. The most general
model that we illustrate is

𝑌𝑖|𝒙𝒊 ∼ SEV(𝜇 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽11𝑥21 + 𝛽22𝑥22 + 𝛽12𝑥1𝑥2,𝜎 = 1∕𝜅). (3)

Thus, the parameters of the SEV are related to the parameters of the Weibull as follows:

𝜇 = log 𝜃 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯ + 𝛽𝑝𝑥𝑖𝑝𝜎 = 1∕𝜅. (4)

Note that if the predictors 𝑥1,⋯, 𝑥𝑝 are environmental stress variables, which accelerate a test unit’s failure process,
then such reliability tests are called accelerated life tests (ALTs). In an ALT, the value ranges of parameters 𝛽1,⋯, 𝛽𝑝 are
typically restrictive, because higher stress levels are supposed to shorten a test unit’s lifetime. In this paper, however, we
do not limit our models to ALT models. These predictors, for example, can be product design variables or manufacturing
process variables thus their effect coefficients would not be constrained to a certain range.
As with most life testing experiments, we assume that the test can be terminated before all units have failed. Here we

assume that all survival observations are censored at the same time 𝑡𝑐. On the log scale, this is equivalent to censoring at
time 𝑦𝑐 = log 𝑡𝑐. Denote 𝛿 as an indicator variable for censoring,

𝛿𝑖 = {1, observation 𝑖 is a failure0, observation 𝑖 is censored. (5)

The problem to be addressed is how the levels for the predictor variables should be selected so as to maximize the
information that we can gain from the experiment. If the Weibull distribution is assumed for lifetimes, or equivalently,
the SEV distribution for log lifetimes, then the optimal design depends on the values of the parameters in these distribu-
tion models. As we mentioned previously, the normal-linear model avoids this dilemma, but for a design of a life testing
experiment, this problem is unavoidable.
There have been different approaches taken to circumvent this dilemma. Park and Yum12 determined various pre-

estimates for these parameters and then found a separate test design for each individual pre-estimate. This produces
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TAYLOR et al. 3

different designs based on predetermined values. Others have focused on using the log normal distribution and the
distribution transformation methods that prevent the parameter-dependent problem when determining the test points.13
Also, some researchers used predetermined stress levels based on single-stress tests, previous tests of similar units, prior
knowledge on life–stress relationship, or equipment capacities.14–18
Our way forward is to take the Bayesian approach and express our beliefs about parameters in their prior distributions.

If we assume an SEV distribution for log lifetimes as in Equation (2), then the parameter vector is 𝜽 = (𝜷,𝜎). Let 𝑝(𝜽)
denote the prior distribution for 𝜽 used for the purpose of designing the experiment. Hong et al.19 suggest that it may be
reasonable to have separate priors for the design stage and the analysis stage. For now, 𝑝(𝜽) represents the prior at the
design stage.
Suppose 𝜉 is a design of the form

𝜉 =
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

𝑥11 𝑥12 ⋯ 𝑥1𝑝𝑥21 𝑥22 ⋯ 𝑥2𝑝𝑥31 𝑥32 ⋯ 𝑥3𝑝⋮ ⋮ ⋮𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑝

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

(6)

where 𝑥𝑖𝑗 is the 𝑖th level for variable 𝑗. Note that this is different from the model matrix, which depends on the assumed
model. For example, if a second-order model with intercept is assumed, then the first column of the design matrix would
consist entirely of ones, and there would also be columns for each 𝑥2𝑗 and for all combinations of 𝑥𝑗1𝑥𝑗2 . Themodel matrix
can always be constructed from the design matrix 𝜉 by augmenting the matrix with the appropriate columns given 𝜉 and
the model. The point is that, to find an optimal design, we need to only determine the best 𝜉, which embodies the settings
of all predictors. Once this is determined, the usual model matrix can be obtained. Additional information on Bayesian
designs can be found in Chaloner and Verdinelli20 and Anirban.21
Let 𝑐(𝑡, 𝜉) denote some design criterion for the case when we observe data (𝑡) obtained from applying design 𝜉. In

our case, we take 𝑐(𝑡, 𝜉) to be the determinant of the estimated covariance matrix for the estimate of 𝜽. We can use the
preposterior expectation of 𝑐(𝑡, 𝜉)

𝐶(𝜉) = 𝐸𝑡|𝜉(𝑐(𝑡, 𝜉)) (7)

= ∫𝚯 𝑐(𝜽, 𝜉)𝑝(𝜽)𝑑𝜽 (8)

≈ ∫𝚯 𝑐(𝜽, 𝜉)𝑝(𝜽)𝑑𝜽. (9)

In going from Equations (7) to (8) we have assumed that the criterion 𝑐 depends on the data 𝑡 only through the estimate𝜽. The approximation from (8) to (9) was suggested by Hong et al.19; they describe the approximation as “The predictive
distribution of 𝜽 is a convolution of the test planning prior distribution of 𝜽 and the distribution arising from the estimation
of 𝜽 from the data and will approach the test planning prior distribution as the sample size increases.” The last expression
has the interpretation as the criterion function 𝑐 averaged across the joint prior distribution for 𝜽.
As mentioned above, many articles have explored the cases of normal outcomes, single censoring levels or regular

shaped grid. Others have explored outcomes with a Weibull distribution with presumed lifetime model. This article
expands upon these ideas by exploring and deriving optimal designs for lifetime testing when the outcomes are assumed
to have aWeibull distribution, multiple censoring levels and irregularly shaped design regions. We explore the case where
the priors have discrete uniform supports and apply the coordinate exchange algorithm to produce the best Bayesian D-
optimal design. We go further by taking into account different censoring levels, as well as irregularly shaped design grids,
and explore how these may affect the optimal design.
The rest of the article is organized as follows. Section 2 discusses various optimality criteria that might be used to design

optimal experiments for life testing. Then, Section 3 discusses how we approximate the posterior distribution, which is
required for the design criterion suggested here. Section 4 discusses how we apply a coordinate exchange algorithm to
determine the optimal design. Some examples are discussed in Section 5 and conclusions provided in Section 6. For a
review of accelerated test models, we direct the reader to Escobar and Meeker.22
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4 TAYLOR et al.

2 OPTIMALITY CRITERIA

Lindley23 suggested that an optimality criterion should involve the expected gain in the Shannon information. This is
equivalent to maximizing the expected Kullback–Leibler distance between the prior and posterior distributions. Thus,
the objective is to maximize

𝑈(𝜉) = ∫ ∫Θ log 𝑝(𝜽|𝒚, 𝜉)𝑝(𝜽) 𝑝(𝒚, 𝜽|𝜉)d𝜽d𝒚 (10)

where 𝒚 is the observed data. This is approach is explored more thoroughly in Xu and Tang.24
Another approach for log-location-scale families, to include the SEV, is to minimize the volume of a posterior credible

region, averaged over the prior distribution. A large sample approximation to the posterior covariance matrix was given
by Hong et al.19; they give the approximation (using our notation)

𝑉(𝜽|𝒚, 𝜉) ≈ [𝑆−1 + 𝐼𝜽(𝜉)]−1 (11)

where 𝑆 is the variance–covariance matrix of prior distribution and 𝐼𝜽(𝜉) is the information matrix evaluated at 𝜽, which
is the estimator of 𝜽.
Following the reasoning in Hong et al.,19 we can derive an approximation to the expected value of a function ℎ of the

covariance matrix:

𝑈ℎ(𝜉) ≈ 𝐸 (ℎ ([𝑆−1 + 𝐼̂𝜽(𝜉)]−1))
≈ ∫ ℎ ([𝑆−1 + 𝐼̂𝜽(𝜉)]−1)𝑝0(𝜽)𝑑𝜽
≈ ∫ ℎ ([𝑆−1 + 𝐼𝜽(𝜉)]−1)𝑝(𝜽)𝑑𝜽. (12)

Here 𝑝0 is the PDF (probability density function) of the estimator 𝜃̂ and 𝑝(𝜽) is the prior PDF for 𝜽 with 𝜃̂ approaching
the prior as the sample sizes increase.
If the objective is to minimize the determinant of the large-sample approximation to the posterior covariance matrix,

then the utility of design 𝜉 becomes
𝑈𝐷(𝜉) = ∫Θ det (𝑆−1 + 𝐼̂𝜽(𝜉))−1𝑝(𝜽)d𝜽. (13)

We would then want a design that minimizes 𝑈𝐷(𝜉). This is similar to the approach taken by DuMouchel and Jones.25
If we take a prior across a discrete set of points in the parameter space, the D-criterion becomes

𝑈𝐷(𝜉) = ∑
𝛽0

∑
𝛽0 ⋯∑

𝛽𝑚
∑
𝜅 det (𝑆−1 + 𝐼̂(𝛽0,𝛽1,⋯,𝛽𝑚 ,𝜅)(𝜉))−1𝑝(𝛽0, 𝛽1,⋯, 𝛽𝑚, 𝜅). (14)

The computations are more stable if we use the reciprocal 1∕𝑈𝐷(𝜉) as the criterion, which we then try to maximize.
Although any discrete prior would work, for our examples, we take a discrete uniform prior across all values in the prior
support; in effect, this takes the harmonic average of the Bayesian D criterion at each point in the prior parameter space.
Additional Bayesian utility functions for parameter estimation are discussed in Ryan et al.26

3 SELECTION OF PRIOR DISTRIBUTIONS

In order to design a life testing experiment, we must express prior distributions for the model parameters. We will put
these parameters into three categories:
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TAYLOR et al. 5

1. the shape parameter 𝜅,
2. the “intercept” parameter 𝛽0, and
3. the “slope” parameters 𝛽1, 𝛽2, … , 𝛽𝑚.
The shape parameter 𝜅 is perhaps the easiest parameter for which to specify a prior. In most life testing experiments,

the hazard function is increasing but it is often concave down. Since the Weibull’s hazard function is

ℎ(𝑡) = 𝜅𝜃( 𝑡𝜃)𝜅−1𝑡 > 0, (15)

the increasing/concave down presumption implies that the exponent on 𝑡 should be between 0 and 1, that is
0 ≤ 𝜅 − 1 ≤ 1. (16)

Thus,

1 ≤ 𝜅 ≤ 2. (17)

A prior with support on [1,2] could, therefore, be appropriate. To be safe, the user might extend the support to an interval
such as [0.8,2.2].
Next, consider the intercept parameter 𝛽0. The mean of the Weibull distribution is

𝐸(𝑇) = 𝜃Γ(1 + 1𝜅). (18)

The expression Γ(1 + 1𝜅 ) is decreasing for 𝜅 belonging to the interval [1,2] having the value of 1 when 𝜅 = 1 and 0.8862
at 𝜅 = 2. (This function decreases until reaching approximately 0.8856 when 𝜅 ≈ 2.17; it then increases monotonically
toward 1 as 𝜅 → ∞.) Thus, the expected lifetime is slightly below the value of 𝜃, with the factor being no less than 0.8862
when 𝜅 is in the interval [1,2]. At the center of a design, where all coded predictors are set to 0, 𝜃 = exp(𝛽0) is a slight
overestimate of the mean. The parameter 𝜃 is often called the characteristic life, and it gives the reliability (or survival
probability) as

𝑆(𝜃) = exp(−(𝜃∕𝜃)𝜅) = exp(−1) ≈ 0.3679. (19)

In other words, approximately 36.79% of all units will survive past the characteristic life regardless of the value of 𝜅. If we
suggested a wide interval for 𝜃, say

100 ≤ 𝜃 ≤ 1000; (20)

that is, a tenfold difference in the possible values of 𝜃, then
100 ≤ exp(𝛽0) ≤ 1000 (21)

4.6 ≤ 𝛽0 ≤ 6.9. (22)

The parameter 𝛽0 is a scale parameter for the Weibull distribution, so its value does not affect the optimal design, but it
does affect the amount of censoring, that is, the value 𝑦𝑐, as described below. In the examples that follow, we will take the
support for the prior for 𝛽0 to be the interval [−1, 1], which leads to the prior for 𝜃 having support [0.3679,2.7183] at the
center of the design.
The slope parameters 𝛽1, 𝛽2, … are the most difficult to assess. We will consider the case where we have two predictors

and a full second-order model, so that

log 𝜃 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽11𝑥21 + 𝛽22𝑥22 + 𝛽12𝑥1𝑥2. (23)
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6 TAYLOR et al.

Suppose that as wemove from the center design point (0,0) to the one of the corners, say (1,0) themean lifetime is doubled,
which implies that 𝜃 is doubled. Then at the corner point (1,0),

𝜃 = exp(𝛽0 + 𝛽1 × 1 + 𝛽2 × 2 + 𝛽11 × 1 + 𝛽22 × 02 + 𝛽12 × 1 × 0)= exp(𝛽0 + 𝛽1 + 𝛽11)= exp(𝛽0) exp(𝛽1 + 𝛽11). (24)

The expected lifetime at (1,0) is then

𝐸(𝑇|𝑥1 = 1,𝑥2 = 0) = exp(𝛽0 + 𝛽1 + 𝛽11)Γ(1 + 1𝜅) (25)

= exp(𝛽0) exp(𝛽1 + 𝛽11)Γ(1 + 1𝜅) . (26)

At (0,0), the expected lifetime is

𝐸(𝑇|𝑥1 = 1,𝑥2 = 0) = exp(𝛽0)Γ(1 + 1𝜅) . (27)

If we believe, the expected lifetime increases by a factor of 𝐹 as we move from (0,0) to (1,0), we must have

exp(𝛽0) exp(𝛽1 + 𝛽11)Γ(1 + 1𝜅) = 𝐹 exp(𝛽0)Γ(1 + 1𝜅) . (28)

which implies that

𝐹 = exp(𝛽1 + 𝛽11), (29)

or, equivalently,

𝛽1 + 𝛽11 = log𝐹. (30)

This gives us information we could use to assess our prior information about the sum 𝛽1 + 𝛽11, but to assess our prior
information about each term individually, we must make some assumptions about the relative sizes of 𝛽1 and 𝛽11. If we
assume that they are roughly equal, then

2𝛽1 = log𝐹 (31)

so

𝛽1 = 12 log𝐹. (32)

In ALTs, a 10 fold increase in lifetime expectancy from the low to high setting of the accelerating factor is not uncommon.
Taking 𝐹 = 10 yields

𝛽1 = 12 log 10 ≈ 1.15. (33)

Thus, priors for 𝛽1 and 𝛽11 over the interval [−1.15, 1.15] might be appropriate. Similarly, we see that priors over[−1.15, 1.15] might be appropriate for 𝛽2, 𝛽22, and 𝛽12. Of course, more diffuse priors can be used to achieve a more
objective prior.
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TAYLOR et al. 7

Life testing experiments are often done on units that are similar to previous generations of the unit, so some prior
information is likely available. The prior distributions can reflect this information. When choosing a prior distribution for
a parameter that is difficult to interpret directly, we can often transform the problem to one for which we can more easily
interpret, select a prior for that, and then work back to the prior for the parameter. This is the trick we have employed
here. The parameters 𝛽1, 𝛽2, …, are difficult to interpret, so we transformed the problem to one involving the effect of a
factor moving from 0 to 1. Once we assess our prior belief about this parameter, we can transform this back to obtain a
prior for each of the 𝛽s.
The approach described above gives a general way of specifying reasonable upper and lower limits of parameter values

for the parameters in a Weibull regression model. If no additional information is available, then we may use uniform
priors for these parameters. In the Examples section that follows, we make the assumptions that the priors for the slope
parameters are discrete uniform on the Cartesian product of the regions from −2 to 2. Here we have chosen priors that
are somewhat more diffuse than described previously. For example, for the first-order model with one factor, we choose
the prior to have equal probability assigned to each of the values in the Cartesian product given by

𝛽0 ∈ 𝚜𝚎𝚚(−𝟷, 𝟷, 𝚕𝚎𝚗𝚐𝚝𝚑.𝚘𝚞𝚝 = 𝟻)𝛽1 ∈ 𝚜𝚎𝚚(−𝟸, 𝟸, 𝚕𝚎𝚗𝚐𝚝𝚑.𝚘𝚞𝚝 = 𝟻)𝜅 ∈ 𝚜𝚎𝚚(𝟷, 𝟸, 𝚕𝚎𝚗𝚐𝚝𝚑.𝚘𝚞𝚝 = 𝟻) (34)

Here we are using R’s notation for creating an arithmetic sequence. The priors for the 𝛽s must reflect the knowledge about
the characteristic lifetime and will depend on the time scale used to measure lifetimes.
For second-order models in two factors, we use length.out=3 in order to keep the computations manageable; this

yields a discrete prior over 37 = 2187 distinct grid points.
We also consider prior distributions that guarantee amonotone increasing or decreasing characteristic life. For example,

if the factor(s) are life-accelerating stress factors, for which it is safe to assume higher levels of stress will lead to a shorter
characteristic life. This can be done by assuming that the predictor variables are coded so that smaller values indicate a
higher stress and slope parameters are assigned priors with lower bounds greater than 0.
Obviously, more precise prior distributions for Weibull distribution parameters can be defined when we do have some

historical lifetime data or testing data from the same or similar products. As an example, consider the data from a nickel
super alloy fatigue test that was analyzed in Escobar and Meeker22 and Rigdon et al.27 The lifetime of this product was
measured in kilocycles and one stress variable, called pseudostress (PS), was applied during testing. It was found that a
suitable life-stress model was a second-order model such as

log 𝜃 = 𝛽0 + 𝛽1 log𝑃𝑆 + 𝛽2(log𝑃𝑆)2, (35)

where log𝑃𝑆 is the logarithm of pseudostress. These regression coefficients, 𝛽0, 𝛽1, and 𝛽2, were estimated to be 217.6,−85.5, and 8.48, with standard errors (se) of 62.1, 26.5, and 2.8, respectively. If we transform the log of pseudostress through

𝑥 = −15.6893 + 7.711884 log(𝑃𝑆) (36)

then the values fall between −1 and 1. Solving for log(𝑃𝑆), we have
log𝑃𝑆 = 𝑥 + 15.68937.711884 . (37)

The estimated response, kilocycles to failure, is then

𝑦̂ = 217.6 − 85.5(𝑥 + 15.68937.711884 ) + 8.48(𝑥 + 15.68937.711884 )2
= 78.7541 − 6.61266𝑥 + 0.142585𝑥2 (38)
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8 TAYLOR et al.

TABLE 1 Censoring levels considered in various examples. The probability of being censored refers to the probability that an
observation at the center of the design is censored if 𝛽0 = 0 and 𝜅 = 1.5.𝒚𝒄 𝑷(censor) Description

2 2 × 10−9 Negligible
1 0.0113 Light
0 0.3699 Moderate−1 0.8000 Heavy−2 0.9514 Very Heavy

where −1 ≤ 𝑥 ≤ 1. Therefore, for deriving a Bayesian optimal test plan, the informative priors for these parameters could
be formulated to be in the range of 𝛽 ± 2𝑠𝑒(𝛽), and these ranges can be further coded into [−1, 1].
4 COORDINATE EXCHANGE ALGORITHM

The coordinate exchange algorithm is described in Meyer and Nachtsheim.28 This algorithm follows the cyclic ascent (or
Gauss–Seidel) optimization method as described in Bazaraa et al.29 Here we summarize the method and describe howwe
apply this algorithm to the problem of optimal design for life tests.
Let us begin with some design 𝜉0 that describes the coordinates for the predictor variables. It differs from the model

matrix in that it consists of only the design points, not the columns of all ones (for the constant term) or terms for squared
or cross products. The model matrix, which can be computed from the design 𝜉0, is dependent on the assumed model.
We consider a rectangular grid of points across the design space and focus on one of the coordinates of one design point
at a time, say, the specific design choices of the first and second predictors of one design point in a two-factor model. The
design criterion (e.g., the Bayesian D-criterion given in Equation (13)) is then evaluated for all possible values of a single
predictor in the specified grid when the other predictor value is fixed. Then the point that yielded the largest (or smallest,
depending on the criterion) is taken and assigned as the value for the corresponding row in the design 𝜉. This process is
then repeated across all rows, yielding the design 𝜉1.
The above algorithm is then repeated on the design 𝜉1, yielding 𝜉2. This process is continued until consec-

utive designs are the same. This iterative approach allows the “restarting” of the search, but retains the good
features and attributes of the obtained solution.30 Often two iterations suffice, and nearly always five iterations are
enough. Recall our second-order model with two factors, using length.out=3, yielded 2187 distinct grid points
requiring evaluation.
When this algorithm is applied life testing designs, we have to consider the impact of censoring on optimal criterion

evaluation. The Appendix gives the details on how to derive and evaluate the expected Fisher information matrix with
right censored observations. In the following examples section, multiple scenarios are considered.

5 EXAMPLES

In the subsections that follow, we look at the optimal designs for various situations, including one or two factors and a
first- or second-ordermodel.Wemostly consider designs on the square [−1, 1] × [−1, 1], but also touch on irregular design
regions such as a trapezoidal region and a circular region. Throughout, we apply Bayesian D-optimality as the criterion
and use R to run the computations. An in-depth look into this algorithm can be found in Overstall and Woods31 and in
Overstall et al.32
We consider two types of priors. One is discrete uniform over [−2, 2] for all of the 𝛽𝑖 parameters, including the intercept𝛽0, and discrete uniform from 1 to 2 for 𝜅. The other is a prior that guarantees an increasing expected lifetime as a function

of the factors; this prior might be of interest if the factors were accelerating factors coded so that smaller values of the
factor represent higher stress.
Often, the optimal design depends on the level of censoring, particularly when the factors are accelerating factors.

We have categorized the levels of censoring according to the value of 𝑦𝑐. Table 1 shows the values we consider and the
probability of censoring at the center of the design when 𝛽0 = 0 and 𝜅 = 1.5.
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TAYLOR et al. 9

5.1 One predictor with first-order model

The simplest example to consider is that of one factor with a first-order model with negligible censoring. It might be
expected that half of the runs would be allocated at the left and right endpoints of the design space, which is denoted as[−1, 1]. If 𝑛 = 10, the optimal design is found to be have five points at −1 and five points at 1, which we indicate by the
ordered pair (5,5); this design yields a D-utility of 1054.573. For 𝑛 = 20 and 𝑛 = 40, the optimal designs are (10,10) and
(20,20).
Suppose, however, that the prior for 𝛽1 is not symmetric, but rather has support only on 0 and positive values. This

might be the case if the predictor variable was an accelerating variable, or for other reason, we were confident that the
coefficient was nonnegative. In this case, the optimal design may try to put equal numbers of runs at the endpoints, but
for odd values of 𝑛, the preference is to put the larger half at the low value. The reason for this seems to be that runs at the
high end tend to be longer, so they are more likely to be censored, so that these runs yield less information. Under very
heavy censoring, the optimal design for an even number of runs may put more points at the low end. For example, the
optimal design for 𝑛 = 10 is (5,5), but the optimal design for 𝑛 = 11 is (6,5). The D-utility for (6,5) is 1474.605 whereas the
D-utility for (5,6) is 1455.642. With very heavy censoring, an even numbered sample size can yield an unbalanced design;
for example with 𝑦𝑐 = −2 and 𝑛 = 10, the optimal design is (6,4) with a D-utility of 50.04983. By contrast, the design (5,5)
has D utility equal to 48.00066. With 𝑛 = 80, the optimal design is (48,32).
5.2 One predictor with second-order model

Consider a second-order model in a single predictor that has the feasible region of unit interval [−1, 1]. The budget allows
for 𝑛 = 10 runs to be selected from the interval [0,1]. We apply the coordinate exchange algorithm to find the Bayesian
D-optimal design. One prior support consists of all possible selections of

𝛽0 ∈ 𝚜𝚎𝚚(−𝟸, 𝟸, 𝟶.𝟻)𝛽1 ∈ 𝚜𝚎𝚚(−𝟸, 𝟸, 𝟶.𝟻)𝛽2 ∈ 𝚜𝚎𝚚(−𝟸, 𝟸, 𝟶.𝟻)𝜅 ∈ 𝚜𝚎𝚚(𝟶.𝟾, 𝟸.𝟸, 𝟶.𝟸) (39)

where seq(a,b,d) is the sequence from a to b in increments of d. The prior is discrete uniform over this support.
A second prior was chosen to include only those parameters that guarantee a decreasing function on the interval [−1, 1].

This might be reasonable when the factor is an accelerating factor for which we know that log 𝜃 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 is an
increasing function from the highest stress condition (𝑥 = −2) to the use stress condition (𝑥 = 1). This is found to include
those values of 𝛽1 and 𝛽2 that satisfy

−12𝛽1 ≤ 𝛽2 ≤ 12𝛽1 (40)

We assumed censoring at 𝑦𝑐 = log 𝑡𝑐 = 0 or 2, corresponding to heavy and light censoring. The parameter space is the
interval [−1, 1]. With a second-order model, we would expect the optimal design to have at least three distinct points: one
at the left end, one at the right and one near the middle. Without at least three points, the parameters of the model cannot
be estimated. We ran three loops through the coordinate exchange algorithm with a grid of 10 intervals, or equivalently 11
design points between 0 and 1, yielding 𝛿 = 0.10, and the last two designs were identical. The optimal designs are shown
in Table 2 for various choices of a prior (symmetric vs. a prior that guarantees an increasing link function) and censoring
(light vs. heavy).
In each case, the optimal design involves three points, 𝑥 = −1, 𝑥 = 0, and 𝑥 = 1. With 𝑛 = 10 runs, it is not possible

to place the same number of points at each design point. The design is represented by an ordered triple, where the three
numbers (𝑖, 𝑗, 𝑘) indicate that 𝑖 runs are to be placed at 𝑥 = −1, 𝑗 runs at 𝑥 = 0, and 𝑘 runs are placed at 𝑥 = 1. The optimal
design depended on the circumstance, with the extra point sometimes going at 𝑥 = −1, sometimes at 𝑥 = 0 and sometimes
at 𝑥 = 1. The utilities for various designs are shown in the last column of Table 2. Note that when the censoring is heavy,
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10 TAYLOR et al.

TABLE 2 Optimal designs for 𝑛 = 10 run designs over parameter space [−1, 1]
Prior Censoring Optimal design Utility
Symmetric Heavy (𝑦𝑐 = 0) (4,3,3) 601.498
Symmetric Light (𝑦𝑐 = 2) (3,4,3) 1531.333
Guarantees increasing link Heavy (𝑦𝑐 = 0) (3,3,4) 464.855
Guarantees increasing link Light (𝑦𝑐 = 2) (3,3,4) 1439.007

TABLE 3 Designs for second-order model in one variable with a budget of 𝑛 = 10 runs. All designs involve runs at three distinct points,𝑥 = −1, a point near 𝑥 = 0, and 𝑥 = 1. The design is represented by an ordered triple, where the three numbers indicate the number of runs at
each point. The prior is either symmetric and flat for 𝛽0, 𝛽1, and 𝛽2, or it is flat across the set of 𝛽1 and 𝛽2 that guarantee an increasing link
function. Censoring is either heavy (𝑦𝑐 = 0) or light (𝑦𝑐 = 2).
Symmetric prior Prior guarantees increasing function
Censoring 𝒚𝒄 = 𝟎 Censoring at 𝒚𝒄 = 𝟐 Censoring at 𝒚𝒄 = 𝟎 Censoring at 𝒚𝒄 = 𝟐
Runs at −1, 0, 1 Runs at −1, 0, 1 Runs at −1, 0, 1 Runs at −1, 0, 1
Design Utility Design Utility Design Utility Design Utility
(4,3,3) 601.4985 (4,3,3) 1526.579 (4,3,3) 444.9591 (4,3,3) 1413.522
(3,4,3) 601.3223 (3,4,3) 1531.333 (3,4,3) 462.0097 (3,4,3) 1436.669
(3,3,4) 601.4985 (3,3,4) 1526.579 (3,3,4) 464.8547 (3,3,4) 1439.007
Runs at −1,−0.01, 1 Runs at −1,−0.01, 1 Runs at −1,−0.01, 1 Runs at −1,−0.01, 1
Design Utility Design Utility Design Utility Design Utility
(4,3,3) 601.4153 (4,3,3) 1526.296 (4,3,3) 444.3329 (4,3,3) 1412.734
(3,4,3) 601.2124 (3,4,3) 1531.032 (3,4,3) 461.2848 (3,4,3) 1435.784
(3,3,4) 601.3609 (3,3,4) 1526.260 (3,3,4) 464.1806 (3,3,4) 1438.245
Runs at −1, 0.01, 1 Runs at −1, 0.01, 1 Runs at −1, 0.01, 1 Runs at −1, 0.01, 1
Design Utility Design Utility Design Utility Design Utility
(4,3,3) 601.3609 (4,3,3) 1526.260 (4,3,3) 445.3981 (4,3,3) 1413.735
(3,4,3) 601.2124 (3,4,3) 1531.032 (3,4,3) 462.5391 (3,4,3) 1436.968
(3,3,4) 601.4153 (3,3,4) 1526.260 (3,3,4) 465.3329 (3,3,4) 1439.321

with 𝑦𝑐 = 0, the utilities are much smaller than when there is light censoring. This is due to less information contained
in censored observations compared to uncensored ones.
The optimal design found from this algorithm is required to have runs only at the grid points.With a grid of just 11 points

for each variable (121 in total), it may be that the optimal design on the continuous design space maybe slightly different
from the one on the discretized grid. Since it is unlikely that moving points away from the endpoint 𝑥 = −1 or 𝑥 = 1 will
increase a design’s utility, we considered the possibility that moving the middle point to the left or right might improve
the design. Table 3 shows the results of this perturbation experiment. In most cases, moving the point left or right a small
amount, say 0.01, did not improve the utility of the design. For the case of a guaranteed increasing link functionwith heavy
censoring, taking the middle point at 𝑥 = 0.01, 0.02, 0.03, 0.04 yielded utilities of 465.3329,465.6146,465.6994,465.5874,
respectively. Thus, the design with (3,3,4) points at 𝑥 = −1,𝑥 = 0.03,𝑥 = 1 is slightly preferred over (3,3,4) points at𝑥 = −1,𝑥 = 0,𝑥 = 1 or 𝑥 = −1,𝑥 = 0.01,𝑥 = 1.
5.3 Two predictors with first-order model

With a prior for 𝛽0, 𝛽1, and 𝛽2 symmetric about the origin, the optimal design for 𝑛 = 40 puts 10 points at each of the
four corners (−1,−1), (1,−1), (−1, 1), and (1,1). We will denote this design as (10,10,10,10). When the prior for 𝛽1 and 𝛽2
has support only on nonnegative values, then runs at the high end of either 𝑥1 or 𝑥2 are less attractive, because they are
more likely to be censored. Depending on the amount of censoring, the optimal design may put more runs at the lower
left corner (𝑥1 = −1 and 𝑥2 = −1). See Table 4.
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TAYLOR et al. 11

TABLE 4 Optimal designs for two factors and a first-order model. The optimal designs, as determined by the coordinate exchange
algorithm are in the column headed by design 1. Designs 2, 3, and 4 are other designs that are close to the optimal design (sometimes giving
exactly the same utility)

Light censoring (𝒚𝒄 = 𝟐)𝒙𝟏 𝒙𝟐 Design 1 Design 2 Design 3 Design 4−1 −1 11 11 12 11
1 −1 10 11 10 10−1 1 11 10 10 10
1 1 8 8 8 9

Utility 2367,228 2367,228 2359,288 2357,229
Heavy censoring (𝒚𝒄 = 𝟎)𝒙𝟏 𝒙𝟐 Design 1 Design 2 Design 3 Design 4−1 −1 11 11 12 11

1 −1 10 11 10 10−1 1 11 10 10 10
1 1 8 8 8 9

Utility 844,958 844,958 844,308 826,128
Heavier censoring (𝒚𝒄 = −𝟏)𝒙𝟏 𝒙𝟐 Design 1 Design 2 Design 3 Design 4−1 −1 14 14 13 12

1 −1 13 12 12 11−1 1 13 12 12 11
1 1 0 2 3 6

Utility 399,423 385,753 377,213 345,831
Very heavy censoring (𝒚𝒄 = −𝟐)𝒙𝟏 𝒙𝟐 Design 1 Design 2 Design 3 Design 4−1 −1 15 15 16 14

0.8 −1 12 13 12 13−1 0.8 13 12 12 13
Utility 92,897 92,897 92,777 92,586

5.4 Two predictors with second-order model

Now consider the case of two predictor variables with a full second-order model of the form

𝑇𝑖 ∼WEIBULL(𝜅, 𝜃𝑖) (41)

where

𝜃𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽12𝑥𝑖1𝑥𝑖2 + 𝛽11𝑥2𝑖1 + 𝛽22𝑥2𝑖2. (42)

If the prior for (𝛽1, 𝛽2, 𝛽12, 𝛽11, 𝛽22) is symmetric about zero and the censoring level is light, with 𝑦𝑐 = 2, then the optimal
design for 𝑛 = 10 runs on a grid with 10 intervals over the domain [−1, 1] × [−1, 1] is the one shown in the top left panel
of Figure 1. This design has one run at each corner, one run at the midpoint of each side, one center point run, and one
additional run at one of the corners. In fact, putting two runs at any one corner and one run at every other corners yields
exactly the same D criterion.
To see the effect of the fineness or coarseness of the grid, we consideredmoving the center point around near themiddle

of the design region. The “center” point was chosen to be on the grid {−0.03,−0.02, … , 0.03} × {−0.03,−0.02, … , 0.03}. The
optimal design on the grid {−1.0,−0.8, … , 1.0} × {−1.0,−0.8, … , 1.00} yielded a D-criterion of 49243.6. The best design
obtained by moving the center point across this finer grid yielded a D-criterion of 49660.78. Thus, relative to the better
design (but not necessarily the optimal design on an even finer grid), the optimal design obtained from the coarse grid has
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12 TAYLOR et al.

F IGURE 1 Two factors and a second-order model. The prior is symmetric about the origin and the number of runs is 𝑛 = 10. Censoring
is light (𝑦𝑐 = 2) in the top two graphs and moderate (𝑦𝑐 = 0) in the bottom two. The optimal designs on the grid with 10 intervals (width of grid
points is 0.2) are shown on the left. In the right two figures, we moved the single center point around to see the effect of the fineness of the grid

a relative efficiency of 49244∕49661 ≈ 0.99. Thus, it seems that a grid with 𝑛 = 10 intervals is sufficient to obtain a design
that is very close to the optimum over a finer grid.

5.5 Two predictors with second-order model and irregular trapezoidal region

Consider now a second-order model with two predictor variables over an irregular design region. State-Ease33 suggested
an example, which is equivalent to having a design region consisting of the unit square [0, 1] × [0, 1] subject to 𝑥2 ≥ 1∕3 −𝑥1∕3. This region is shown in Figure 2with a regular grid, where the lines are parallel to the coordinate axes. The problem
with this grid is that boundary points are not necessarily grid points. For example, the lower left corner point is not a grid
point. Since optimal designs often have experimental runs at the corners, this means that the optimal design over this grid
must instead put runs at the grid point nearest to the corner.
Figure 2 further shows the result of applying the coordinate exchange algorithm where possible experimental points

are constrained to be on the regular grid. Runs are placed at the two nearest grid points to the lower left corner. Also the
middle point on the lower boundary occurs at 𝑥 = 0.4, not 𝑥 = 0.5 as we might expect.
We have found that it is better to create a grid whose lines are not necessarily parallel to the coordinate axes. Basically,

the idea is to divide each of the four edges into 10 intervals, and then connect corresponding points at opposite ends. Such
a grid is shown in Figure 3.
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TAYLOR et al. 13
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F IGURE 2 Optimal design for irregular region with nonparallel grid lines

F IGURE 3 Optimal design for irregular region with grid lines parallel to the coordinate axes

5.6 Two predictors with second-order model and circular region

Consider now a second-ordermodel with two predictor variables over a circular design region. Themapping from a square
grid to an ellipse grid can be seen below where 𝑥 and 𝑦 are the coordinates within a square grid over [−1,1]:

(𝑥′, 𝑦′) = (𝑥√1 − 𝑦22 , 𝑦√1 − 𝑥22
)

(43)

Additional details can be found at Ref.34. This circular region is shown in Figure 4 with a square grid that has been
transformed, or mapped, to a circle. Because of the discreteness of the grid, it is usually impossible to obtain points that
are equally spaced. For example, with a budget of 20 runs, having 3 at the center leaves 17 to be placed on the circumference
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14 TAYLOR et al.

F IGURE 4 Circular design region with 𝑛 = 20 runs
for a second-order model in two factors. The prior for 𝛽1,𝛽2, 𝛽11, 𝛽22, and 𝛽12 is symmetric about the origin.

of the circle. An 11 × 11 grid over a square yields 40 points along the perimeter of the circle. It is not possible to place these
17 points on the perimeter in a way that they are equally spaced.
The top left graph in Figure 4 shows the grid and the optimal design over this grid. The other graphs in Figure 4 show

the designs with 0, 1, 2, 3, and 4 center points, leaving 20, 19, 18, 17, and 16 points, respectively, along the perimeter.
Figure 4 shows the 𝐷-criterion for each of these designs. Among these designs, the one with 3 center points has the
highest𝐷-criterion. This design is slightly better (𝐷 = 232.908 vs. 231.520) than the one over the grid shown in the top left
figure. Figure 5 further explores the grid to circle mapping for different censoring levels; light, moderate, heavy, and very
heavy censoring.

6 CONCLUSION

The Bayesian approach to experimental design offers many advantages over other approaches, the most notable of which
is the ability to optimize design criteria that are functions of the posterior distribution and that can be easily tailored
to the experimenter’s design objective.26 In this article, we developed an approach to perform D-optimal design for life
testingmodelswith parameter uncertainty and censoring.We further implemented our process on the 1st order, 1 predictor
model through the 2nd order, 2 predictor model. “Fine” tuning is not necessarily needed past the tenth (.1) decimal for
providing a high utility of the design. We then expanded the typical grid design region into a trapezoidal or spherical grid.
We also varied the amount of censoring when establishing the optimal designs. That is, placing runs of an experiment at
the higher end of the grid, that is, the low stress levels, would increase run times and lead to censoring, which provides
less information than setting runs at the lower end of the grid.
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TAYLOR et al. 15

F IGURE 5 Optimal designs for 𝑛 = 20 runs
with asymmetric prior that guarantees an
increasing link function in both 𝑥1 and 𝑥2.
Censoring is light, moderate, heavy, and very heavy.
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APPENDIX A: ALGORITHM FOR FISHER INFORMATIONMATRIX
Assume that the log of the lifetimes have an SEV(𝜇,𝜎) distribution. Define

𝐺(𝑥) = 1 − exp(− exp(𝑥)), −∞ < 𝑥 <∞𝑔(𝑥) = 𝐺′(𝑥) = exp(− exp(𝑥) + 𝑥). (A1)

Assuming that an observation is right censored at 𝑧, we can use Escobar et al.35 to compute the entries in the Fisher
information matrix as

𝑓11(𝑧) = 𝜎2𝑛 𝐸 [−𝜕2𝓁𝜕𝜇2 ] = Ψ0(𝑧) = ∫
𝑧

−∞ 𝑔(𝑥) dx
𝑓12(𝑧) = 𝜎2𝑛 𝐸 [− 𝜕2𝓁𝜕𝜇𝜕𝜎] = Ψ1(𝑧) = ∫

𝑧
−∞(1 + 𝑥)𝑔(𝑥) dx

𝑓22(𝑧) = 𝜎2𝑛 𝐸 [−𝜕2𝓁𝜕𝜎2 ] = Ψ2(𝑧) = ∫
𝑧

−∞ (1 + 𝑥)2𝑔(𝑥) dx.
(A2)

Using Mathematica,36 we find that

Ψ0(𝑧) = ∫
𝑧

−∞ 𝑔(𝑥) dx = 1 − 𝑒−𝑒𝑧 (A3)

and

Ψ1(𝑧) = ∫
𝑧

−∞(1 + 𝑥)𝑔(𝑥) dx = 1 − 𝑒−𝑒𝑧 − 𝛾 − 𝑧𝑒−𝑒𝑧 + Ei (−𝑒𝑧) (A4)

where 𝛾 is Euler’s constant (𝛾 ≈ 0.577) and Ei(𝑥) is the exponential integral function defined by
Ei (𝑥) = −∫

∞
−𝑥 𝑒−𝑡𝑡 dt. (A5)

Note that if 𝑥 > 0, the interval of integration covers the singular value 𝑡 = 0, in which case, the integral is interpreted as
the Cauchy principal value. In our case, the argument, namely −𝑒𝑧, is always negative so there is no need to address this
issue. We have

Ei (−𝑒𝑧) = −∫
∞

−(−𝑒𝑧) 𝑒−𝑡𝑡 dt = −∫
∞

𝑒𝑧 𝑒−𝑡𝑡 dt. (A6)

To compute Ψ2, we can write
Ψ2(𝑧) = ∫

𝑧
−∞ (1 + 𝑥)2𝑔(𝑥) dx

= ∫
0

−∞ (1 + 𝑥)2𝑔(𝑥) dx + ∫
𝑧

0 (1 + 𝑥)2𝑔(𝑥) dx
= [1 − 𝑒−1 − 2𝛾 + 2Ei(−1) + 23𝐹3({1, 1, 1}, {2, 2, 2},−1)] + ∫

𝑧
0 (1 + 𝑥)2𝑔(𝑥) dx (A7)
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TAYLOR et al. 19

F IGURE A 1 Integrand in the expression for Ψ2(𝑧)

The first integral on the second line can be evaluated analytically using Mathematica36 and it is the value shown in the
last line. The function 3𝐹3 in Equation (A7) is the generalized hypergeometric function, defined by

3𝐹3({𝑎1,𝑎2, 𝑧3}, {𝑏1, 𝑏2, 𝑏3}, 𝑧) = ∞∑
𝑛=0

(𝑎1)𝑛(𝑎2)𝑛(𝑎3)𝑛(𝑏1)𝑛(𝑏2)𝑛(𝑏3)𝑛 𝑧𝑛𝑛! (A8)

where the Plochhammer function (𝑎)𝑛 is defined by
(𝑎)0 = 1
(𝑎)𝑛 = 𝑎(𝑎 + 1)(𝑎 + 2)⋯ (𝑎 + 𝑛 − 1) = Γ(𝑎 + 𝑛)Γ(𝑎) . (A9)

The expression in brackets in the last line of Equation (A7) is simply a number, which can approximated numerically as
0.821346956. Thus,

Ψ2(𝑧) ≈ 0.821346956 + ∫
𝑧

0 (1 + 𝑥)2𝑔(𝑥) dx (A10)

= 0.821346956 + ∫
𝑧

0 (1 + 𝑥)2𝑒−𝑒𝑥+𝑥 dx. (A10)

Note that this is true regardless of whether 𝑧 is greater or less than 0. Ordinarily, we would expect the censoring time to be
larger than the location parameter 𝜇, which would lead to a 𝑧 that is positive, but the relationship holds nonetheless. The
graph of the integrand from −5 to 5 is shown in Figure A1. Since the integral from −∞ to 0 can be evaluated with virtual
exactness, we need only numerically integrate from 0 to 𝑧. The integrand (1 + 𝑥)2𝑒−𝑒𝑥+𝑥 is well-behaved for positive values
of 𝑥, so the integral can be approximated by Gaussian quadrature. The integrand approaches zero rapidly as 𝑥 → ∞; The
limiting value for the integral is

Ψ2(∞) = 1 − 2𝛾 + 𝛾2 + 𝜋26 ≈ 1.82368066. (A11)

For 𝑧 > 3.2, Ψ(𝑧) is within 4 × 10−10 of this limiting value.
The integrand reaches a maximum near 𝑥 = 0.759313; it may be advantageous to use Gaussian quadrature separately

on the intervals [0, 0.759313] and [0.759313, 𝑧] for the case when 𝑧 > 0.759313.
Consider now the regression model

𝑌𝑖|𝑥𝑖 ∼ 𝑆𝐸𝑉(𝜇 = 𝛽0 + 𝛽1𝑥𝑖 ,𝜎) (A12)
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20 TAYLOR et al.

where observation 𝑖will be censored at time 𝑦𝑐𝑖 . The lifetime𝑇𝑖 given𝑥𝑖 , therefore, has aWEI(𝜃 = exp(𝛽0 + 𝛽1𝑥𝑖), 𝜅 = 1∕𝜎)
distribution. The Fisher information matrix is then

𝐼(𝛽0, 𝛽1,𝜎) =
⎡
⎢
⎢
⎢
⎢
⎢⎣

1𝜎2 𝑛∑𝑖=1Ψ0( 𝑦𝑐𝑖 −(𝛽0+𝛽1𝑥𝑖)𝜎 )[ 1 𝑥𝑖𝑥𝑖 𝑥2𝑖
] 1𝜎2 𝑛∑𝑖=1Ψ1( 𝑦𝑐𝑖 −(𝛽0+𝛽1𝑥𝑖)𝜎 )[ 1𝑥𝑖

]

1𝜎2 𝑛∑𝑖=1Ψ1( 𝑦𝑐𝑖 −(𝛽0+𝛽1𝑥𝑖)𝜎 )[ 1 𝑥𝑖 ] 1𝜎2 𝑛∑𝑖=1Ψ2( 𝑦𝑐𝑖 −(𝛽0+𝛽1𝑥𝑖)𝜎 )

⎤
⎥
⎥
⎥
⎥
⎥⎦

(A13)

The first-order regression model in more than one variable is handled in a similar manner. For example, if there are
two predictor variables, 𝑥𝑖1 and 𝑥𝑖2, the Fisher information matrix is

𝐼(𝛽0, 𝛽1,𝜎) =
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1𝜎2 𝑛∑𝑖=1Ψ0( 𝑦𝑐𝑖 −(𝛽0+𝛽1𝑥𝑖1+𝛽2𝑥𝑖2)𝜎 )⎡⎢
⎢
⎢⎣

1 𝑥𝑖1 𝑥𝑖2𝑥𝑖1 𝑥2𝑖1 𝑥𝑖1𝑥𝑖2𝑥𝑖2 𝑥𝑖1𝑥𝑖2 𝑥2𝑖2
⎤
⎥
⎥
⎥⎦

1𝜎2 𝑛∑𝑖=1Ψ1( 𝑦𝑐𝑖 −(𝛽0+𝛽1𝑥𝑖1+𝛽2𝑥𝑖2)𝜎 )⎡⎢
⎢
⎢⎣

1𝑥𝑖1𝑥𝑖2
⎤
⎥
⎥
⎥⎦

1𝜎2 𝑛∑𝑖=1Ψ1( 𝑦𝑐𝑖 −(𝛽0+𝛽1𝑥𝑖1+𝛽2𝑥𝑖2)𝜎 )[ 1 𝑥𝑖1 𝑥𝑖2 ] 1𝜎2 𝑛∑𝑖=1Ψ2( 𝑦𝑐𝑖 −(𝛽0+𝛽1𝑥𝑖1+𝛽2𝑥𝑖2)𝜎 )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(A14)

For the case where

𝜇𝑖 = log 𝜃𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽11𝑥2𝑖1 + 𝛽22𝑥2𝑖2 + 𝛽12𝑥𝑖1𝑥𝑖2 (A15)

the Fisher information matrix is

𝐼 (𝜷,𝜎) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1𝜎2 ∑𝑛𝑖=1 Ψ0( 𝑦𝑐𝑖 −𝒙𝑡𝑖 𝜷𝜎
)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 𝑥𝑖1 𝑥𝑖2 𝑥2𝑖1 𝑥2𝑖2 𝑥𝑖1𝑥𝑖2𝑥𝑖1 𝑥2𝑖1 𝑥𝑖1𝑥𝑖2 𝑥3𝑖1 𝑥𝑖1𝑥2𝑖2 𝑥2𝑖1𝑥𝑖2𝑥𝑖2 𝑥𝑖1𝑥𝑖2 𝑥2𝑖2 𝑥2𝑖1𝑥𝑖2 𝑥3𝑖2 𝑥𝑖1𝑥2𝑖2𝑥2𝑖1 𝑥3𝑖1 𝑥2𝑖1𝑥𝑖2 𝑥4𝑖1 𝑥2𝑖1𝑥2𝑖2 𝑥3𝑖1𝑥𝑖2𝑥2𝑖2 𝑥𝑖1𝑥2𝑖2 𝑥3𝑖2 𝑥2𝑖1𝑥2𝑖2 𝑥4𝑖2 𝑥𝑖1𝑥3𝑖2𝑥𝑖1𝑥𝑖2 𝑥2𝑖1𝑥𝑖2 𝑥𝑖1𝑥2𝑖2 𝑥3𝑖1𝑥𝑖2 𝑥𝑖1𝑥3𝑖2 𝑥2𝑖1𝑥2𝑖2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

1𝜎2 ∑𝑛𝑖=1 Ψ1( 𝑦𝑐𝑖 −𝐱𝑡𝑖 𝜷𝜎
)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1𝑥𝑖1𝑥𝑖2𝑥2𝑖1𝑥2𝑖2𝑥𝑖1𝑥𝑖2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

1𝜎2 ∑𝑛𝑖=1 Ψ1( 𝑦𝑐𝑖 −𝒙𝑡𝑖𝜷 𝜎)[1 𝑥𝑖1 𝑥𝑖2 𝑥2𝑖1 𝑥2𝑖2 𝑥𝑖1𝑥𝑖2] 1𝜎2 ∑𝑛𝑖=1 Ψ2( 𝑦𝑐𝑖 −𝒙𝑡𝑖 𝜷𝜎
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
(A16)

= 1𝜎2 𝑛∑
𝑖=1

⎡
⎢
⎢
⎢
⎢⎣

Ψ0( 𝑦𝑐𝑖 −𝒙𝑡𝑖 𝜷𝜎
)𝑿𝑇𝑿 Ψ1( 𝑦𝑐𝑖 −𝒙𝑡𝑖 𝜷𝜎

)𝒙𝑖
Ψ1( 𝑦𝑐𝑖 −𝒙𝑡𝑖 𝜷𝜎

)𝒙𝑇𝑖 Ψ2( 𝑦𝑐𝑖 −𝒙𝑡𝑖 𝜷𝜎
)

⎤
⎥
⎥
⎥
⎥⎦

(A17)

where 𝑿 is the model matrix and 𝒙𝑖 is the 𝑖 th row of the model matrix. Here Ψ0, Ψ1, and Ψ2 are the functions calculated
in Equations (A3), (A4), and (A10).
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