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Abstract— Direct ink writing is a 3D printing pro-
cess and the quality of this process depends on the
steady-state flow of materials at the tip of nozzle. In
this paper, we investigate a data-driven approach, the
physics informed neural network, for predicting flows,
and compare different neural network architectures
and their performance.

I. Introduction

Artificial neural network (ANN) can be viewed as a
universal function approximator. The solutions of ordi-
nary differential equations (ODEs) or partial differential
equations (PDEs) are often very complicated functions
while closed-form solutions are rarely available. In recent
years, using ANN to approximate ODE/PDE solution
has been actively researched. The ANNs constructed for
this purpose are called physics-informed neural networks
(PINNs). These PINN models are both physics-based
and data-driven, because the loss functions used in these
models incorporate the prediction deviations from PDE
and boundary condition functions, as well as the losses
from data prediction errors as in conventional neural
networks. PINNs provide a faster alternative to other
numerical solutions of ODE/PDE for complex systems.
In addition, it is able to investigate the inverse problem,
where the parameters existed in differential equations
can be estimated by using an almost identical PINN
architecture. This data-driven approach to understand-
ing the underlying physics of a dynamic system is highly
desired by a broad range of applications in science and
engineering.

The direct ink writing (DIW) manufacturing process
is a versatile, cost-effective, 3D printing technique. It
uses semi-fluid mixtures as inks, extrudes and layouts
inks through a nozzle on the substrate line-by-line. The
quality of DIW products are determined by the ink
printability, which is controlled by printing process pa-

rameters. It is desirable to predict the velocity field of ex-
trusion and the nozzle pressure so as to better control the
manufacturing process. The method of computational
fluid dynamic (CFD) is a powerful tool to elucidate the
physical phenomena during the shear-thinning extrusion
process [7]. However, this computational method is mesh-
based and often too slow to be used for online process
control. Furthermore, it requires pre-defined material
parameters which are often unknown apriori. Therefore,
in recent years, PINNs have been trained as alternatives
to CFD models and their predictions have been shown to
have comparable accuracy to CFD but with much faster
computation [1], [5], [9], [18].

In this paper, we first introduce the generic architec-
ture of PINN and demonstrate the connection of data-
based and physics-based approaches to system dynamics.
Next, we present several modified ANN architectures
that have been proposed for improving PINN perfor-
mance. We apply them on the material extrusion process
of DIW and show that our PINN models can predict the
nozzle pressure and the fluid flow velocity well, thus they
have the potential for real-time process control, becom-
ing building blocks for the cyber coordinated additive
manufacturing system [17].

II. Previous Work

A. PINNs

Physical and engineering problems, such as fluid flow,
heat transfer, or electric circuit design are often modeled
with ODEs and PDEs as the physical phenomenon’s
governing equations. Solving these differential equations
is not easy. Conventional numerical methods include fi-
nite element method (FEM) and finite difference method
(FDM), which are mesh-based and computationally in-
tensive. Unlike FEM or FDM, the PINN approach is
mostly data-driven and mesh-free, thus suitable for the20

23
 IE

EE
 1

9t
h 

In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 A

ut
om

at
io

n 
Sc

ie
nc

e 
an

d 
En

gi
ne

er
in

g 
(C

AS
E)

 |
 9

79
-8

-3
50

3-
20

69
-5

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

OI
: 1

0.
11

09
/C

AS
E5

66
87

.2
02

3.
10

26
06

39

Authorized licensed use limited to: University of Georgia. Downloaded on October 29,2023 at 20:09:06 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Illustration of a generic PINN model. There are three components – neural network, automatic
differentiation, and loss functions for data, PDEs and boundary conditions.

case where scattered partial spatio-temporal data are
available and the initial condition or boundary condition
may be unknown.

A generic PINN model is a fully-connected feed-
forward ANN, which is composed of multiple hidden
layers, is used to approximated the solution of the PDE
by take the space and time coordinates as inputs. It
takes advantage of automatic differentiation (AD) of
computational neural network and uses this function to
construct the PDE loss that is a component of the total
loss function for neural network training.

Taking the Navier-Strokes equation of fluid dynamics
as an example, the parameterized PDE system can be
expressed as

f(x, t, û, ∂xû, ∂tû, θ) = 0, x ∈ Ω, t ∈ [0, T ],

with û(x, t0) = g0(x) for x ∈ Ω, and û(x, t) = gB(t)
for x ∈ ∂Ω. All parameters in the system are repre-
sented by θ. Here, function f denotes the residual of
the PDE, containing the differential operators and PDE
parameters, û(x, t) is the solution of PDE with the initial
condition g0(x) and the boundary condition gB(t). Its
corresponding PINN model is illustrated in Figure 1. One
can see that the overall loss function consists of three
components – the loss for model prediction errors, the
loss that penalizes the residual of the governing equation,
and the loss for unsatisfying the boundary condition
and/or initial condition.

B. Relevant literature
The origin of PINN can be traced to Lagaris et al.

[12], in which the solution to differential equations was

framed as a minimization problem using the sum of two
sub-functions, while one of these functions was chosen
such that it satisfies the boundary conditions and the
other one was approximated by using a neural network
having the number of input layers equal to the number of
independent variables, one hidden layer, and one output
layer having a number of units equal to the number
of dependent variables. Raissi et al. [14], [15], [16] took
this idea and coined the model, physics-informed neural
network or PINN, as a deep learning framework to solve
nonlinear partial differential equations. They proposed
that, by regularizing the loss function by the PDEs gov-
erning the physics of the system, better neural network
models can be developed for engineering and biological
systems with limited data. It was shown that PINNs
can solve two classes of problems – firstly, solving the
PDEs governing the system given the limited data within
the domain of the system; and secondly, estimating the
parameters involved in the PDEs. Comparing with a
finite elements solver, they observed the accuracy of the
PINN solution to be within 99%, even with 1% Gaussian
uncorrelated noise, in the first class of problem and the
accuracy was around 95% for parameter estimation in
the second class of problem.

The PINN approach has also been used in reinforce-
ment learning, where active control of flow dynamics is
made possible [5]. For simple linear dynamic systems, a
rapid version of PINNs has been developed by taking
advantage of stationary and time-dependent linear par-
tial differential equations [6]. A special neural network
architecture called NSFnets was proposed for solving
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Navier-Stokes equations for simulating incompressible
laminar and turbulent flows [9]. Using PINNs to solve
inverse problems for metamaterial design was discussed
in Chen et al. [2]. Cuomo et al. [4] and Karniadakis
et al. [10] provide the latest summary of the literature
on PINNs, including a discussion of their advantages
and disadvantages, and variants of PINNs adapted for
different applications. The paper by Cai et al. [1] provides
a comprehensive review of physics-informed neural net-
works (PINNs) as a solver for fluid dynamics problems,
with a particular focus on their efficacy in simulating
dynamic fluid flows.

While this approach is a good way to combine the data
and the physics governing the system, we can improve
its convergence rate by selecting a suitable combination
of initialization, architecture, and optimization method.
One improvement of the vanilla PINN architecture comes
from the use of ResNet. To counter the degradation
problem from deeper neural networks, He et al. [8]
introduced the deep residual neural network, or ResNet.
In this architecture, they introduced the residual or
skip connections or identity mapping in between groups
of layers, this allows the network to choose either the
identity mapping or the combination weights. Cheng
and Zhang [3] solve the Navier-Stokes equation by using
PINN paired with a Resnet block. The ResNet block is
used to improve the stability of the neural network.

Rahaman et al. [13] demonstrated that the neural
network prioritizes learning smaller frequencies over local
fluctuations and called this phenomenon the spectral bias
of the neural network. They demonstrated that lower
frequency noise affects the system more than that of
higher frequency; therefore, they argued that a given
signal defined on the manifold is easier to fit if the
coordinate system that corresponds to the manifold can
be expressed in terms of higher frequency components.
This idea of spectral adjusted neural network has not
been attempted on PINNs yet.

In PINNs there are at least two loss functions being
formulated - one function evaluates the NN solutions
using training data and the other function evaluates the
gradient of NN against the analytical differential func-
tion. Yu [19] and Kumar et al. [11] described that mul-
titask learning is much more efficient than learning each
task independently, but there are several challenges that

prevent significant efficiency gains. The main challenges
are: (a) conflicting gradient of individual tasks because
parameter improvements with respect to one task may
degrade it with respect to other tasks, (b) large differ-
ences in the magnitudes of gradients of individual tasks
leading to some task gradients dominate over the other
in the gradient of overall loss, and (c) high curvature
in the multitask optimization landscape. They proposed
a model independent algorithm, Projecting Conflicting
Gradients (PCGrad), to alleviate these issues. In this
algorithm, they adopted a simple procedure to reduce
the conflict between the gradients during optimization
by projecting the gradient of each task onto the normal
plane of the gradient of other tasks if the gradients of
two tasks are in conflict,i.e., if their cosine similarity is
negative. A substantial improvement in the performance
had been observed, including over 30% improvement in
multi-task reinforcement learning problems compared to
other approaches. Again, the idea of PCGrad has not
been applied on PINNs yet.

III. Architectures of PINNs for DIW

A. DIW fluid dynamics simulation

Guo et al. [7] conducted a comprehensive simulation
study on the flow of non-Newtonian fluid ink in the DIW
process. Their study indicated that a nozzle designed
with a cylindrical shape exhibits stable fluid velocity
and shear stress profiles in the nozzle region. However,
this shape can also generate very high stresses in the
nozzle, causing severe material degradation. Thus, they
recommended a design with conical body and optimally
sized cylindrical nozzle tip for DIW. Their recommended
nozzle shape is adopted in our study.

Fig. 2. Nozzle shape for DIW process and geometry
specifications.

Utilizing the symmetry of the nozzle, a 2D axis-
symmetric planar surface has been considered for the
nozzle meshing. ANSYS Fluent is used to generate
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structured meshing, with the inclusion of five inflation
layers for capturing the boundary layer in proximity to
solid surfaces. In this study, the flow process of non-
Newtonian DIW ink has been modeled as a steady-
state viscous laminar fluid flow problem. To model the
viscosity of the non-Newtonian shear-thinning fluid, the
Herschel-Bulkley viscosity model has been incorporated
into the software as a user-defined function (UDF). This
approach enables the simulation of complex rheological
behavior of the ink, and facilitates the calculation of
relevant flow parameters.The Herschel-Bulkley model is
expressed as follows:

τ = τyield + Kγ̇n (1)

where τ is the shear stress, τyield is the yield stress, K

is the consistency index, γ̇ is the shear rate, and n is
the flow behavior index. From the above equation, the
dynamic viscosity (µ) can be calculated as:

µ = τ

γ̇
= τyield

γ̇
+ Kγ̇n−1 (2)

where γ̇ is the shear rate magnitude.

The governing equations for a viscous laminar fluid
flow problem are the continuity equation and the Navier-
Stokes equation. The continuity equation represents the
conservation of mass in the fluid flow, requiring that the
rate of mass entering a control volume is equal to the
rate of mass leaving it, and any net accumulation of
mass inside the control volume is equal to the difference
between the inflow and outflow rates. Mathematically, it
is expressed as

∂ρ

∂t
+ ∇ · (ρu) = 0 (3)

where ρ is the fluid density, t is time, u is the velocity
vector, and ∇·(ρu) represents the divergence of the mass
flux.

For a 2D steady-state viscous laminar fluid flow, this

Fig. 3. Ansys Fluent mesh model for the nozzle.

continuity equation can be simplified to
∂(ρu)
∂x

+ ∂(ρv)
∂y

= 0 (4)

where u and v are the velocities in the x and y directions,
respectively. It serves as a crucial constraint for the
solution of the Navier-Stokes equations and it plays
a significant role in the calculation of important flow
parameters such as pressure, velocity, and turbulence.
The continuity equation can be automatically satisfied
by representing velocities in terms of a scalar flow field,
known as the stream function, which is constant along
streamlines. Mathematically, this can be expressed as

u = ∂ψ

∂y
, v = −∂ψ

∂x
(5)

where ψ is the stream function.
The Navier-Stokes equation is a fundamental equation

governing the motion of viscous fluids. It expresses the
conservation of momentum and provides a mathemat-
ical framework for modeling and simulating fluid flow.
Mathematically, this can be expressed as

ρ
∂u
∂t

+ ρ(u · ∇)u = −∇p + µ∇2u (6)

where µ is the dynamic viscosity of the fluid.
The Navier-Stokes equation for 2D steady-state case

can be simplified as

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+ µ

(
∂2u

∂x2 + ∂2u

∂y2

)
(7)

along x axis. And,

ρu
∂v

∂x
+ ρv

∂v

∂y
= −∂p

∂y
+ µ

(
∂2v

∂x2 + ∂2v

∂y2

)
(8)

along y axis.
The training data for this study is generated by AN-

SYS Fluent solver after providing it with the parameters
and boundary conditions listed in Tables I and II

TABLE I. Fluid Properties
Property Value

Density (ρ) 1240 kg/m3

Consistency coefficient (k) 568.6 Pa-s
Flow index (n) 0.335

Yield stress (τyield) 764.01 Pa

B. PINN models
The initial PINN architecture used in our experiment

is a sequential feed-forward neural network, where ran-
domly chosen mesh location coordinates are used as
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Fig. 4. Sequential Neural Network Architecture.

Fig. 5. Residuals Neural Network Architecture.

Fig. 6. Fourier Residuals Neural Network Architecture.

TABLE II. Boundary Conditions
BC Value

Inlet Pressure = 68750 Pa
Outlet Vent (Pressure multiplier = 1)
Wall Stationary wall, no slip

the inputs and 2-D velocities and pressures are the
outputs. The training data are sampled from ANSYS
simulations. The automatic differentiation functions of
neural network are utilized to build the Navier-Stokes
equations on the x and y axes, which leads to the pde
loss function. The data loss function is constructed by

combining the squared errors from velocity and pressure
predictions. Figure 4 illustrates this architecture.

In addition to the sequential neural network, we also
experimented with the ResNet [8], ResNet with Fourier
feature mapping [13], and ResNet with PCgrad [19]
architectures. Figures 5 and 6 illustrate the first two of
these architectures, and the last one is not shown here
because it is the same architecture with of ResNet with
Fourier features but with adjustments of the gradient
functions for the two loss functions during the neural
network training process.
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To simplify the training, we focused on the fluid flow
in the rectangular nozzle outlet region, where the solu-
tions of Navier-Stokes equations were approximated by
PINNs. We compared the solution convergence from four
architectures of both the forward and inverse analyses.
The forward analysis is about making predictions of
velocities along x and y axes and predictions of pressure
at any location, while the inverse analysis provides the
estimations of parameters used in the Navier-Strokes
PDEs.

IV. Results and Discussions
Figures 7 and 8 depict the training processes of 4

neural networks in terms of reducing the errors in ve-
locity prediction, and Figure 9 for the errors in pressure
prediction. One can see that the sequential neural net-
work is not stabilized for velocity prediction even after a
long training epochs. ResNet with Fourier features and
ResNet with PCgrad provides superior performance in
terms of faster convergence and lower error values they
can achieve. In particular, the PCgrad approach can
better quickly stabilize the prediction error, no matter
for velocity or pressure.

For the inverse analysis, the advantage of the PCgrad
approach becomes even more prominent. Figures 10 and
11 show that the sequential neural network and ResNet
architectures cannot reach the convergence of parame-
ter estimation after a long training period, while with
Fourier features and PCgrad the estimation converges.
However, a bias in parameter estimation is also observed.
The reason of this bias needs to be further investigated.

Fig. 7. The convergence of test error of velocity u from
forward analysis.

Fig. 8. The convergence of test error of velocity u from
forward analysis.

Fig. 9. The convergence of test error of velocity u from
forward analysis.

Fig. 10. Inverse Analysis of PDE parameter 1.

Authorized licensed use limited to: University of Georgia. Downloaded on October 29,2023 at 20:09:06 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 11. Inverse Analysis of PDE parameter 2.

V. Conclusions

In this paper we investigated four PINN architectures
for approximating the solutions of DIW fluid flow in
the nozzle region, which is defined by the Navier-Stokes
equations. Our results showed that adding Fourier fea-
tures and PCgrad approach to resolve the gradient search
conflict in PINNs is an effective approach. This approach
has not been explored much in literature. Our results
also demonstrate the feasibility of PINNs for solving the
PDEs that govern the DIW process, thus paving the way
for building a real-time digital twin for predicting DIW
process quality. It is noted that a specific application of
DIW may have many other process variables that need
monitoring, diagnosis and prognosis, beside of velocity
and pressure. Adapting these PINN models to a broader
range of DIW processes requires a future research.

Acknowledgement

This work was partially supported by National Science
Foundation (Grant No. 2134409).

References

[1] S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis.
Physics-informed neural networks (pinns) for fluid mechanics:
A review. Acta Mechanica Sinica, 37(12):1727–1738, 2021.

[2] Y. Chen, L. Lu, G. E. Karniadakis, and L. Dal Negro. Physics-
informed neural networks for inverse problems in nano-optics
and metamaterials. Optics express, 28(8):11618–11633, 2020.

[3] C. Cheng and G.-T. Zhang. Deep learning method based on
physics informed neural network with resnet block for solving
fluid flow problems. Water, 13(4):423, 2021.

[4] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi,
and F. Piccialli. Scientific machine learning through physics–
informed neural networks: where we are and what’s next.
Journal of Scientific Computing, 92(3):88, 2022.

[5] Z. Dang and M. Ishii. A physics-informed reinforcement
learning approach for the interfacial area transport in two-
phase flow. arXiv preprint arXiv:1908.02750, 2019.

[6] V. Dwivedi and B. Srinivasan. Physics informed extreme
learning machine (pielm)–a rapid method for the numerical
solution of partial differential equations. Neurocomputing,
391:96–118, 2020.

[7] Z. Guo, F. Fei, X. Song, and C. Zhou. Analytical study of
shear-thinning fluid flow in direct ink writing process. In
International Manufacturing Science and Engineering Con-
ference, volume 85802, page V001T01A034. American Society
of Mechanical Engineers, 2022.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 770–778,
2016.

[9] X. Jin, S. Cai, H. Li, and G. E. Karniadakis. Nsfnets (navier-
stokes flow nets): Physics-informed neural networks for the
incompressible navier-stokes equations. Journal of Compu-
tational Physics, 426:109951, 2021.

[10] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris,
S. Wang, and L. Yang. Physics-informed machine learning.
Nature Reviews Physics, 3(6):422–440, 2021.

[11] A. Kumar and H. Daume III. Learning task grouping and over-
lap in multi-task learning. arXiv preprint arXiv:1206.6417,
2012.

[12] I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural net-
works for solving ordinary and partial differential equations.
IEEE transactions on neural networks, 9(5):987–1000, 1998.

[13] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin,
F. Hamprecht, Y. Bengio, and A. Courville. On the spectral
bias of neural networks. In International Conference on
Machine Learning, pages 5301–5310. PMLR, 2019.

[14] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics
informed deep learning (part i): Data-driven solutions of
nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561, 2017.

[15] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics
informed deep learning (part ii): Data-driven discovery of
nonlinear partial differential equations. arXiv preprint
arXiv:1711.10566, 2017.

[16] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear par-
tial differential equations. Journal of Computational physics,
378:686–707, 2019.

[17] H. Sun, G. Pedrielli, G. Zhao, C. Zhou, W. Xu, and R. Pan.
Cyber coordinated simulation for distributed multi-stage ad-
ditive manufacturing systems. Journal of manufacturing sys-
tems, 57:61–71, 2020.

[18] S. Wang, H. Wang, and P. Perdikaris. Learning the
solution operator of parametric partial differential equa-
tions with physics-informed deeponets. Science advances,
7(40):eabi8605, 2021.

[19] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and
C. Finn. Gradient surgery for multi-task learning. Advances in
Neural Information Processing Systems, 33:5824–5836, 2020.

Authorized licensed use limited to: University of Georgia. Downloaded on October 29,2023 at 20:09:06 UTC from IEEE Xplore.  Restrictions apply. 


