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Abstract

Modern data privacy regulations such as GDPR, CCPA, and
CDPA stipulate that data pertaining to a user must be deleted
without undue delay upon the user’s request. Existing sys-
tems are not designed to comply with these regulations and
can leave traces of deleted data for indeterminate periods of
time, often as long as months.

We developed Lethe to address these problems by pro-
viding fine-grained secure deletion on any system and any
storage medium, provided that Lethe has access to a fixed,
small amount of securely-deletable storage. Lethe achieves
this using keyed hash forests (KHFs), extensions of keyed hash
trees (KHTs), structured to serve as efficient representations
of encryption key hierarchies. By using a KHF as a regulator
for data access, Lethe provides its secure deletion not by re-
moving the KHF, but by adding a new KHF that only grants
access to still-valid data. Access to the previous KHF is lost,
and the data it regulated securely deleted, through the secure
deletion of the single key that protected the previous KHF.
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ment; « Information systems — Information storage
systems.
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1 Introduction

Today’s storage systems are tasked with providing timely
secure deletion. Timely secure delete requires ensuring that
data is irrecoverable within short timescales that are outside
the control of the system (ideally within a few seconds). The
feature is increasingly important due to consumer protec-
tion laws (e.g., the European Union’s GDPR [5], California’s
CCPA [2], Virginia’s CDPA [3], etc.), compliance with laws
governing the protection of classified information [4], and
ensuring proper data governance for customers [7].
Unfortunately, traditional data deletion (e.g., rm, unlink)
does not securely delete data, and existing secure delete tech-
niques require impractical resource overhead or constraints.
Physical destruction [15], in which a user drills, shreds, or
melts a storage medium, requires destroying an entire drive
for each deletion and leads to impractical resource overhead.
Overwrite erasure [13, 15], which securely deletes data by
overwriting it in-place, suffers from two issues: (1) it places
impractical constraints on storage media because it only
works on storage that supports in-place overwrites (thus
precluding use of media such as flash [24] and write-once,
read-many (WORM) media [10]) and (2) it places impractical
resource overhead on storage devices because it repetitively
overwrites data and thus degrades device durability.
Cryptographic erasure [15] eases some of the impracticality
of physical destruction and overwrite erasure, but retains
high resource overhead in either high storage or compute
costs. Cryptographic erasure encrypts each chunk (anywhere
from a block to an entire drive) of data in a storage system
using a key and strong cipher; it supports secure deletion
by performing overwrite erasure on the key. Since breaking
the encryption is computationally infeasible (either through
the key or the algorithm), cryptographic erasure ensures
practical secure deletion given enough storage for its keys.
However, existing cryptographic erasure systems intro-
duce impractical resource overheads due to the tradeoff be-
tween computation and storage in managing the encryption
keys. On one extreme, a system could use a single key for
all data blocks (coarse-grained). This approach requires lit-
tle key storage, but imposes high compute overhead since
it requires re-encrypting the entire drive for each deletion,
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no matter the size. On the other extreme, a system could
use a separate key for each data block (fine-grained). This
approach eschews re-encryption, but imposes high storage
overhead since it requires an amount of securely deletable
key storage proportional to the amount of data on the drive.

This paper presents Lethe, a portable system for timely,
fine-grained secure deletion with low storage and compu-
tation overhead. Lethe encrypts keys recursively as a tree
in a hierarchical structure. This design reduces the required
amount of securely deletable storage down to a single root
key (typically 128-256 bits). This storage requirement is
supported by ubiquitously deployed systems such as secure
enclaves (e.g., Apple’s Secure Enclave [1], Intel’s Software
Guard Extensions (SGX) [6], etc.) and smart cards (e.g., Yu-
biKey [8]). Delegating secure deletion of a small, constant
amount of key material to a trusted component allows Lethe
to be agnostic of storage media since there is no requirement
for in-place overwrite of data; all data, including metadata,
is written append-only. Thus, Lethe reframes secure deletion
not as removing the data that is no longer wanted, but as
adding data that only provides access to what remains valid.

Hierarchical key management also enables Lethe to mini-
mize the computational overhead required for each deletion.
Lethe introduces the keyed hash forest (KHFs), an extension
of a keyed hash tree (KHT) [18], which serves as an effi-
cient data structure from which to derive and revoke keys.
Lethe structures KHFs hierarchically: inode KHFs protect
data blocks of a file, a master KHF protects the inode KHFs,
and a single master key protects the master KHF. The master
KHF acts as a data regulator in that it only allows access to
data covered by its subordinate inode KHFs. When Lethe
securely deletes data, it creates a new master key, “rolls for-
ward” the still-valid keys in its master KHF by re-encrypting
them with the new master key, and erases the previous mas-
ter key. Thus, Lethe’s compute overhead is proportional to
the size of the master KHF rather than to the amount of data
in the system. Lethe could further reduce compute overhead
by adding additional layers to its KHF hierarchy.

To evaluate Lethe, we prototyped its design by integrating
it into the Zettabyte File System (ZFS) [9]. The added capabil-
ity for secure deletion in our unoptimized prototype results
in a 17.63% decrease in throughput compared to baseline
ZFS, and a 15.5% decrease in throughput compared to ZFS
with native encryption (which encrypts each block of data
but cannot provide secure deletion).

2 Background

Prior secure delete systems have shortcomings that prevent
them from providing the privacy mandated by legislation
(GDPR, CCPA, CDPA, etc.), as we will describe. Namely, prior
systems do not support media without in-place updates, in-
cluding WORM media and flash devices that use an FTL.
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Reardon et al. [22] proposed ballooning and purging in user
space, to address the inability to perform in-place overwrites
on flash memory. Ballooning artificially reduces free space
by occupying it with junk data, and purging periodically fills
up the free space with junk data to ensure the secure deletion
of deleted data blocks. However, these techniques adversely
affect the endurance of flash memory, perform poorly, and
do not work on WORM media.

Decrypting stubs [20] provide per-block encryption keys.
Erasing the block’s decrypting stub securely deletes the block.
This design requires in-place overwrite and cannot be used
on devices without such support (e.g., flash and WORM me-
dia).

File header blocks [17] provide per-file encryption. Conse-
quently, file header blocks provide secure delete for files but
not for individual blocks. Like the decrypting stub design,
this design also requires in-place overwrite and thus cannot
be used on devices without such support.

DNEEFS [21] encrypts each data block and stores all data
block keys in a group called a Key Storage Area (KSA).
DNEFS batches block-level secure deletion using purging
epochs. When a block is deleted or overwritten, DNEFS
marks the block’s key to be deleted in the next epoch. Purg-
ing epochs run periodically to roll forward keys that remain
valid in a KSA by copying them to a new KSA. DNEFS over-
writes the previous KSA in-place to securely delete the keys
that weren’t rolled forward to the new KSA. This system thus
requires in-place overwrites and cannot be used on devices
without such support.

No prior system provides portable secure delete, since they
cannot be used on WORM or flash media. Consequently,
prior work is inadequate for fine-grained secure deletion
requirements mandated by legislation.

3 Key Management

We now discuss key management, contrasting different en-
cryption granularities for cryptographic erasure and the
amount of key storage overhead they each produce. By ex-
ploring how keys are stored, we demonstrate how storing
keys in a hierarchical manner reduces the amount of data
that needs to be securely erased for secure deletion of an
arbitrary amount of data to that of a single key.

A cryptographic-erasure based system typically applies
encryption at one of the following granularities, listed in
order of decreasing granularity: full-drive, per-file, and per-
block. Full-drive encryption encrypts every data block with
the same key. While securely deleting all the data blocks
only requires securely deleting that one key, there is the
caveat that even securely deleting a single byte of that data
requires all the data blocks to be re-encrypted with a new key.
Per-file encryption encrypts every data block within a single
file with the same key. This approach suffers from the same
re-encryption issue as full-drive encryption when partially
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deleting a single file, but less pronounced due to how much
smaller files are in comparison to entire drives. Per-block
encryption encrypts every data block with its own key, thus
avoiding the re-encryption penalty paid by full-drive and
per-file encryption.

The issue with the finer-grained encryption approaches,
per-file and per-block, is the problem of key storage. Consider
a relatively small file system with 4 TiB of data, a block size
of 4KiB, and 16 B encryption keys. Providing a key for each
possible data block results in 16 GiB of keys.

A naive approach for storing these keys is to simply store
them in together in blocks, as would occur if they were stored
as a key file. Assume key K resides in block B. Securely delet-
ing K and preserving the other keys in block B requires
writing a new version of the block, B’, that replaces K with
anew key K’ and keeps around the still-valid keys. K is se-
curely deleted when B is securely deleted. Thus, any change
to a block requires 4 KiB worth of keys to be securely deleted,
and deleting all the data blocks in the system requires all
16 GiB of keys to be securely deleted. This is equivalent to
the approach used for the KSAs introduced by Reardon et
al. [21].

A different approach would be to employ per-file encryp-
tion, protecting the key file by encrypting all of its blocks
with a single key. While this approach requires all the blocks
of the key file, the key blocks, to be re-encrypted with another
key in order to delete any key in the key file, the only key
that needs to be securely deleted is the single key protecting
all the key blocks.

The next obvious approach is to instead employ per-block
encryption on the key blocks, which makes the recursive
nature of this problem apparent. Encrypting each of the key
blocks with their own key results in more keys, these keys
in which are also stored in key blocks, each of which should
be encrypted as well. This continues until there is a single
key encrypting a block of indirect keys (at however many
levels of indirection).

Thus, due to the hierarchical structuring of keys, the single
top-level key regulates access to all the data that is encrypted
by any key that is indirectly encrypted by it. Secure deletion
of the top-level key is sufficient—and necessary—for the se-
cure deletion of any amount of data covered by that top-level
key.

Lethe uses keyed hash trees to efficiently represent this
hierarchy of keys, reduce the amount of key storage required
for fine-grained, per-block encryption, and to reduce the
amount of effort necessary to roll forward still-valid keys.

4 Keyed Hash Trees

A keyed hash tree (KHT), originally presented by Li et al. [18],
is a logical tree structure that allows for an effectively infi-
nite number of block encryption keys to be generated from
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a single key, with the property that it is computationally
infeasible to derive block keys from each other.

The topology of a KHT is defined by a list of integers de-
scribing the fanout (the number of child nodes per parent) at
each level. Crucially, the fanout list describes fanouts start-
ing from level 1 (L1) because the root at L0 has an arbitrary
fanout, allowing the generation of an unlimited number of
keys from a single root.

4.1 Composition

Like typical tree structures, KHTs are composed of nodes.
Each node is defined as a triple:

Node n = (value, level, offset ).

The level and offset of a node acts as a unique identifier,
where the level indicates the level, or depth, within the KHT
that the node can be found in and the offset indicates its
position within the level itself.

The value component of the node triple is suitable for
use as an encryption key, which allows a KHT to supply an
infinite number of keys since it may cover an infinite number
of leaf nodes.

4.2 Key Derivation

Aside from the root, each node in a KHT is derived computa-
tionally, from its parent. Critically, this means that only the
root node of a KHT must be stored in order for the whole tree
to be accessible. To get the value v’ of a node given its level
1, its offset o, and its parent’s value, v, we simply compute:

o’ =H(vl|1]]o),

where H is a cryptographically secure hash function and ||
indicates concatenation. The usage of a cryptographically
secure hash function ensures that the relationship from a
parent node to a child node is a strict one-way relationship,
making it trivial to recursively compute any descendant node
given its ancestor, but computationally infeasible to compute
an ancestor node from any of its descendants. It is computa-
tionally infeasible to compute the values of sibling nodes as
well, since that would require computing the parent’s value.
Figure 1 shows the relationship between connected nodes in
a KHT described by a (3, 2) fanout list.

Lo | Ko,0 |
— ~
o T o T
< [ RN < 3 ~
L2 | K20 Ko,1 | Koo Ko3 | Koa Ko 5 | |
| 7\ 7\ 7\ 7\ 7\ 7\ |

L3 |Ks0[Ks1|Ks2|Ks3|Ksa|Ka5|K36]|K37]|Ks8|Ks9(Ks10 K3,11|

Figure 1. A KHT described by a (3, 2) fanout list.
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D key

— encrypts

Figure 2. A KHT before and after key revocation.

4.3 Key Revocation

The primary difficulty with KHTs is key revocation, which
was acknowledged by Li et al. [18] and stated to be future
work. As seen with the KSAs used in DNEFS [21] and in the
discussion on key storage in §3, deleting or modifying a block
requires its key to be securely deleted—revoked—and the rest
of the keys with which it was stored to be rolled forward.
Revoking a single key in a KHT causes it to fragment, since
the roots from which the revoked key can be derived must
be rendered inaccessible. Consider Figure 2, which depicts
the state of a KHT before and after revoking the keys for
the to-be-overwritten data blocks Bs, B4, and Bs. The new
state of the KHT no longer includes the roots from which
the revoked keys can be derived and includes new roots
from which replacement keys can be derived. Thus, KHT
key revocation fragments the KHT into a forest of KHTs.
Lethe solves this using keyed hash forests.

4.4 Keyed Hash Forests

A keyed hash forest (KHF) describes a forest of KHTs from
which encryption keys can be derived. A KHF is simply
represented as lists of roots, where each root matches the
definition of a node presented in §4.1.

There are two main operations associated with a KHF: key
derivation and update. The key derivation operation, as its
name implies, is used to derive a key using the roots stored
in a KHF. Storing roots in a KHF in order of their offsets
allows for efficient O(logn) search to find the root of the
KHT that covers the desired leaf node.

The update operation is used to revoke keys from a KHF.
It updates the roots in the KHF, replacing the roots cover-
ing the revoked keys with a new set of roots that provide
replacement keys from which still-valid keys can be derived,
but invalidated keys cannot.

KHFs naturally lend themselves to be used in a hierarchi-
cal manner, capable of both providing encryption keys for
data blocks, as well as other KHFs. A single, top-level KHF
thus effectively regulates access to all data covered by any
subordinate KHFs protected by it. By extension, a single key
encrypting this top-level KHF regulates access to the entire
set of data that all of its subordinate KHFs cover.

Lethe provides secure deletion through addition, given
a fixed, small amount of securely deletable storage used
to store the key protecting the top-level KHF. Instead of
overwriting a KHF, Lethe simply writes a new KHF that
allows access to all data that should be kept. Any data that
is not accessible through the new KHEF is securely deleted
when the key to the previous KHF is securely deleted.

5 Design

We now present the design of Lethe. We start with how Lethe
uses copy-on-write (CoW) semantics not only to eliminate
the need for in-place overwrites, but also to provide data
consistency. We then describe the hierarchy of KHFs, assum-
ing a traditional Unix file system that uses inodes.! Finally,
we present the usage of epochs, time intervals over which
KHFs updates are batched, and consolidation, an operation
performed to address KHF fragmentation.

5.1 Copy-On-Write

All data, including metadata, is written in a copy-on-write
(CoW) manner. This upholds Lethe’s guarantee of secure
deletion through addition, and provides portability. Since
Lethe only writes new data in an append-only fashion, it
is clear that Lethe’s operational security is not dependent on
in-place overwrites. Similarly, because data is explicitly as-
sumed to never be overwritten, Lethe can be considered truly
portable since it works agnostic to the storage medium it
uses.

The usage of CoW enables data consistency. Once a new
copy of data is written, pointers are atomically modified to
point to the new copy instead of the old copy. This is the
same approach that ZFS [9] uses for its data consistency.

5.2 KHF Hierarchy

Lethe maintains a KHF for each inode, which we refer to as
an inode KHF. Each inode KHF is responsible for managing
the encryption keys for the blocks that its corresponding

1 Although the presentation of Lethe’s design assumes a traditional Un1x
file system structure, we note that Lethe can be easily modified to allow for
secure deletion on any system.
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inode points to. Persisting an inode KHF requires it to be
encrypted.

To manage the keys for inode KHFs, Lethe maintains a
master KHF. Each inode KHF’s key is identified within the
master KHF by its i-number, and a master key is used to
encrypt the master KHF when persisting it. The master KHF,
and by extension the master key, regulates access to all data
in the system. Securely deleting the master key securely
deletes all data covered by the master KHF that has not
been rolled forward to being covered by a new master key
and KHF. Figure 3 shows an example of the described KHF
hierarchy.

The hierarchy established by inode KHFs and the master
KHF is no different from the tree structure established by
directories in a traditional file system. While only two levels
of KHFs are shown in Figure 3, it is possible to stack KHFs
as many times as is desired.

5.3 Master Key Storage

The master key must be stored on a device that provides
for secure deletions that occur once per epoch. The amount
of storage on the device can be quite small, since it only
needs to store one or two keys. The best option for this is a
secure enclave such as the one coupled with Intel’s Software
Guard Extensions [6] or Apple’s Secure Enclave [1]. A more
accessible option would be a smart card designed specifically
for this purpose, such as a YubiKey [8].

master KHF

| K2,0 | K21 | Koo * *
K30 K31 |32 Ks3|K34]|Ks5| K36 |Ks7 K3,10|K3,11

A N——

\ —

inode KHF, inode KHF,

K30 [Ks,1] K32 K3,3- | K20 | K21 | K22 |
1 1 1 1

— v —v [\ /\ /\

K30 K31 |K32|Ks3|K34|Ks5

|
A v v v v

Figure 3. The hierarchy of KHFs in Lethe.
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Figure 4. State before and after “overwriting” a block.

5.4 Epochs

Epochs are time intervals over which updates to KHFs are
deferred and batched together, much like the approach of
purging epochs used by DNEFS [21], and similar to the group
commit technique employed by ZFS [9] and WAFL [14].

Lethe accumulates the updates that are made to KHFs
throughout an epoch and applies them at the end of an epoch;
the updated inode KHFs are encrypted with new keys derived
from the updated master KHF and persisted, and the updated
master KHF is then encrypted with a new master key and
persisted. Securely deleting the previous master key, or epoch
key, ensures the secure deletion of any data deleted during
the previous epoch. Thus, Lethe provides secure deletion
guarantees at an epoch granularity.

By increasing epoch duration, we gain performance by
avoiding the cascade of KHF updates and persists that oc-
cur on any data modifying operation. Figure 4 shows the
occurrence of this cascade of KHF updates and persists when
“overwriting” just a single block. Time ¢ in Figure 4 shows the
state of Lethe before overwriting block By. Since Lethe uti-
lizes CoW, overwriting block By requires a new block, block
By, to be written. This requires a new version of the KHF
covering block By to be written with its contents updated
to replace the key for block By, thereby removing access to
block By. In turn, a new version of the master KHF is then
written with its contents updated to replace the key for the
updated KHF. Finally, a new master key for the updated mas-
ter KHF is generated. Securely deleting the previous master
key takes us to the state shown at time ¢ in Figure 4, in
which the “overwritten” block By is inaccessible and consid-
ered securely deleted. Handling this cascade of KHF updates
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and persists for each write is inefficient, which provides the
motivation for the usage of epochs, since they allow the
updates to be batched and persisted together.

Epoch duration can either be based on time, amount of
data written, or simply manually triggered. Importantly,
epoch duration trades off performance for the frequency
of secure deletion. In general, the longer the epoch, the more
performant the system. The shorter the epoch, the more
rapid the guarantee of secure deletion.

5.5 Consolidation

KHFs become fragmented as writes occur over time, with the
degenerate case for a KHF being that it contains a root for
each key that it provides. This is typically not a concern for
an inode KHF since files tend to be written sequentially [23]
and will have multiple blocks covered by a common root,
but is a concern for the master KHF.

The leaves of a master KHF provide the encryption keys
for the inode KHFs. Unless inodes are modified sequentially
by i-number during an epoch, the master KHF will generally
fragment into the degenerate case. The size of the master
KHEF as it fragments becomes unwieldy given that the master
KHF must be re-encrypted and persisted after every epoch.

Consolidation addresses the issue of fragmentation. Con-
solidation is a KHF compaction operation that incurs the
penalty of re-encrypting data in exchange for a reduction
in KHF size. For an inode KHF, consolidation requires re-
encrypting a range of data blocks using a common root
that will then replace the roots covering the re-encrypted
data blocks. For the master KHF, consolidation requires re-
encrypting a range of inode KHFs and updating the master
KHF with a single root that covers those re-encrypted inode
KHFs. Although paying the cost of consolidation to improve
performance may be occasionally necessary, it is important
to note that delaying consolidation indefinitely has no impact
on the security of Lethe.

6 Evaluation

Our goals for the evaluation of Lethe were:

1. To measure the performance of Lethe integrated into
a widely-used system using real-world workloads.

2. To measure the performance overhead incurred in pro-
viding secure deletion with Lethe.

6.1 Implementation

For goal (1), we integrated Lethe into the Zettabyte File Sys-
tem (ZFS) [9]. The choice of ZFS over other file systems
such as Ext4 and BtrFS was motivated by its structure, its
mechanisms for ensuring data consistency, and its native
encryption feature.
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Structure. ZFS operates on objects, logical groupings of
data blocks such as files and directories, which are then logi-
cally grouped into object sets (e.g. a file system). We added a
KHEF per-object to provide keys for an object’s data blocks,
and added an master KHF to provide the per-object KHF
keys for a single file system.

Mechanisms for Data Consistency. ZFS uses copy-on-
write and atomic transactions to ensure data consistency,
both of which are desired by Lethe. ZFS handles any write
operation by treating it as a transaction. Transactions are
further grouped into transaction groups, which are batched
together and committed to disk periodically. This mechanism
of batching transactions together and committing them to-
gether aligns perfectly with Lethe’s use of epochs. Thus, not
only does ZFS provide copy-on-write semantics, it also hap-
pens to already include a periodically-run procedure to flush
data to disk that can be extended to update KHFs and flush
them to disk as well.

Native Encryption. Native encryption in ZFS provides a
unique encryption key for each data block in a zpool using
HKDFs [16], allowing for encrypted data sets. We note that,
despite having per-block keys, ZFS native encryption does not
provide fine-grained secure deletion. This is due to the fact
that the public HKDF parameters used for deriving block
keys are stored in unencrypted block pointers on disk, and
erasing the parameters is not possible due to ZFS’ usage
of CoW. Furthermore, it is untenable to swap out the main
HKDF keying material, as it would require every other block
in the system to be re-encrypted using keys derived from
the new keying material.

ZFS delegates all I/O operations to its ZIO layer, which
requests encryption keys for each data block it acts on. In-
tegrating Lethe into the ZIO layer was straightforward: we
only modified it to request for a Lethe-managed encryption
key for each data block instead of its native encryption-
provided key.

We note that, at the time of writing, the prototype of
ZFS does not yet handle partial block truncations. A partial
block truncation occurs when a file truncation operation
leaves behind part of a block, and as such ensuring secure
deletion of the truncated block requires that the remaining,
untruncated bytes be rolled forward via re-encryption with
anew key. Forcing ZFS to issue this additional write, though
possible, is complex and remains future work. We note that
this does not critically threaten the validity of our evaluation
since files tend to be written to sequentially [23] and do not
typically encounter partial block truncations; there wouldn’t
be a big performance hit even if this issue was handled by
rewriting partial blocks.
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Figure 5. Result of YCSB benchmark with 5 second epochs.

6.2 Methodology and Experimental Setup

For goal (2), we compared ZFS integrated with Lethe against
baseline ZFS and ZFS with native encryption enabled. Com-
paring the throughput of these three file systems allows us to
see the relative performance overhead incurred through the
addition of native encryption and secure deletion, ultimately
making it easier to evaluate whether or not secure deletion
is performant enough for adoption.

Our experiments were conducted on a 10" generation
Intel NUC equipped with an Intel CPU i5-10210U (1.60 GHz,
4 cores) and 32 GB of memory. A Samsung 970 EVO 500 GB
SSD was used as the storage device. Lethe was configured
to statically use a (16, 32, 8) fanout list for each constructed
KHF. The duration of an epoch was set as 5 seconds—exactly
the default duration between commits of ZFS [9] transac-
tions. It remains future work to experiment with different
epoch durations and epoch durations, measuring key storage
overhead, and optimizing our implementation.

6.3 Results

We ran RocksDB [12] over each file system and measured the
throughput of each using the YCSB [11] cloud serving bench-
mark on workloads A-F, each with 1 million operations, 1
million 1kB records, using the Zipfian distribution. Each of
the workload benchmarks were conducted using Pilot [19],
a statistics-driven benchmarking framework. Figure 5 shows
the result of the experimentation.

We see that the relative throughput of each file system
across all the workloads is consistent. On average, going
from baseline ZFS to natively encrypted ZFS yields a 2.6%
decrease in throughput, going from baseline ZFS to Lethe-
integrated ZFS yields a 17.63% decrease in throughput, and
going from natively encrypted ZFS to Lethe-integrated ZFS
yields a 15.5% decrease in throughput. Enabling native en-
cryption on top of baseline ZFS understandably introduces
a decrease in performance due to the need to generate en-
cryption keys, encrypt data blocks, and store generated keys.
Enabling secure deletion on top of baseline ZFS understand-
ably introduces even more of a decrease in performance due
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to the increased cost of deriving keys, running the per-epoch
KHF updating procedure, and storing KHFs.

Although the prototype of Lethe sees this degradation
in performance compared to ZFS with native encryption,
we expect to see less of a difference in performance as op-
timizations are made in the future. In any case, it is clear
that the performance with secure deletion enabled on ZFS is
comparable to baseline ZFS and ZFS with native encryption
despite the relatively short epoch duration.

7 Conclusion

Lethe is the first system that provides fine-grained secure
deletion on any storage medium, including those that make

in-place overwrites difficult or even impossible, such as flash
and WORM media. We first explored prior work in this de-

sign space and shown existing issues with prior systems that
make their adoption for use in response to legislation like
GDPR, CCPA, and CDPA unlikely. From there, we provided
the notion of needing a hierarchy of keys for fine-grained se-
cure deletion, which Lethe efficiently represents using KHFs.
We then presented the design of Lethe, demonstrating how
it provides secure deletion through addition of KHFs, and
how it provides timely, fine-grained secure deletion of any
selective amount of data through the secure deletion of just
a single key. This further emphasizes the efficiency of Lethe,
since it is impossible to achieve secure deletion by securely
deleting any less than a single key; any less would be inse-
cure. Our evaluation of a Lethe integrated into a real-world
system also yields promising results despite lack of tuning
and optimizations, demonstrating that Lethe can be seri-
ously considered as a portable solution for timely guarantee
of secure deletion.
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