Overlay Routing Over an Uncooperative Underlay

Yudi Huang
Pennsylvania State University
State College, PA, USA
yxh5389@psu.edu

ABSTRACT

Overlay network is a non-intrusive mechanism to enhance the
existing network infrastructure by building a logical distributed
system on top of a physical underlay. A major difficulty in operat-
ing overlay networks is the lack of cooperation from the underlay,
which is usually under a different network administration. In par-
ticular, the lack of knowledge about the underlay topology and link
capacities makes the design of efficient overlay routing extremely
difficult. In contrast to existing solutions for overlay routing based
on simplistic assumptions such as known underlay topology or dis-
joint routing paths through the underlay, we aim at systematically
optimizing overlay routing without causing congestion, by extract-
ing necessary information about the underlay from measurements
taken at overlay nodes. To this end, we (i) identify the minimum
information for congestion-free overlay routing, and (ii) develop
polynomial-complexity algorithms to infer this information with
guaranteed accuracy. Our evaluations in NS3 based on real net-
work topologies demonstrate notable performance advantage of
the proposed solution over existing solutions.

CCS CONCEPTS

« Networks — Overlay and other logical network structures;
Network performance modeling; Network measurement.

KEYWORDS

overlay, routing, network tomography, capacity estimation

ACM Reference Format:

Yudi Huang and Ting He. 2023. Overlay Routing Over an Uncooperative
Underlay. In The Twenty-fourth International Symposium on Theory, Algo-
rithmic Foundations, and Protocol Design for Mobile Networks and Mobile
Computing (MobiHoc °23), October 23-26, 2023, Washington, DC, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3565287.3610274

1 INTRODUCTION

Overlay networks, referring to logical distributed systems running
on top of a physical communication underlay, have been widely
adopted to enhance the existing network infrastructure due to the
difficulty of deploying infrastructure-wide upgrades. Frequently,
overlay networks are used to provide value-adding functionalities

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiHoc 23, October 23-26, 2023, Washington, DC, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9926-5/23/10...$15.00
https://doi.org/10.1145/3565287.3610274

Ting He

>

o)

—

[

>

o

_ O by gome N2 10

2 =

=

2 : 10 m3

E 10 ms 20 ms 20 msI "

S 20 ms ;
ms' ﬁ;- 30ms 30ms ?

hy \o/ ha

Figure 1: Example of underlay-aware overlay routing.

that a best-effort IP-based underlay network cannot provide, such as
caching, traffic engineering, fast failover, and attack mitigation [21].
Meanwhile, the performance of an overlay network heavily relies on
the proper control of overlay routing. For instance, caching overlay
requires efficient routing between origin servers and edge servers
to provide notable performance gain in the case of cache misses
[21]. Large-scale applications spreading across multiple datacenters
need careful routing of inter-datacenter flows to avoid congestion
[4]. For mission-critical overlay applications, a proper selection of
backup routes between overlay nodes that are maximally disjoint
with primary routes is necessary for maintaining high Quality of
Service (QoS) in the case of failures [8].

Due to its importance, tremendous efforts have been devoted
to the design of overlay routing, e.g., [4, 8, 21, 24]. Compared to
classical routing problems, one of the unique challenges in overlay
routing is the lack of knowledge about the underlay, which can
lead to incorrect overlay routing decisions. As a concrete example,
consider the overlay-underlay network in Fig. 1, where link labels
denote their (propagation) delays, and each overlay link maps to
the shortest path (in delay) between its endpoints in the underlay.
Suppose that the overlay needs to route two large flows with source-
destination pairs (a, e) and (b, d), respectively. Further suppose that
each link in the underlay has sufficient capacity for one of the flows
but not both. Given the objective of minimizing the total delay, an
underlay-agnostic routing algorithm that is only aware of the indi-
vidual delays and capacities of overlay links will route both flows
over the direct overlay paths a — e and b — d. However, as these
paths share a common link (A1, h2) in the underlay, this routing
solution will cause congestion and hence poor performance. Mean-
while, an underlay-aware routing algorithm that has knowledge of
how the overlay links share links in the underlay will choose the
overlay paths a — e and b — ¢ — d, which will minimize the total
delay while avoiding congestion.

The need for overlay routing to be aware of the internal parame-
ters of the underlay (e.g., topology, routing protocol, link character-
istics) has been widely recognized. However, most of the existing
works either assume such information to be directly provided by

https://doi.org/10.1145/3565287.3610274
https://doi.org/10.1145/3565287.3610274

MobiHoc ’23, October 23-26, 2023, Washington, DC, USA

the underlay [25, 27], or avoid explicitly requiring such knowledge
by performing overlay routing on a trial-and-error basis [8]. The
former approach is often inapplicable in practice due to the lack of
cooperation from the underlay, and the latter approach is inefficient
due to the exponentially large search space.

In this work, we aim at addressing these limitations by devel-
oping a framework for underlay-aware overlay routing that can
systematically optimize the routing among overlay nodes without
cooperation from the underlay. The core of our framework is a
set of network inference algorithms that can extract the necessary
information about the underlay from measurements within the
overlay to enable overlay route optimization without congestion.

1.1 Related Work

Overlay routing: Overlay routing aims at controlling data for-
warding among overlay nodes to optimize certain performance
metrics while avoiding congestion. Typical performance metrics
include routing cost [24], route update cost [25], and completion
time of data transfer [4, 27]. Most of these works either assumed a
cooperative underlay network whose internal parameters can be
directly observed by the overlay [25, 27], or ignored the sharing of
underlay links by the logical links between overlay nodes [4]. In
contrast, we address the more challenging problem of overlay routing
over an uncooperative underlay network, while accounting for the
underlay link sharing between overlay links.

The work most related to ours is [28], which encoded the knowl-
edge about the underlay as linear capacity constraints (LCCs), which
ensure that the total traffic load from the overlay does not exceed
the capacity of any underlay link. However, [28] resorted to a sim-
ple heuristic based on [12] to infer the LCCs, which could only
discover a small subset of LCCs that are insufficient for overlay
routing. In this regard, our contribution is a set of algorithms that
can infer the minimum set of LCCs sufficient for overlay routing from
observations at the overlay with guaranteed accuracy.

Network tomography: One key piece of information for rout-
ing is network topology. In the face of an uncooperative underlay,
the overlay has to infer its topology from measurements between
overlay nodes, known as network topology inference/tomography [7].
However, topology inference is a challenging task by itself. Most
existing solutions are based on the simplifying assumption that
the routing paths for each source/destination form a tree; see [15]
for a detailed review. The assumption of tree-based routing is fre-
quently violated due to round-trip probing, load balancing, and
network function traversals, but removing this assumption signifi-
cantly complicates topology inference, for which only a few results
exist [14, 15, 22]. Without the assumption of tree-based routing, the
routing topology can no longer be uniquely identified from end-to-
end measurements [15]. However, it is still possible to detect the
existence of links shared by a subset of paths [15, 22], which turns
out to be very useful for overlay routing as explained in Section 3.1.
However, the existing solutions in [15, 22] both had exponential
complexity. In this regard, our contribution is the first polynomial-
complexity algorithm for inferring how a set of arbitrary paths share
links in a blackbox network from end-to-end measurements.

Available capacity estimation: Another key piece of informa-
tion for routing is the available link capacities (in the presence

Huang et al.

of background traffic). Available capacity estimation is a classical
problem for which many tools have been developed; see [3]. In
an uncooperative underlay, only tools based on end-to-end mea-
surements are applicable. In this regard, existing works focused on
inferring the available capacity at the bottleneck link of a given
path, based on either the probe gap model (PGM) [16] or the probe
rate model (PRM) [10]. To support overlay routing, we leverage
the existing single-path capacity estimation methods as subroutines
and develop an algorithm to estimate the total available capacity
over multiple paths with possibly shared links. Our work is weakly
related to shared bottleneck detection (SBD) [12], which aims at de-
tecting which subset of flows share a bottleneck. However, most
SBD methods only detect the existence of a shared bottleneck with-
out estimating its available capacity. More importantly, SBD works
under a given flow assignment and cannot characterize the feasible
region for all the flow assignments, which is the focus of our work.

1.2 Summary of Contributions

We study the problem of overlay routing over an uncooperative
underlay, with the following contributions:

1) We identify the minimum information about the underlay that
is both sufficient for congestion-free overlay routing and uniquely
identifiable from measurements between overlay nodes.

2) We develop the first polynomial-complexity algorithm to de-
tect the existence of underlay links shared exclusively by each
subset of paths between overlay nodes from end-to-end measure-
ments, under arbitrary routing in the underlay. We also develop a
greedy algorithm to estimate the effective capacity of the detected
links based on single-path available capacity estimation methods.

3) We prove that our detection results have error probabilities
that decay exponentially with the sample size, and our estimation re-
sults are no more than a constant factor away from the ground truth.

4) We test our solution against benchmarks via packet-level
simulations in NS3 based on real network topologies and link pa-
rameters. Our results show that despite facing inference errors,
our algorithms can still better characterize the feasible region for
overlay routing than existing solutions, which leads to notably less
congestion and better communication performance.

Roadmap. Section 2 formulates our problem, for which Sec-
tion 3 addresses the inference about the underlay, and Section 4
addresses the overlay routing. Both solutions are evaluated in Sec-
tion 5. Finally, Section 6 concludes the paper. All the proofs can
be found in the Supplementary Material.

2 PROBLEM FORMULATION
2.1 Network Model

The underlay network is modeled as a connected undirected graph
G = (V,E), where V denotes the set of underlay nodes and E the
set of underlay links. Each link e € E has a finite capacity Ce.

The overlay network, managed by a centralized entity such as an
overlay network operation center (ONOC) [5] or a software defined
wide area network (SD-WAN) controller [24], is modeled as a con-
nected directed graph G = (V, E), where V C V is the set of nodes
that are part of the overlay (e.g., running the overlay application),
and each overlay link e = (i, j) € E denotes a tunnel between two
overlay nodes that maps to the underlay routing path 1_71_], from

Overlay Routing Over an Uncooperative Underlay

node i to node j. We do not impose any limiting assumption on
the underlay routes, and allow asymmetric routing (i.e., p, i and

pji may not be the same). In the sequel, we will use “tunnel” and

“overlay link” interchangeably.

Remark: The assumption of centralized management of the over-
lay is used to study the overlay routing problem without worrying
about coordination within the overlay; the extension to distributed
solutions is left to future work.

2.2 Objective of Overlay Routing

Given a set of flow demands H, the goal of overlay routing is to
optimally satisfy these demands by controlling the data forwarding
among overlay nodes. We consider an uncooperative underlay by
assuming that: (i) the overlay can control how to route its flows
among the overlay nodes, but not how to route between adjacent
overlay nodes within the underlay; (ii) the overlay can observe
the overlay topology G and the parameters of overlay links, but
not the underlay topology G, its routing paths {gij}(,-, j)eE> or the

parameters of underlay links.

In the above context, a basic need of the overlay is to route its
flows to optimize certain performance metric of interest, subject
to capacity constraints imposed by the underlay. As a concrete
example, consider the objective of minimizing the overlay routing
cost as formulated below. Suppose that each flow demand h € H
specifies a source sj, € V, a destination t;, € V, and a fixed flow rate
dp,. Sending a unit of flow over tunnel (i, j) € E incurs a routing
cost of ¢jj > 0, which can model considerations like bandwidth
leasing cost or QoS degradation cost (e.g., delay). The overlay can
control how the flows traverse overlay nodes through a decision
variable xl.hj € {0, 1}, which indicates whether flow h € H traverses

tunnel (i, j) (in the direction of i — j). Define bl}.l as1ifi =sp, —1if
i = ty, and 0 otherwise. The minimum cost overlay routing problem
can be formulated as follows:

: h
ngn Z Cij Z dhxij (1a)
(i,j)eE heH

s.t. > D dwli<Co VeeE (1b)
(i,j) €E: gegij heH

Zx:’j:Zx?i+bf-‘, VheH,ieV, (1¢)
jev jev
x € {0,1}, Vhe H,(i,j) € E. (1d)

The objective (1a) is the total routing cost for the overlay. Constraint
(1b) is the per-link capacity constraint to ensure that the load on
each underlay link is within its capacity, constraint (1c) is the flow
conservation constraint to ensure that the overlay links in {(i, j) €
E: xlhj = 1} form a path from s, to t; (Vh € H), and constraint
(1d) ensures that only one path is selected for each flow (assuming
single-path routing is required). Therefore, the optimal solution to
(1) provides the set of overlay paths to route the flows in H that
achieves the minimum routing cost without causing congestion.
The optimization (1) is NP-hard, as it is a generalization of the
minimum-cost multiple-source unsplittable flow problem (MMUFP)
that is NP-hard [1]. Nevertheless, as an integer linear program-
ming (ILP) problem, it can be tackled by a number of heuristics

MobiHoc *23, October 23-26, 2023, Washington, DC, USA

developed for MMUFP, e.g., greedy and LP relaxation with random-
ized rounding [1], and the optimal solution can also be computed
for small instances by existing ILP solvers via algorithms such as
branch-and-price-and-cut [2].

Remark 1: The formulation (1) is just an example of the possi-
ble objectives of overlay routing. Other formulations can also be
considered. For instance, in addition to the routing cost (1a), there
may also be a cost in setting up tunnels as considered in [24], and
instead of fixing the flow rate dj,, the overlay may want to design
dp, to finish data transfer as soon as possible [4, 27]. We will focus
on the formulation (1) in this work for concreteness and leave the
study of other formulations to future work.

Remark 2: The optimization (1) assumes that there exists at least
one solution x that can satisfy all the demands in H within the
capacity constraint (1b), i.e., (1) is feasible. When this assumption
is violated, we can relax the constraint (1b) into

Z dhxlhj < Cew, Ve€eE, (2)
(i,j) eE:gegij heH

by introducing a new variable w > 1 to denote the maximum over-
loading factor for the underlay links. We can ensure feasibility while
discouraging overloading by adding a penalty term “c,, (w — 1)” to
the objective function (1a), where the parameter ¢, > 0 controls
the tradeoff between cost and congestion. Setting c,, to a large value
will make congestion avoidance the primary objective and cost min-
imization the secondary objective, which reduces the relaxed formu-
lation to (1) in underloaded cases and to a minimum overload overlay
routing problem, i.e., min o s.t. (2), (1c), (1d), in overloaded cases.

2.3 Problem Statement

From (1), we can see that overlay routing depends on the underlay
primarily through the capacity constraint (1b), which requires two
pieces of information: (i) how the tunnels are routed through the
underlay (;_)i j)(i’ j)eE> and (ii) the underlay link capacities (Ce)ecg-
While the 0\;erlay may have other considerations requiring further
information about the underlay, satisfying the capacity constraint
is a basic requirement, and is thus the focus of our work.

Compared to routing in flat networks, the main challenge for
routing in overlay networks is the lack of information about the
underlay. In contrast to existing works on overlay routing that
resorted to either the underlay’s cooperation or heuristic inference
methods to obtain the information they required (see Section 1.1),
we aim at developing a complete solution that infers the minimum
information needed for overlay routing based on measurements at
overlay nodes with guaranteed accuracy, and then optimizes overlay
routing based on the inferred information, using the minimum cost
overlay routing problem (1) as a concrete example.

3 OVERLAY-BASED INFERENCE

We will first analyze the minimum information the overlay needs
about the underlay and then address how to infer this information.

3.1 Minimum Information for Overlay Routing

A straightforward implementation of (1) requires detailed knowl-
edge of the underlay topology in terms of the routes (pi j)(ij)€eE

MobiHoc ’23, October 23-26, 2023, Washington, DC, USA

and the link capacities (Ce)ecp, in order to formulate constraint
(1b). A natural question is thus whether we can directly apply so-
lutions from topology inference to obtain this information. At a
first look, the answer seems negative without further assumptions,
because topology inference faces an inherent ambiguity that the
routing topology capable of generating a given set of end-to-end
measurements is generally not unique [15]. However, to support
overlay routing, there is actually no need to infer the underlay
topology. Instead, it suffices to infer just enough information to
compute the feasible region defined by constraint (1b).

To formalize this idea, we introduce the following notion, adapted
from [15, 22] to our problem.

DEFINITION 3.1. A category of links traversed by F out of E
(F C E) is the set of underlay links traversed by and only by the
tunnels in F out of all the tunnels in E, iel

U Ei, j)‘ ®)

Tr(E) = (m pij) ' ((ij)eE\F

(ij)eF
A straightforward implication of the above definition is that the

paths measurable by the overlay induce the following partition of
the underlay links:

E=)@ @
FCE
For example, in Fig. 1, if E contains all the tunnels between the
nodes {a, b, ¢, d, e}, then link (hy, hy) € Tr(E) for F := {(a, e), (e, a),
(a,d), (d, a), (b, e), (e,b), (b,d), (d,b)}, because (hy, hy) is traversed
by all the tunnels in F but no other tunnel in E.

Our key observation is that since all the links in the same cat-
egory are traversed by the same set of tunnels, they must carry
the same traffic load from the overlay. Therefore, we can reduce
the per-link capacity constraint (1b) to the following per-category
capacity constraint:

Z Z dyx}: < Cp, VF C Ewith Ip(E) #0, (5)
(i,j)eF heH
where Cp, referred to as the category capacity, is the minimum
capacity of all the links in category I'r(E), i.e.,
Cr = min Ce. (6)
e€lp(E) —

The new constraint (5) is equivalent to the original constraint
(1b) in that an overlay routing solution satisfies one of these con-
straints if and only if it satisfies the other. However, instead of
requiring detailed information about the underlay (i.e., (P, j) (i,j)€E

and (Ce)eckg), implementing constraint (5) only requires the knowl-
edge of the nonempty categories and their capacities.

3.2 Detection of Nonempty Categories

The detection of nonempty categories from end-to-end measure-
ments has been used as an intermediate step in topology infer-
ence [15, 22]. The idea is to define an additive metric such that the
path-level metrics can be estimated from end-to-end measurements
and the category-level metrics can be estimated from the path-level
metrics. Then under the following assumption, we can detect the
nonempty categories as those with non-zero metrics.

1We abuse the notation a little to use p to denote the set of links traversed by path p.

Huang et al.

AssuMPTION 1. All nonempty categories have non-zero metrics.

This assumption holds as long as all the underlay links have
positive metrics, which intuitively means that every link imposes
non-zero performance degradation (e.g., loss, delay, delay variation)
to packets traversing it. This assumption is reasonable, as a link with
no impact on communication performance will not be detectable
from end-to-end measurements.

3.2.1 Defining Additive Metrics. We first need to define a perfor-
mance metric 6. such that: (i) the link metrics are nonnegative and
additive, and (ii) the corresponding path metrics can be reliably
inferred from end-to-end performance measurements. Following
[15], we adopt a metric of the form:

O := —log ae, (7)
where e € (0, 1) denotes the probability for a packet transmitted
over link e to experience the “good state”, with different versions
of this metric for different definitions of «,. For example, if a is
the probability for a packet to successfully traverse e without being
lost, then (7) is the loss-based metric [18], and if @ is the probability
for a packet to traverse e without incurring queueing delay, then
(7) is the utilization-based metric [18].

To make this metric additive, we assume that the states of dif-
ferent underlay links are independent of each other, which is a
common assumption in topology inference [15, 18, 19, 22]. More-
over, to discover shared links, we adopt a commonly-used probing
method of sending batches of concurrent probes over all the tunnels.
Due to the fact that packets arriving at a link in quick succession
experience very similar performance, probes in the same batch
are assumed to experience the same link state when traversing a
shared link, which is again a common assumption [15, 17, 18, 22].
Let Sp € {0, 1} indicate whether the probes in a batch experience
good states on all the tunnels in F C E. As Sr = 1 if and only if all
the underlay links in U(; j)er j_)i,j are in good states, we have

e€U(ij)er P,

= D e (8)

EGU(i,j)epgii

pr = —logPr{SF =1} = —log 1_[Qe

which means that e defined in (7) is an additive metric over a
union of simultaneously probed paths. Here pr denotes the metric
for the union of paths for the tunnels in F, which can be estimated
consistently by the overlay from observations of Sr.

Remark: The assumptions of independent states at different links
and identical states at a shared link for probes in the same batch
are simplifying assumptions that may not hold strictly in practice.
Nevertheless, solutions derived from these assumptions have been
validated in Internet experiments [18]. We will stress-test our solu-
tion derived from these assumptions in NS3 simulations where the
assumptions may not hold (see Section 5).

3.2.2 Inferring Category Metrics. The overlay cannot directly gen-
erate equation (8) as it does not know the routing path P, for

Overlay Routing Over an Uncooperative Underlay

each tunnel (i, j) € E. Nevertheless, the overlay can utilize the esti-
mate of pf to infer the following information about the categories
without any knowledge of the routing paths.

DEFINITION 3.2. For a given category I'r(E), the associated cate-
gory metric wrp(E) is defined as the sum metric for all the links in

category Ip(E), i.e, Wp(E) = Yeerp(E) Oe-
The key is to note that by the definition of category, we have

Ue,= U

(ipefF) PCEFNF0

I'w(E), VFCE,)

which allows (8) to be rewritten as an equation of category metrics:

pr= . wp(E), YFCE (10)
F'CE: F'NF#0
Equations like (10) can be generated without prior knowledge of
the underlay topology. Moreover, these equations are known to
uniquely determine the category metrics.

THEOREM 3.1 (THEOREM III.1 IN [14]). Given the path metrics

(PF)FCcE,F+0, the category metrics (Wp)FcE F+p are uniquely deter-
mined by (10).

This theorem, together with the fact that link metrics affect path
metrics only through category metrics, implies that the category
metrics are the metrics of the finest granularity that can be uniquely
identified by the overlay.

Example: Consider the network in Fig. 1. If only considering the
tunnels in E = {(a, e), (a,d)}, we can partition the traversed un-
derlay links into three nonempty categories: I'r, (E) = {(h2,e)} for
Fy = {(a,e)}, T, (E) = {(hz,d)} for F; := {(a,d)}, and Tg(E) =
{(a, h1), (h1,h2)} (the other links are in category I'p(E)). Thus,
the category metrics are wr, (E) = 0(p, o), WE,(E) = 0, 4, and
WE(E) = 0(g,n,) + O(hy,h,)- Based on (10), we have a linear system:

pr, = wg(E) + wp, (E), (11a)
pF, = Wg(E) + wr, (E), (11b)
pE = wg(E) + wp, (E) + wp, (E), (11c)

which uniquely determines (wr, (E), wg, (E), wg (E)). Meanwhile,
the same path metrics (pf,, pr,» p£) can be generated by many dif-
ferent topologies (e.g., there may be multiple links between hy and
e, or the tunnels (a, e) and (a, d) may join/branch multiple times) as
long as the category metrics (wg, (E), wr, (E), wg(E)) remain the
same, making the category metrics the finest granularity informa-
tion that the overlay can reliably infer from its measurements.

3.2.3 Taming Exponential Complexity. A straightforward solution
for detecting nonempty categories based on solving (10) faces a
severe limitation that the complexity grows at O(2/El), where
|E| = O(|V|?), as the number of equations/variables is O(2 IE1). This
renders the straightforward solution inapplicable beyond overlays
with just a few nodes. To address this limitation, we develop a novel
polynomial-complexity algorithm for category metric inference.
Our solution is based on dynamic programming. Instead of con-
sidering all the tunnels in one shot, we start with only a small
subset of tunnels, for which (10) can be solved within acceptable
time/space to obtain coarse-grained category metrics, and then
we gradually expand the set of considered tunnels to refine the

MobiHoc *23, October 23-26, 2023, Washington, DC, USA

Algorithm 1: Category Metric Inference

input :Set of all tunnels E, estimator of path metric p.
output:Non-zero category metrics {wp(E) : wp(E) #0}
solve (10) to compute w(Ey) for an initial set of tunnels Ey C E;
fort=1,...,|E| - |Ey| do
E; « E;—1 U {e} for an arbitrary tunnel e € E\ E;_q;
Wiy (Et) < PE; = PE;_15
for F € supp(w(E;-1)) in increasing order of |F| do
wru{e} (Et) < P(E,_1\F)u{e} — PE,_\F — W{e} (Et) —
Y P CF:Fresupp(w(Er_1)) WFUle} (Er);
7 wr (Et) « wr(Et-1) — wru(ey (Er);
return {wr (E|g|-|E,|) : WF(E|E|-|E,|) # 0}

1= B N T

3

category metrics until all the tunnels are included. Our approach is
motivated by the following observations:

LEMMA 3.1. The number of nonempty categories is upper-bounded
by the number of links in the underlay, i.e., |{Tr(E’) : F C E/,Tp(E’) #
0} < [{e:e € Vwoerp, < IEl foranyE’ C E.

LEMMA 3.2. ForanyE’ Cc Eande € E\ E’, wp(E’) = 0 implies
wr(E" U {e}) = wpy(e} (E' U{e}) =0, forall F C E' and F # 0.

LEMMA 3.3. ForanyE’ C Eande € E\ E’, wp(E") = wp(E' U
{e}) + Wry (e} (E" U {e}).

Lemma 3.1 means that the vector of category metrics is sparse,
and Lemma 3.2 means that the sparsity pattern of this vector for a
subset of tunnels can be used to estimate its sparsity pattern as we
consider more tunnels. Lemma 3.3 allows us to use the previously
computed category metrics defined for a subset of tunnels to solve
for the new category metrics when considering one more tunnel.

Algorithm: Based on the above observations, we develop a dy-
namic programming algorithm for computing the non-zero cat-
egory metrics for any given set of tunnels, as shown in Algo-
rithm 1. We ignore estimation error in p. for now to focus on
the main idea; how to handle estimation error will be discussed
later. Here, E; denotes the set of tunnels considered in iteration t,
w(Er) = (wp(Er))pcp, p20. and supp(w(E,)) = {F C E, : F #
0, wp(E;) # 0}. The algorithm first uses measurements from a
small set of tunnels Ey to compute a vector of coarse-grained cate-
gory metrics w(Ey) by directly solving (10). It then gradually refines
the solution by expanding the set of considered tunnels. In iteration
t, the equations corresponding to E; = E;—1 U {e} can be classified
into two types:

pr= > (wp(E)+wpugey(B), (12)

F'CE,_1,F'NF#0
PFU{e} = (wr (Et) + wprigey (Er))

F'CE,.LF'NF£0

) wpugey (B, (13)

F'CE, 1 \F
where (12) is VF C E;—1, F # 0 and (13) is VF C E;—1. Given the
solution w(E;_1) from the previous iteration, equations of type (12)

become redundant, as their information is already contained in
the simpler equations wg(E¢-1) = wr(E¢) + wry(e) (E) based on

MobiHoc ’23, October 23-26, 2023, Washington, DC, USA

Lemma 3.3. Equations of type (13) can be rewritten as

D WEute) () = P(E, \F)ULe) ~ PE,\F- (14)

F'CF
For F = 0, (14) contains only one unknown variable wy,} (E;), and
hence can be used to compute w,y(E;) as in line 4. Based on this
initial solution, we can use (14) to gradually solve wpy () (Et) in
the increasing order of |F| as in line 6, because when we try to solve
wru{e} (Et), the values of wer (e} (Er) for any F/ C F have been
obtained. Once wry (.} (E¢) is obtained, we can apply Lemma 3.3 to
compute wr (E;) as in line 7. In this process, we use the observation
in Lemma 3.2 to reduce complexity by only computing wr(E;) and
wru{e} (Et) for F C Ey_yq satisfying F # 0 and wg(E;-1) # 0. Note
that E\g|_|g,| = E-

Complexity: Algorithm 1 significantly improves the complexity
of category metric inference compared to the straightforward so-
lution. Specifically, under perfect estimation of the path metrics,
each iteration (lines 2-7) incurs O(|E|?) operations, stores O(|E|)
variables, and performs O(|E|) estimations of path metrics, because
the number of non-zero category metrics |supp(w(E;-1))| < |E| by
Lemma 3.1. As there are O(|E|) iterations, the total complexity is
O(|E| - |E|?) in time, O(|E|) in space (reused across iterations), and
O(|E| - |E]) in the number of path metric estimations.

Handling errors: In practice, errors in the estimated path metrics
p. may cause the inferred category metrics w(E;) to be non-zero
for more than |E| categories. If an upper bound |E | on the number
of underlay links is known, we can enforce [supp(W(E;))| < |E|
at the end of each iteration by setting all but the top |£| values
to zero. Alternatively, we can perform a hypothesis test for each
inferred category metric wr(E;) to determine whether wp(E;) =0
(and set wrp(E;) to zero if so), for which several existing tests can
be applied [22].

Further speedups: Another idea for reducing the complexity of
category metric inference is to filer out empty categories based
on link sharing information, originally proposed in [22]. The basic
idea is that since I'r(E) # 0 only if there is at least one link shared
by all the tunnels in F, we can set wp(E) = 0 if 3F’ C F that does
not have any shared link, i.e., ((; j)ep 1_9” = (. Specifically, pair-
wise link sharing between two paths can be detected easily, e.g., by
testing whether their delays are correlated. We can then filter out
empty categories by setting wr(E) = 0 if (i, j), (i’, j*) € F such
that p..Np, = 0 (indicated by having zero delay covariance).
While z,nlpplyin’g such filtering alone will not reduce the complexity
sufficiently (the remaining number of categories can still be large),
we can combine the filtering with our dynamic programming al-
gorithm to achieve further speedup. Generally, given a collection
of tunnel sets ¥ := {F C E: ((; jyeF }_)i,j = 0} known to have no

common link, we can incorporate this information into Algorithm 1
by adding wgr (E;) « 0 after line 6 (where F/ = F U {e}) and line 7
(where F’ = F) if AF”” C F’ such that F”’ € . In the special case
of |F| = 2 for all F € ¥, adding this filtering step increases the time
complexity to O(|E| - |E| - (|E| + |E[%)) in theory, but in practice
can actually accelerate Algorithm 1 by reducing the number of
variables while improving the accuracy.

3.24 Performance Analysis. We now quantify the error in detect-
ing nonempty categories using the inferred category metrics. Let

Huang et al.

1 > 0 denote the detection threshold such that category I'r(E) is
detected as nonempty if and only if its inferred metric wr(E) > .
To gain explicit insights, our analysis will focus on the vanilla case
where w(E) is obtained by directly solving (10) based on the esti-
mated path metrics p. The modifications introduced in Section 3.2.3
make it difficult to obtain explicit insights through analysis, and
thus will be evaluated empirically (see Section 5).

All the errors originate from the error in estimating the path
metric pp defined in (8). As common in the literature [17, 18], we
assume that pF is estimated by plugging the empirical probability

Sp =2 %I, Sp, into (8):

pr = —logSF, (15)
where Sg; € {0, 1} indicates whether the probes in the ¢-th batch
experience good states on all the tunnels in F. We now analyze the
error in nonempty category detection as a function of the sample
size T and other parameters.

We start by deriving the solution to (10) in closed form.

LEMMA 3.4. Each category metric is related to the path metrics by

wg(E) :Z(—l)‘F"“p(E\F)UF,, VFCEF#0. (l6)
F'CF

We then analyze the error in estimating pr by (15). Let sp =
Pr{SFr = 1} for ease of presentation.

LEMMA 3.5. ForT > 1, the bias of (15) satisfies

. 1-sF
E[pr] - pF = T 17)
and the variance satisfies
. 1-sp
~—F 18
varlpr] =~ (18)

where smaller terms at the order of 0(1/T) have been ignored.

By the central limit theorem, the distribution of S is asymptot-
ically Gaussian. While due to the nonlinear transform — log(-), the
distribution of g is not exactly Gaussian, the delta method [26] sug-
gested that it is well approximated by the Gaussian distribution for
large T. Formally, the delta method [26] states that for a sequence

of random variables (X,),>1 satisfying vn (X, — y) 2, N(0,0%)

and a function f(x) such that the first derivative f’(x) exists and
is non-zero, we have

VE(FOG) = F) > N (0. (F)%e?), (19)

D
where — denotes the convergence in distribution. Our problem
— D
satisfies these conditions with VT(Sg — sp) — N(0,sp(1 — sp)),
f(x) = —log(x), f(SF) = pr, and f(sF) = pr. Under the Gaussian
approximation, we can analyze the error in nonempty category
detection in closed form as follows.

Overlay Routing Over an Uncooperative Underlay

THEOREM 3.2. Suppose that the path metric estimation errors { pr—
PFYFCEF0 can be modeled as independent Gaussian random vari-
ables with mean and variance given by Lemma 3.5. If wg (E) = 0, then

Pr{wp(E) > n} =1 - (W) (20)
~ :\’;% exp (— % :(ZE)Z T) , 1)

and if wg(E) > 1, then
e ()<} = ¢(L\ - (B ‘ﬁ) 22)
g Sl B

where ®(-) is the CDF of the standard Gaussian distribution,

\/ Z (1—=sp)/sp, (24)
F:E\FCF'

() EIEFRL () gp)f(2sp), (25)
F':E\FCF’

and the “~” in (21) and (23) holds for T > 1.

5F(E) :

SF(E) k

Remark: Theorem 3.2 states that both the false alarm probabil-
ity (21) and the miss probability (23) decay exponentially with the
sample size T, with the error exponent controlled by the detection
threshold 7. The threshold 5 essentially controls what kinds of cate-
gories are detectable, in the sense that a category must have at least
one link in the “bad state” (e.g., with backlogged queue) with proba-
bility > 1 — e~ to be detectable with exponentially decaying error.

3.3 Estimation of Category Capacities

We now address the estimation of the capacity for each detected
nonempty category. In the sequel, we will simply denote a cate-
gory I'r(E) as I'r and a category metric wr (E) as w since they are
always defined with respect to all the tunnels in E.

In absence of any prior knowledge, the overlay has to measure
the category capacities. However, the minimum link capacity Cr for
a nonempty category I'r will not be measurable by the overlay if no
flow assignment in the overlay can saturate the minimum-capacity
link. To address this issue, we define a notion called effective cat-
egory capacity Cr as follows.

DEFINITION 3.3. For each F C E, the effective category capacity
Cr is the maximum flow that can be sent through the tunnelsinF, i.e.,

Cr == max (26a)
r (feme;fe

st Z fo <Cp, YF' CE Tp #0, (26b)
e’eF’
fe>0, VeeE. (26¢)

The effective category capacity is equivalent to the category
capacity defined in (6) in that they induce the same feasible region
for overlay routing, except that the effective category capacity is
always achievable by the overlay. Thus, it suffices for the overlay
to estimate the effective capacity of each nonempty category.

MobiHoc *23, October 23-26, 2023, Washington, DC, USA

Algorithm 2: Effective Category Capacity Estimation

input :set # of category indices of interest (e.g.,
F:={F CE:wr>n}

output:Estimated effective category capacities { Cr} FeF
1 for each F = {e; , - - ’eiIF\} € ¥ do
2 | fo < Ce (0);
3 for j=2,---,|F| do
4 ‘ fer; & Cey, (F):

A S

5 CF « Z‘j=‘1 f;;‘,*j H

6 return {Cp }FeFs

Although how to estimate the combined capacity over multi-
ple tunnels (i.e., paths) has not been solved systematically, how
to estimate the available capacity of a single tunnel has been well
understood [10, 16]. Thus, we will build on top of these existing
solutions to develop an algorithm for estimating Cr. Our algorithm
assumes a subroutine that can estimate the residual capacity of a tun-
nel e under an existing flow assignment f, which can be implemented
by any of the existing available capacity estimation methods. Let
Ce(f) denote the true residual capacity of e under f and C.(f) the
estimate given by the subroutine.

Algorithm: Given this subroutine, we propose an algorithm in
Algorithm 2. For each tunnel set of interest F, this algorithm goes
through the tunnels in F in an arbitrary order, and tries to assign as
much flow as possible onto each tunnel e;; according to the resid-
ual capacity estimated by the subroutine, without backtracking the
flow assignment for e;;, ..., i, , (lines 2-4). The effective category
capacity is then estimated as the sum flow (line 5).

Complexity: As Algorithm 2 invokes an existing single-path avail-
able capacity estimation method as subroutine, its exact complexity
will depend on the complexity of the subroutine. Nevertheless, as
the complexity of the subroutine is independent of the size of the
overlay-underlay network, we can analyze the complexity of Al-
gorithm 2 in terms of the number of invocations of the subroutine,
which equals O(|F| - |E|). As the number of nonempty categories is
upper-bounded by the number of underlay links |E|, under reason-
ably accurate nonempty category detection, the number of detected
nonempty categories || will be O(|E|), and thus the complexity
of Algorithm 2 will be O(|E| - |E]).

Accuracy: We now analyze how the estimated effective category
capacity Cr provided by Algorithm 2 compares to the true value.
Under the assumption that the subroutine does not overestimate
the residual capacities of individual tunnels, which is typical for
PGM-based methods [16], it is easy to see that the flow assignment
in Algorithm 2 is feasible for the underlay link capacities, i.e., feasi-
ble for (26). Thus, the achieved sum rate can only underestimate
the effective category capacity, i.e, Cr < Cp. Meanwhile, if the
subroutine is accurate, then the estimate can only be a constant
factor smaller as stated below.

THEOREM 3.3. If the estimation for single-tunnel residual capacity
is accurate (i.e., ée(f) = Ce(f)), then Algorithm 2 achieves 1/qp-
approximation. More precisely, Cr > Cp > Cr/qr, where

gF = max [{F'CE:e € F',Tp #0,|F' N F|>1}| 27)
ee

Overlay controller

Category Capacity Overlay
detection estimation @ routing

<> Overlay control link

<=» Overlay data link
Underlay network

Figure 2: Illustration of overall solution.

is the maximum number of nonempty categories a tunnel in F tra-
verses that are shared by at least another tunnel in F.

Even if the subroutine incurs error, Algorithm 2 still achieves a
constant-factor approximation under the following condition.

COROLLARY 3.3.1. Ifthe estimate C,(f) for any single-tunnel resid-
ual capacity C(f) satisfies Ce(f) = Ce(f) = Ce(f)/q, then Algo-
rithm 2 achieves 1/(q - qF)-approximation. More precisely, Cp >
Cr > Cr/(q - qF), where g is defined in (27).

Remark: We have shown in [9] that the approximation ratio in
Theorem 3.3 is tight, i.e., there exist instances where Algorithm 2
underestimates the effective capacity of a category by a factor arbi-
trarily close to 1/qr. However, we have observed that the worst case
rarely occurs, and Algorithm 2 is usually accurate as long as its sub-
routine for estimating single-tunnel residual capacity is accurate.

4 UNDERLAY-AWARE OVERLAY ROUTING

4.1 Overall Solution

By detecting the nonempty categories # (via Algorithm 1) and esti-
mating the effective category capacities {Cr} pe# (via Algorithm 2),
the overlay can generate capacity constraints in the form of

Z Z dhx;'j < éF, VF € F, (28)
(i.))eF heH

and use them in place of (1b) in overlay routing optimizations such
as (1). Fig. 2 illustrates the workflow of the overall proposed solu-
tion. Note that the centralized controller is just an illustration of
the fact that the current work does not focus on the coordination
within the overlay (which is left to future work).

4.2 Performance Analysis

Both nonempty category detection and category capacity estima-
tion are subject to inference errors, which will affect the accuracy of
the generated constraint (28) and thus the performance of overlay
routing. We now analyze the impact of these errors.

There are four types of inference errors: false alarm/miss in
nonempty category detection and under/over-estimation of cate-
gory capacity. A false alarm in nonempty category detection will
cause the generation of a superfluous constraint in overlay routing,
which may lead to suboptimal routing decisions. Meanwhile, a miss
will cause a constraint to be missing, which may lead to an infeasible
routing decision that causes congestion in the underlay. Similarly,
an underestimated category capacity will lead to a constraint that
is too tight, potentially causing suboptimality, while an overesti-
mated category capacity will lead to a constraint that is too loose,
potentially causing congestion. While the extent of suboptimality
will depend on the specific routing objective and network instance,

Huang et al.

‘ AttMpls AboveNet | GTS-CE | BellCanada
V] 25 23 149 48
E| 114 62 386 130
Ce (Gbps) 1 1 1 1
link delays (us) | [206,4973] | [100, 13800] | [5,1081] | [78, 6160]

Table 1: Characteristics of the tested underlay topologies.

which is hard to characterize analytically, the congestion proba-
bility can be analyzed in closed form. Specifically, as discussed in
Section 3.3, the category capacity estimation typically incurs only
underestimation errors, which will not cause congestion. Thus, the
only cause of congestion is the failure in detecting some nonempty
category, the probability of which will decay exponentially in T
(#batches of probes for estimating the path metrics) as follows.

THEOREM 4.1. Let F* := {F C E : Ir # 0} be the true set of
nonempty categories. Suppose that the (effective) category capacity
estimation is performed by Algorithm 2 with a subroutine for single-
tunnel residual capacity estimation that has no overestimation error,
and every nonempty category satisfies wg > 1, where) is the thresh-
old for nonempty category detection. Then under the assumption of
Theorem 3.2, the probability for the proposed underlay-aware overlay
routing to cause congestion is upper-bounded by

(('7 —WF*)‘/T—gF*/\/f)

1P
171 -

T (_ (wp- - n)ZT)’ 29)

- (wp+ = n)V2xT 2512;*

where O, 5}:, and ® are defined as in Theorem 3.2 (omitting “(E)”),
and F* := argmaxp. 4 Pr{wr < n}.

5 PERFORMANCE EVALUATION
5.1 Evaluation Setup

In this section, we will test the proposed solutions via packet-level
simulations in NS3, which is a widely used discrete event simulator.
To construct diverse and realistic scenarios, we simulate the un-
derlay network according to four real networks from the Internet
Topology Zoo [13] with different densities and sizes, and set the
link capacities and delays according to [6]. The characteristics of
each topology are summarized in Table 1.

Each underlay is assumed to follow shortest path routing based
on hop count. Following [11], we generate cross traffic on each un-
derlay link according to an ON-OFF process, where the duration of
each ON period follows a truncated Pareto distribution, with shape
parameter 2.04 and scale/upper-bound parameter set to the mini-
mum/maximum round-trip time (RTT) of the tunnels traversing this
link. The duration of each OFF period follows the same distribution
with a different scale parameter, configured to yield a link utiliza-
tion randomly drawn from [10%, 40%]. Following [23], we randomly
draw the sizes of cross-traffic packets from 50, 576, and 1460 bytes
with probabilities 0.4, 0.2, and 0.4, respectively. We set the overlay
packet size to 50 bytes for probing and 1000 bytes for routing.

To create the overlay, we select 10 nodes with the lowest degree
as the overlay nodes while maintaining a pairwise distance of at
least two hops, which leads to 90 (directed) overlay tunnels and 2°°
potential categories. The number of nonempty categories for each

Overlay Routing Over an Uncooperative Underlay

AttMpls | AboveNet | GTS-CE | BellCanada

#empty cat. 2069 | 20 -51 | 20 -59] 2% -51
#nonempty cat. 69 51 59 51
#false alarms 603 542 2159 1695
#misses 20 25 40 27

Table 2: Misses and false alarms in category detection.

topology is given in Table 2. As for the demands d = (dp)pepy in (1),
we first generate an initial demand dy based on the gravity model
[20]. Then, we scale it by a factor & to ensure that there exists a rout-
ing solution to satisfy ady with a given maximum link utilization.

5.2 Benchmarks
We evaluate the following solutions:

(1) “Agnostic”™: a baseline that treats all the tunnels as indepen-
dent logical links, i.e., ignoring their sharing of links;

(2) “LCC”: the state-of-the-art solution from [28], under two
optimistic assumptions: (i) perfect clustering of the detected
flows based on their shared dominant bottlenecks, and (ii)
improved accuracy in the capacity constraints based on the
residual capacities instead of the total capacities as in [28];

(3) “Proposed”: our proposed solution as depicted in Section 4.1;

(4) “Enhanced proposed”: an enhanced version of our solution
with two added sets of constraints: one set from “LCC” for
fair comparison (due to the optimistic assumptions given to
it) and another set obtained by running Algorithms 1-2 for
each set of tunnels sharing the same source.

5.3 Evaluation Results

5.3.1 Nonempty Category Detection. We estimate pr as in (15),
where a probe is considered to experience good state on a tunnel if
its delay is below a threshold. To determine the threshold, we profile
the delay on each tunnel during light traffic and set the threshold as
the mean delay plus three standard deviations. We select 9 tunnels
with the same (randomly selected) source to form Ey. A category
Iy is detected to be nonempty if its inferred metric satisfies wr > 7.
As our estimation of the effective category capacities is accurate
(see Table 3), false alarms will not hurt overlay routing, and thus we
set 5 to a small value (107> in our simulation) to minimize misses.
The resulting numbers of false alarms/misses are given in Table 2,
which are the median of 20 Monte Carlo runs, each containing
2 x 10* batches of probes. Despite the large number of false alarms,
the false alarm rate is very low due to the exponentially many
categories that are empty. Meanwhile, we observe a high miss rate,
primarily due to the error in estimating pr. Such errors come from
two phenomena: (i) for tunnels with different sources, probes in
the same batch may arrive at a shared link at different times and
experience different queueing delays; (ii) a link shared by a large
number of tunnels will receive many probes in a batch, where the
earlier probes will experience different queueing delays from the
later ones.

5.3.2 Category Capacity Estimation. Next, we evaluate the nor-
malized mean absolute error (|Cp — Cp|/CF) of Algorithm 2. To
separate the impact of errors in its subroutine, we evaluate two
versions of Algorithm 2, one using the true value of Ce;, (f) in
Line 5 (i.e., ideal subroutine) and the other using the estimated

MobiHoc *23, October 23-26, 2023, Washington, DC, USA

‘ AttMpls ‘ AboveNet ‘ GTS-CE ‘ BellCanada
ideal subroutine | 0.10% ‘ 0.13% ‘ 0.13% ‘ 0.4%

pathload 1.07% 1.18% 1.15% 1.49%
Table 3: Errors in effective category capacity estimation.

éeij (f) obtained from pathload? [10]. The results averaged over 20
Monte Carlo runs are given in Table 3. Surprisingly, Algorithm 2
can estimate the effective category capacities almost perfectly when
the subroutine estimates the single-tunnel residual capacities cor-
rectly, indicating that the worst-case ratio in Theorem 3.3 is rarely
achieved. Slightly more error is incurred when using a realistic
subroutine, but the overall estimation remains highly accurate.

5.3.3 Approximation of Feasible Region. Despite the large num-
bers of misses and false alarms, the feasible region induced by
the inferred capacity constraint (28) may still approximate the
true feasible region induced by (1b) (equivalently (5)), if the su-
perfluous constraints caused by false alarms have similar effect
as the missing constraints caused by misses. Denote the true fea-
sible region of the rates through the tunnels as # = {y > 0 :
2(i,j) cEecp, yij < Ce, Ve € E}, and the inferred feasible region

as P = y>0: Xijperyij < Cr., VF € F}. We define P
similarly for each of the benchmarks. We measure the consistency
between these two regions by randomly sampling extreme points
from one region and calculating the maximum constraint viola-
tion for the other region. We observe that the extreme points of
% almost always satisfy the constraints of # for all the solutions
(omitted), but the extreme points of P can violate the constraints
of P (i.e., causing congestion), as shown in Fig. 3. We see from
Fig. 3 that (i) the constraint violation of “Agnostic” is most severe,
(ii) our proposed solution notably reduces the constraint violation
compared to both “Agnostic” and “LCC”, and (iii) the enhancement
to our solution can further reduce the constraint violation but only
slightly. In summary, despite the notable inference errors, our solution
can still characterize the feasible region for overlay routing much
more accurately than the existing solutions.

10

[l Enhanced proposed

®

Constraint violation (Gbps)

AttMpls Abovenet GtsCe BellCanada

Figure 3: Constraint violation for randomly-sampled ex-
treme points of the estimated feasible region.

5.3.4 Performance of Overlay Routing. When the demands are suf-
ficiently light such that even “Agnostic” does not encounter any
congestion, there is no need to consider link sharing among tunnels
and all the overlay routing solutions achieve similar performance
(omitted). We thus focus on scenarios where at least one link will be
congested under one of the tested routing solutions, by scaling the

ZPathload is an adaptive algorithm that sends a train of probes at a time and tunes its
rate to measure the residual capacity. In our simulation, the train length is set to 5000
probes, but the total number of trains is a variable in [2, 15].

MobiHoc ’23, October 23-26, 2023, Washington, DC, USA

IEnhanced proposed
51 [EProposed
[ice
47 [Agnostic

I Enhanced proposed

I Agnostic

Relative delay
@

Excess load (Gbps)
N

0
BellCanada AttMpls

Abovenet GtsCe

AttMpls Abovenet GtsCe BellCanada

(a) max excess load (b) avg relative delay

Figure 4: Performance of overlay routing,.

demands to achieve a maximum link utilization of 90% under per-
fect knowledge about the underlay. We evaluate the performance of
minimum cost overlay routing in terms of both congestion and rout-
ing cost. Here, we set the routing cost c;; for each tunnel (i, j) € E
to the sum (propagation) delay of the links traversed by this tunnel.

To measure congestion, we evaluate the maximum load on any
underlay link in excess of its capacity. The result in Fig. 4 (a) shows
that “Agnostic” incurs the most congestion due to ignoring link
sharing among the tunnels, followed by “LCC” that only considers a
subset of the capacity constraints corresponding to the bottlenecks
shared by tunnels with the same destination. Our proposed solution
and its enhanced version can notably reduce the congestion, thanks
to their better accuracy in approximating the feasible region (Fig. 3).
These observations also apply to the sum of excess loads.

To measure routing cost, we simulate overlay routing for 20,000
milliseconds and measure the average end-to-end delay over all the
received packets, repeated for 20 Monte Carlo runs. We then nor-
malize the average delay: given the average delay ¢ obtained from
simulation, we evaluate (¢ — @o)/do, where dg is the average delay
under the optimal routing solution based on perfect knowledge
about the underlay. The result in Fig. 4 (b) confirms that (i) underlay-
aware overlay routing (our solutions and “LCC”) can notably out-
perform underlay-agnostic overlay routing (“Agnostic”), and (ii) by
inferring the key information to characterize the feasible region, our
solutions can substantially outperform “LCC” for well-connected
underlays (AttMpls, Abovenet, BellCanada). Meanwhile, all the so-
lutions perform similarly for sparsely-connected underlays (GtsCe).

6 CONCLUSION

We studied the problem of overlay routing over an uncooperative
underlay with unknown topology and link capacities. We identified
the minimum information needed by the overlay for congestion-
free overlay routing, and then developed polynomial-complexity
algorithms to infer this information with guaranteed accuracy. Our
NS3 simulations based on realistic settings demonstrated the supe-
rior performance of our algorithms in characterizing the feasible
region and improving the performance of overlay routing.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under
award CNS-2106294 and CNS-1946022.

REFERENCES
[1] Yasuhito Asano. 2000. Experimental Evaluation of Approximation Algorithms
for the Minimum Cost Multiple-source Unsplittable Flow Problem.. In ICALP
Satellite Workshops. 111-122.

[2

[3

=
&

ey
&

=
&

=
&

(17

(18]

[19

[20

[21

[22

[23

[24

[25]

[26]

~
=

[28

Huang et al.

Cynthia Barnhart, Christopher A Hane, and Pamela H Vance. 2000. Using branch-
and-price-and-cut to solve origin-destination integer multicommodity flow prob-
lems. Operations Research 48, 2 (2000), 318-326.

Shilpa Shashikant Chaudhari and Rajashekhar C Biradar. 2015. Survey of band-
width estimation techniques in communication networks. wireless personal
communications 83, 2 (2015), 1425-1476.

Li Chen, Shuhao Liu, and Baochun Li. 2021. Optimizing Network Transfers for
Data Analytic Jobs Across Geo-Distributed Datacenters. IEEE Transactions on
Parallel and Distributed Systems 33, 2 (2021), 403-414.

Yan Chen, David Bindel, Han Hee Song, and Randy H Katz. 2007. Algebra-based
scalable overlay network monitoring: algorithms, evaluation, and applications.
IEEE/ACM Transactions on Networking 15, 5 (2007), 1084-1097.

Steven Gay, Pierre Schaus, and Stefano Vissicchio. 2017. Repetita: Repeatable
experiments for performance evaluation of traffic-engineering algorithms. arXiv
preprint arXiv:1710.08665 (2017).

Ting He, Liang Ma, Ananthram Swami, and Don Towsley. 2021. Network Tomogra-
phy: Identifiability, Measurement Design, and Network State Inference. Cambridge
University Press.

Thomas Holterbach, Stefano Vissicchio, Alberto Dainotti, and Laurent Vanbever.
2017. Swift: Predictive fast reroute. In SIGCOMM. 460-473.

Yudi Huang and Ting He. 2023. Overlay Routing Over an Uncooperative Underlay.
https://sites.psu.edu/nsrg/files/2023/03/Yudi_Mobihoc23_TechReport.pdf
Manish Jain and Constantinos Dovrolis. 2003. End-to-end available band-
width: measurement methodology, dynamics, and relation with TCP throughput.
IEEE/ACM Transactions on networking 11, 4 (2003), 537-549.

Hao Jiang and Constantinos Dovrolis. 2005. Why is the internet traffic bursty in
short time scales?. In SIGMETRICS. 241-252.

Dina Katabi and Charles Blake. 2001. Inferring congestion sharing and path
characteristics from packet interarrival times. MIT Report (2001).

Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew
Roughan. 2011. The internet topology zoo. IEEE Journal on Selected Areas in
Communications 29, 9 (2011), 1765-1775.

Y. Lin, T. He, S. Wang, K. Chan, and S. Pasteris. 2019. Multicast-Based Weight
Inference in General Network Topologies. In ICC 2019 - 2019 IEEE International
Conference on Communications (ICC). 1-6. https://doi.org/10.1109/ICC.2019.
8761099

Yilei Lin, Ting He, Shigiang Wang, Kevin Chan, and Stephen Pasteris. 2020.
Looking glass of NFV: Inferring the structure and state of NFV network from
external observations. IEEE/ACM Transactions on Networking 28, 4 (2020), 1477-
1490.

Xiliang Liu, Kaliappa Ravindran, and Dmitri Loguinov. 2008. A stochastic foun-
dation of available bandwidth estimation: Multi-hop analysis. IEEE/ACM Trans-
actions on Networking 16, 1 (2008), 130-143.

Jian Ni and Sekhar Tatikonda. 2011. Network tomography based on additive
metrics. IEEE Transactions on Information Theory 57, 12 (2011), 7798-7809.

Jian Ni, Haiyong Xie, Sekhar Tatikonda, and Yang Richard Yang. 2009. Effi-
cient and dynamic routing topology inference from end-to-end measurements.
IEEE/ACM transactions on networking 18, 1 (2009), 123-135.

Michael G Rabbat, Mark J Coates, and Robert D Nowak. 2006. Multiple-source
Internet tomography. IEEE Journal on Selected Areas in Communications 24, 12
(2006), 2221-2234.

Matthew Roughan. 2005. Simplifying the synthesis of Internet traffic matrices.
ACM SIGCOMM 35, 5 (2005), 93-96.

Ramesh K Sitaraman, Mangesh Kasbekar, Woody Lichtenstein, and Manish Jain.
2014. Overlay networks: An Akamai perspective. Advanced Content Delivery,
Streaming, and Cloud Services 51, 4 (2014), 305-328.

Kevin D Smith, Saber Jafarpour, Ananthram Swami, and Francesco Bullo. 2022.
Topology Inference With Multivariate Cumulants: The Mobius Inference Algo-
rithm. IEEE/ACM Transactions on Networking (2022).

Ales Svigelj, Mihael Mohorcic, Gorazd Kandus, Ales Kos, Matevz Pustisek, and
Janez Bester. 2004. Routing in ISL networks considering empirical IP traffic. IEEE
Journal on Selected areas in Communications 22, 2 (2004), 261-272.

Diman Zad Tootaghaj, Faraz Ahmed, Puneet Sharma, and Mihalis Yannakakis.
2020. Homa: An efficient topology and route management approach in SD-WAN
overlays. In IEEE INFOCOM. 2351-2360.

Hai-Anh Tran, Duc Tran, and Abdelhamid Mellouk. 2022. State-Dependent
Multi-Constraint Topology Configuration for Software-Defined Service Overlay
Networks. IEEE/ACM Transactions on Networking (2022).

Jay M Ver Hoef. 2012. Who invented the delta method? The American Statistician
66, 2 (2012), 124-127.

Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Martin] Reed, Haiyang Wang,
Guang Yao, Miao Zhang, and Kai Chen. 2018. BDS: a centralized near-optimal
overlay network for inter-datacenter data replication. In EuroSys. 1-14.

Ying Zhu and Baochun Li. 2008. Overlay networks with linear capacity con-
straints. IEEE Transactions on Parallel and Distributed systems 19, 2 (2008), 159
173.

https://sites.psu.edu/nsrg/files/2023/03/Yudi_Mobihoc23_TechReport.pdf
https://doi.org/10.1109/ICC.2019.8761099
https://doi.org/10.1109/ICC.2019.8761099

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Summary of Contributions

	2 Problem Formulation
	2.1 Network Model
	2.2 Objective of Overlay Routing
	2.3 Problem Statement

	3 Overlay-based Inference
	3.1 Minimum Information for Overlay Routing
	3.2 Detection of Nonempty Categories
	3.3 Estimation of Category Capacities

	4 Underlay-aware Overlay Routing
	4.1 Overall Solution
	4.2 Performance Analysis

	5 Performance Evaluation
	5.1 Evaluation Setup
	5.2 Benchmarks
	5.3 Evaluation Results

	6 Conclusion
	Acknowledgments
	References

