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Abstract

We study gains from trade in multi-dimensional two-sided
markets. Specifically, we focus on a setting with n heteroge-
neous items, where each item is owned by a different seller i,
and there is a constrained-additive buyer with feasibility
constraint F .  Multi-dimensional settings in one-sided mar-
kets, e.g. where a seller owns multiple heterogeneous items
but also is the mechanism designer, are well-understood. In
addition, single-dimensional settings in two-sided markets,
e.g. where a buyer and seller each seek or own a single item,
are also well-understood. Multi-dimensional two-sided mar-
kets, however, encapsulate the major challenges of both lines
of work: optimizing the sale of heterogeneous items, ensur-
ing incentive-compatibility among both sides of the market,
and enforcing budget balance. We present, to the best of our
knowledge, the first worst-case approximation guarantee for
gains from trade in a multi-dimensional two-sided market.

Our first result provides an O(log(1=r))-approximation
to the first-best gains from trade for a broad class of
downward-closed feasibility constraints (such as matroid,
matching, knapsack, or the intersection of these). Here r  is
the minimum probability over all items that a buyer’s value
for the item exceeds the seller’s cost. Our second result re-
moves the dependence on r  and provides an unconditional
O(log n)-approximation to the second-best gains from trade.
We extend both results for a general constrained-additive
buyer, losing another O(log n)-factor en-route. The first re-
sult is achieved using a fixed posted price mechanism, and
the analysis involves a novel application of the prophet in-
equality or a new concentration inequality. Our second re-
sult follows from a stitching lemma that allows us to upper
bound the second-best gains from trade by the first-best gains
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from trade from the “likely to trade” items (items with trade
probability at least 1=n) and the optimal profit from selling
the “unlikely to trade” items. We can obtain an O(log n)-
approximation to the first term by invoking our O(log(1=r))-
approximation on the “likely to trade” items. We introduce a
generalization of the fixed posted price mechanism—seller
adjusted posted price—to obtain an O(log n)-approximation
to the optimal profit for the “unlikely to trade” items. Unlike
fixed posted price mechanisms, not all seller adjusted posted
price mechanisms are incentive compatible and budget bal-
anced. We develop a new argument based on “allocation
coupling” to show the seller adjusted posted price mecha-
nism used in our approximation is indeed budget balanced
and incentive-compatible.

1 Introduction

Two-sided markets are ubiquitous in today’s economy: take
for example the New York Stock Exchange, online ad ex-
change platforms (e.g., Google’s Doubleclick, Microsoft’s
AdECN, etc.), crowdsourcing platforms, FCC ’s  spectrum
auctions, or sharing economy platforms such as Uber, Lyft,
and Airbnb. Yet mechanism design for such two-sided mar-
kets, where both the buyer(s) and seller(s) are strategic, is
known to be substantially harder than for one-sided mar-
kets, i.e. auctions where the seller designs the mechanism.
The additional challenges stem from the following require-
ments: (1) now the allocation rule must satisfy incentive-
compatibility for both sides of the market; and (2) the buyer
and seller payments must satisfy budget balance, that is, the
mechanism must not run a deficit. The limitations of these
constraints are best illustrated by the seminal impossibility
result of Myerson and Satterthwaite [30]. They show that
even in the simplest possible two-sided market—bilateral
trade, when one seller is selling a single item to a buyer—
no Bayesian incentive compatible (BIC), individually ratio-
nal (IR), and budget balanced (BB) mechanism can achieve
the first-best efficiency: the maximum efficiency achievable
without any of the previous constraints. The second-best ef-
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ficiency is the maximum efficiency achievable by any BIC,
IR, and B B  mechanism.

Despite the additional challenges, significant progress
has very recently been made in understanding single-
dimensional two-sided markets [1, 2, 5, 6, 7, 15]. Yet, in
reality, many two-sided markets involve agents with multi-
dimensional preferences. For example, a customer searching
for a place to stay on Airbnb typically values a listing based
on its location, number of rooms, amenities, reviews, and
more. For one-sided markets, multi-dimensional mechanism
design has been the core of algorithmic mechanism design
in the past decade. See [13, 17] and the references therein
for more details. Our goal in this paper is to study efficiency
maximization in multi-dimensional two-sided markets.

There are two ways to measure efficiency in two-sided
markets. One is the standard notion of welfare. The other is
the gains from trade (GFT), which is the welfare of the final
allocation minus the total cost of the sellers. Intuitively, the
GFT captures how much more welfare the mechanism brings
to the market. Clearly, the two measures are equivalent if
efficiency is maximized. However, approximating the GFT
is much more challenging than welfare. For example, if the
buyer’s value is 10 and the seller’s cost is 9, not trading
the item is a 9=10-approximation to the optimal welfare
but a 0-approximation to the optimal GFT. Obviously, any
good approximation to the optimal GFT immediately gives a
good approximation to the optimal welfare, but the opposite
direction is rarely true.

Several results show that generalizations of posted price
mechanisms can achieve a constant fraction of the first-best
welfare in fairly general multi-dimensional two-sided mar-
kets [5, 14, 16, 19]. However, GFT maxmization in multi-
dimensional settings has remained elusive. We present, to
the best of our knowledge, the first worst-case approxima-
tion guarantee for G F T  in a multi-dimensional two-sided
market. We focus on a setting with n heterogeneous items,
where each item is owned by a different seller i, and there is
a constrained-additive buyer with feasibility constraint F .
The Airbnb example is a special case of our setting, where
the customer is a unit-demand buyer, and there are n hosts,
each listing a property. We further assume that the prior dis-
tributions of the buyer’s valuations and sellers’ costs are pub-
lic knowledge and independent; the realized valuations and
costs are private.

Recall that in one-sided markets, maximizing revenue
for even a single (non-constrained) additive buyer is far more
challenging than for single-dimensional buyers, both opti-
mally and approximately [4, 18, 22, 26, 29]. Maximizing
GFT in two-sided markets suffers from this curse of dimen-
sionality as well. As with revenue, single-dimensional set-
tings can leverage an analog to Myerson’s virtual value the-
ory by using the optimal dual variables, as shown in [7], but
this does not extend to multiple dimensions. Note also that

while Colini-Baldeschi et al. [16] are able to extend an O(1)-
approximation to welfare to a two-sided market with XOS
buyers and additive sellers, their mechanism gives no guar-
antee for GFT.

The first main result is a distribution-parameterized
approximation to the first-best GFT.

R E S U LT  1. There is a fixed posted price mechanism whose
GFT is an O( log(1=r) )-approximation to the first-best GFT
when the buyer’s feasibility constraint F  is (; )-selectable
(Definition 3.3), and an O(log(n) log(1=r))-approximation
for a general constrained-additive buyer. r  is a distributional
parameter: the minimum trade probability over all items. We
define the trade probability of item i  as the probability that
the buyer’s value for i  exceeds the seller’s cost.

The notion of (; )-selectability is introduced by Feld-
man et al. [21] as a sufficient condition for prophet-
inequality-type online algorithms to exist. Many famil-
iar feasibility constraints such as matroid, matching, knap-
sack, and the compositions of each, are known to be (; )-
selectable with constant  and  [21], so our result provides an
O(log(1=r))-approximation for all of these environments.
We will give the formal definition of (; )-selectability in
Section 3.4. The main takeaway from Result 1 is that there
is an O(log(1=r))-approximation to the first-best GFT for
the feasibility constraints stated above. Next we introduce
the class of fixed posted price mechanisms.
Fixed Posted Price (FPP): In a fixed posted price mecha-
nism, there is a collection of fixed prices     ( B ; S )  i2[n] ,
where i        i      for each item i. Let R  be the set of sell-ers that
are willing to sell their item at price i  . The buyer can
purchase any item i  in R  at price i  . Trade only occurs when
the buyer wants to buy the item and the seller is willing
to sell it.

Our result is a generalization of the result by Colini-
Baldeschi et al. [15], where they provide the same approx-
imation using a fixed posted price mechanism for bilateral
trade. Importantly, our approximation ratio has the optimal
dependence on r  up to a constant factor. Example 1 (adapted
from an example by Blumrosen and Dobzinski [5]) in Ap-
pendix A  shows that, for any r  >  0, there is an instance
of our problem with minimum trade probability r  such that
no fixed posted price mechanism can achieve more than a

log(1=r) -fraction of even the second-best GFT for some ab-
solute constant c. In our fixed posted price mechanism, we

allow i       to be strictly greater than i  . This is crucial for
our analysis, but makes the mechanism only ex-post weakly
budget balanced. We leave it as an interesting open question
as to whether our approximation ratio can be achieved by an
ex-post strongly budget balanced fixed posted price mecha-
nism.

When the trade probability of each item is not too low,
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our first result provides a good approximation to the first-best
GFT using a simple fixed posted price mechanism. However,
r  can be arbitrarily small in the worst-case, making our ap-
proximation too large to be useful. Is it possible to produce
an unconditional worst-case approximation guarantee? We
provide an affirmative answer to this question with an uncon-
ditional O(log n)-approximation to the second-best GFT.

R E S U LT  2. There is a dominant strategy incentive compat-
ible (DSIC), ex-post IR, and BB mechanism whose GFT is at
least
( log n )-fraction of the second-best GFT when the buyer’s
feasibility constraint F  is (; )-selectable, and at least
( log

1
(n) )-fraction of the second-best GFT when the buyer is

general constrained-additive.

As we show in Example 1, no fixed posted price mech-
anism can provide such a guarantee. We develop two new
mechanisms. The first one is a multi-dimensional extension
of the “Generalized Buyer Offering Mechanism” by Brustle
et al. [7]. We provide a full description of the mechanism in
Section 4.2. The second mechanism is a generalization of
the fixed posted price mechanism that we call the Seller
Adjusted Posted Price Mechanism.

Seller Adjusted Posted Price (S A P P): The sellers report
their costs s. The mechanism maps the cost profile to a
collection of posted prices f i (s)g i 2 [ n ]  for the buyer. The
buyer can purchase at most one item, and pays price i (s) if
she buys item i. An item trades if the buyer decides to
purchase that item.

The main advantage of using a S A PP mechanism is that
it provides the flexibility to set prices based on the sellers’
costs, which allows a S A PP mechanism to achieve GFT
that can be unboundedly higher than the GFT attainable by
even the best fixed posted price mechanism (see Example 2).
Example 3 in Appendix A  shows that the class of SAPP
mechanisms is necessary to obtain any finite approximation
ratio to the second-best: both the best FPP mechanisms and
the “Generalized Buyer Offering Mechanism” [7] have an
unbounded gap compared to the second-best GFT, even in
the bilateral trade setting.

An astute reader may have already realized that the pay-
ments to the sellers are not yet defined in the S A PP mecha-
nism. This is because the allocation rule of a S A PP mech-
anism is not necessarily monotone in the sellers’ costs if
the mappings f i ( )g i 2 [ n ]  are not chosen carefully. Inter-
estingly, we show that if the mappings f i ( )g i 2 [ n ]  satisfy a
strong type of monotonicity that we call bi-monotonicity
(Definition 4.1), then the allocation rule is indeed monotone
in each seller’s reported cost. Since the sellers are single-
dimensional, we can apply Myerson’s payment identity to
design an incentive compatible payment rule. The final prop-
erty we need to establish is budget balance, which turns out
to be the major technical challenge for us. We provide more

details and intuition about our solution to this challenge in
the discussion of the techniques.

In Section 5, we draw a connection between a lower
bound to our analysis and one of the major open problems
in single dimensional two-sided markets. We prove a re-
duction from approximating the first-best GFT in the unit-
demand setting to bounding the gap between the first-best
and second-best GFT in a related single-dimensional setting
(Theorem 5.1). If in the latter market, the gap between first-
best and second-best GFT is at most c, then our mechanism is
a 2c-approximation to the first-best GFT in the former mar-
ket.

1.1 Our Approach and Techniques
1. log(1=r)-Approximation (Section 3): Our starting

point is similar to Colini-Baldeschi et al. [15]. We first argue
that the probability space of each item i  can be partitioned
into O(log(1=r)) events fE i j g j 2 [ l o g ( 2 = r ) ] ,  such that in each
event E i j ,  the median of the buyer’s value bi for item i
dominates the median of the i-th seller’s cost si .  The first-
best GFT is upper bounded by the sum of the contribution to
GFT from each of these events. In bilateral trade, simply
setting the posted price to be the median of the buyer’s
value is sufficient to obtain 1=2 of the optimal GFT from
E i j  as shown by McAfee [27]. The log(1=r)-approximation
by Colini-Baldeschi et al. [15] essentially follows from this
argument.

To illustrate the added difficulty from multiple items, it
suffices to consider a unit-demand buyer. Setting the posted
price on each item to be the median of the buyer’s value
does not provide a good approximation, because the buyer
will purchase the item that gives her the highest surplus,
which could be very different from the item that generates
the most GFT. Similar scenarios are not uncommon in multi-
dimensional auction design, and prophet inequalities [23,
24] have been proven to be effective in addressing similar
challenges. The main barrier for applying the prophet
inequality to two-sided markets is choosing the appropriate
random variable as the reward for the prophet/gambler. It
is not obvious how to choose a random variable that will
translate to a two-sided market mechanism, and in fact,
for some choices, no translation between the thresholding
policy for the gambler and a two-sided market mechanism
is possible.1     Our key insight is to replace event E i j  with
a related but different event E i j  where there is a fixed
number i j  such that s i  and bi are always separated by i j  (si

i j   bi). We further show that the GFT contribution

1For example, one can choose the GFT from the i t h  item (b i    s i ) +

as the reward of the i t h  round, but no fixed posted price mechanism
corresponds to the policy that only accepts items whose GFT is above a
certain threshold. Indeed, no BIC,  IR, and B B  mechanism can implement a
thresholding policy with threshold 0 due to the impossibility result by
Myerson and Satterthwaite [30].
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from event E i j  is at least half of the GFT contribution from
E i j .  Importantly, the GFT contributed by item i  in event E i j :
(bi       s i ) +  2 =  (bi       i j ) +  1[s i   i j ] + ( i j       s i ) +  1[bi   i j ] .  Note
that if we replace E i j  with E i j ,  the LHS can exceed the
RHS when i j  >  bi  >  si . The decomposition of (bi    s i ) +

using i j  is critical for us to apply the prophet inequality. We
can now choose the reward for the gambler to be vi  =  ( i j

s i ) +  1[bi  i j ] ,  and the thresholding policy with a threshold T
can be implemented with a posted price mechanism where
the price for the buyer is i j  and the price for the seller is i j

T .3

When the buyer’s feasibility constraint is general
downward-closed, the only known prophet inequalities are
due to Rubinstein [32] and are O(log n)-competitive. Unfor-
tunately, the prophet inequalities in [32] are highly adaptive,
and thus cannot translate into prices for a single buyer. Fur-
ther, an almost matching lower bound of O(log n= log log n)
is shown by Babaioff et al. [3], precluding much possible im-
provement for this approach. Instead, we use a constrained
fixed posted price mechanism that forces the buyer to buy at
least h items (at their posted prices) if she wants to buy any;
otherwise, she must leave with nothing. We divide the same
variables vi  into O(log n) buckets based on their contribu-
tion to seller surplus. Within each bucket k, all variables vi

lie in [L k ; 2L k ]  for some L k .  We prove a concentration in-
equality for the maximum size of a feasible and affordable
set. It guarantees that with constant probability, the buyer
will be willing to purchase at least h items (for an appropri-
ate choice of h), generating sufficient GFT.

2. Benchmark of the Second-Best G F T  (Section 4.1):
As our goal is to obtain a benchmark of the second-best
GFT that is unconditional, the benchmark from the previous
(distribution-parameterized) result cannot be used here. We
derive a novel benchmark in two steps. Step (i): we create
two imaginary one-sided markets: the super seller auction
and the super buyer procurement auction. We show that the
second-best GFT of the two-sided market is upper bounded
by the optimal profit from the super seller auction and
the optimal buyer utility from the super buyer procurement
auction. Step (ii): we provide an extension of the marginal
mechanism lemma [22, 9] to the optimal profit. We show that
the optimal profit for selling all items in [n] is upper bounded
by the first-best GFT from items in T  and the optimal profit
for selling items in [n]nT , where T  is an arbitrary subset of
[n]. Our key insight is to choose T  to be the “likely to trade”
items, which are the ones with trade probability at least 1=n,
and apply the marginal mechanism lemma. This partition
allows us to use our first result to provide an O(log n)-
approximation to the first-best GFT of the “likely to trade”
items using a fixed posted price mechanism. Moreover, we

2 x +  =  maxfx;  0g.
3 A similar fixed posted price mechanism can take care of (b i    i j ) +

1 [ s i   i j ] .

prove that the optimal buyer utility from the super buyer
procurement auction is upper bounded by the GFT of an
extension of the “generalized buyer offering mechanism”
[7]. Finally, we provide an O(log n)-approximation to the
optimal profit for selling the “unlikely to trade” items using
a S A PP mechanism. Note that the approximation crucially
relies on the fact that in expectation at most one item can
trade among the “unlikely to trade” items.

3. Budget Balance of Seller Adjusted Posted Price
Mechanisms (Section 4.3): As mentioned earlier, we re-
strict our attention to bi-monotonic mappings from cost
profiles to buyer prices f i ( )g i 2 [ n ]  to guarantee incentive-
compatibility.     However, budget balance does not follow
from bi-monotonic mappings. We extend the definition of
bi-monotonicity to allocation rules and show that all bi-
monotonic allocation rules can be transformed into a DSIC,
IR, and B B  S A PP mechanism. In our proof of the budget
balance property, we identify an auxiliary allocation rule q,
which may not be implementable by a B B  mechanism. We
then show that the allocation rule of our S APP mechanism
is “coupled” with q. In particular, our allocation probabil-
ity is always between q=4 and q=2. The upper bound q=2
allows us to upper bound the payment to the seller, and the
lower bound q=4 allows us to lower bound the payment we
collect from the buyer. Surprisingly, we can prove that the
upper bound of the payment to the seller is no more than the
lower bound of the buyer’s payment. We suspect this type of
allocation coupling argument may also be useful in other
problems.

1.2 Related Work
Gains from Trade: The main related works are on

worst-case GFT approximation. Blumrosen and Mizrahi
[6] guarantee an e-approximation to the first-best GFT in
the setting of bilateral trade—one buyer, one seller, one
item—when the buyer’s distribution satisfies the monotone
hazard rate condition. Brustle et al. [7] study the more
general double auction setting: there are many buyers and
sellers, but the goods are identical, and each buyer and
seller is unit-demand or unit-supply respectively.     In ad-
dition, any downward-closed feasibility constraint over the
buyer-seller pairs that can trade is allowed. They use the
better of a “seller-offering” or “buyer-offering” mechanism
to achieve a 2-approximation to the second-best GFT, for
general buyers’ and sellers’ distributions. Colini-Baldeschi
et al. [15] show that a simple fixed price mechanism ob-
tains an O( 1 )-approximation to GFT in the bilateral trade
and double auction settings, but a more careful setting of
the fixed price gives an O(log 1 )-approximation for bilat-
eral trade. Our setting is the first multi-dimensional setting
with a worst-case approximation guarantee, and we match
the O(log 1 )-approximation of [15] while providing an un-
conditional O(log n)-approximation.
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Other lines of work provide (1) asymptotic approxima-
tion guarantees in the number of items optimally traded for
settings as general as multi-unit buyers and sellers and k
types of items [28, 36, 35], (2) dual asymptotic and worst-
case guarantees for double auctions and matching markets
[1], and (3) Bulow-Klemperer-style guarantees of the num-
ber of additional buyers (or sellers) needed in double auc-
tions in order for the GFT of the new setting running a simple
mechanism to beat the first-best GFT of the original setting
[2].

Multi-Dimensional Revenue: In the setting where one
seller owns all of the items, has no cost for the items, and
is the mechanism designer, much more is known. How-
ever, even when selling to a single additive bidder (e.g.
with no feasibility constraints), posted prices can achieve at
best an O(log n)-approximation [22, 25]. In order to ob-
tain a constant-factor approximation for an additive buyer,
Babaioff et al. [4] use the better of posted prices and posting
a price on the grand bundle, and a variation works for a sin-
gle subadditive (which includes constrained-additive) buyer
as well [33]. However, in a two-sided market where items
are owned by separate sellers, it is not clear how to imple-
ment bundling in an incentive-compatible way. The mecha-
nisms used to obtain constant-approximations for multiple
constrained-additive, XOS, or subadditive buyers [12, 10]
are only more complex.

Welfare in Two-Sided Markets: Colini-Baldeschi et
al. [14] consider welfare maximization in the double auction
setting with matroid feasibility constraints. They generalize
sequential posted price mechanisms (SPMs) to the two-sided
market setting, guaranteeing a constant-factor approximation
to welfare. The mechanism posts prices for each buyer-seller
combination (not just for each item), visits the buyers and
sellers simultaneously in the given order, and advances on
either side when the price is rejected. Trade occurs when
both sides accept the trade. Follow up work of Colini-
Baldeschi et al. [16] generalizes the idea to the setting where
buyers are XOS  and sellers are additive. Here, there is a
posted price for each item, but only “high welfare” items
are considered. The buyers visit and pick out the bundles
they want among the high welfare items. Then sellers are
given the opportunity to sell their entire bundle of items
demanded by the buyers (but not any subset), and they are
skipped with some probability. Like the previous work, this
mechanism is ex-post IR, DSIC,  and strongly B B  (buyer
payments equal seller payments). As only “high welfare”
items are considered, it is possible for their mechanism to
not trade any item when the minimum trade probability r  is
a constant.

Blumrosen and Dobzinski [5] give an IR, BIC,  and
strongly B B  mechanism for bilateral trade that obtains in ex-
pectation a constant-fraction of the optimal welfare. Dutting
et al. [19] study welfare maximization in the prior-free set-

ting and present DSIC,  IR, and weakly B B  (buyer payments
exceed seller payments) mechanisms for double auctions
with feasibility constraints on either side.
2 Preliminaries

Two-sided Markets. We focus on two-sided markets
between a single buyer and n unit-supply sellers. Every
seller i  sells a heterogeneous item. For simplicity we denote
the item sold by seller i  as item i. Each seller i  has cost
s i  for producing item i, where s i  is drawn independently
from distribution D S .  The buyer has value bi for every item
i  where bi is drawn independently from distribution D B .  D S

and D i      are public knowledge. Let D B  =  i = 1 D i      be the
distribution of the buyer’s value profile and D      =  i = 1 D i  be
the distribution of the cost profile for all sellers. Let
b =  (b1; :::; bn) and s =  (s1; :::; sn ) denote the value (or
cost) profile for the buyer and all sellers. For notational
convenience, for every i  we denote b     i  (or s      i ) to be the
value (or cost) profile without item i. For every i, F i ; f i  (or
Gi ; gi ) denote the cumulative distribution function and
density function of D i       (or D i  ).     Throughout the paper
we assume that all distributions are continuous over their
support, and so the inverse cumulative functions F      1 and G
1 exist.4

Throughout this paper, we assume that the buyer has a
constrained-additive valuation over the items, which means
that the buyer is additive over the items, but is only allowed
to take a feasible set of items with respect to a downward-
closed5 constraint F   2[n]. Formally, for every b and S
[n], the buyer’s value for a set of items S  is: v(b; S ) =
ma x T 2 F ; T S i 2 T  bi .

Mechanism and Constraints. Any mechanism in the
two-sided market defined above is specified by the tuple
(x; pB ; pS )  where x  is the allocation rule of the mechanism
and pB , pS  are the payment rules. For every profile (b; s) and
every i, xi (b; s) is the probability that the buyer trades with
seller i  under profile (b; s). pB (b; s) is the payment from
the buyer and pS (b; s) is the gains for (or payment to) seller
i. Al l  agents in the market have linear utility functions.6

We call the mechanism ex-ante Strongly Budget Balanced
(SBB) or Weakly Budget Balanced (WBB) if the buyer’s
expected payment equals, or is greater than, the sum of all

4 Any discrete distribution can be made continuous by replacing each
point mass a  with a uniform distribution on [a   ; a  +  ], for arbitrarily small
. Thus our result applies to discrete distributions as well by losing
arbitrarily small GFT.

5 F   2[n] is downward-closed if for every S  2  F ,  we have S 0 2
F ;  8S0  S .

6Without loss of generality we can assume that the mechanism will only
allow the buyer to trade with a (possibly randomized) set S  of sellers where S
2  F .  For any trading set T , let S  denote the utility-maximizing feasible
subset, S  =  a r g m a x S 2 F ; S T i 2 S  bi . If we only allow the buyer to
trade with the sellers in S      instead of all of T , the gains from trade of the
mechanism will not decrease.
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sellers’ expected gains, respectively, over the randomness of
the mechanism and the profiles of all agents. We call the
mechanism ex-post S B B  (or ex-post WBB) if this property
holds for every agent’s profile. The definition of incentive
compatibility and individual rationality are as follows.

 BIC:  For every agent, reporting her true value (or cost)
maximizes her expected utility over the profiles of other
agents.

 DSIC:  For every agent, reporting her true value (or cost)
maximizes her expected utility, no matter what other
agents report.

 (Bayesian) IR: For every agent, reporting her true value
(or cost) derives non-negative utility over the profiles of
other agents.

 Ex-post IR: For every agent, reporting her true value (or
cost) derives non-negative utility, no matter what other
agents report.

Gains from Trade. We aim to maximize the Gains
from Trade (GFT), i.e. the gains of social welfare induced
by the mechanism. Formally, given a mechanism M =
(x; pB ; pS ), the expected GFT of M is

GF T(M ) =  E b D B ; s D S  [
P

i = 1  xi (b; s)  (bi    si )] :

We use S B - G F T to denote the optimal GFT attainable
by any BIC,  IR, ex-ante WBB mechanism (also known as
the “second-best” mechanism).     Let F B - G F T denote the
maximum possible gains of social welfare among all feasible
allocations (known as the “first-best”). Formally

F B - G F T =  E b D B ; s D S  m a x S 2 F  
P

i 2 S ( b i    s i ):

In Section 3, the distribution-parameterized approxima-
tion uses the parameter r, the minimum probability over all
items i  that the buyer’s value for item i  is at least seller
i’s cost. Formally, for every item i  2  [n], let r i       =
Prb D B ; s  D S  [bi      s i ]  denote the probability that the
buyer’s value for item i  exceeds seller i’s cost. Without
loss of generality, assume that r i  >  0 for all i  2  [n].7 Let
r  =  mini2[n] r i  >  0.

3 A  Distribution-Parameterized Approximation

In this section, we present an O( log(1=r) )-approximation
to F B - G F T when the buyer’s feasibility constraint F  is
(; )-selectable, and an O(log(n)  log( 1 ))-approximation for
a general constrained-additive buyer.     In Section 3.1, we
show that F B - G F T can be bounded by the sum of four

7If r i  =  0 the mechanism should never trade between the buyer and
seller i, and so it can remove seller i  from the market. This will not decrease
the GFT of the mechanism as bi  <  s i  with probability 1.

separate terms.     In Section 3.2 we show that two of the
terms (“buyer surplus”) are relatively easy to bound using
fixed posted price (FPP) mechanisms with the same prices
posted on both sides. In Section 3.3, we consider the special
case of a unit-demand buyer and bound the other two terms
(“seller surplus”) using FPP mechanisms combined with the
prophet inequality. In Section 3.4, we introduce the concept
of selectability [21] and bound the seller surplus for any
selectable feasibility constraint by using a constrained FPP
mechanism.     In Section 3.5, we present our result for a
general constrained-additive buyer.

3.1 Upper Bound of F B - G F T .  For every i, let F i  =  1
F i  denote the complementary C D F  of bi . Let x i  and yi be the

2 -quantile of the buyer’s and seller’s distribution for item i,

respectively. Formally, x i  =  F i         ( r i  ); yi =  G      1 ( r i  ). We
first prove that x i   yi .

L E M M A 3.1. For every i  2  [n], x i   yi .

Proof. Note that for every i  2  [n], bi  <  x i  ^ s i  >  x i  implies
that bi  <  si .  We have

1   r i  =  
b i D  

Pr
i D S

[ b i  <  si ]   Pr
i
[b i  <  x i  ^  s i  >  x i ]  =  (1

r i  )   (1   Pr[s i   x i ]):
i

Suppose x i  <  yi . Then (1   r i  ) (1      Prs  [s i   x i ] )   (1

2 )
2 >  1   r i :  This is a contradiction. Thus x i   yi .

In the following upper bound, we will separate the
probability space for each item i  into 2dlog(2=r)e events,
and then divide the GFT into buyer surplus and seller surplus
terms according to the cutoff for each event.     For every
b; s, define the feasible set that maximizes the GFT as
S (b; s) =  argmaxS 2 F (bk   sk ), and break ties
arbitrarily. Observe the following upper bound for the first-
best GFT:

X
F B - G F T =  E [max (bi    s i )  ]

i 2 S

Eb;s [ i (b i    s i )   1[i  2  S (b; s)]  1[bi  s i  ^  s i  <  xi ]]
+ E b ; s  [ i (b i    s i )   1[i  2  S (b; s)]  1[bi  s i   yi]] ;

where the inequality holds because x i   yi  for all i. We refer to
the two terms of RHS as 1 and 2 accordingly. We first
consider term 1 . For every i  2  [n]; j 2  1; 2; : : : ; dlog( 2 )e,
let i j  =  F i

     1
(   

j  ). Let E i j  be the event that F i
     1

(  
j      1  )   s i

F i
     1

( 2j  )  ^  bi   F i
     1

( 2j      1  ). Then we have
dlog( 2  )e

1 Eb;s [ (bi    s i ) +   1[i  2  S (b; s) ^  E i j ] ] .
j = 1
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P

X

b;s S 2 F

X

b;s S 2 F

+

" #

2

+

i

+ +foll ws rom the fact that (b      s  )       (b       )  +  (i i i j i j
+

of the paper.

L E M M A 3.3. For every i  2  [n] and j  =  1; : : : ; dlog(2=r)e,
0let =  G ( ). Then

b;s S 2 F

X X
0 0

b;s S 2 F

0 0
X X

" #

n

b;s S 2 F

+

r
FPPG F T .

S B

P
i 2 S i i

i iP P
i 2 S i 2 S

i 2 S

X
G F T ( M )   E max (b   p ) +

b;s S 2 F

X
+=  E  max (b   p )       1[s  p ] :

i i j
0
i jity with p =       (or  ).

i i 2 [ n ] +

r

B S n

As discussed in Section 1.1, in order to bound the
benchmark with fixed posted price mechanisms, we will
consider a more restrictive event E i j  and show that the
GFT contribution from event E i j  is at least half of the GFT
contribution from E i j .

L E M M A 3.2. For every i; j ,  let E i j      be the event that

F i
     1

(  
j      1  )   s i   F i

     1
(   

j  )  ^  bi   F i
     1

(   
j  ). Then the following

inequality holds for every j  =  1; : : : ; dlog(2=r)e:

3.2     Bounding Buyer Surplus. We bound terms 3 and
5 using fixed posted price mechanisms. Let GFT F P P de-

note the optimal GFT among all fixed posted price mech-
anisms. Recall that our market is not symmetric: a single
multi-dimensional buyer with a feasibility constraint faces
multiple single-dimensional sellers. As a result, even for the
general constrained-additive buyer, bounding buyer surplus
is fairly straightforward using fixed price mechanisms that
set i  =  i      =  i j  (or i  =  i      =  i j )  for each term.

Eb;s [
P

i ( b i    s i ) +   1[i  2  S (b; s) ^  E i j ] ] L E M M A 3.4. For any fpi g i 2 [ n ]  2  R + ,

2  Eb;s i (b i    s i ) +   1[ i  2  S (b; s) ^  E i j ]  : "
X

#

Moreover,
E  max 

i 2
S f ( b i    pi )      1[s i   pi ]g  GFTF PP :

1  2  
dlog(2=r)e 

E  

"

m a x
X

( b i    i j ) +   1[s i   i j ]  

#  
Thus both 3 and 5 are upper bounded by O(log( 1 ))  j = 1

i 2 S

dlog(2=r)e X Proof. Consider the fixed posted price mechanism M  with
+  2                    E  max           ( i j    s i )       1[bi   i j ]        : i      =  i      =  pi . For every s, let A(s)  =  f i  2  [n] j s i   pig j = 1

i 2 S                                                                                    be the set of available items. Then the buyer will choose the
best set S   A(s) ; S 2  F  that maximizes (b   p ) +

We will
 
refer to

 
the

 
two

 
terms

 
of

 
RHS

 
as 3 and 4 (and not buy any item if b      p  0 for all i). Thus the gains

accordingly. from trade (bi    s i )  is at least             (bi    p i ) +   0.

Readers may notice that Pr [E i j ]      = 1  Pr[E i j ] .
We have

" #
However, this alone does not prove the first statement of
Lemma 3.2, since both the indicator 1 [ E i j ]  and the con- b;s     S A ( s ) ; S 2 F

i i

tributed GFT (bi       s i )  1[i  2  S  (b; s)] depend on the real- " #
ization of bi ; si . In Lemma 3.2 we show that the two random
variables are positively correlated with respect to b , which i i i i

allows us to prove the first statement. The second statement i 2 S

s i )  
o 

for
f
every bi ; si , and that S (b; s) 2  F  for

i
every b; s. 

 To bound terms 3 and 5 , just apply the above inequal-

In Lemma 3.3, we bound term 2 in a similar way. The
proof of Lemmas 3.2 and 3.3 can be found in the full version 3.3 Bounding Seller Surplus for One Unit-Demand

Buyer. In the remainder of this section, we will bound the
seller surplus terms ( 4 and 6 ). As a warm-up, we first fo-

     1  1 cus on the case where the buyer is unit-demand, i.e. the buyer
i j      

 
i 2 j is only interested in at most one item. Here, the prophet in-

dlog(2=r)e       
 "                                                                    #  equality suffices for our bound.

2  2 E  max (bi    i j ) +   1[s i   i j ] L E M M A 3.5. When the buyer is unit-demand, for any
j = 1 i 2 S fp  g 2  R n  , we have

dlog(2=r)e

+  2 E  max ( i j    s i ) +   1[bi   i j ] : Eb;s [maxi f(pi    s i ) +   1[bi   pi]g]  2  GFTF PP : j = 1

i 2 S

Hence terms 4 and 6 are both upper-bounded by
We will refer to the two terms of RHS as 5 and 6 O(log( 1 ))  GFTF PP .
accordingly.

Proof. For every i, let vi      =  (pi    s i ) +   1[bi       pi ] be
We refer to terms 3 and 5 as buyer surplus, and 4 a random variable that depends on bi and si .      Let v =
and 6 as seller surplus. In the rest of this section we will     fvi gi 2[ n] .      Let Vi be the distribution of vi where bi
bound each term separately.                                                                D i  ; s i   D i  , and V =  i = 1 V i  be the distribution of v.
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Then the LHS of the inequality in the Lemma statement is
equal to Ev V  [maxi vi ].

Consider any threshold  >  0. Observe that vi    if and
only if bi   pi  ^  pi    s i   . Consider the fixed posted price
mechanism M  with B  =  pi and S  =  pi   for every i  2  [n].
Whenever the buyer purchases some item i, we must have bi

pi  (the buyer buys) and s i   pi     (the seller sells), and the
contributed GFT satisfies bi  s i   pi  s i   . In addition, the
buyer will purchase some item if and only if there exists
some i  such that vi      .     Therefore we can apply the
prophet inequality [23, 24, 34] with threshold
 =  1 Ev V  [maxi vi ] to ensure that the GFT of mechanism M
is at least 1 Ev V  [maxi vi ].

3.4 Bounding Seller Surplus with Selectability. In this
subsection we bound terms 4 and 6 for a more general
class of constraints F  using a variant of a fixed posted price
(FPP) mechanism which we call constrained FPP. In the
variant, the mechanism determines a (randomized) subcon-
straint F 0   F  upfront. Then the buyer is only allowed to
take a feasible set in F 0  (among all items that the sell-
ers agree to sell at prices f S g i 2 [ n ] )  and pays the price B  for
each item she takes.8     Let GFT C F P P denote the the op-timal
GFT among all constrained FPP mechanisms.9 Since
all of the posted prices as well as the subconstraint are inde-
pendent from the agents’ reported profiles, the mechanism is
D S I C  and ex-post IR. The mechanism is also ex-post WBB
since B   S  for all i  2  [n].

To present our result, we introduce a concept for
downward-closed constraints called (; )-selectability [21].
Feldman et al. introduce (; )-selectability in the study of
Online Contention Resolution Schemes (OCRS) [21]. An
OCRS is an algorithm defined for the following online se-
lection problem: There is a ground set I ,  and the elements
are revealed one by one, with item i  active with probability
x i  independent of the other items. The algorithm is only al-
lowed to accept active elements and has to irrevocably make
a decision whether to accept an element before the next one is
revealed. Moreover, the algorithm can only accept a set of
elements subject to a feasibility constraint F .  We use the
vector x  to denote active probabilities for the elements and
R ( x )  to denote the random set of active elements.

D E FI N I T I O N 3.1. ( R E L A X AT I O N ) We say that a polytope
P   [0; 1]jI j is a relaxation of P F  if it contains the same
f0; 1g-points, i.e., P  \  f0; 1gjI j  =  P F  \  f0; 1gjI j .

8Throughout this paper, we assume for simplicity that the buyer will
purchase item i  when b i  =  B  as long as the bundle remains feasible after
including i. Without this tie-breaking rule, one can simply decrease the
posted price for each item by an arbitrarily small value , and the loss of
GFT will be arbitrarily small.

9Note that FPP is a subclass of constrained FPP, and therefore
GFT F PP  GFT C F PP .

D E FI N I T I O N 3.2. An Online Contention Resolution
Scheme (OCRS) for a polytope P   [0; 1]jI j and feasibility
constraint F  is an online algorithm that selects a feasible
and active set S   R ( x )  and S  2  F  for any x  2  P . A
greedy OCRS  greedily decides whether or not to select an
element in each iteration: given the vector x  2  P , it first
determines a sub-constraint F ; x   F .  When element i  is
revealed, it accepts the element if and only if i  is active and S
[  f ig  2  F ; x ,  where S  is the set of elements accepted so far.
In most cases, we choose P  to be P F ,  the convex hull of
all characteristic vectors of feasible sets in F :  P F  =
conv(1S j S  2  F ) .

D E FI N I T I O N 3.3. ( ( ; ) - S E L E C TA B I L I T Y  [21]) For any
;  2  (0; 1), a greedy OCRS  for P  and F  is (; )-selectable
if for every x  2    P  and i  2  I ,

Pr[S [  f ig  2  F ; x ; 8S   R ( x ) ; S  2  F ; x ]   :

The probability is taken over the randomness of R ( x )  and
the subconstraint F ; x .  We slightly abuse notation and say
that F  is (; )-selectable if there exists a (; )-selectable greedy
OCRS for P F  and F .

The following lemma is adapted from [21] and connects
(; )-selectability to constrained FPP mechanisms. Once
again, the OCRS gives us both a GFT guarantee and a
mechanism: variables vi correspond to the bound on seller
surplus, buyer item prices are fpi gi 2[ n] ,  seller prices are
fp i    i gi2[n] ,  and the subconstraint is suggested by the
OCRS. The proof of Lemma 3.6 can be found in the full
version of the paper.

L E M M A 3.6. Suppose there exists a (; )-selectable greedy
OCRS  for the polytope P F ,  for some ;  2  (0; 1). Fix any
fpi g i 2 [ n ]  2  R n  . For every i  2  [n], let vi =  (pi  s i ) + 1 [ b i   pi ].
For any q 2  P F  that satisfies qi   Prb i ; s i  [bi  pi  >  si ]  8i, let i

=  pi   G i       (qi = Pr[bi  pi ]). We have
P

i  E b i ; s i  [vi  1[vi  i ]]    GFT C F PP :

Moreover, there exists a choice of q such that

Eb;s m a x S 2 F  
P

i 2 S  f (p i    s i ) +   1[bi   pi ]g
 

i

E b i ; s i  [vi  1[vi  i ]]    GFT C F P P :

For each j  in the summation, choose pi from Lemma 3.6
to be i j  (or i j ).  Then both terms 4 and 6 are bounded by
log (1=r )   GFT C F P P . Theorem 3.1 then follows directly
from Lemmas 3.2, 3.3, 3.4, and 3.6.

Feldman et al. [21] show that many natural constraints—
including     matroids,     matchings,     knapsack,     and     their

10When qi   Prb  ; s  [bi  pi  >  si ], qi = Pr[b i   pi ]  1. Thus i  is well-
defined.
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compositions—are (; )-selectable for some constants  and .
For all of these, Theorem 3.1 implies that GFT C F P P is an
O(log(1=r))-approximation to F B -GF T. We refer the read-
ers to the full version of our paper for more details.

T H E O R E M 3.1. Suppose the buyer’s feasibility constraint F
is (; )-selectable for some ;  2  (0; 1). Then F B - G F T
O( log (1=r ) )  GFT C F P P .

3.5 General Constrained-Additive Buyer. In this sec-
tion, we consider the case of a general constrained-additive
buyer, and prove an O(log(n)  log(1=r)) approximation to
F B - G F T using constrained FPP mechanisms. Note that
Lemmas 3.2, 3.3, and 3.4 still hold in this setting. It is suffi-
cient to bound the seller surplus term with GFT C F P P .

Throughout this section, we will use the following
variant of FPP mechanisms: Other than posted prices, the
mechanism also determines an integer h >  0 upfront. The
buyer can purchase any set of items of size at least h by
paying the posted prices for each item in the set; otherwise,
she leaves with nothing. This is a subclass of constrained
FPP, with subconstraint F 0  =  f S  j S  2  F  ^  jS j  hg  F .11

L E M M A 3.7. For any fpi g i 2 [ n ]  2  R n  ,

A  = E b ; s      max T 2 F i 2 T  f (p i    s i ) +   1[bi  pi ]g

O(log(n))  GFTC F P P :

Hence terms 4 and 6 are both upper-bounded by
O(log(n)  log( 1 ))  GFT C F P P .

For every i  2  [n], again construct random variables
vi =  (pi    s i ) +   1[bi  pi ]. The main issue here is that in
an FPP mechanism, say with posted prices i      =  i  =  pi , the
buyer will pick the maximum weight feasible set (among
all items that sellers are willing to sell) according to weight
bi   pi  (her utility). However, this might be far from the set
used in the benchmark, i.e. the maximum weight feasible set
according to weight pi   s i .  In the previous section (when
the constraint F  had selectability), by setting different prices
for both sides and adding a more restrictive constraint, we
guaranteed that if both the buyer and seller accept the posted
prices for some item, then the buyer would purchase this item
with at least constant probability. For general downward-
closed F ,  it is unclear how to achieve this property with a
constrained FPP mechanism.

For every b; s, let T (b; s) =  argmaxT 2 F vi be
the optimal set used in the benchmark. We divide A  into
three terms according to the value of vi when i  is in this opti-
mal set: vi <  A=2n, vi 2  [A=2n; 2nA] and vi >  2nA. De-
note the three terms A S ; A M  ; A L  accordingly. First we no-
tice that the contribution of A S  is at most a constant fraction

11If h =  1, the mechanism becomes a standard FPP mechanism without
any subconstraint F 0 .

of A ,  as A S  =  Eb;s 
P  

vi  1[i  2  T (b; s) ^  vi <   A  ]
 
<  Eb;s

A    n =  A .
For A L ,  in Lemma 3.9, we first prove that Prb i ; s i  [bi  pi

^  pi   s i   2nA] holds for every i. This implies
that in a standard FPP mechanism (where h =  1) with
B  =  pi ; S  =  (pi    2 n A ) +  for all i, the buyer purchases
each item i  with probability at least 1 if both the buyer
and seller i  accept the posted prices. First, we will need
Lemma 3.8.

L E M M A 3.8. Given any constrained F P P  mechanism M
with posted prices f B g i 2 [ n ] ,  f S g i 2 [ n ]  and h =  1, suppose

i  Pr[bi  i      ̂  s i   i  ]  2 . Then

G F T ( M )   2 

P
i  E b i ; s i  (b i    s i )   1[bi   i      ̂  s i   i  ]:

Proof. For any item i, the buyer will purchase item i  if both
of the following events happen:

1. bi   B  and s i   S ;

2. For all items k =  i, either s k  >  S  or bk <  B .

By the union bound, the second event happens with
probability at least 1  Pr[bi  B  ^  s i   S ]   1 . Since
both events are independent, we have G F T ( M )   1

i  E b i ; s i       (b i    s i )   1[bi   B  ^  s i   S ]  :

L E M M A 3.9. A L  =  Eb;s [
P  

vi 1[i  2  T (b; s) ^  vi >  2nA]]
2  GFTF PP .

Proof. Consider the FPP mechanism with i       =  pi ; i       =
(pi    2nA)     for all i  (and h =  1).

Note that for every i  2  [n], it must hold that Prb i ; s i  [bi  pi

^  pi   s i   2nA]  2n . In fact,

A  
b

E
i
[(p i    s i ) +   1[bi   pi ]]

2nA  Pr  [bi  pi  ^  pi    s i   2nA]: i        i

Thus by Lemma 3.8 and the fact that bi       s i   pi       s i  when bi
pi , we have
GFT F P P  1 E [(pi    s i )   1[bi   pi  ^  pi   s i   2nA]]  1

A L :

In Lemma 3.10 we bound A M  , which is the primary
challenge for this approximation.

L E M M A 3.10. A M   O(log(n))  GFT C F P P .

Proof. We further divide the interval [A=2n; 2nA] into
O(log(n)) buckets, where in each bucket k, vi  falls in
the range [L k ; 2L k ]  for some L k .  Formally, for any k 2

f1; 2; :::; d2 log(n) +  2eg, let L k  =  2k   A  . We have A M
d2 l o g ( n ) + 2 e  Eb;s [ i  v i 1[i  2  T (b; s) ^  vi 2  [Lk ; 2Lk ]]] :
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In the rest of the proof, we will show that for any k, there
exists some constant c >  0 such that

" #

E vi 1[i 2  T (b; s) ^  vi 2  [Lk ; 2Lk ]]   c GFTC FPP : i

Fix any k. For every i  2  [n], let t ( k )  =  2 L
   1 [ L k   vi

2Lk ].  This is a random variable in [ 1 ; 1]. Note that all
random variables t =  ft ( k ) g i 2 [ n ]  are independent. Let
Z (t )  =  ma x T 2 F t(k ) . Then the contribution to A L
from values in this range is bounded by the expectation of
the random variable Z (t):

"
X

#
E vi  1[ i  2  T  (b; s) ^  vi  2  [Lk ; 2Lk ]]

"  i

X
#

 E  max vi  1 [ L k   vi   2L k ]  =  2 L k  E[Z (t)]: i 2 S

Now consider the constrained FPP mechanism with
B  =  pi  and S  =  (pi    L k ) +  for every i  (the threshold h
is determined later). Then in the mechanism, whenever
the buyer purchases an item, the contributed GFT is at least
L k .  Thus it is sufficient to show that the expected size of the
purchasing set is at least a constant factor of E[Z (t)]. Note
that Z (t )  is a random variable on t, which is the maximum
weight feasible set over n independent random variables in
[0; 1]. In Lemma 3.11, we prove that Z (t )  concentrates near
its mean. The proof is postponed to Section 3.5.1.

L E M M A 3.11. For any c 2  (0; 1),

2
Pr[Z (t)   c  E[Z (t)]]   

1 +  1=( 2  E[Z (t)])
:

We first suppose that E[Z (t)]       1 . By applying
Lemma 3.11 with c =  1 , we get

Pr Z (t)   
E[Z (t)]

 
 

1 
:

Let h =  max
n

b E[Z (t)] c; 1
o

. In mechanism M k ,  note that

for every i, t ( k )  >  0 implies that item i  is on the market
and that the buyer can afford it. With probability at least
 1 , Z ( t )   h, which implies that the item set f i  j i  2
argmaxS 2 F i 2 S  t

( k )  ^  t ( k )  >  0g is a feasible set of size

at least h. (Recall that all t ( k )  are in [ 1 ; 1]). In this scenario,
the buyer will purchase a set of items of size at least h. For
every item i  she purchases, the contributed GFT is bi       s i   i

i      =  L k .  Thus, G F T ( M k )    1   h  L k .  Readers who are
familiar with mechanism design may notice that the
role of the size threshold h is similar to an “entry fee” in the

posted price mechanism in auctions [4, 8, 10, 12, 33, 37],
though the buyer doesn’t have to pay extra money to attend
the auction. It guarantees that the buyer will purchase at
least h items when she can afford it, as otherwise she gets
no utility.

When E[Z (t)]   1 , we have h  E[ Z ( t ) ] .  Thus

"
X

#
E vi 1[i 2  T  (b; s) ^  vi 2  [Lk ; 2Lk ]]   96GFTC FPP : i

Now we consider the case where E[Z (t)]  <  1 . For
every i, let qi  =  Pr[t(k )  >  0] =  Prb i ; s i  [bi  pi  ^  pi   s i  2

[Lk ; 2Lk ]].  Then it holds that Pr[8i; t(k ) =  0] = n       (1
qi ) >  1 : This is because if there exists i  such that t ( k )  >  0,
then Z (t )  =  max T 2 F i 2 T  t ( k )   1 as t ( k )  2  [ 1 ; 1] for

every i. Thus if Pr[8i; t(k )  =  0]  1 , then E[Z (t)]   1 , which
leads to a contradiction.

Consider the constrained FPP mechanism M  with B  =
pi , S      =  (pi    L k ) + ,  and h =  1. For every i, define
event E i  =  f t  j t ( k )  >  0 ^  t( k )  =  0; 8j =  ig. Note
that t ( k )  >  0 implies that seller i  accepts price S  and the
buyer can afford item i. Under event E i ,  there is at least
one item on the market that the buyer can afford, i.e. item
i. Thus the buyer must purchase some item j  on the market
that she can afford (possibly item i). For this item j ,  we
have b j       B  and s j       S .  Thus the contributed GFT is at least
b j    s j       p j    s j       L k .  Since all E i s  are disjoint events, we
have G F T ( M )  Pr[E i ]   L k      =
L k  i  qi  j = i ( 1    q j )   L k         i  qi        j (1   q j )  >  1 L k        i
qi ; where the equality uses the fact that all t(k ) s are
independent. On the other hand, since t ( k )   1 for any i,

E[Z (t)]   E i  t
( k )   1[t(k )  >  0] i  qi : Thus

" #

E vi  1[ i  2  T (b; s) ^  vi  2  [Lk ; 2Lk ]]  i

2 L k   E[Z (t)]   4  GFTC F P P :

Summing the inequality over all k finishes the proof.

Proof of Lemma 3.7: By Lemmas 3.9, 3.10, and the fact that
A S   2 , we have that

A   2 ( A M  +  A L )   O(log(n))  GFT C F P P : 2

Theorem 3.2 summarizes our result for a general
constrained-additive buyer. It directly follows from Lem-
mas 3.2, 3.3, 3.4, and 3.7.

T H E O R E M 3.2. For any downward-closed constraint F ,
F B - G F T  O(log(n)  log( 1 ))  GFT C F P P .
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3.5.1 Proof of Lemma 3.11 We recall the statement of
Lemma 3.11: For any c 2  (0; 1),

2
Pr[Z (t)   c  E[Z (t)]]   

1 +  1=( 2  E[Z (t)])
:

Recall that Z (t )  =  ma x T 2 F  
P

t(k ) . In the proof we
will omit the superscript k as it is fixed. The random seed t
is also omitted if clear from context.

L E M M A 3.12. (Paley-Zygmund Inequality [31]) For any
random variable Z   0 with finite variance, for any c 2
[0; 1],

Pr[Z   c  E[Z ]]   (1   c)2  
Var[Z ] +  E[Z ]2  :

To use Lemma 3.12, we only need to show an upper
bound on Var[Z (t)].

L E M M A 3.13. Var[Z (t)]  1  E[Z (t)].

Proof. By the Efron-Stein Inequality [20],

Var[Z (t)]  
1 X

E [(Z (t ; t     )    Z (t0 ; t     ))2 ]
t i ; t i ; t      i

=  
1 X

Va r [ Z ( t ) j t      i ]:
i

Here ti  shares the same distribution with ti  (a fresh sam-
ple).     Note that for every fixed t     i , Vart i  [Z (ti ; t     i )]   E t i

[(Z (ti ; t     i )    a) ] for any constant a 2  R .  For ev-ery
i, let Z i ( t      i )  =  m a x T 2 F ; i = T j 2 T  tj , which only de-
pends on t     i . We have Var[Z (t)]  1 Var[Z (t)jt     i ]  1

E[ (Z (t )    Z i ( t  i ))2 ]  1            E [Z (t )    Z i ( t  i )]; where
the last inequality follows from the fact that Z i ( t      i )   Z ( t )
Z i ( t      i )  +  1, as every random variable t j  2  [ 1 ; 1].

Now fix any t. Let T       =  argmaxT 2 F tj .
Then for every i, by the definition of Z i , j 2 T n f i g  t j

Z i ( t      i ) .  Thus i  Z i ( t      i )  i j 2 T n f i g  t j  =  (n   1)

j 2 T  t j  =  (n   1)  Z (t):  Hence,
X

Var[Z (t)]  
2 

i      

E [Z (t )    Z i ( t      i )]   
2 

E[Z (t)]:

4 An Unconditional Approximation for a Single
Constrained-Additive Buyer

In this section, we prove Theorem 4.1, an unconditional
O(log n)-approximation when the buyer’s feasibility con-
straint is selectable, and an unconditional O(log2(n))-
approximation for a general constrained-additive buyer—
without dependence on distributional parameters. The
result combines the log(1=r)-approximation and a novel
mechanism—the seller adjusted posted price mechanism.

T H E O R E M 4.1. Suppose the buyer’s feasibility constraint F
is (; )-selectable for some ;  2  (0; 1). Then there exists a
DSIC, ex-post IR, ex-ante WBB mechanism M  such that S B -
G F T  O( log n )   G F T ( M ) :  Moreover, for a general
constrained-additive buyer, there exists a DSIC, ex-post IR,
ex-ante WBB mechanism M  such that S B - G F T  O(log2(n))
G F T ( M ) :

4.1 An Upper Bound of the Second-Best G F T.  For-
mally, we use S B - G F T to denote the optimal GFT attain-
able by any BIC,  IR, ex-ante WBB mechanism. Notice that
the GFT of any two-sided market mechanism can be broken
down into the buyer’s expected utility of this mechanism,
plus the sum of all sellers’ expected utilities (or profit), plus
the difference between buyer’s and sellers’ expected pay-
ment. We show that the S B - G F T is upper bounded by the
sum of the designers’ utilities in two related one-sided mar-
kets: the super seller auction and the super buyer procure-
ment auction.

Super Seller Auction. Consider a one-sided market,
where the designer is the super seller who owns all the
items, and replaces all the original sellers. The buyer is
the same as in our two-sided market setting.     The super
seller designs a mechanism to sell the items to the buyer.
The main difference between the super seller auction and
the original two-sided market is that the mechanism only
needs to be B I C  and I R  for the buyer and does not have any
incentive compatibility constraints for the super seller. We
use OPT-S to denote the maximum profit (revenue minus
her cost) achievable by any B I C  and I R  mechanism in the
super seller auction.

To avoid ambiguity in further proofs, for every subset
T   [n] and downward-closed feasibility constraint J  with
respect to T , we let O P T- S (T ; J  )  denote the optimal profit
in the following super seller auction: the super seller owns
the set of items in T  and has cost s i   D i      for every item i  2
T . The buyer has value bi  D i      for every item i  2  T  and is
additive subject to constraint J  . We slightly abuse
notation and write O P T- S(T ; ADD) if the buyer is additive
( J  =  2T ) and OPT-S(T ; UD) if the buyer is unit-demand
( J  =  f f i g  : i  2  T g). Clearly, OPT-S =  OPT-S([n]; F ).

Super Buyer Procurement Auction. Similarly, let the
super buyer procurement auction be the one-sided market
where the super buyer (same as the real buyer) designs the
mechanism to procure items from the sellers. Here the
mechanism only needs to be B I C  and I R  for all of the
sellers, but not the buyer. We use OPT-B to denote the
maximum utility (value minus payment) of the super buyer
attainable by any B I C  and I R  mechanism in the super buyer
procurement auction.

First, we extend the upper bound of Brustle et al. [7]
to our multi-dimensional setting. We prove that the GFT of
any IR, BIC,  ex-ante WBB mechanism M  =  (x; pB ; pS ) is
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upper bounded by OPT-S +  OPT-B.

L E M M A 4.1. [7] S B - G F T  OPT-S +  OPT-B:

Proof. Take any BIC,  IR, ex-ante WBB mechanism M  =
(x; pB ; pS ). Since every seller i  is B I C  and IR, we
have for any si ; s0 , Eb ; s      i        pS (b; s)   s i   xi (b; s)
max Eb ; s      i  [pi (b; si ; s     i )]    s i   x i (b; si ; s      i ); 0 :

Observe that M =  (x; p )  is a valid super buyer
procurement auction.     The above inequalities are exactly
the B I C  and I R  constraints for seller i. Thus M 0      is
B I C  and IR. Similarly, M00     =  (x; p B )  is B I C  and IR,
so it is a valid super seller auction. Since M  is ex-
ante WBB, Eb;s [pB (b; s)  pS (b; s)]          0. Thus
we have G F T ( M )  =  Eb;s [     i 2 [ n ]  xi (b; s)(bi    s i )]
Eb;s [pB (b; s)  xi (b; s)  si ]  +  Eb;s [ (xi (b; s)  bi
pi (b; s))]  OPT-S +  OPT-B: Taking M  to be the GFT-
maximizing mechanism completes the proof.

Next we prove an analog of the “Marginal Mechanism
Lemma” [9, 22] for the optimal profit. Namely, let (T ; R )
be a partition of the items in [n]. Then the optimal profit in
a super seller auction with items in [n] is upper bounded by
the first-best GFT for items in T  plus the optimal profit in a
super seller auction with items in R .

L E M M A 4.2. (M A R G I NA L ME C H A N I S M F O R PRO FI T )
For any subset T  2  [n], we let F      =  f S   T  : S  2  F g

denote the restriction of F  to T . We use F B - G F T (T ; F  )
to denote the first-best GFT obtainable between sellers in T
and the F T  -constrained additive buyer, that is,

F B - G F T (T ; F T  )  =  E b T  ; s T  [max S 2 F j T  

P
i 2 S ( b i    s i ) + ] ;

where bT     =  f b i g i 2 T  , sT      =  f s i g i 2 T  . Let (R ; T )  be any
partition of the items in [n]. Then

OPT-S([n]; F )  O P T- S (R ; F R )  +  F B - G F T (T ; F T  ):

Proof. Consider the optimal B I C  and I R  mechanism M  =
(x; p) in the super seller auction with item set [n].     We
will construct a B I C  and I R  mechanism M 0  =  (x0; p0) in
the super seller auction with item set R  as follows. The
mechanism only sells items in R  using the same allocation
x. The payment for the buyer is defined as the payment p
in M  minus the buyer’s expected total value for all items in
T . Formally, for every b R  =  f b j g j 2 R ,  s R  =  f s j g j 2 R  and
i  2  R ,  let

x0 (bR ; sR ) =  
b 

E
T  

[xi (b; s)]

i
p0 (bR ; sR ) =  E b T  ; s T         p(b; s)  j 2 T  b j   xj (b; s) :

Notice that in M0 ,  the expected utility of the buyer with
type b R  when reporting b R  is E s R  [ bi   x i (b R ; s R )
p (bR ; sR )]  =  E b T  ;s[ i 2 [ n ]  b i x i (bR ; bT  ; s) p(bR ; bT ; s)];

Since M  is B I C  and IR, M 0  is also B I C  and IR. Thus
OPT-S([n]; F ) =  Eb;s [p(b; s)  i 2 [ n ]  s i   xi (b; s)] =
E b R ; s R  [p0 (bR ; sR )  i 2 R  s i  x0 (bR ; sR )] + Eb ; s [ i 2 T  (bi

si )xi (b; s)]  O P T- S (R; F R ) + F B - G F T ( T ; F  T  ):

We partition the items into the set of “likely to trade”
items, that is, items with trade probability r i  =  Prb i ; s i  [bi  s i ]
1=n, and the “unlikely to trade” items. We can bound the
OPT-S by the first-best GFT of the “likely to trade” items and
the optimal profit of the super seller auction with the “un-likely
to trade” items. We can further replace the first-best GFT of
the “likely to trade” by O(log n)  GFT C F P P accord-ing to
Theorem 3.1 or by O(log (n)) GFT C F P P according to
Theorem 3.2 depending on the buyer’s feasibility constraint.
Formally,

L E M M A 4.3. Define H  =  f i  2  [n] : r i   1 g and L  =
[n]nH =  f i  2  [n] : r i  <  1 g. Suppose the buyer’s feasibility
constraint F  is (; )-selectable for some ;  2  (0; 1). Then
S B - G F T is upper bounded by

OPT-B +  O P T- S ( L ; F L )  +  F B - G F T ( H ; F H )  OPT-

B +  O P T- S ( L ; F L )  +  O
log n

 GFT C F P P :

For a general constrained-additive buyer, S B - G F T is upper
bounded by

OPT-B +  O P T- S ( L ; F L )  +  O 
 

log2(n)
 
 GFT C F P P :

Proof. The first inequality follows from Lemma 4.1 and 4.2.
Since F  is (; )-selectable, F is also (; )-selectable.
We derive the second inequality by applying Theorem 3.1 on
the items in H .  For a general constrained-additive buyer, we
derive the inequality by applying Theorem 3.2 on the items
in H .

It is well known that in multi-item auctions, the revenue
of selling the items separately is an O(log n)-approximation
to the optimal revenue when there is a single additive
buyer [25]. Cai and Zhao [11] provide an extension of this
O(log n)-approximation to profit maximization. We build on

this in Section 4.4 to upper bound the O P T- S (L; F  )  term,
where with jLj  items, we get a log(jLj) factor (Lemma 4.10).

Al l  together, this gives the following upper bound on the
second-best GFT.

L E M M A 4.4. (UPPER BOUN D ON S E C O N D - B E S T GFT)
Define H  =  f i  2  [n] : r i   1 g and L  =  [n]nH =  f i  2
[n] : r i  <  1 g. Suppose the buyer’s feasibility constraint F
is (; )-selectable for some ;  2  (0; 1). Then

S B - G F T OPT-B +  O 
log n

 
 GFT C F P P

+ O log(jLj)  
i 2 L  

b
E

i  
( ’~ i ( b i )    s i ) +

!

:
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For a general constrained-additive buyer, the O     log n

factor above becomes O log2(n) .

Next, Section 4.2 gives details on constructing a mech-
anism for a two-sided market whose GFT is at least OPT-B.
In Section 4.3, we show how to use a generalization of posted
price mechanisms to approximate the second term in the up-
per bound by the GFT of the Seller Adjusted Posted Price
mechanism. The approximation heavily relies on the fact
that in expectation, only one item can trade, so it is crucial
that L  only contains the “unlikely to trade” items.

4.2 Bounding the Optimal Buyer Utility in the Super
Buyer Procurement Auction. In this section, we construct
a two-sided market to bound OPT-B for any constrained
additive buyer.

L E M M A 4.5. Consider the mechanism M  =  (x; pB ; pS )
where for every item i, buyer profile b, and seller profile s,
xi (b; s) =  1[bi   ~ (s i )   0 ^  i  2  argmaxS 2 F (bi

e (s i ) )  ]: Here e (s i )  is Myerson’s ironed virtual value
function12 for seller i’s distribution D S .  For every seller
i, since ~ (s i )  is non-decreasing in si ,  xi (b; s) is non-
increasing in si . Define pS (b; s) as the threshold payment for
seller i, i.e., the largest cost s i  such that xi (b; si ; s      i )  =  1.
Define the buyer’s payment pB (b; s) = xi (b; s)  ~ (s i ) .
M  is DSIC, ex-post IR, ex-ante SBB 13 and

G F T ( M )   OPT-B =  E [ m a x
X

( b i    e ( s j ) ) + ] :
i 2 S

Proof. Since the seller’s allocation rule is monotone and we
use the threshold payment, M  is D S I C  and ex-post I R  for
each seller.

Note that for any seller profile s, when the buyer
has true type b, her expected utility from reporting b0 is

xi (b0; s)  (bi    e (s i )) .  According to the definition of
x, the buyer’s utility is maximized when b =  b. Hence,
M  is D S I C  for the buyer. Moreover we have ex-post IR,
as the buyer’s expected utility when reporting truthfully is
m a x S 2 F (bi    e ( s i ) ) +   0.

It only remains to prove that the mechanism is ex-ante
S B B  and to lower bound its GFT. By Myerson’s lemma, for
every b we have

"
X

# "
X

#
E pi (b; s) =  E xi (b; s)  e (s i )  =  E[p (b; s)]: i

i

Thus the mechanism is ex-ante SBB.

12The seller’s unironed virtual value function is i ( s i )  =  s i  +  G i ( s
i
)  .

13One can make the mechanism IR  and ex-post S B B  by defining
pB (b; s) = i  p

S (b; s). The mechanism is still D S I C  for all sellers. It is
only B I C  for the buyer, as the sellers’ gains only equal the virtual welfare
when taking expectation over sellers’ profile.

Why is OPT-B =  Eb ; s [maxS 2 F  
P

(bi    e (s j ) ) + ]?
Notice that only the sellers are strategic in a super buyer pro-
curement auction, and their types are all single-dimensional.
One can apply the standard Myersonian analysis to the super
buyer procurement auction and show that the optimal buyer
utility is exactly Eb ; s [maxS 2 F (bi    e (s j ) ) + ] .

Note that the buyer’s expected utility in M  is exactly
OPT-B. As M  is an ex-ante S B B  mechanism, the expected
GFT of M  is equal to the buyer’s expected utility plus the
sum of all sellers’ expected utility, and the latter is non-
negative since M  is ex-post I R  for every seller.

4.3 The Seller Adjusted Posted Price Mechanism. In
this section, we introduce a new mechanism—the Seller Ad-
justed Posted Price (SAPP) Mechanism. We define an ad-
justed price mechanism to first elicit each seller’s cost si ,
and then produce posted prices f i (s)g i 2 [ n ]  as a function of
the reported profile s; thus the mechanism is a collection of
posted prices depending on the reported seller cost profile.
The items are offered to the buyer at each posted price i (s),
with the buyer only allowed to purchase at most one item
by paying the posted price. See Mechanism 1 for a com-
plete description of the SAPP mechanism. We show that for a
properly selected mapping f i ( )g i 2 [ n ] ,  the S APP mecha-nism
is DSIC,  ex-post IR, and ex-ante WBB. Moreover, its GFT is
at least E b i ; s i  [ ( ’~ i ( b i )    s i ) + ]  .

Since the posted prices depend on the reported seller
cost profile, we need to be careful to ensure that there is
no incentive for any seller to misreport the cost.     We
identify a sufficient condition for the posted prices, called
bi-monotonicity, to make sure the corresponding mechanism
is D S I C  and ex-post IR.

D E FI N I T I O N 4.1. (BI-MONOTONIC P R I C E S ) We say the
posted prices f i (s)g i 2 [ n ]  are bi-monotonic, if (i) i (s)  s i  for
all seller profile s and seller i ;  (ii) i (s) is non-decreasing
in s i  and non-increasing in s j  for all j  =  i.

In Lemma 4.6, we prove that bi-monotonic posted prices
induce a monotone allocation rule for every seller, enabling
threshold payments [29, 30]. Formally, for every seller i
let x̂ i (b; s) denote the probability that the buyer trades with
seller i  under profile (b; s).     This is either 0 or 1 since
all i (s) are fixed values when s is fixed. If x̂ i (b; s) =  1,
pS (b; s) is defined as the maximum value s0 such that
x̂ i (b; si ; s     i )  =  1. Otherwise pi (b; s) =  0. This makes
the S A PP mechanism D S I C  and ex-post IR.

L E M M A 4.6. Let M  be an S A PP mechanism with bi-
monotonic posted prices f i (s)gi 2 [n ] .  Then the allocation of
the mechanism x̂ i (b; s) is non-increasing in s i  for all sell-ers
i, and M  is DSIC and ex-post IR for the buyer and the
sellers.

Proof. Notice that for every type b, the buyer chooses the
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item that maximizes bi    i (s) (and does not choose any
item if she cannot afford any of the items). For every i, by bi-
monotonicity, when s i  decreases, bi  i (s) does not decrease
while b j    j (s)  does not increase for all j  =  i. Thus if the
buyer chooses item i  under the original si ,  she must continue
to choose item i  for smaller reports si .  Thus x̂ i (b; s) is non-
increasing in si .  Since every seller receives the threshold
payment, she is D S I C  and ex-post IR. As the buyer simply
faces a posted price mechanism, the mechanism is D S I C  and
ex-post I R  for the buyer.

Mechanism 1 Seller Adjusted Posted Price Mechanism
Require: 8i 2  [n], function i ( )  that maps each seller cost

profile to a price for item i. Input (b; s).
1: Given the sellers’ reported cost profile s, offer each item

i  to the buyer at price i (s).
2: The buyer is allowed to purchase at most one item by

paying the corresponding posted price.
3: If no item is picked, then no trade happens and payment

is 0 for every agent. Otherwise, if the buyer chooses
item i, she receives item i  and pays i (s). Seller i  sells her
item and receives threshold payment.

The main challenge we face here is establishing the bud-
get balance condition. Unfortunately, having bi-monotonic
posted prices is not sufficient. Consider the n =  1 case:
the posted price p(s) =  s  is trivially bi-monotonic. Clearly,
the corresponding S APP mechanism achieves F B -GF T.
However, due to the impossibility result by Myerson and
Satterthwaite [30], no BIC,  IR, and ex-ante WBB mecha-
nism can always achieve F B -G F T, so the S APP mechanism
must sometimes violate the budget balance constraint. In
Lemma 4.7, we show that even though bi-monotonic posted
prices do not imply budget balance, there is indeed a wide
range of bi-monotonic posted prices that induce budget bal-
anced S APP mechanisms. Our budget balance proof heavily
relies on an allocation coupling argument (Lemma 4.8) that
simultaneously provides a lower bound on the buyer’s pay-
ment, as well as an upper bound on the payment to the seller.

L E M M A 4.7. Let x  =  fx i (b; s)gi 2[ n]  be an arbitrary allo-
cation rule that satisfies (i) the buyer never purchases more
than one item in expectation under each profile (b; s), i.e.,

i 2 [ n ]  xi (b; s)  1, and (ii) for every buyer type b and
seller i, xi (b; s) is non-increasing in si ,  and non-decreasing

in s j  for all j  =  i.     We define qi (s) =  Eb [xi (b; s)
1 [ ’~ i ( b i )   si ]], where ’~ i ( b i )  is Myerson’s ironed virtual

value for D B ,  and i (s) =  F      1(1      q
i

(s) ). The posted prices

f i (s)g i 2 [ n ]  are bi-monotonic, and the corresponding SAPP
mechanism M  is DSIC, ex-post IR, and ex-ante WBB. More-
over, G F T ( M )   1 Eb;s [ i ( ’ei ( b i )    s i )   xi (b; s)].

Proof. It is not hard to verify that f i ( s )  =  F      1(1
q

i
( s ) )gi 2[n]  is bi-monotonic. Now we proceed to prove that

the S APP mechanism M  is ex-ante WBB. We require the
following lemma.

L E M M A 4.8. For every seller i  and every seller profile s,
x̂ i (s) 2  q i ( s ) + q i ( s ) 2  

; q i ( s )  .

Proof. Note that the buyer will purchase item i  if both of the
following conditions are satisfied:

1. The buyer can afford item i, i.e., bi   i (s).

2. The buyer cannot afford any other items, i.e., b j      <
j (s); 8j =  i.

By choice of i (s), the first event happens with proba-
bility Pr[bi  i (s)] =  qi (s)=2.

Note that i 2 [ n ]  qi (s)  Eb [ i 2 [ n ]  xi (b; s)]  1.

For each j  =  i, Pr[bj       <  j (s)] =  1   q j (s) . Thus

j = i       1   q j ( s )  n   2 +  q

i
(s) .     The second event

happens with probability j = i       1   q j ( s )  2 +  qi (s) :
The equality holds when one out of the n   1 qj (s)’s equals
1   qi (s) and the rest are all equal to 0. Notice that the
two events are independent, so we have the upper and lower
bound on x̂ i (s).

We return to the proof of Lemma 4.7. For easy refer-
ence, we list our notation again:

 x  =  fx i (b; s)gi 2[ n]  is an arbitrary allocation.

 x̂ i (b; s) is the probability that item i  trades in M  under
profile (b; s).

 x̂ i (s) =  Eb [x̂ i (b; s)] is the probability that item i
trades over the randomness of buyer valuations, i.e. the
interim trade probability.

 qi (s) =  Eb [xi (b; s)  1 [ ’~ i ( b i )   si ]] is the probability that
item i  trades in allocation x  and the buyer’s ironed
virtual value for item i  is above the seller’s cost.

 i (s) =  F      1(1   q i ( s ) )  is the buyer’s posted price set
such that Pr[bi  i (s)] =  qi (s)=2.

Fix any seller profile s. For simplicity, we slightly abuse
notation and use x̂ i (z )  and qi (z ) to denote x̂ i (z ; s     i )  and
qi (z ; s     i ) .  The expected payment from the buyer under cost
profile s is i 2 [ n ]  x̂ i ( s i )   i (s). For every seller i, denote
pS (s) =  Eb [pS (b; s)] as her expected payment under cost
profile s.

Note that for every b; s, the threshold payment pi  (b; s)
can be rewritten as the quantity     s      

 x̂ i (b; t; s     i )dt +  s i

x̂ i (b; si ; s     i ):  When x̂ i (b; s) =  0, then x̂ i (b; t; s     i )  for
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all t  s i  since x̂ i (b; s) is non-increasing in si .      Thus the
above quantity is 0. When x̂ i (b; s) =  1, let s0 be the
maximum value such that x̂ i (b; s0 ; si ) =  1. Then the above
quantity is equal to s i  1dt +  s i  =  s i  =  pi (b; s). Thus
pi (s) =  Eb [pi (b; s)] =  s i       

x̂ i (z ; s     i )dz +  s i   x̂ i (s i ; s      i ):
We will show that pi (s)  x̂ i (s i )   i (s). By definition,

Z  1
pi (s) = x̂ i (z )dz +  s i   x̂ i (s i )

Z s
1  Z  1

= 1[x̂ i (z )   t]dtdz +  s i   x̂ i ( s i )  s i

0
1 x̂ i ( s i )

= 1[x̂ i (z )   t]dtdz +  s i   x̂ i ( s i )  Z
s

x̂ i ( s i )  Z  1

= 1[x̂ i (z )   t]dzdt +  s i   x̂ i (s i ) :  0
s i

The     second     inequality     follows     from     x̂ i (z )        =
1[x̂ i (z )   t]dt; 8z.     The third inequality is due to

1[x̂ i (z )   t] =  0; 8z  s i  and t >  x̂ i (s i ) .  The last equality
follows from Fubini’s Theorem, as the integral is finite due
to the monotonicity of x̂ i () .

Moreover, since x̂ i ( )  is non-increasing, for every z  si ; t
x̂ i (s i ) ,  we have x̂ i (z )   x̂ i (s i )   t.     Thus x̂ i ( s i )       s i

1[ x̂ i (z )   t]dzdt =       x̂ i ( s i )       s i  1dzdt =  s i

x̂ i (s i ) :
Combining the two equations, we have

Z x̂ i ( s i )  Z  1
pi (s) = 1[x̂ i (z )  t]dzdt

Z
0

x̂ i ( s i )  Z
0

1

1[qi (z )  2t]dzdt 0
0

x̂ i ( s i ) 1

1  Pr [ ’ei ( b i )   z]  2t dzdt 0
0                   i

The first inequality follows from Lemma 4.8 and the
second inequality follows from the definition of qi (). For
every t, we prove that 1 [Prb i  [ ’ei ( b i )   z]  2t] dz  ’e  ( F
1(1   2t +  ) )  for any  >  0. In fact, let z      =  ’e i ( F      1(1   2t
+  )). For every z >  z, Pr [ ’ei ( b i )   z]  Pr [ ’ei ( b i )  >  z] =  Pr[bi
>  F (1   2t +  )]  2t   . So
1 [Pr[ ’ei (b i )   z]  2t] =  0 for all z >  z.

Therefore, for any  >  0, we have the following. In
the second line, we change the variable by denoting y =

F i  
1(1   2t +  ). Z

x̂ i ( s i )

pi  (s) ’e i ( F i        (1   2t +  ))dt

Z  F      1 (1      2 x̂ i ( s i ) + )

=  
1

’ei (y )d
2

F      1 (1     2 x̂ i ( s i ) + )

=   ’ei (y )f i (y )dy

=
1  

Z  1
1                                 

’ei (y ) f i (y )dy
F i         (1     2 x̂ i ( s i ) + )

=
2

F i  
1(1   2x̂ i (s i )  +  )   [1   F i ( F i  

1(1   2x̂ i (s i )  +  ))]

= F      1(1   2x̂ i (s i )  +  )   ( x̂ i ( s i )    =2)

x̂ i ( s i )   F      1(1   2x̂ i (s i )  +  )

If q i (s i )  =  0, then x̂ i (s i )   F      1(1   2x̂ i (s i )  +  )  =  0
=  x̂ i (s i )   i (s). Otherwise, choose  to be any number in (0;
q

i
( s i ) 2  

). Then, according to Lemma 4.8 and our choice of ,

1   2x̂ i (s i )  +    1   
q i (s i )  

  
qi (s i )2  

<  1   
qi (s i ) :

Hence, F      1(1   2x̂ i (s i )  +  )  <  i (s).     Thus pi (s)  x̂ i (s)
i (s) for every i  and s, which implies that Es  [

i (s)  x̂ i (s)]  E s pS (s i ; s      i )  . Hence M  is
ex-ante WBB.

We now need to lower bound the GFT from mechanism
M .

G F T ( M )
#

=  E (bi    s i )   x̂ i (b; s)

"
X

#
E (i (s)    s i )   x̂ i (s)

1 
E

"
X

F      1 1   
qi (s)

 
  s i

 
 
qi (s)

#

=
1  

E  

"  i       

( ’ei ( b i )    s i )   1 b i   F      1 1   
qi (s)

#

"  i #
1 

E            ( ’ei ( b i )    s i )   xi (b; s)  1 [ ’~ i ( b i )   si ]]]

"  i #
1 

E            ( ’ei ( b i )    s i )   xi (b; s)]
i

Here the second inequality uses the definition of i (s), qi (s)
and Lemma 4.8. The third inequality follows from
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Myerson’s lemma.       The second-to-last inequal ty uses
the fact that E b i        ’ei ( b i )   1[bi  F i  

1      1   q

i
(s )              2 

Eb  [ ’ei ( b i )   xi (b; s)  1 [ ’~ i ( b i )   si ]] holds for every s and i.
This is because the right hand side 1 Eb [ ’ei (b i ) x i (b; s)

1 [ ’~ i ( b i )   si ]] =  E b i  [ ’ei ( b i )   1 Eb      i  [xi (b; s)  1 [ ’~ i ( b i )   si ]]]
can be viewed as the expectation of ’ei ( b i )  on an event of

bi with a total probability mass E b i  [
1 E b      i  [xi (b; s)

1 [ ’~ i ( b i )   si ]]] =  qi (s) ; while the left hand side is the
maximum expectation of ’ei ( b i )  on any event of bi  with total
probability mass q

i
(s) , as ’ei ( b i )  is non-decreasing on bi .

Lemma 4.9 shows how to choose an allocation rule x  so
that the induced S A PP mechanism (using Lemma 4.7) has
GFT at least

E b i ; s i  [ ( ’~ i ( b i )    s i ) + ]  . Note that
the existence of such an x  heavily relies on the fact that in
expectation there is only one item that can trade among the
“unlikely to trade” items.

L E M M A 4.9. We let G F T S A P P (S ) denote the optimal GFT
attainable by any DSIC, ex-post IR, and ex-ante WBB
S APP mechanism over items in S  for any subset S   [n].
G F T S A P P (L)   4e i 2 L  E b i ; s i  [ ( ’ei ( b i )    s i ) + ] .

Proof. Let b L  =  f b i g i 2 L  and s L  =  f s i g i 2 L .  For every
i  2  L ,  define the event that only i  is tradeable:

A i  =  f (b L ; s L )  : bi   s i  ^  b j  <  s j ; 8j  2  Lnfigg :

We consider the following allocation rule:
(

1 [ ’ei ( b i )   si ] ; if (b; s) 2  A i
i L       L 0 ; otherwise

Notice that (b L ; s L )  2  A i  implies that (bL ; s0 ; sLn f i g )  2
A i  for any s0    

  s i .  Thus, x i (b L ; s L )  is non-increasing
in si . Similarly, it is easy to verify that x i (b L ; s L )
is non-decreasing in all s j      where j      2      Lnf ig . Fur-
thermore,               x i (b L ; s L )   1 for all bL ; sL .      If we
choose the posted prices according to Lemma 4.7, then
the corresponding mechanism has GFT that is at least
1 Eb;s [ ( ’ei ( b i )    s i )   xi (b; s)].

Moreover, by the definition of xi (b; s),

"
X

#
E ( ’ei ( b i )    s i )   xi (b; s)

X  
i 2 L

Y
= E  [ ( ’e  (b )    s  )  )] Pr [b <  s  ]

i 2 L  
b i ; s i

j 2 L n f i g  
b j ; s j

X  
E  [ ( ’e  (b )    s  ) + ) ]   (1   

1
) j L j

i 2 L  
b i ; s i

1 
E  [ ( ’e  (b )    s  ) + ) ]

i 2 L  
b i ; s i

The first inequality holds because for each item j  2  L ,
Prb j ; s j  [bj <  s j ]   1   1=n. Hence,

X
G F T S A P P (L)   

4e
  

i 2 L
 

b
E

i
[ ( ’ei ( b i )    s i )  ]:

4.4 Bounding the Optimal Profit from the Unlikely to
Trade Items. In this section, we provide an upper bound
for the optimal super seller profit from items in L .  It is
well known that in multi-item auctions the revenue of sell-
ing the items separately is a O(log n)-approximation to the
optimal revenue when there is a single additive buyer [25].
Cai and Zhao [11] provide a extension of this O(log n)-
approximation to profit maximization. Combining this ap-
proximation with some basic observations based on the Cai-
Devanur-Weinberg duality framework [8], we derive the fol-
lowing upper bound of O P T- S (L ; F L ) .

L E M M A 4.10. O P T- S ( L ; F L)
O log(jLj) E b i ; s i  [ ( ’~ i ( b i )    s i )  ] : Here ’ei ( b i )  is
Myerson’s ironed virtual value function for the buyer’s
distribution for item i, D i  .
To bound O P T- S (L; F  ), we need the following result from
[11]. It provides a benchmark of the optimal profit using
the Cai-Devanur-Weinberg duality framework [8]: The profit

of any BIC,  I R  mechanism is upper bounded by the
buyer’s virtual welfare with respect to some virtual value
function, minus the sellers’ total cost for the same allocation.

A  sketch of the framework is as follows: We first
formulate the profit maximization problem as an LP. Then
we Lagrangify the B I C  and I R  constraints to get a partial
Lagrangian dual of the LP. Since the buyer’s payment is
unconstrained in the partial Lagrangian, one can argue that
the corresponding dual variables must form a flow in order
for the benchmark to be finite.      By weak duality, any
choice of the dual variables/flow derives a benchmark for the
optimal profit. In [11], they also construct a canonical flow
and prove that there exists a B I C  and I R  mechanism whose
profit is within a constant factor times the benchmark w.r.t.
the flow for any single constrained-additive buyer.

L E M M A 4.11. [11] For any T   [n] and feasibility con-
straint J  with respect to T , consider the super seller auction
with item set T  and a J  -constrained buyer. Any flow T

induces a finite benchmark for the optimal profit, that is,

" #

O P T- S (T ; J  )   max E x  (b; s)  ( T  (b)   s  )
J  b;s      

i 2 T

14The buyer’s unironed virtual value function is ’ i ( b i )  =  b i      1      F
i
( b

i
)  .

These values are averaged to make the function monotonic in quantile space,
which creates ’e i ( b i ) .
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Next, we show that O P T- S (L; F )  is no more than
O P T- S (L; ADD) using Lemma 4.11.

4.12. O P T- S (L; F )   O P T- S(L; ADD):

^

^ L

L x 2 P b;s
^ LO P T- S (L; F )   max E x  (b; s)  (  (b)   s  )

" #

iix  (b;s)2[0;1]
^ Lmax E x  (b; s)( (b)   s  )

" #

=  O P T- S(L; ADD):

T H E O R E M 5.1. Suppose the buyer is unit-demand in the
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1

L E M M A 4.13. [11]

X

b ; s

X

i ; s

P
i

S D

S D

+
b;s i

Thus by Lemma 4.5 we ha e

1
b;s b;si i

i

1 1

where T  (b) =  bi            1       P  
0 T  (b0; b)(b0  bi ) can be first-best GFT? In this section, we consider a unit-demand

viewed as buyer i’s virtual value function, and P J  is the set buyer and present a reduction from achieving a F B - G F T of
all feasible allocation rules. More specifically, T  (b ; b) approximation in our multi-dimensional setting to the open
is the Lagrangian multiplier for the BIC/IR constraint that problem regarding the gap in single-dimensional two-sided
states that when the buyer has true type b, she does not markets.
want to misreport b0. The equality sign is achieved when Matching Markets. This setting has a two-sided mar-
the optimal dual  is chosen. ket with n buyers, n sellers, and n identical items. Each

                                          seller owns one item and each buyer is interested in buying
L                                                         at most one item. Thus the value (or cost) for every agent

is a scalar. Here we consider a special case where for every
i  2  [n], buyer i  and seller i  can only trade with each other,

L and at most one pair of agents in the market can trade. This
Proof. Let L  be the optimal dual in Lemma 4.11 when is bilateral trade when n =  1.
the buyer is additive without any feasibility constraint, and
i  ( )  be the induced virtual value function. We have that

multi-dimen
s
ional 

s
etting, and define F B -G F T; OPT-B,

X GFT S A P P as in the previous section. Also consider the
i i i following matching market with n buyers and n sellers:

F j L                   i 2 L                                                                          for every i  2  [n], buyer i  has value drawn from D B

X                                             and seller i  has cost drawn from D i  . Let F B - G F T S D  =
b;s

i i i Eb;s [maxi (bi   s i )]  be the first-best GFT of the matching
market defined above (which is the same as F B - G F T in the
multi-dimensional unit-demand setting) and S B - G F T S D  be
the second-best GFT. For any c >  1, suppose S B - G F T S D

1=c  F B -G F T S D , then
Cai and Zhao [11] also give a logarithmic upper bound

of the optimal profit for a single additive buyer, using the
sum of optimal profit for each individual item.

maxfOPT-B; GFT S A P P g  
2c

  F B -G F T:

Proof. We construct the following allocation rule x  =

X fxi (b; s)gi 2[n] .  For every i  and b; s, let
O P T- S(L; ADD) log(jLj)  

i 2 L  

O P T- S(fig)
xi (b; s) =  1 [i  =  argmaxk ( ’~k (bk )   s k )  ^  ’~ i ( b i )   si ] :

= log(jLj)  E  [ ( ’ i ( b i )    s i ) + ] : Then x  satisfies both properties in Lemma 4.7.     By
i 2 L  

i        i
Lemma 4.7, GFT S A P P  Eb;s [ ( ’~ i ( b i )    s i )   xi (b; s)] =

Together, Lemmas 4.12 and 4.13 conclude the proof of Eb;s [maxi ( ’~i (b i )    s i ) + ] :

Lemma 4.10:                                                                                                  Moreover, using the upper-bound on S B - G F T       given
!  by Brustle et al. [7], we have that S B - G F T

O P T- S ( L ; F L)   O log(jLj)  
i 2 L  

b
E

i       
( ’~ i ( b i )    s i ) + :Eb;s [maxi ( ’~i (b i )    s i )  

,
] +  E  

v 
[maxi (bi   ~ (s i ) )+ ] :

Proof of Lemma 4.4: It directly follows from Lemmas 4.3
and 4.10. 2

Proof of Theorem 4.1: The theorem follows directly from
Lemmas 4.4, 4.5, 4.7, and 4.9. 2

5 Lower Bounds and the First-Best–Second-Best Gap

In the unconditional approximation results stated in Sec-
tion 4, we compare the GFT of our mechanism to S B -G F T.
Readers may be interested in whether our mechanism is also
an approximation to F B -G F T. In fact, this question is re-
lated to one of the major open problems in two-sided mar-
kets: How large is the gap between the second-best and the

maxfOPT-B; GFT S A P P g
h i h i

2
 E  max( ’~i (b i )    s i ) +      +  E  max(bi   ~ ( s i ) ) +

2
  S B - G F T S D   

2c
  F B -G F T S D :

The main takeaway of Theorem 5.1 is that, if the largest gap
between F B - G F T S D  and S B - G F T S D  is at most (i.e. a con-
stant) c for matching markets, then our mechanism is a 2c-
approximation to F B -G F T. Note that if the buyer is addi-
tive, such a reduction clearly exists: In the additive case,
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items can be treated separately without impacting the I C
constraint. Then performing a Buyer (or Seller) Offering
mechanism15 for every item separately obtains GFT at least
S B - G F T S D  [7], thus approximating F B - G F T by the as-
sumption. Theorem 5.1 shows that for a unit-demand buyer, a
similar reduction also exists using the SAPP mechanism.

On the other hand, finding a lower bound for our result
(compared to S B -G F T) is at least as hard as finding a lower
bound for the approximation ratio w.r.t. F B -G F T, and thus
is at least as hard as finding an instance in the matching mar-
ket that separates F B - G F T S D  from S B-GF T S D—a problem
that has long remained open. Indeed, even in bilateral trade,
deciding whether the gap is finite or not is still open.
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A Examples

Tight Example of the log 1 -Approximation. Con-
sider the case when n =  1 (bilateral trade). We introduce
an example provided by Blumrosen and Dobzinski [5]. They
prove that in this example, no fixed posted price mechanisms
can achieve an approximation ratio better than
(log(1=r)) compared to the first-best GFT. In addition, we
will verify that the statement also holds for the second-best
GFT for the same example. It implies that our log( 1 )-
approximation is tight even compared to the second-best
GFT.

E X A M P L E  1. ( E X A M P L E  IN B I L AT E R A L  T R A D I N G [5])
For any t > 0,     consider a buyer and a seller
with values on the support [0; t]. Let      = 1    

 
e     t  . Let

F (b)      =      (1   e    
 
b ) with f (b) = e    

 
b    

 and G(s )
=      (es    

 
t    e    

 
t )  with g (s)     =      es    

 
t .      Then r =

Pr[b            s] = t       b e    
 
b  es    

 
tdsdb =

2  e    
 
t (t   1 +  e    

 
t )  =  et     

 
1 +  (e t     

 
1)2  . Thus

F B - G F T =      t       b(b s)e    
 
bes    

 
tdsdb =  2 ( t     2 + t + 2 ) .  In any

fixed posted price mechanism, note that the mecha-nism
always achieves a larger GFT by choosing the same price
for both agents. The gains from trade from posting at price
p is G F T(p) =      0     

 
p (b   s)e     b  es    

 
tdbds =  2 ( t 

2 t      +    
t

p + t    e ( t  
2 t

     p) ) <  2 ( t 
2 t      +    

t  ).
When t is sufficiently large, F B - G F T is about 2  t      2

while GF T(p) is at most 2   2 , as t + 2  is negligible. Thus
GF T(p) =  O(1=t)FB-GFT. On the other hand, r  =  (  t  )  for
large t, log( 1 ) =  (t). Thus GF T(p) =  O(1= log( 1 ))  F B -
G F T.

15In bilateral trade, a Buyer Offering mechanism lets the buyer choose
a take-it-or-leave-it price for the seller according to her value. And in the
Seller Offering mechanism, the seller is asked to pick the price for the buyer.

We now verify that G F T(p) =  O(1= log( 1 ))  S B - G F T
for any p 2  [0; t] and sufficiently large t. By [7],

S B - G F T  E [(b   s)   1 [ ’~(b )    s   0]]
b;s

For the above distribution, ’ ( b )  =  b   1     F ( b )       =
b      1 + eb    

 
t  is monotonic increasing in b. Thus ’~( b )  =  ’ ( b ) .

1 
 E [(b   s)   1 [ ’~( b )    s   0]]

b;s
Z  t  Z  b     1+ e b      t

= (b   s)   es     b     tdsdb
0        0

t b     1

(b   s)   es     b     tdsdb
0        0 

t  Z  b

= e      t  k  e     kdkdb (k =  b   s)
0        1

t

= e      t  (  e     k (k +  1) )ds
Z0

t 

= e      t    e    
 
b(b +  1)

ds 0

= e      t   (
2t 

+  
t +  2 

  2)

Thus when t is sufficiently large, S B - G F T =
(2    

t  )  and we have GF T(p) =  O(1=t) SB-GFT =
O(1= log( 1 ))  S B -G F T.

E X A M P L E  2. (GFT S A P P V S . GFTF PP ) For any fixed n,
consider the following instance for an additive buyer. D B

and D S  are distributions in Example 1 for some sufficiently
large t. Pick any C  >  0. For every i  =  2; : : : ; n, D B  is a
degenerate distribution at C ,  i.e. the value is C  with proba-
bility 1. Distribution D S  takes value C  +   with probability 1
1  and C  with probability  1 , for some small  >  0. As
shown in Example 2, when t is large, r1 =  (  t  )  <  1 . For i
2, r i  =   1 . Thus all items are “unlikely to trade” items (r i  <
1 ).

Note that for i   2, bi  is always no more than si .  By
Lemma 4.9, GF T S A P P =
( E b i ; s i  [ ( ’~ i ( b i )    s i ) + ] )  =
(Eb 1 ; s 1  [( ’~1 (b1 )   s1 ) ]).

In Example 1, when t is sufficiently large,
Eb 1 ; s 1  [( ’~1 (b1 )   s1 )+ ]  =
(2   t  ). On the other hand, any fixed price mechanism
can only gain positive GFT from item 1. Thus GFT F PP =
O(2    

t  ), which can be arbitrarily far from GF T S A P P as t goes
to infinity.

Dependence on r  is Necessary. We show that the de-
pendence on r  =  mini r i  is necessary for the approxima-
tion result of fixed posted price mechanisms. More formally,
suppose fixed posted price mechanisms achieve an approx-
imation ratio of f (r1 ; : : : ; rn ), for some n-ary function f .
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We will show that f (r1 ; : : : ; rn ) =
(log(1=r)).     Con-sider the instance shown in Example 2.
Clearly F B - G F T =  E [(b1   s1 )+ ].  Since all items other than
item 1 always con-tribute 0 gains from trade, no fixed posted
price mechanism can achieve better than
(log(1=r1))-approximation to the first-best. Thus
f (r1 ; : : : ; rn ) =
(log(1=r1)). Similarly we have f (r1 ; : : : ; rn ) =
(log(1=ri )) for all i  =  1; : : : ; n. Thus f (r1 ; : : : ; rn ) =
(log(1=r)).

S A P P  Mechanism is Necessary. We provide the fol-
lowing example (Example 3) to show that the class of SAPP
mechanisms defined in Mechanism 4.3 is necessary to obtain
any finite approximation ratio to S B -G F T. More specifi-
cally, we show that in bilateral trading, the best FPP mech-
anism and the mechanism used in Lemma 4.5 can both be
arbitrarily far from S B -G F T.

E X A M P L E  3. For every positive integer m  2, consider the
bilateral trading instance where the seller’s and buyer’s
(discrete) distributions are shown in the following tables.
In the table, g (s) (or f (b)) represents the density of the
corresponding value in the support.

s 0 2m     
 
1 . . . 2m    2k . . . 2m    1

g(s)        1               1 . . .                1     . . .            1 (s)
0          2m . . .            2m . . .           2m

Table 1: Seller’s Distribution

b 2m    2 L . . . 2m    2k . . . 2m    1
f (b)             p L . . .            pk . . .           p0

Table 2: Buyer’s Distribution

For the seller’s distribution, one can verify that the
virtual value (s)  is 0 if s  =  0 and 2m  elsewhere.16

For the buyer’s distribution, choose L  =  bm     log(m)c.
Then define the sequence f p k g L as follows: Construct
the sequence fq k g k = 0  with q0 =  1, q1 =  m     

 
1 , and for

every k =  2; : : : ; L, qk =  m      k + 2   qk      1. Then for every

k =  0; : : : ; L define pk =  qk = j
=
0  q j  for every k.

By induction, we have k qj  =  q k + 1   (m   k   1).
Thus

X
(A.1) pj  =  p k + 1   (m   k   1):

j = 0

16For discrete distributions, the virtual value for the seller’s distribution

is defined as ( s )  =  s  + t < s  g ( t ) ( s      s 0 )  
, where s0 is the largest type in

the support that is smaller than s.

L E M M A A.1. For any sufficiently large integer m, let M  be
the mechanism used in Lemma 4.5.17 Then in Example 3 we
have

maxfGFT F P P ; G F T ( M )g   O(
log(m)

)  S B -GF T:

The proof of Lemma A.1 can be found in the full version
of the paper.
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