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Human-driven environmental changes shape ecological communities
fromlocal to global scales. Within cities, landscape-scale patterns and
processes and species characteristics generally drive local-scale wildlife
diversity. However, cities differ in their structure, species pools, geographies

and histories, calling into question the extent to which these drivers

of wildlife diversity are predictive at continental scales. In partnership
with the Urban Wildlife Information Network, we used occurrence data
from 725 sites located across 20 North American cities and a multi-city,
multi-species occupancy modelling approach to evaluate the effects of
ecoregional characteristics and mammal species traits on the urbanization-
diversity relationship. Among 37 native terrestrial mammal species,
regional environmental characteristics and species traits influenced
within-city effects of urbanization on species occupancy and community
composition. Species occupancy and diversity were most negatively
related to urbanization in the warmer, less vegetated cities. Additionally,
larger-bodied species were most negatively impacted by urbanization
across North America. Our results suggest that shifting climate conditions
could worsen the effects of urbanization on native wildlife communities,
suchthat conservation strategies should seek to mitigate the combined
effects of awarming and urbanizing world.

Bioticand abiotic factorsimpacted by humanactivities shape ecologi-
cal communities across scales. Broad-scale bioclimatic gradients and
human land-use patterns drive global and regional biodiversity'*, while
finer-scale patterns of resource availability, ecological disturbance
and species traits influence local community composition through
habitat use, speciesinteractions and population processes*”’. Habitat
modification by humans alters environmental conditions at each of
these scales, leading to widespread losses of native biodiversity and
changes in community composition, including the total number of
species (that is, species richness) and related metrics that account
for species evenness (that is, species diversity indices)*®. Despite the
critical influences that broader-scale environmental factors can have
onthe mechanisms by whichlocal human activities shape community

composition’™, it is largely unknown to what extent such cross-scale

interactions can help predict future impacts of intensifying human
development on certain wildlife taxa central to biodiversity conserva-
tion, such as mammals™ ¢,

Human-driven landscape changes caninfluence the distribution
and diversity of species across multiple scales and along urbaniza-
tion gradients, ranging from undeveloped to urban®, Greater lev-
els of urbanization negatively affect wildlife communities across sca
les?1013161920 with community composition varying within and among
cities according to each city’s broad biophysical characteristics®"".
Regionally, urban species pools can be associated with variation in
climate, city size and land cover""’, For instance, warmer, mesic
ecoregions and more recently urbanized regions often exhibit greater
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biodiversity>?>*. Locally, communities may respond differently to
urbanization due toregional differencesin urban footprint'**, vegeta-
tion®'°and age of development®?. These multi-scale landscape changes
canindividually influence biodiversity patterns?, but their combined
effects on communities are poorly understood®.

Species’ functional traits may also influence relationships between
human development and community composition. Life history traits
such as body size, home range and diet can mediate species’ tolerance
of urbanization* %, Wider-ranging, larger-bodied and more carnivo-
rous mammals, for example, are often most negatively affected by
human development or persecution®~*'. The few urbanization-tolerant
speciesthat remain canbecome abundantin human-dominated land-
scapes, resultinginlower species evenness and diversity*>°, Commu-
nity composition within cities is thus a consequence of species traits
and multi-scale landscape factors®. However, it is unclear how these
factorsinteractacross scales to drive biodiversity patterns'**°.

Here we tested whether local-scale and regional-scale environ-
mental factors and species traits influenced mammal presence, com-
munity composition and the relationships of both with anthropogenic
landscape changes. We conducted this study across 20 North American
cities in the Urban Wildlife Information Network (UWIN; Fig. 1 and
Extended Data Table 1), a long-term, multi-region study with the pur-
pose of systematically monitoring biodiversity across cities of vary-
ing sizes, histories and ecoregional contexts'®. We used data from a
continent-wide camera-trap array and a multi-city, multi-species occu-
pancy modelto address three research objectives®. First, we evaluated
how local mammal species occupancy, richness and diversity related to
three types of human landscape modification within cities—urbaniza-
tion, natural patch density (fragmentation) and agriculture—during
the summer season. Second, we assessed how among-city continental
variation in environmental conditions (vegetation greenness, tem-
perature, regional urbanization and city age) influenced regional spe-
cies richness and local trends in species occupancy and community
composition across urbanization gradients. Finally, we examined how
variation inlife history traits (diet and body size) among species medi-
ated relationships among species distributions, community structure
and urbanization.

Results

Sampling across 725 wildlife camera sites in 20 cities resulted in 37
mammal species detected over atotal of 20,206 camera-trap-days, with
the number of trap-days in each region ranging between 336 (Austin,
Texas) and 2,531 (Chicago, lllinois) (Extended Data Table 1)*%. Daily
species detections varied between 2,900 (raccoon, Procyon lotor) and
2 (hooded skunk, Mephitis macroura; mountain beaver, Aplodontia
rufa; Richardson’s ground squirrel, Urocitellus richardsonii; and wea-
sels, Mustela spp.). Eight species were detected in fewer than 0.05%
of the total trap-days (ten daily detections) and were excluded from
species-level analyses (Supplementary Table 1).

Within cities

Mammal species occupancy was associated with variations in human
landscape modification within cities (Table 1, Effect Type 1; see also
Extended Data Fig. 1a-c). Across all sites, community-average occu-
pancy probability (thatis, the among-species mean, community-level
occupancy hyperparameter) strongly decreased withincreasinglocal
urbanization (the mean impervious surface percentage around each
site), with the city-average modelled relationship (Table 1) predict-
ing occupancy probabilities of 0.16 (95% Bayesian credible interval
(CRI),0.08t00.29) at sites with noimpervious surface cover and 0.02
(95% CRI, 0.01to 0.06) at sites with the maximum of 87.4% impervi-
ous surface cover, corresponding to an overall 84% decrease in site
use across the gradient (Extended Data Fig. 1a). There was a positive
relationship between local patch density (the number of natural,
non-urban, non-agricultural land-cover patches around each site)

and community-average occupancy among all cities (Table 1), rela-
tionships on which occupancy probabilities were expected to range
between 0.07 (95% CRI, 0.04 to 0.11) and 0.11 (95% CRI, 0.05 to 0.23)
at sites with minimum and maximum patch densities (Extended Data
Fig.1b). Community-average occupancy alsodemonstrated amoderate
negative relationship with local agricultural footprint (Table 1), with
occupancy probability predicted to decrease from 0.09 (95% CRI, 0.05
to 0.14) at sites surrounded by no agriculturalland cover to 0.04 (95%
CRI,0.01t00.09) at sites with the maximum of 84.3% agricultural land
cover (Extended DataFig. 1c).

Metrics of local community composition—specifically, species
richness (the total number of species) and diversity (the exponentiated
Shannon entropy index, or the number of species weighted by spe-
ciesevenness; see the Methods for additional details)—also exhibited
associations with gradients of landscape modification (Table 2, Effect
Type 1). Across all sites, local urbanization demonstrated negative
relationships with richness and diversity (Table 2 and Extended Data
Fig. 1d-f). The average sites with the most impervious surface cover
were predicted to have values of richness (median, 3.23;95% CRI, 2.93
to 3.54) and diversity (median, 5.74; 95% CRI, 5.50 to 6.00) that were
43% and 34% lower, respectively, than the richness (median, 5.74; 95%
CRI, 5.37 to 6.13) and diversity (median, 8.79; 95% CRI, 8.53 t0 9.06)
at sites with no impervious surface cover (Extended Data Fig. 1d,g).
Local patch density was probably not associated with either richness
or diversity (Table 2 and Extended Data Fig. 1e,h). Conversely, local
agricultural footprint demonstrated negative relationships with both
richness and diversity (Table 2), which predicted a26% overall decrease
indiversity across the gradient of agricultural land cover, fromamedian
diversity of 7.80 (95% CRI, 7.66 to 7.95) at sites surrounded by no agri-
culturallands to5.69 (95% CRI, 5.30 to 6.12) at sites with the maximum
amount of agricultural land cover (Extended Data Fig. 1f,i). Variation
indiversity—as ametric positively associated with species evenness—
partially resulted from how the effects of human landscape changes
varied within the community, because the occupancy of several species
exhibited stronger negative relationships with urbanization than that
of others (Supplementary Table 2 and Supplementary Datal).

Among cities

Among-city environmental variables were more strongly associated
with local patterns of species occupancy and their relationships with
urbanization thanthey were with regional (city-level) species richness.
We failed to detect any relationships between a city’s regional species
richness (that s, the overall probability of regional species presence)
and regional environmental variables (Table 1, Effect Type 2; see also
Extended Data Fig. 2), including vegetation greenness (enhanced
vegetation index (EVI)), temperature (mean annual temperature),
regional urbanization (the percentage of the city consisting of urban
land-cover types) or city age (years since colonization). However, spe-
cies were more common across all sites (that is, community-average
occupancy was higher) in cities with greater vegetation greenness,
lower regional urbanization and colder temperatures (Table 1, Effect
Type 3). Within-city relationships between local urbanization and
community-average occupancy were moderately more negative in
warmer cities and in cities with lower vegetation greenness (Fig. 2a,b)
but probably did not vary among cities of different ages or with differ-
entlevels of regional urbanization (Fig. 2c,d and Table 1, Effect Type 4).
Forinstance, the negative effect of local urbanization on occupancyin
the relatively low-temperature and highly vegetated city of Tacoma,
Washington, was predicted to be 0.65 times weaker than thatin the
similarly vegetated but warmer St. Louis, Missouri, and 0.50 times
weaker than that in the less vegetated but similarly cold Fort Collins,
Colorado. Several species also exhibited interactions between urbani-
zation and regional environmental variables that we failed to detect
for other species, potentially contributing to among-city variation in
local patterns of species evenness and diversity (Supplementary Datal).
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Fig.1|Study cities across North America and the study’s modelling approach.
We depict the locations of 20 cities participating in the long-term monitoring

of wildlife species, as part of UWIN, across a continental gradient of vegetation
greenness (EVI). The arrows represent the five types of effects modelled in this
study, distinct pathways by which multi-scale environmental characteristics

and species traits may interact with one another to affect wildlife communities
atlocal (site-level) and regional (city-level) scales: (1) variation in environmental
predictors within cities (for example, local urbanization) influencing site-level
species pools (for example, average species occupancy or alpha diversity); (2)
environmental variation among cities (for example, EVI) driving differencesin
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regional species pools (for example, gamma diversity); (3) among-city variation
directly affecting local species pools; (4) among-city predictors interacting
withwithin-city predictors across scales, influencing how the latter shape local
communities; and (5) species traits shaping local species pools by mediating
among-species differences in within-city responses to environmental predictors.
Allanimal graphics were sourced from PhyloPic (https://www.phylopic.org/)

and were utilized as part of the public domain or under the CC BY 3.0 licence

(for the full list of image attributions, please see the data repository archived at
https://github.com/jhaight-eco/uwin-multiregioncommcomp).

Forexample, interaction effects for cottontail rabbits (Sylvilagus spp.)
indicated that the species responded more negatively to urbaniza-
tion in warmer cities (S = —0.27; 95% CRI, —0.62 to 0.09; 93.5% of
posterior distribution negative) and in cities with lower vegetation
greenness (Bean = 0.21;95% CRI, —0.08 to 0.50; f = 92.4% of posterior
distribution positive).

Among-city differences in regional environmental variables also
altered local community composition metrics (Table 2, Effect Type 3)
and their within-city relationships with urbanization (Fig. 2e-I and
Table 2, Effect Type 4). In cities with greener vegetation, site-level
richness and diversity tended to be greater and less negatively associ-
ated with urbanization (Fig. 2e,i). For example, the negative effects

of local urbanization on richness and diversity in the least vegetated
city (Phoenix, Arizona) were predicted to be, respectively, 1.45 and
3.60 times stronger than those in the most vegetated city with similar
temperature (Sanford, Florida). Conversely, warmer cities tended to
have lower values of local richness and diversity across all their sites,
as well as more negative associations between urbanization and both
richness and diversity (Fig. 2f j). Forinstance, local urbanizationin the
warm city of Metropolitan Los Angeles, California, was expected to
have negative relationships with richness and diversity that were 3.97
and 1.29 times stronger than those in Salt Lake City, Utah, one of the
coldest cities with similar vegetation greenness. Cities with greater
regional urbanization (thatis, moreintensively urbanized landscapes)
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Table 1| Effects of local and regional environmental predictors on local community-average occupancy and regional

species richness
Response variable Predictor variable(s) Effecttype  Brean 95% CRI (lower, upper)  Probability of relationship (%)
Local urbanization 1 -0.41 -0.68,-017 100.0**
Local patch density 1 0.08 -0.06,0.21 87.1*
Local agricultural footprint 1 -015 -0.31,0.00 97.5**
Regional greenness 3 0.24 -0.09, 0.57 92.4*
Regional temperature 3 -0.19 -0.51,0.12 89.3*
Regional urbanization 3 -0.29 -0.57,-0.02 98.1**
Local . .
community-average Regional city age 3 0.19 -0.20, 0.56 84.5
occupancy Regional greenness x local urbanization 4 0.12 -0.08, 0.31 88.4*
(interaction)
Regional temperature x local urbanization 4 -013 -0.38,0.11 86.4*
(interaction)
Regional urbanization x local urbanization 4 -0.01 -017,0.15 547
(interaction)
Regional city age x local urbanization 4 -0.06 -0.26, 015 73.2
(interaction)
Regional greenness 2 -0.08 -0.28, 0.12 781
Regional species Regional temperature 2 -0.01 -0.19,0.18 521
richness Regional urbanization 2 -0.01 -0.19,0.16 56.6
Regional city age 2 -0.06 -0.27,0.14 7.5

We estimated standardized effects using a Bayesian multi-city community occupancy modelling approach across 725 sites in 20 North American cities, determining the modelled effect of
each set of predictor variables on each response variable by calculating means (B,..,) and 95% CRIs across each effect parameter’s posterior distribution. We measured the response variable
local community-average occupancy as the mean probability of site use among the mammal community and quantified regional species richness using the probability of the average species
being present in each city (the proportion of a city’s potential regional species pool that was present). We grouped effects into one of five types on the basis of the spatial scale(s) at which they
were assumed to operate, as depicted in Fig. 1. The modelled effects included cross-scale interactions (Fig. 1, Effect Type 4), the combined effects of regional environmental predictors and
local urbanization on local community characteristics (that is, average species occupancy; Fig. 2a-c). Because of the inclusion of interaction terms, local urbanization effects (Fig. 1, Effect Type 1)
indicate the effects predicted at the average level of all other interacting variables (regional environmental predictors and species traits). We additionally represent the probability that a
substantial relationship was detected between each predictor and response variable using the percentage of each effect parameter’s Bayesian posterior distribution that shared a sign (positive
or negative) with the mean of the distribution, with **" indicating ‘likely’ relationships (>85% probability) and **" indicating ‘highly likely’ relationships (>95% probability) (see the Methods for

additional details).

had lower site-level richness and diversity, both of which also had more
negative relationships with local urbanization than in less urbanized
cities (Fig. 2g k). Finally, site-level richness tended tobe higher in older
cities, whereas site-level diversity was lower (Fig. 2h,I).

Amongspecies

Speciestraits (thatis, body size and carnivory) influenced eachmammal
species’occupancy and their responses to urbanizationin cities (Fig. 3
and Extended DataFig. 3). Althoughlarger-bodied species were as com-
monas (thatis, had similar species-level occupancy to) smaller-bodied
species overall (Extended Data Fig. 3a; Bean = —0.07; 95% CRI, —0.66
to 0.51; 59.8% of posterior positive), body mass exhibited a negative
relationship to the urbanization effect (Fig. 3a; Bean = —0.36; 95% CRI,
-0.65t0 -0.06; 99.0% of posterior distribution negative), indicating
that larger species responded more negatively to urbanization. More
carnivorous species were generally rarer across sites (Extended Data
Fig. 3b; Brean = —0.53; 95% CRI, -1.08 to 0.03; 96.9% of posterior distri-
bution negative), but carnivory did not influence species’ responses
to urbanization (Fig. 3b; Bean = 0.03; 95% CRI, —0.24 to 0.29; 58.5% of
posterior distribution positive).

Discussion

Predicting how human development impacts biodiversity requires
examining how communities have assembled under the influence of
both fine- and broad-scale environmental factors and species traits.
Here we tested for such patterns with a multi-city modelling approach
and biodiversity data spanning North Americanbiomes. As we hypoth-
esized, local mammal communities varied substantially across gradi-
ents of human landscape change>'*" and the broad environmental

characteristics of cities shaped differences in how local communities
related to urbanization’ ", with urbanization demonstrating stronger
negative influences on communities in warmer, less vegetated cities.
Furthermore, the effects of urbanization on species presence were
mediated by key life history traits®’. Overall, these results emphasize
how urbanization’s effects on biodiversity are locally and regionally
driven, dependent on how environmental conditions and species traits
interact withone another to influence community assembly processes
across spatial scales®.

To maintain diverse ecological communities in an urbanizing
world, itisimportant to consider how different types of human activi-
ties can affect local community composition across spatially hetero-
geneous landscapes. Urbanization is widely regarded as a foremost
threat to biodiversity, as species presence, richness and diversity
typically have strong negative associations with habitat loss due to
urban development'?°33, Across levels of urbanization, additional
anthropogenic landscape changes such as agricultural land use and
habitat fragmentation can either mitigate or exacerbate the effects
of development on community composition®*2, These additional
components of the human footprint may affect species richness, even-
ness or both. High amounts of agricultural land may be more strongly
associated with lower species diversity than with lower species rich-
ness, as the habitat heterogeneity created by moderate landscape cul-
tivation can support coexistence among greater numbers of species®.
Similarly, natural patch and edge density, proxy measures of habitat
fragmentation and landscape heterogeneity that tend to vary mostin
moderately urbanized areas*®**, may be either positively or negatively
associated with richness*~*. More fragmented landscapes can also
favour edge-tolerant, generalist species, reducing evenness and further
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Fig.2|Influences of regional variation in vegetation greenness, temperature,
urbanization and city age on mammal community trends across local
urbanization gradients. a-d, Community-average occupancy probability,

the average probability of site use among the mammal community. e-h, Local
species richness, the total number of species at each site (Hill number 0).

i-1, Local species diversity, the number of species at each site weighted by species
evenness (Hill number 1, the exponentiated Shannon index). We estimated the
response variables of community-average occupancy, local species richness
andlocal species diversity across 725 sites in 20 North American cities using

aBayesian multi-city community occupancy model and accompanying
community composition meta-analysis models. We visualized the modelled
effects of within-city and among-city variables on occupancy (Table 1, Effect
Types1,3and 4) and onrichness and diversity (Table 2, Effect Types 1,3 and 4)

by predicting the values of each response variable across hypothetical ranges of
local urbanization under two contrasting levels of each among-city variable, with
all other within-city and among-city variables held constant at their mean values.
We then depicted the median and 95% CRI of these predicted values using the
trendlines and their corresponding shaded regions.

complicating relationships between landscape heterogeneity and
community composition?>***¢ Finally, the effects of human activity on
wildlife communities extend beyond changes to landscape structure,
as the spatial distributions of wildlife communities can be directly
influenced by variationin human presence (for example, recreational
activity) and other behaviours (for example, wildlife feeding and yard
management) across landscapes”>**, Future research could further
characterize these diverse relationships among landscape heterogene-
ity, human activity and community composition by considering how
those relationships may vary according to the regional characteristics
of urban systems.

Thebroader bioclimatic characteristics of cities may have greater
influence on local wildlife communities than they do on regional
patterns of biodiversity. Contrary to our predictions, differences in
regional mammal species pools among cities were not associated
with continent-wide bioclimatic gradients of vegetation greenness
and temperature, but those regional characteristics did influence the
degree to which mammal populations and communities varied across
local urbanization gradients. For instance, compared with species in
cooler cities (for example, Salt Lake City, Utah), species in warmer cit-
ies (for example, Los Angeles, California) exhibited stronger negative
relationships with urbanization, which further reduced local species
richness and diversity at higher levels of urbanization. These apparent
temperature-driven differences in urbanization effects may result, in
part, from associations between temperature and other ecological

characteristics that make cities in different ecoregions distinct, such as
vegetationtype, structure and evapotranspiration. Urban heatisland
effects (thatis, higher temperatures in highly urbanized areas thanin
wildlands) may additionally be greater in warmer cities*®. Particularly
for endothermic species such as mammals, combined increases in
temperature and urbanization can negatively impact health and sur-
vival*”*®°, Conversely, cities with greener vegetation (which also tend to
have higher mean annual precipitation—for example, Sanford, Florida)
weremore likely thanless vegetated, drier cities (for example, Phoenix,
Arizona) to support a richer, more diverse mammal community at
greater levels of urbanization. Negative urbanization impacts may be
mitigated in greener, wetter cities because species there have greater
access tolimited resources such as food, water and refugia from preda-
tors associated with more vegetation and precipitation'®”. Overall,
these results highlight how the ability to effectively mitigate the local
impacts of urbanization on biodiversity across diverse biomes may
beinextricably linked with interacting regional bioclimatic patterns.
Wildlife community responses to urbanizationmay further depend
ontheunique sociocultural processes that characterize different cities.
For example, local species diversity tended to be greater across sites
inmorerecently developed and less urbanized cities in our study (for
example, Salt Lake City, Utah; and lowa City, lowa), suggesting that
the growth of cities has incurred local extinction debts that are still
beingrealized in the form of gradual losses in local biodiversity®'¢%,
Despite potential mechanistic connections between the overall age of
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Table 2 | Effects of local and regional environmental predictors on local community composition

Response variable  Predictor variable(s) Effecttype  Buean 95% CRI (lower, upper) Probability of relationship (%)
Local urbanization 1 -0m -0.14,-0.08 100.0**
Local patch density 1 0.01 -0.02,0.04 7.8
Local agricultural footprint 1 -0.02 -0.05, 0.01 88.2*
Regional greenness 3 012 0.09, 0.16 100.00**
Regional temperature 3 -0.04 -0.07,0.01 99.2**

'r'i‘::;l;s":"ies Regional urbanization 3 -0.05 -0.08,-0.03 100.0%*
Regional city age 3 0.02 -0.01, 0.06 91.6*
Regional greenness x local urbanization 4 0.09 0.06, 012 100.0**
Regional temperature x local urbanization 4 -0.04 -0.07,-0.06 100.00**
Regional urbanization x local urbanization 4 -0.03 -0.05, 0.00 96.6**
Regional city age x local urbanization 4 -0.01 -0.04, 0.03 63.6
Local urbanization 1 -0.08 -0.10, -0.07 100.0**
Local patch density 1 0.00 -0.02, 0.01 76.4
Local agricultural footprint 1 -0.05 -0.07,-0.04 100.0**
Vegetation greenness 8 0.02 0.00, 0.03 98.5**
Mean annual temperature 3 -0.02 -0.03, 0.00 99.2**

;‘i’:;ls?secies Regional urbanization 3 -0.02 -0.04,-0.01 100.0**
Regional city age 3 -0.02 -0.03, 0.00 97.5%*
Regional greenness x local urbanization 4 0.05 0.03, 0.07 100.0**
Regional temperature x local urbanization 4 -0.02 -0.04,-0.01 99.9**
Regional urbanization x local urbanization 4 -0.01 -0.02, 0.00 97.2**
Regional city age x local urbanization 4 0.01 -0.01, 0.02 75.2

We estimated standardized effects using a Bayesian meta-analysis on the basis of local species richness and diversity values derived from a multi-city community occupancy model across 725
sites in 20 North American cities, determining the modelled effect of each set of predictor variables on each response variable by calculating means (B,...) and 95% CRIs across each effect
parameter’s posterior distribution. The response variable local species richness indicated the total number of species at each site (Hill number 0), and local species diversity represented the
effective number of species at each site accounting for species evenness (Hill number 1, the exponentiated Shannon index), where sites with the greatest diversity were characterized by both
high richness and high evenness. The effects were grouped into one of five types on the basis of the spatial scale(s) at which they were assumed to operate, as depicted in Fig. 1. The modelled
effects included cross-scale interactions (Fig. 1, Effect Type 4), the combined effects of regional environmental predictors and local urbanization on local community composition (that is,
species richness and diversity; Fig. 2d-i). Because of the inclusion of interaction terms, local urbanization effects (Fig. 1, Effect Type 1) indicate the effects predicted at the average level of all
other interacting variables (regional environmental predictors). We represented the probability that a substantial relationship was detected between each predictor and response variable
using the percentage of each effect parameter’s Bayesian posterior distribution that shares a sign (positive or negative) with the mean of the distribution, with “*" indicating ‘likely’ relationships
(>85% probability) and “**" indicating ‘highly likely’ relationships (>95% probability) (see the Methods for additional details).
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Fig.3|Influences of species traits on within-city relationships between
urbanization and mammal occupancy. a, Influence of body mass, represented
by the log-transformed mean body mass of each species (inkg). b, Influence

of carnivory, calculated as the percentage of vertebrate prey in each species’
diet. Each point and bar, respectively, represents the mean and 95% CRI of the
estimated responses to urbanization for 29 mammal species commonly detected

Carnivory (% vertebrate diet)

across 725 sites in 20 North American cities (excluding 8 species detected in
fewer than 10 total trap-days). The trendline and shaded region depict the
median and 95% CRI of response variables predicted across a hypothetical range
of trait values. The results primarily demonstrate that larger-bodied species had
more negative relationships with urbanization.

acity andlocal species extinction and colonization processes”, city age
has uncertainrelationships with biodiversity’, potentially due to cities
growing more rapidly during different historical periods. Regardless of

their overall ages, cities that have been more intensively built—either
outwards (viaurban sprawl) or upwards (via urban densification)—tend
to be those in which human landscape changes most strongly impact
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biodiversity®"®. These biophysical landscape characteristics that drive

differencesin biodiversity relationships among cities are additionally
influenced by heterogeneous socio-economic processes, including
those associated with past and present distributions of wealth and
social inequities™*2. Understanding what makes a city more supportive
of biodiversity persistence requires further recognition of how com-
plex human decision-making processes variably structure urbanizing
landscapes and wildlife community patterns®*****, bridging human
histories with the natural histories of wildlife.

Species’ functional traits can also influence how landscape change
shapes wildlife communities. In particular, larger-bodied mammal spe-
cies responded more negatively to urbanization, as was expected®*?.
Although the greater mobility of larger species can enable themto bet-
ter access anthropogenic resources across fragmented landscapes®-,
those species are also generally more sensitive to urbanization-driven
habitat losses due to their greater space needs, lower reproductive rates
and increased persecution by humans?2¢*>3%5¢ While obligate carni-
vores (for example, bobcats and mountain lions) are often regarded
as intolerant of urban environments®**, more strictly carnivorous
diets are not necessarily associated with more negative responses
to urbanization. This may be because more carnivorous species are
most frequently represented by generalist predators (for example,
coyotes, foxes and raccoons), whose flexible, omnivorous diets enable
them to exploitanthropogenic resources in urban environments®. As
such, herbivores with more specialized diets may also be particularly
sensitive to urbanization, and other species traits such as dietary flex-
ibility and diversity could provide more effective predictors of human
impacts in future studies®”*°. Itis also important to acknowledge that
assessments of functional traits and taxonomic diversity depend on
how wildlife communities were sampled across landscapes, where the
use of multiple survey methods (for example, cameratraps, hair traps
and live traps) may help future studies reduce potential biases, such
as the under-sampling of smaller-bodied species®”*. Nevertheless,
species functional traits play critical roles in community assembly
across urbanization gradients by driving individual species distribu-
tions®, and our results indicate the importance of further examining
how variation in species responses to human landscape change are
linked with a wider diversity of species traits and how such patterns
vary within and among cities'.

Although we found that the effects of anthropogenic landscape
change can vary among species with diverse traits and in relation to
environmental conditions at multiple spatial scales, the temporal
dimensions of these relationships require further exploration. Our
study was focused on the North American summer season, in part
because this was the season in which we expected regional bioclimatic
variables and localimpacts of urbanization to influence mammal com-
munities most strongly across cities. However, intra-annual variations
in species-level and community-level responses to urbanization war-
rant additional consideration, as seasonal differences in climate and
resource availability canlead to shifts in fine-scale wildlife habitat use
and community composition across urbanization gradients®. For
instance, during winter seasons, urban environments in colder cities
may become more suitable for certain species, due to year-round
anthropogenic resource provisioning and urban heat island effects
counteracting the climate-driven extremes of the surrounding natural
environments, providing food and thermal refugia that increase spe-
cies survival®. Furthermore, the use of human-dominated environ-
ments by wildlife communities can vary substantially across years,
driven by changes in human land use/land cover and fluctuations in
resource availability and human activity?**°%¢"%3, Although we con-
trolled for confounding effects of interannual variation in wildlife
community driversinour analyses, evaluating temporal dynamics was
beyond the scope of this study. Important next steps include examin-
ing and understanding how wildlife communities vary in relation to
changing landscapes and climates through time®*.

To conservebiodiversity in arapidly changing world, we must con-
sider how wildlife communities respond to human-caused landscape
change across local and regional scales. We specifically found that
speciesrichness and diversity atlocal scales can demonstrate varying
responses to urbanization that depend on broad-scale climatic fac-
tors, reflecting the potential for synergistic effects between multiple
drivers of global biodiversity loss**'*. For example, mammal species
and communities inwarmer, less vegetated cities appeared to be more
negatively affected by urbanization, which could have implications for
how biodiversity isimpacted by awarming climate®> . However, there
are other key differences in warmer and greener cities that can drive
these patterns (for example, biome characteristics, vegetation com-
munities, water availability and size of the regional species pool), and
future studies could further explore potential mechanisms underlying
these cross-scale relationships®**. Likewise, when comparing the differ-
entresults of past urban ecological studies, it isimperative to consider
the broader context of the regional environment that includes (but is
not limited to) climate and vegetation'®.

Interactions between urbanization and broad-scale environmen-
tal gradients suggest it is important to prioritize biodiversity loss
mitigation measures differently among cities with distinct biophysi-
cal characteristics and regional species pools'°"®%, For instance, in
warmer cities, it might be more important to provision thermal ref-
uges and water resources for wildlife, with particular consideration
given to the needs of species most sensitive to the combined impacts
of urbanization and climate®*’. Effectively protecting biodiversity
from the impacts of landscape change necessitates that ecological
understanding of human-modified habitats be more thoroughly
integrated into landscape design processes®*’®”", Towards this end,
identifying key areas in which region-specific conservation priorities
alignwith existing human-centred urban sustainability goals and man-
agement practices should be a priority for future research®. Finally,
we emphasize that research networks spanning multiple cities and
continents canidentify interconnected biodiversity threats and offer
recommendations to mitigate the impacts of global change'*'*%, Lev-
eraging such broad transdisciplinary networks canlead to the develop-
ment of climate-conscious urban conservation strategies that enable
declining species and communities to better persistinanincreasingly
human-dominated world.

Methods

Site selection and experimental design

We used camera-trap data collected in the summer months to assess
mammal species occupancy, richness and diversity across 20 citiesin
the United States and Canada (Fig.1and Extended Data Table1)**. The
data were collected using a camera-trapping protocol established by
UWIN for the long-term monitoring of ground-dwelling wildlife spe-
cies'®. In each city, passive infrared-triggered wildlife cameras were
located along likely wildlife travel corridors (for example, parks, pre-
serves, riparian corridors, trails, alleys and canals) across a gradient of
urbanization (defined as the percentage ofimpervious surface cover)
and positioned aminimum of 1 km apart from one another toincrease
theindependence of each sampling site.

Data collection

We identified mammals in camera-trap photos to the species or
genus level. All photo identification was conducted by trained
personnel, including university students and faculty, community
member volunteers, and wildlife professionals in governmental and
non-governmental organizations. Primarily due to limitations in the
ability to identify species solely on the basis of wildlife camera photo-
graphs, observations of seven sets of closely related congeneric species
(antelope ground squirrels, chipmunks, cottontail rabbits, flying squir-
rels, grey squirrels, jackrabbits and weasels) were grouped for estimat-
ingspecies presence, detectionand community composition. Although
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certainsmall mammals were also widely detected and identified across
all cities (for example, squirrel species), mid-to-large-sized mammal
species were probably over-represented, and many smaller-bodied
species were under-represented or not detected at allin our sampling,
a potential source of bias typical of camera trapping as a method for
sampling wildlife communities®.

We analysed data for 37 mammal species and species groups (we
hereafter refer to both as ‘species’ for simplicity) that were observed
atleastonceacross all cities during a 35-day summer sampling period
(29June-2 August; Supplementary Table1). Each UWIN partner began
and ended data collection at different times between 2016 and 2020,
with certain cities having only asingle full or partial year’s worth of data
available at the time of this analysis (for example, Manhattan, Kansas,
stopped collecting datain 2016). We thus chose a single year’s summer
sampling period per city for inclusionin this analysis, focusing on the
specific sampling year that maximized the number of sitesin each city
(Extended Data Table 1). We specifically selected the summer season
for analysis as we predicted that this would be the season of great-
est mammal activity across North American biomes, increasing our
ability to detect potential effects of regional bioclimatic variables on
responses to urbanization. Due to data availability, focusing our analy-
sisonasingle season additionally enabled us to utilize datafrom cities
spanning a wider range of environmental characteristics and wildlife
communities. The combined dataset included observations from
725 camera-trap sites that were sampled for aminimum of 12 days and
amaximum of 35 days. From 2016 through 2020, no regional species
colonization events are known to have occurred, allowing us to assume
the closure of regional species pools across years. We limit any discus-
sion of species-level results to the 29 species with more than ten daily
detections (0.05% of the total trap-days). As described in our statistical
modelling framework below, we treated ‘city’ asarandom effectin the
estimation of species occupancy and community composition, allow-
ing for greater parameter uncertainty in cities with lower sample sizes
and capturing the combined statistical influences of other potentially
influential but ultimately excluded among-city variables.

Variables

Within-city covariates. We estimated a within-city urbanization covari-
ate as the mean percentage of impervious surface cover within 1km
of each site, on the basis of the combination of data from the 2016
National Land Cover Database Imperviousness dataset (for all US cit-
ies) and road and building footprint data (for Edmonton)’> 7. In the
R programming language version 4.0.1 (ref. 75), we then calculated a
series of potential within-city variables of landscape composition and
configurationaround each camerasite using the 2015 North American
Land Cover Monitoring System 30-metre dataset’®’” and the R pack-
age landscapemetrics’. We used two of these variables as additional
within-city covariates for species occupancy, richness and diversity:
agricultural footprint and patch density. We calculated agricultural
footprint as the proportion of the 1 km buffered area surrounding
eachsite classified as ‘Cropland’. We quantified patch density as the
number of natural patches—defined as contiguous areas of non-urban,
non-agricultural land-cover classes—within the 1 km buffer. Differences
in patch densities represented local variation in habitat patchiness
and fragmentation, which are observably greater in areas of moder-
ate urbanization (Extended Data Fig. 4). To reduce the influence of
differences in sample size (the number of wildlife cameras) among
cities, the values of all within-city covariates were standardized by
city prior to model implementation, following best-practice recom-
mendations for multilevel modelling”>®. Lastly, we tested for potential
cross-scaleinteractions between local effects of human development
and the regional environmental context by allowing within-city spe-
cies occupancy and each species’ relationship between occupancy
and urbanization to partially vary according to species traitsand to a
set of covariates that varied among cities (explained in detail below).

Among-city covariates. We quantified an array of metrics for their
potential use as among-city covariates of regional species richness
and differences in within-city urbanization-occupancy trends,
including average bioclimatic values, land cover proportions and
landscape heterogeneity metrics within a 10 km buffer surround-
ing all sites in each city (Extended Data Fig. 5). We included four
of these variables as among-city covariates in our model on the
basis of their alignment with regional environmental characteris-
tics hypothesized to drive regional species diversity and influence
urbanization-community relationships. We measured vegetation
greenness using the EVI, calculated in Google Earth Engine on the
basis of Landsat 5 TM 32-Day composite imagery from 1984 to 2012%',
We considered the EVI to be associated with metrics of precipita-
tion, aridity, natural patch density and latitude, based on an arbi-
trary cut-off of Pearson’s coefficient > 0.5 (Extended Data Fig. 5).
Mean annual temperature (MAT) was derived from 1 km down-
scaled climate data for the 1981-2010 normal period produced by
ClimateNA®? and was associated with mean summer temperature,
potential evapotranspiration, aridity and latitude (Extended Data
Fig.5). The proportionalamount of urban land-cover type across the
entire city—what we refer to asregional urbanization (URB)—was asso-
ciated withregional agricultural and natural land-cover types, as well
asthe aggregation of urbanland-cover patches (Extended DataFig. 5).
We measured city age (AGE) using the years since the approximate date
oftheearliest Euroamerican colonization or settlement of each city’s
metropolitanarea, following the methods of Aronson et al.’. Although
we chose to model the effects of these four city-level characteristics
on the basis of their hypothesized influences on among-city differ-
ences in local and regional mammal communities, such variation in
communities amongcities may further result from attributes of cities
notincludedinthis analysis (for example, human population density
and precipitation).

Species trait covariates. We assessed among-species variationin spe-
cies occupancy and urbanization effects on the basis of species trait
data for all 37 species sourced from the EltonTraits and PanTHERIA
databases®***, We selected two traits to serve as species-level covariates
thatare hypothesized to mediate species presence across urbanization
gradients by influencing space use and habitat requirements®2’:body
mass and carnivory (Supplementary Datal). We log-transformed body
mass, which was positively collinear with home range size (r=0.57),
and we calculated carnivory as the total percentage of the species’
diet consisting of vertebrate prey. For the seven species that represent
assemblages of multiple taxonomic species (antelope ground squir-
rels, cottontail rabbits, flying squirrels, jackrabbits, grey squirrels,
chipmunks and weasels), we calculated mean trait values among the
known speciesin each assemblage.

Multi-city community occupancy model

We estimated site-level and city-level occupancy of all observed
mammal species using a multi-city, multi-species occupancy model.
Because the home range size of large mammal species included in
this analysis probably exceeded the 1 km buffer between cameras,
all resulting estimates of species occupancy or presence should
be interpreted as ‘relative use’ rather than true occupancy®. On
the basis of the multi-region community occupancy model struc-
tures described by Sutherland et al.”” and Tenan et al.%, our model
estimates the probability that (1) a speciesis presentin the species
pool of a given city; (2) a species is present at a site in a city, given
its presence in a city’s species pool; and (3) a species is detected at
asite, given its presence.

City-level species presence. To model the occurrence of each of sin
1,..., Sspeciesineachofrinl, ..., Rcities, we treat w, .as a Bernoulliran-
domyvariable that denotes whether species sisin the species pool of city
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r,and welet Q, (the completeness of each regional species pool) be the
probability that all S species are in the species pool of city r, such that

w, ~ Bernoulli(£2,) 1)

We further define the regional species richness (y,) as Efws,,, rep-
resenting the number of speciesinthe species pool of city . If aspecies
was ever observed in city r, then w,, was initially set to 1 (that is, pres-
ence).Ifaspecies was not observedincity rduring the sampling period
butisknowntoexistintheregional species pool onthebasis of previous
observation by UWIN partners or known species ranges (for example,
Mammals of North America and the USGS Gap Analysis Project)®*¥,
then the model estimated w,, with uncertainty. We did not augment
matrices of species occurrence in cities beyond the total number of
observed species (S =37) because the purpose of this study was to
evaluate patterns of known species richness while correcting forimper-
fect detection, not to estimate numbers of unknown species.

We used the logit link to allow the completeness of the regional
species pool (Q,) to vary from the logit-scale intercept £2 as a function
of standardized among-city (regional) covariates (mgy,, Myr, Mygg and
m,g;), such that

logit(£2,) = 2 + Ogyi X Mpyyr + Oyiat X Muat, @

+6urs X Mugs,r + Oace X Macer

where the ©2and slope terms (6) were all given vague normal priors (for
= 1
example, 2 ~ Normal (0, \/ﬁ))‘

Site-level species presence. The second level of the model estimated
species presence at a site in a city given that a species is in that city’s
speciespool.Forjinl, ...,/sampledsitesincity r,let z;; be aBernoulli
random variable that takes the value of 1when species sis present at site
Jincity randis otherwise zero. Furthermore, let ¢;;, be the probability
of occupancy such that

z,jr ~ Bernoulli(gs; x wg,) 3)

Given this specification, if a species is notin acity’s species pool,
then ¢;, x w,, = 0 and species s cannot be present at any of the sites
of city r. We used partial pooling among cities and species to esti-
mate y;;,, which we also made a function of among-city covariates
(mEVI' Myar, Mygs and mAGE)r Within'dty covariates (mUrbanizationr mPalchDensity
and Mygicyiuralfoorprind) aNd the interactions between the two (for example,
Mgy X Mypanization) Viad the logit link, such that

lOgit(ws,/,r) = Qosr + Purbanization,s,r X mUrbanization,j,r
+ (pPatchDensity,S,r X mPatchDensity,i,r
+ (oAgriculturalFootprint,s,r X mAgricu[tura[Footprint,/',r
+ Pevis,r X Meyir + OMAT,s,r X MMAT,r + PURB,s,r
X mURB,r + wAGE,s,r X mAGE,r + (PEVIerbanization,s,r (4)
X mEVI,r X mUrbanization,i,r + (PMATerbanization,s,r
X mMAT,r X mUrbanization,j,r + (pURBerbanization,S,r
X mURB,r X mUrbanization,j,r + (oAGEerhanization,s,r

X MAGE,r X Myrbanizationj,r T Evear,t

where each ¢, represents each species’ city-specific logit-scale occu-
pancy intercept and slope parameters and €ye,,, €stimates variation
in occupancy associated with the individual sampling yeart=1, ..., 5
(2016-2020). We further let each species’ occupancy and relationship
with within-city urbanization vary from community-level (that is,
among-species average) hyperparameters Sonthe basis of species-level
traits. In the model, among-species covariates were assumed to

partially influence the degrees to which each species’ occupancy within
acity ¢, and among-city average relationship with urbanization
Surbanizations DOth vary from their respective community-average mean
parameters BO and ﬁUrbanization'

(pO,S,I‘ ~ Normal( :BO + ﬂOccupancyMass X mMass,s
+ﬁ0ccupancyCamivory X mCamivory,Ss oﬁg )
5Urbanization,s (5)
~ Normal( ﬁUrbanization + :BUrbanizationMass X mMass,s

+BUrbanizationCarnivory X mCarnivory,Sv UﬁU,ba"imion )

Where ﬁOccupancyMass' ﬁOccupancyCarnivory'ﬁUrbanizationMass a nd ﬁUrbanizalionCarnivory are
community-level slope termsrepresenting the effects of species traits

on occupancy probabilities and relationships with urbanization. We
used a near-identical hierarchical parameterization for all intercept,
slopeanderror termsinequations (4) and (5). Assuch, we explain only
the modelintercept prior specification, which was

Bo ~ Normal(0,1.5)
6o,s ~ Normal(B,, 05, )
0g, ~ Inverse gamma(0.1,0.1) 6)
®o.s,r ~ Normal(6o s, 05,,)

O,

05 ™ Inverse gamma(0.1,0.1)

where f,isthe global logit-scale average intercept across all cities and
species; 0, is the species-specific, city-averaged logit-scaleintercept
that varies around 3, via the standard deviation term o5 ; and @, . is
the species-specific and city-specific logit-scale intercept that varies
around 6, via the standard deviation term g;, ..

Site-level species detection. The third and final level of the model
accounted forimperfect detection. Lety,,, be abinomial random vari-
able thatis the number of days species swas observed at sitejin cityr,
k;;,be the total number of days a camera trap was functional and p,;,
be the probability a species is detected given its presence, such that

Ysjor ~ Binomial(ps,/,r X Zsjrs ks,/',r)

logit(ps,) = Nosr

@

wheren, . is the species-specific and city-specific logit-scale parameter
for detection probability. We specified priors for the detectioninter-
cept parameters following a hierarchical parameterizationidentical to
that of the occupancy parameters shown in equation (6).

Model fitting. We implemented our multi-city community occupancy
modelin aBayesian framework using R version 4.0.1 (ref. 75) and JAGS
version 4.3.0 (ref. 88). Following a 10,000-step adaptation and a
120,000-step burn-in, we sampled the posterior of eachmodel 180,000
times across three chains. We thinned each chain by 3 to reduce com-
plexity in monitoring the model parameters, resulting in a total of
60,000 posterior samples. We verified convergence by examining the
Gelman-Rubin diagnostics (R <1.1) and by visually inspecting trace-
plots for all modelled parameters®.

Deriving species richness and diversity. We used the model to predict
two site-specific Hill numbers (“D) that correspond to two common
biodiversity metrics: species richness (g = 0, the absolute sum of spe-
cies present) and species diversity (g =1, an exponentiated Shannon
entropy index)®?°, Parameter estimates from 10,000 posterior sam-
ples were randomly extracted from the model and used to predict
occupancy probabilities (¢;,,) and latent occupancy states (z;;,) for
each species at eachsite. Species richness (°D) was derived as the sum
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of all species occupancy states at that site™”". Following the methods
of Broms et al.”” and Tenan et al.**, we used occupancy estimates as
stand-ins for abundance in the calculation of species diversity®”, We
chose the metric of species diversity (!D) as a representation of the
effective number of species in a manner that accounts for the rela-
tive abundance of species at each site, with greater values of species
diversity indicating both higher species richness and higher evenness.

Community composition meta-analysis

Treating the species richness and diversity estimates derived from
the multi-city community occupancy model above as metrics of local
community composition, we thenmodelled community composition
in relation to within-city and among-city covariates using a Bayesian
meta-analysis approach. We used two log-link generalized linear mod-
elstoallow speciesrichness (°D) and species diversity ('D) to individu-
ally vary as functions of the same set of covariates from the multi-city
community occupancy model (for example, within-city covariate
Mypanization, AMONE-City covariate my,, and the combined interaction
between the two Mgy, X My, panization), SUCh that

In( qu,r) = &q,j + Xyrbanization X Murbanization,j,r T XPatchDensity
X mPatchDensity,/',r + XAgriculturalFootprint
X MpgriculturalFootprint,j,r T XEvI X MEyLr + XMAT
X MyaT,r + XyRB X MuRB,r + XAGE X MAGE,r
+ XEVIxUrbanization X mEVI,r X mUrbanization,/‘,r (8)
+ XMATxUrbanization X mMAT,r X mUrbanizationj,r
+ XURBxUrbanization X MyRB,r X mUrbanization,j,r

+ XAGExUrbanization X MAGE,r X mUrbanization,/‘,r + ej,r

D;, ~ Normal(D,op)

where <, ;is the log-scale intercept of each community composition
metric, the remaining = terms are slope parameters representing the
effects of each covariate or combination of covariates, and ;. is an
additional error term that allowed each data point to vary from the
modelled relationship (that is, the standard residual error termin a
log-linear model). Allintercept and slope parameters were given vague
normal priors (for example, &, ,~ Normal(0, 10)). We parameterized
normal priors for D on the basis of D and o, which respectively cor-
respond to the mean and standard deviation of 10,000 site-specific
composition estimates. As such, this model propagates the uncertainty
of species richness and diversity estimates from the occupancy model
into this secondary analysis.

Evaluating modelled covariate relationships

We evaluated the hypothesized influences of the model covariates in
the multi-city community occupancy and diversity models by exam-
ining the posterior distributions of each covariate’s random slope
parameters. For each covariate effect parameter, we used the propor-
tion of the posterior estimates sharing a sign (positive or negative)
with the mean of the estimates (fstatistic) to represent the probability
of asubstantial occupancy-covariate relationship being present. For
instance, if 90% of the posterior distribution of aslope parameter had
anegative value, then we considered there to be a 90% probability of
detecting anegativerelationship, though the magnitude of that nega-
tive relationship may vary. We additionally assessed the likelihood of
covariate relationships using the CRIs and whether or not they over-
lap zero. In multilevel models such as ours, estimates of lower-level
random parameters (for example, our species-specific parameters)
tend to be drawn towards the mean value of the upper-level param-
eters fromwhich they are derived (for example, our community-mean
parameters), resulting in the shrinkage of lower-level parameters®.
When necessary to account for the effect of parameter shrinkage in

our models, we utilized multiple confidence levels in our terminology
when referencing the likelihood of detecting informative covariate
slope parameters, referring to relationships with >85% probability
as ‘likely’ and relationships with >95% probability as ‘highly likely’****,

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data that support the findings of this study and that were used in
the production of all figures are publicly available onZenodo at https://
doi.org/10.5281/zenodo0.8083504.

Code availability

All code that supports the findings of this study and that was used in
the production of all figuresis publicly available on Zenodo at https://
doi.org/10.5281/zenodo0.8083504.
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. Number of
. Sampling .
City Sites (Camera EVI MAT URB AGE
Year
Trap-Days)

Atlanta, Georgia 2019 30 (913) 0532 15.9 64.8 182

Austin, Texas 2018 13 (336) 0.27 20.0 63.2 183

Chicago, lllinois 2019 95 (2,531) 0.20 9.8 80.9 239

Denver, Colorado 2018 34 (842) 0.18 10.4 75.8 160

Edmonton, Alberta 2018 42 (1,431) 0.19 2.7 60.5 223

Fort Collins, Colorado 2017 27 (708) 0.18 9.0 35.8 153

Indianapolis, Indiana 2018 42 (1,293) 0.30 11.2 74.5 197

lowa City, lowa 2018 37 (885) 0.25 9.9 23.6 179

Manhattan, Kansas 2016 52 (1,353) 0.23 12.8 16.7 161

Metropolitan Los Angeles, California 2020 31 (930) 0.20 171 65.8 145

National Capitol, District of Columbia 2019 22 (409) 0.29 13.2 75.4 270

Phoenix, Arizona 2019 50 (1,666) 0.14 21.8 57.2 152

Rochester, New York 2020 15 (451) 0.25 9.2 50.1 232

Sanford, Florida 2019 24 (502) 0.34 22.0 42.8 177

Salt Lake City, Utah 2019 54 (977) 0.19 7.0 25.6 172

Seattle, Washington 2019 31 (965) 0.23 10.9 52.5 168

San Francisco Bay Area, California 2020 34 (1,139) 0.17 14.0 47.0 244

St. Louis, Missouri 2019 33 (1,128) 0.27 13.4 68.9 255

Tacoma, Washington 2019 34 (1,036) 0.24 10.8 57.8 155

Wilmington, Delaware 2019 24 (681) 0.31 12.5 54.0 381
Extended Data Fig. 1| Community-average occupancy probability, species weighted by species evenness (the exponentiated Shannon index; Hill Number 1).
richness, and species diversity across gradients of local environmental Based on modeled effects of within-city variables on occupancy (Table 1, Effect
predictors. a-c, urbanization. d-f, natural patch density. g-i, agricultural Type1) and onrichness and diversity (Table 2, Effect Type 1), we predicted
footprint. Across 725 sites in 20 North American cities, we used a Bayesian occupancy, richness, and diversity values across hypothetical ranges of each
multi-city community occupancy model and accompanying community within-city variable, with all other variables held constant at their mean values;
composition meta-analysis models to estimate the local, within-city response we then represented the median and 95% Bayesian credible interval of these
variables community-average occupancy (a,d,g), species richness (b,e,h) and predicted values using the trendlines and their corresponding shaded regions.
species diversity (c,f,i). These three response variables respectively refer to the The points and bars correspond to the mean and 95% CRI 0f 10,000 posterior
average probability of site use among the mammal community, the total number estimates of richness and diversity at each camerasite, based on actual ranges of
of species at each site (Hill Number 0), and the number of species at each site within-city variables.

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-023-02166-x

0.40
q::'? a b C
o=

© 5

o 8 0304
=0

® <

> 0O
o o
.Ea.o.zo
2§

E S o.101
8§

o

n

7]

Q

c
S @
2

(3]

»n o
2 Q
ow
8%
0 3
—

©

o

5]
-

>
=

(7]

EA
2L

[}]
D.Q

8 E

Q
-a:
q,z
‘%E

o =

Q

o
-

25 50 75
Local Urbanization
(% Impervious Surface)

Extended Data Fig. 2| Regional species richness in relation to regional
environmental covariates. a-d, vegetation greenness (a); temperature (b);
urbanization (c); and city age (d). Estimates of regional species richness y, were
calculated as the sum of predicted species presence values within each of 20
cities (y, = Efws,,), using the probability of regional species presence Q, to
correct observed species richness for the region-wide imperfect detection of
species. Points correspond to each city’s mean value of y,across 60,000 Bayesian
posterior estimates. Trendline and shaded region respectively depict the median

3

Local Patch Density
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Local Agricultural Footprint

(#/100 ha) (% Land Cover)
and 95% Bayesian credible interval of y, predicted across hypothetical ranges of
among-city covariate values, where all other covariates were held constant at
their mean. We represented regional vegetation greenness using the Enhanced
Vegetation Index (EVI), regional temperature corresponds to mean annual
temperature (in °C), regional urbanization was estimated as the city’s overall
percentage of urbanland cover types, and we measured city age as the
approximate number of years since Euroamerican colonization of the
metropolitan region.
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Extended Data Fig. 3| Influences of species traits on site-level mammal

occupancy. a, body mass, repre

of each species (inkg). b, carnivory, calculated as the percentage of vertebrate
preyineach species’ diet. Each point and bar respectively represent the mean
and 95% Bayesian credible interval (CRI) of estimated occupancy probabilities
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for 29 mammal species commonly detected across 725 camerasites in 20 North
American cities (excluding eight species detected in fewer than 10 total trap-
days). Trendline and shaded region depict the median and 95% CRI of response
variables predicted across a hypothetical range of trait values. Results primarily
demonstrate that more carnivorous species are generally rarer.
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Extended Data Fig. 4 | Collinearity between pairs of local (within-city) each covariate, upper-right half of the figure depicts the Pearson correlation
covariates. Within-city covariates include local urbanization, natural patch between each pair of covariates, and the lower-left half visualizes each
density, and agricultural intensity across 725 sites in 20 North American cities. correlationin the form of ascatterplot.

The diagonal cells of the figure depict the frequency distribution of values for
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Extended Data Fig. 5| Collinearity between pairs of regional variables of 20 MAT = mean annual temperature; MAP = mean annual precipitation;
North American cities. The diagonal cells of the figure depict the frequency MST =mean summer temperature; MSP =mean summer precipitation;
distribution of values for each variable, upper-right half of the figure depicts CMD = climatic moisture deficit; URB = urban land cover (regional urbanization);
the Pearson correlation between each pair of variables, and the lower-left AGR =agricultural land cover (regional agricultural area); NAT = natural land
half visualizes each correlation in the form of ascatterplot. We selected four cover; FOR =woody vegetation (forest, shrubland) cover; PD = natural patch
variables toinclude in our final analysis as among-city covariates: vegetation density; AGE = city age (years since colonization); LAT = latitude of city center;

greenness, mean annual temperature, regional urbanization, and city age. LON =longitude of city center.
EVI=Enhanced Vegetation Index; PET = potential evapotranspiration;
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Extended Data Table 1| Summary characteristics of 20 study cities included in the analysis of mammal presence and community composition.

Species observation data from each city were collected via motion-triggered camera traps during the same 35-day summer period within different sampling years within
different study areas. We represented sampling effort of each city using the total number of sites sampled and the across-site sum of its camera trap-days, the number

of daysinwhich each site was functional and collecting data. Total sampling effort was 20,176 camera trap-days across all 725 sites. We used four regional environmental
variables to differences in among-city environment in our analysis: regional vegetation greenness (Enhanced Vegetation Index; EVI); regional temperature (mean annual
temperature, in °C; MAT); regional urbanization (% urban land cover; URB); regional city age (years since colonization; AGE)
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

IZ A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
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|Z| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|X| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software were used for collection of original data. Any additional data used to conduct the analyses featured in this study (i.e., covariate
data) were obtained from various online, open-access sources and are cited in the manuscript where appropriate.

Data analysis All data and code that support the findings of this study and that were used in the production of all figures are publicly available on Zenodo at
https://doi.org/10.5281/zenodo.8083504.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data and R code that support the findings of this study and that were used in the production of all figures are stored in Github and can be made available to
reviewers upon request. Pending acceptance of this manuscript, all data and code will be archived with a DOI and made publicly available on Zenodo. Additional




data used to conduct the analyses featured in this study (i.e., covariate data) were obtained from various online, open-access sources and are cited in the
manuscript where appropriate.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Analyses included a Bayesian multi-species, multi-region (hierarchical) occupancy model and accompanying Bayesian meta-analysis
models. All models included covariates on occupancy, species richness, and species diversity at multiple levels (site, region, species),
as well as interactions among covariates (site*region, site*species). We analyzed data points from 725 sites across 20 regions (cities),
each of which was sampled repeatedly for 35 days. A full description of the analyses in this study can be found in the Methods
section of the manuscript.

Research sample Motion-triggered wildlife cameras were used to take photographs recording occurrences of endothermic, vertebrate wildlife species
at sites distributed across North American cities/metropolitan regions. We included only mammal species in this study as they were
the taxon most reliably detected and identifiable in wildlife cameras photos. A full list of 35 species included in this study is reported
in the Extended Data section of the manuscript.

Sampling strategy Full description of the sampling strategy can be found on the Resources page of the Urban Wildlife Information Network (UWIN)
website (https://www.urbanwildlifeinfo.org/gettingstarted), specifically in the Camera Trapping Design Overview document (https://
www.dropbox.com/s/cuex75fuw3igaep/Design%200verview.pdf?dl=0). Sampling was conducted by UWIN partners, who included
university faculty and students and wildlife professional in governmental and non-governmental organizations. Wildlife camera sites
in each city were located across an urbanization gradient within each city following a stratified pseudo-random sampling design
(based on strata representing levels of urbanization). Based on minimum sample sizes typically necessary for fitting occupancy
models, each UWIN partner city aimed to sample a minimum of 25 camera sites, though sample sizes (number of camera sites)
varied among cities due to logistical limitations (equipment availability, camera failures, etc.).

Data collection Wildlife camera photos were collected by UWIN members and uploaded to UWIN's online database for processing (species
identification). Photos processed into tagged species observation data within the online database by trained personnel, including
university students and faculty, community member volunteers, and wildlife professionals in governmental and non-governmental
organizations.

Timing and spatial scale  Since 2016, UWIN partner cities have been regularly sampling during four distinct seasons during which data were continuously
collected for a minimum of one calendar month: summer (July), fall (October), winter (January), and spring (April). Different UWIN
cities began at and ended sampling during different years (e.g. Fort Collins stopped sampling in 2017, Salt Lake City started sampling
in 2019).

Data exclusions Due to the objectives our analysis (single-season occupancy modeling) and the availability of data from different cities, we included
only data from a single 35-day summer sampling season (June 29th-August 2nd) from each city in this study.

Reproducibility All code and data necessary for replicating the results of this study will be archived with a DOI and made publicly available on Zenodo,
pending acceptance of the manuscript.

Randomization Allocation of sampling sites among cities was non-random. City-level (regional) covariates were used to control for variation among
cities. Allocation of sampling sites within each city followed a stratified pseudo-random sampling design (briefly described above) and
variation among sites was controlled for using site-level covariates.
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Blinding Use of wildlife cameras allowed for the collection of study species occurrence data in the absence of researchers, minimizing impacts
of the researchers on the behaviors of the study species.

Did the study involve field work? X ves []no

Field work, collection and transport

Field conditions Field conditions have varied wildly across the multi-year, multi-season sampling effort of UWIN. This study includes data from the
summer sampling season, during which conditions at all sites were relatively warm, though temperatures varied across cities located
within different climate zones.

Location Sampling in all 20 cities occurred across a gradient of human development from natural environments to highly urbanized city
centers. Cities ranged across North America, between roughly -122.4 and -75.5 degrees W longitude and 28.8 to 53.5 degrees N

latitude, including sites in hot, dry cities (e.g. Phoenix, Arizona) and cold, wet cities (e.g. Seattle, Washington).

Access & import/export  In establishing each study site, all UWIN partners were responsible obtaining the necessary permission or permits from all public and
private owners and/or managers whose land on which wildlife cameras were to be located and accessed.

Disturbance No significant disturbance was caused to each site

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms

Clinical data
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Dual use research of concern

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals This study did not involve laboratory animals.

Wild animals This study involved the use of motion-triggered wildlife cameras to observe (i.e., photograph) all detectable mammal species. The full
list of 35 species included in this study is reported in the Extended Data section of the manuscript. No wild animals were caught or
transported during this study.

Reporting on sex This information was not collected.

Field-collected samples  Field-collected samples consisted of only photographs, which were stored within the UWIN online database.

Ethics oversight No ethical approval or guidance was required, due to the use of minimally-invasive observation methods.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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