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Urbanization, climate and species traits 
shape mammal communities from local to 
continental scales

Human-driven environmental changes shape ecological communities 
from local to global scales. Within cities, landscape-scale patterns and 
processes and species characteristics generally drive local-scale wildlife 
diversity. However, cities differ in their structure, species pools, geographies 
and histories, calling into question the extent to which these drivers 
of wildlife diversity are predictive at continental scales. In partnership 
with the Urban Wildlife Information Network, we used occurrence data 
from 725 sites located across 20 North American cities and a multi-city, 
multi-species occupancy modelling approach to evaluate the effects of 
ecoregional characteristics and mammal species traits on the urbanization–
diversity relationship. Among 37 native terrestrial mammal species, 
regional environmental characteristics and species traits influenced 
within-city effects of urbanization on species occupancy and community 
composition. Species occupancy and diversity were most negatively 
related to urbanization in the warmer, less vegetated cities. Additionally, 
larger-bodied species were most negatively impacted by urbanization 
across North America. Our results suggest that shifting climate conditions 
could worsen the effects of urbanization on native wildlife communities, 
such that conservation strategies should seek to mitigate the combined 
effects of a warming and urbanizing world.

Biotic and abiotic factors impacted by human activities shape ecologi-
cal communities across scales. Broad-scale bioclimatic gradients and 
human land-use patterns drive global and regional biodiversity1–3, while 
finer-scale patterns of resource availability, ecological disturbance 
and species traits influence local community composition through 
habitat use, species interactions and population processes4–7. Habitat 
modification by humans alters environmental conditions at each of 
these scales, leading to widespread losses of native biodiversity and 
changes in community composition, including the total number of 
species (that is, species richness) and related metrics that account 
for species evenness (that is, species diversity indices)2,8. Despite the 
critical influences that broader-scale environmental factors can have 
on the mechanisms by which local human activities shape community 

composition9–13, it is largely unknown to what extent such cross-scale 
interactions can help predict future impacts of intensifying human 
development on certain wildlife taxa central to biodiversity conserva-
tion, such as mammals14–16.

Human-driven landscape changes can influence the distribution 
and diversity of species across multiple scales and along urbaniza-
tion gradients, ranging from undeveloped to urban17,18. Greater lev-
els of urbanization negatively affect wildlife communities across sca
les9,10,15,16,19,20, with community composition varying within and among 
cities according to each city’s broad biophysical characteristics6,11,21. 
Regionally, urban species pools can be associated with variation in 
climate, city size and land cover1,11,18. For instance, warmer, mesic 
ecoregions and more recently urbanized regions often exhibit greater 
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and community-average occupancy among all cities (Table 1), rela-
tionships on which occupancy probabilities were expected to range 
between 0.07 (95% CRI, 0.04 to 0.11) and 0.11 (95% CRI, 0.05 to 0.23) 
at sites with minimum and maximum patch densities (Extended Data  
Fig. 1b). Community-average occupancy also demonstrated a moderate 
negative relationship with local agricultural footprint (Table 1), with 
occupancy probability predicted to decrease from 0.09 (95% CRI, 0.05 
to 0.14) at sites surrounded by no agricultural land cover to 0.04 (95% 
CRI, 0.01 to 0.09) at sites with the maximum of 84.3% agricultural land 
cover (Extended Data Fig. 1c).

Metrics of local community composition—specifically, species 
richness (the total number of species) and diversity (the exponentiated 
Shannon entropy index, or the number of species weighted by spe-
cies evenness; see the Methods for additional details)—also exhibited 
associations with gradients of landscape modification (Table 2, Effect 
Type 1). Across all sites, local urbanization demonstrated negative 
relationships with richness and diversity (Table 2 and Extended Data  
Fig. 1d–f). The average sites with the most impervious surface cover 
were predicted to have values of richness (median, 3.23; 95% CRI, 2.93 
to 3.54) and diversity (median, 5.74; 95% CRI, 5.50 to 6.00) that were 
43% and 34% lower, respectively, than the richness (median, 5.74; 95% 
CRI, 5.37 to 6.13) and diversity (median, 8.79; 95% CRI, 8.53 to 9.06) 
at sites with no impervious surface cover (Extended Data Fig. 1d,g). 
Local patch density was probably not associated with either richness 
or diversity (Table 2 and Extended Data Fig. 1e,h). Conversely, local 
agricultural footprint demonstrated negative relationships with both 
richness and diversity (Table 2), which predicted a 26% overall decrease 
in diversity across the gradient of agricultural land cover, from a median 
diversity of 7.80 (95% CRI, 7.66 to 7.95) at sites surrounded by no agri-
cultural lands to 5.69 (95% CRI, 5.30 to 6.12) at sites with the maximum 
amount of agricultural land cover (Extended Data Fig. 1f,i). Variation 
in diversity—as a metric positively associated with species evenness—
partially resulted from how the effects of human landscape changes 
varied within the community, because the occupancy of several species 
exhibited stronger negative relationships with urbanization than that 
of others (Supplementary Table 2 and Supplementary Data 1).

Among cities
Among-city environmental variables were more strongly associated 
with local patterns of species occupancy and their relationships with 
urbanization than they were with regional (city-level) species richness. 
We failed to detect any relationships between a city’s regional species 
richness (that is, the overall probability of regional species presence) 
and regional environmental variables (Table 1, Effect Type 2; see also 
Extended Data Fig. 2), including vegetation greenness (enhanced 
vegetation index (EVI)), temperature (mean annual temperature), 
regional urbanization (the percentage of the city consisting of urban 
land-cover types) or city age (years since colonization). However, spe-
cies were more common across all sites (that is, community-average 
occupancy was higher) in cities with greater vegetation greenness, 
lower regional urbanization and colder temperatures (Table 1, Effect 
Type 3). Within-city relationships between local urbanization and 
community-average occupancy were moderately more negative in 
warmer cities and in cities with lower vegetation greenness (Fig. 2a,b) 
but probably did not vary among cities of different ages or with differ-
ent levels of regional urbanization (Fig. 2c,d and Table 1, Effect Type 4). 
For instance, the negative effect of local urbanization on occupancy in 
the relatively low-temperature and highly vegetated city of Tacoma, 
Washington, was predicted to be 0.65 times weaker than that in the 
similarly vegetated but warmer St. Louis, Missouri, and 0.50 times 
weaker than that in the less vegetated but similarly cold Fort Collins, 
Colorado. Several species also exhibited interactions between urbani-
zation and regional environmental variables that we failed to detect 
for other species, potentially contributing to among-city variation in 
local patterns of species evenness and diversity (Supplementary Data 1).  

biodiversity2,22,23. Locally, communities may respond differently to 
urbanization due to regional differences in urban footprint16,24, vegeta-
tion9,10 and age of development9,25. These multi-scale landscape changes 
can individually influence biodiversity patterns3, but their combined 
effects on communities are poorly understood8,18.

Species’ functional traits may also influence relationships between 
human development and community composition. Life history traits 
such as body size, home range and diet can mediate species’ tolerance 
of urbanization26–28. Wider-ranging, larger-bodied and more carnivo-
rous mammals, for example, are often most negatively affected by 
human development or persecution29–31. The few urbanization-tolerant 
species that remain can become abundant in human-dominated land-
scapes, resulting in lower species evenness and diversity32–35. Commu-
nity composition within cities is thus a consequence of species traits 
and multi-scale landscape factors6. However, it is unclear how these 
factors interact across scales to drive biodiversity patterns14,36.

Here we tested whether local-scale and regional-scale environ-
mental factors and species traits influenced mammal presence, com-
munity composition and the relationships of both with anthropogenic 
landscape changes. We conducted this study across 20 North American 
cities in the Urban Wildlife Information Network (UWIN; Fig. 1 and 
Extended Data Table 1), a long-term, multi-region study with the pur-
pose of systematically monitoring biodiversity across cities of vary-
ing sizes, histories and ecoregional contexts18. We used data from a 
continent-wide camera-trap array and a multi-city, multi-species occu-
pancy model to address three research objectives37. First, we evaluated 
how local mammal species occupancy, richness and diversity related to 
three types of human landscape modification within cities—urbaniza-
tion, natural patch density (fragmentation) and agriculture—during 
the summer season. Second, we assessed how among-city continental 
variation in environmental conditions (vegetation greenness, tem-
perature, regional urbanization and city age) influenced regional spe-
cies richness and local trends in species occupancy and community 
composition across urbanization gradients. Finally, we examined how 
variation in life history traits (diet and body size) among species medi-
ated relationships among species distributions, community structure 
and urbanization.

Results
Sampling across 725 wildlife camera sites in 20 cities resulted in 37 
mammal species detected over a total of 20,206 camera-trap-days, with 
the number of trap-days in each region ranging between 336 (Austin, 
Texas) and 2,531 (Chicago, Illinois) (Extended Data Table 1)38. Daily 
species detections varied between 2,900 (raccoon, Procyon lotor) and 
2 (hooded skunk, Mephitis macroura; mountain beaver, Aplodontia 
rufa; Richardson’s ground squirrel, Urocitellus richardsonii; and wea-
sels, Mustela spp.). Eight species were detected in fewer than 0.05% 
of the total trap-days (ten daily detections) and were excluded from 
species-level analyses (Supplementary Table 1).

Within cities
Mammal species occupancy was associated with variations in human 
landscape modification within cities (Table 1, Effect Type 1; see also 
Extended Data Fig. 1a–c). Across all sites, community-average occu-
pancy probability (that is, the among-species mean, community-level 
occupancy hyperparameter) strongly decreased with increasing local 
urbanization (the mean impervious surface percentage around each 
site), with the city-average modelled relationship (Table 1) predict-
ing occupancy probabilities of 0.16 (95% Bayesian credible interval 
(CRI), 0.08 to 0.29) at sites with no impervious surface cover and 0.02 
(95% CRI, 0.01 to 0.06) at sites with the maximum of 87.4% impervi-
ous surface cover, corresponding to an overall 84% decrease in site 
use across the gradient (Extended Data Fig. 1a). There was a positive 
relationship between local patch density (the number of natural, 
non-urban, non-agricultural land-cover patches around each site) 
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For example, interaction effects for cottontail rabbits (Sylvilagus spp.) 
indicated that the species responded more negatively to urbaniza-
tion in warmer cities (βmean = −0.27; 95% CRI, −0.62 to 0.09; 93.5% of 
posterior distribution negative) and in cities with lower vegetation 
greenness (βmean = 0.21; 95% CRI, −0.08 to 0.50; f = 92.4% of posterior 
distribution positive).

Among-city differences in regional environmental variables also 
altered local community composition metrics (Table 2, Effect Type 3)  
and their within-city relationships with urbanization (Fig. 2e–l and 
Table 2, Effect Type 4). In cities with greener vegetation, site-level 
richness and diversity tended to be greater and less negatively associ-
ated with urbanization (Fig. 2e,i). For example, the negative effects 

of local urbanization on richness and diversity in the least vegetated 
city (Phoenix, Arizona) were predicted to be, respectively, 1.45 and 
3.60 times stronger than those in the most vegetated city with similar 
temperature (Sanford, Florida). Conversely, warmer cities tended to 
have lower values of local richness and diversity across all their sites, 
as well as more negative associations between urbanization and both 
richness and diversity (Fig. 2f,j). For instance, local urbanization in the 
warm city of Metropolitan Los Angeles, California, was expected to 
have negative relationships with richness and diversity that were 3.97 
and 1.29 times stronger than those in Salt Lake City, Utah, one of the 
coldest cities with similar vegetation greenness. Cities with greater 
regional urbanization (that is, more intensively urbanized landscapes) 
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Fig. 1 | Study cities across North America and the study’s modelling approach. 
We depict the locations of 20 cities participating in the long-term monitoring 
of wildlife species, as part of UWIN, across a continental gradient of vegetation 
greenness (EVI). The arrows represent the five types of effects modelled in this 
study, distinct pathways by which multi-scale environmental characteristics 
and species traits may interact with one another to affect wildlife communities 
at local (site-level) and regional (city-level) scales: (1) variation in environmental 
predictors within cities (for example, local urbanization) influencing site-level 
species pools (for example, average species occupancy or alpha diversity); (2) 
environmental variation among cities (for example, EVI) driving differences in 

regional species pools (for example, gamma diversity); (3) among-city variation 
directly affecting local species pools; (4) among-city predictors interacting 
with within-city predictors across scales, influencing how the latter shape local 
communities; and (5) species traits shaping local species pools by mediating 
among-species differences in within-city responses to environmental predictors. 
All animal graphics were sourced from PhyloPic (https://www.phylopic.org/)  
and were utilized as part of the public domain or under the CC BY 3.0 licence 
(for the full list of image attributions, please see the data repository archived at 
https://github.com/jhaight-eco/uwin-multiregioncommcomp).
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had lower site-level richness and diversity, both of which also had more 
negative relationships with local urbanization than in less urbanized 
cities (Fig. 2g,k). Finally, site-level richness tended to be higher in older 
cities, whereas site-level diversity was lower (Fig. 2h,l).

Among species
Species traits (that is, body size and carnivory) influenced each mammal 
species’ occupancy and their responses to urbanization in cities (Fig. 3 
and Extended Data Fig. 3). Although larger-bodied species were as com-
mon as (that is, had similar species-level occupancy to) smaller-bodied 
species overall (Extended Data Fig. 3a; βmean = −0.07; 95% CRI, −0.66 
to 0.51; 59.8% of posterior positive), body mass exhibited a negative 
relationship to the urbanization effect (Fig. 3a; βmean = −0.36; 95% CRI, 
−0.65 to −0.06; 99.0% of posterior distribution negative), indicating 
that larger species responded more negatively to urbanization. More 
carnivorous species were generally rarer across sites (Extended Data 
Fig. 3b; βmean = −0.53; 95% CRI, −1.08 to 0.03; 96.9% of posterior distri-
bution negative), but carnivory did not influence species’ responses 
to urbanization (Fig. 3b; βmean = 0.03; 95% CRI, −0.24 to 0.29; 58.5% of 
posterior distribution positive).

Discussion
Predicting how human development impacts biodiversity requires 
examining how communities have assembled under the influence of 
both fine- and broad-scale environmental factors and species traits. 
Here we tested for such patterns with a multi-city modelling approach 
and biodiversity data spanning North American biomes. As we hypoth-
esized, local mammal communities varied substantially across gradi-
ents of human landscape change11,15,16,19, and the broad environmental 

characteristics of cities shaped differences in how local communities 
related to urbanization9–11, with urbanization demonstrating stronger 
negative influences on communities in warmer, less vegetated cities. 
Furthermore, the effects of urbanization on species presence were 
mediated by key life history traits29. Overall, these results emphasize 
how urbanization’s effects on biodiversity are locally and regionally 
driven, dependent on how environmental conditions and species traits 
interact with one another to influence community assembly processes 
across spatial scales6.

To maintain diverse ecological communities in an urbanizing 
world, it is important to consider how different types of human activi-
ties can affect local community composition across spatially hetero-
geneous landscapes. Urbanization is widely regarded as a foremost 
threat to biodiversity, as species presence, richness and diversity 
typically have strong negative associations with habitat loss due to 
urban development11,20,33. Across levels of urbanization, additional 
anthropogenic landscape changes such as agricultural land use and 
habitat fragmentation can either mitigate or exacerbate the effects 
of development on community composition39–42. These additional 
components of the human footprint may affect species richness, even-
ness or both. High amounts of agricultural land may be more strongly 
associated with lower species diversity than with lower species rich-
ness, as the habitat heterogeneity created by moderate landscape cul-
tivation can support coexistence among greater numbers of species35. 
Similarly, natural patch and edge density, proxy measures of habitat 
fragmentation and landscape heterogeneity that tend to vary most in 
moderately urbanized areas40,42, may be either positively or negatively 
associated with richness43–45. More fragmented landscapes can also 
favour edge-tolerant, generalist species, reducing evenness and further 

Table 1 | Effects of local and regional environmental predictors on local community-average occupancy and regional 
species richness

Response variable Predictor variable(s) Effect type βmean 95% CRI (lower, upper) Probability of relationship (%)

Local 
community-average 
occupancy

Local urbanization 1 −0.41 −0.68, −0.17 100.0**

Local patch density 1 0.08 −0.06, 0.21 87.1*

Local agricultural footprint 1 −0.15 −0.31, 0.00 97.5**

Regional greenness 3 0.24 −0.09, 0.57 92.4*

Regional temperature 3 −0.19 −0.51, 0.12 89.3*

Regional urbanization 3 −0.29 −0.57, −0.02 98.1**

Regional city age 3 0.19 −0.20, 0.56 84.5

Regional greenness × local urbanization 
(interaction)

4 0.12 −0.08, 0.31 88.4*

Regional temperature × local urbanization 
(interaction)

4 −0.13 −0.38, 0.11 86.4*

Regional urbanization × local urbanization 
(interaction)

4 −0.01 −0.17, 0.15 54.7

Regional city age × local urbanization 
(interaction)

4 −0.06 −0.26, 0.15 73.2

Regional species 
richness

Regional greenness 2 −0.08 −0.28, 0.12 78.1

Regional temperature 2 −0.01 −0.19, 0.18 52.1

Regional urbanization 2 −0.01 −0.19, 0.16 56.6

Regional city age 2 −0.06 −0.27, 0.14 71.5
We estimated standardized effects using a Bayesian multi-city community occupancy modelling approach across 725 sites in 20 North American cities, determining the modelled effect of 
each set of predictor variables on each response variable by calculating means (βmean) and 95% CRIs across each effect parameter’s posterior distribution. We measured the response variable 
local community-average occupancy as the mean probability of site use among the mammal community and quantified regional species richness using the probability of the average species 
being present in each city (the proportion of a city’s potential regional species pool that was present). We grouped effects into one of five types on the basis of the spatial scale(s) at which they 
were assumed to operate, as depicted in Fig. 1. The modelled effects included cross-scale interactions (Fig. 1, Effect Type 4), the combined effects of regional environmental predictors and 
local urbanization on local community characteristics (that is, average species occupancy; Fig. 2a–c). Because of the inclusion of interaction terms, local urbanization effects (Fig. 1, Effect Type 1)  
indicate the effects predicted at the average level of all other interacting variables (regional environmental predictors and species traits). We additionally represent the probability that a 
substantial relationship was detected between each predictor and response variable using the percentage of each effect parameter’s Bayesian posterior distribution that shared a sign (positive 
or negative) with the mean of the distribution, with ‘*’ indicating ‘likely’ relationships (>85% probability) and ‘**’ indicating ‘highly likely’ relationships (>95% probability) (see the Methods for 
additional details).
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complicating relationships between landscape heterogeneity and 
community composition20,33,46. Finally, the effects of human activity on 
wildlife communities extend beyond changes to landscape structure, 
as the spatial distributions of wildlife communities can be directly 
influenced by variation in human presence (for example, recreational 
activity) and other behaviours (for example, wildlife feeding and yard 
management) across landscapes7,13,21,47. Future research could further 
characterize these diverse relationships among landscape heterogene-
ity, human activity and community composition by considering how 
those relationships may vary according to the regional characteristics 
of urban systems.

The broader bioclimatic characteristics of cities may have greater 
influence on local wildlife communities than they do on regional 
patterns of biodiversity. Contrary to our predictions, differences in 
regional mammal species pools among cities were not associated 
with continent-wide bioclimatic gradients of vegetation greenness 
and temperature, but those regional characteristics did influence the 
degree to which mammal populations and communities varied across 
local urbanization gradients. For instance, compared with species in 
cooler cities (for example, Salt Lake City, Utah), species in warmer cit-
ies (for example, Los Angeles, California) exhibited stronger negative 
relationships with urbanization, which further reduced local species 
richness and diversity at higher levels of urbanization. These apparent 
temperature-driven differences in urbanization effects may result, in 
part, from associations between temperature and other ecological 

characteristics that make cities in different ecoregions distinct, such as 
vegetation type, structure and evapotranspiration. Urban heat island 
effects (that is, higher temperatures in highly urbanized areas than in 
wildlands) may additionally be greater in warmer cities48. Particularly 
for endothermic species such as mammals, combined increases in 
temperature and urbanization can negatively impact health and sur-
vival49,50. Conversely, cities with greener vegetation (which also tend to 
have higher mean annual precipitation—for example, Sanford, Florida) 
were more likely than less vegetated, drier cities (for example, Phoenix, 
Arizona) to support a richer, more diverse mammal community at 
greater levels of urbanization. Negative urbanization impacts may be 
mitigated in greener, wetter cities because species there have greater 
access to limited resources such as food, water and refugia from preda-
tors associated with more vegetation and precipitation16,51. Overall, 
these results highlight how the ability to effectively mitigate the local 
impacts of urbanization on biodiversity across diverse biomes may 
be inextricably linked with interacting regional bioclimatic patterns.

Wildlife community responses to urbanization may further depend 
on the unique sociocultural processes that characterize different cities. 
For example, local species diversity tended to be greater across sites 
in more recently developed and less urbanized cities in our study (for 
example, Salt Lake City, Utah; and Iowa City, Iowa), suggesting that 
the growth of cities has incurred local extinction debts that are still 
being realized in the form of gradual losses in local biodiversity9,11,16,25. 
Despite potential mechanistic connections between the overall age of 

h

j

g

i

fe

lk

a dcb
10.0 15.00.20 0.29 40.0 150 25080.0

Local urbanization (% impervious surface)

Regional vegetation
greenness (EVI) Regional temperature (°C)

C
om

m
un

ity
-a

ve
ra

ge
oc

cu
pa

nc
y 

pr
ob

ab
ili

ty
Lo

ca
l s

pe
ci

es
 ri

ch
ne

ss
(n

um
be

r o
f s

pe
ci

es
)

Lo
ca

l s
pe

ci
es

 d
iv

er
si

ty
(H

ill
 n

um
be

r 1
)

Regional city age (years) Regional urbanization
(% urban land cover) 

0.4

0.3

0.2

6.0

5.0

4.0

3.0

2.0

9.0

8.0

7.0

6.0

5.0

0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75

0.1

0

Fig. 2 | Influences of regional variation in vegetation greenness, temperature, 
urbanization and city age on mammal community trends across local 
urbanization gradients. a–d, Community-average occupancy probability, 
the average probability of site use among the mammal community. e–h, Local 
species richness, the total number of species at each site (Hill number 0).  
i–l, Local species diversity, the number of species at each site weighted by species 
evenness (Hill number 1, the exponentiated Shannon index). We estimated the 
response variables of community-average occupancy, local species richness 
and local species diversity across 725 sites in 20 North American cities using 

a Bayesian multi-city community occupancy model and accompanying 
community composition meta-analysis models. We visualized the modelled 
effects of within-city and among-city variables on occupancy (Table 1, Effect 
Types 1, 3 and 4) and on richness and diversity (Table 2, Effect Types 1, 3 and 4) 
by predicting the values of each response variable across hypothetical ranges of 
local urbanization under two contrasting levels of each among-city variable, with 
all other within-city and among-city variables held constant at their mean values. 
We then depicted the median and 95% CRI of these predicted values using the 
trendlines and their corresponding shaded regions.
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a city and local species extinction and colonization processes11, city age 
has uncertain relationships with biodiversity9, potentially due to cities 
growing more rapidly during different historical periods. Regardless of 

their overall ages, cities that have been more intensively built—either 
outwards (via urban sprawl) or upwards (via urban densification)—tend 
to be those in which human landscape changes most strongly impact 

Table 2 | Effects of local and regional environmental predictors on local community composition

Response variable Predictor variable(s) Effect type βmean 95% CRI (lower, upper) Probability of relationship (%)

Local species 
richness

Local urbanization 1 −0.11 −0.14, −0.08 100.0**

Local patch density 1 0.01 −0.02, 0.04 71.8

Local agricultural footprint 1 −0.02 −0.05, 0.01 88.2*

Regional greenness 3 0.12 0.09, 0.16 100.00**

Regional temperature 3 −0.04 −0.07, 0.01 99.2**

Regional urbanization 3 −0.05 −0.08, −0.03 100.0**

Regional city age 3 0.02 −0.01, 0.06 91.6*

Regional greenness × local urbanization 4 0.09 0.06, 0.12 100.0**

Regional temperature × local urbanization 4 −0.04 −0.07, −0.06 100.00**

Regional urbanization × local urbanization 4 −0.03 −0.05, 0.00 96.6**

Regional city age × local urbanization 4 −0.01 −0.04, 0.03 63.6

Local species 
diversity

Local urbanization 1 −0.08 −0.10, −0.07 100.0**

Local patch density 1 0.00 −0.02, 0.01 76.4

Local agricultural footprint 1 −0.05 −0.07, −0.04 100.0**

Vegetation greenness 3 0.02 0.00, 0.03 98.5**

Mean annual temperature 3 −0.02 −0.03, 0.00 99.2**

Regional urbanization 3 −0.02 −0.04, −0.01 100.0**

Regional city age 3 −0.02 −0.03, 0.00 97.5**

Regional greenness × local urbanization 4 0.05 0.03, 0.07 100.0**

Regional temperature × local urbanization 4 −0.02 −0.04, −0.01 99.9**

Regional urbanization × local urbanization 4 −0.01 −0.02, 0.00 97.2**

Regional city age × local urbanization 4 0.01 −0.01, 0.02 75.2
We estimated standardized effects using a Bayesian meta-analysis on the basis of local species richness and diversity values derived from a multi-city community occupancy model across 725 
sites in 20 North American cities, determining the modelled effect of each set of predictor variables on each response variable by calculating means (βmean) and 95% CRIs across each effect 
parameter’s posterior distribution. The response variable local species richness indicated the total number of species at each site (Hill number 0), and local species diversity represented the 
effective number of species at each site accounting for species evenness (Hill number 1, the exponentiated Shannon index), where sites with the greatest diversity were characterized by both 
high richness and high evenness. The effects were grouped into one of five types on the basis of the spatial scale(s) at which they were assumed to operate, as depicted in Fig. 1. The modelled 
effects included cross-scale interactions (Fig. 1, Effect Type 4), the combined effects of regional environmental predictors and local urbanization on local community composition (that is, 
species richness and diversity; Fig. 2d–i). Because of the inclusion of interaction terms, local urbanization effects (Fig. 1, Effect Type 1) indicate the effects predicted at the average level of all 
other interacting variables (regional environmental predictors). We represented the probability that a substantial relationship was detected between each predictor and response variable 
using the percentage of each effect parameter’s Bayesian posterior distribution that shares a sign (positive or negative) with the mean of the distribution, with ‘*’ indicating ‘likely’ relationships 
(>85% probability) and ‘**’ indicating ‘highly likely’ relationships (>95% probability) (see the Methods for additional details).
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Fig. 3 | Influences of species traits on within-city relationships between 
urbanization and mammal occupancy. a, Influence of body mass, represented 
by the log-transformed mean body mass of each species (in kg). b, Influence 
of carnivory, calculated as the percentage of vertebrate prey in each species’ 
diet. Each point and bar, respectively, represents the mean and 95% CRI of the 
estimated responses to urbanization for 29 mammal species commonly detected 

across 725 sites in 20 North American cities (excluding 8 species detected in 
fewer than 10 total trap-days). The trendline and shaded region depict the 
median and 95% CRI of response variables predicted across a hypothetical range 
of trait values. The results primarily demonstrate that larger-bodied species had 
more negative relationships with urbanization.
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biodiversity9,16. These biophysical landscape characteristics that drive 
differences in biodiversity relationships among cities are additionally 
influenced by heterogeneous socio-economic processes, including 
those associated with past and present distributions of wealth and 
social inequities15,52. Understanding what makes a city more supportive 
of biodiversity persistence requires further recognition of how com-
plex human decision-making processes variably structure urbanizing 
landscapes and wildlife community patterns6,14,53,54, bridging human 
histories with the natural histories of wildlife.

Species’ functional traits can also influence how landscape change 
shapes wildlife communities. In particular, larger-bodied mammal spe-
cies responded more negatively to urbanization, as was expected26,29. 
Although the greater mobility of larger species can enable them to bet-
ter access anthropogenic resources across fragmented landscapes31,55, 
those species are also generally more sensitive to urbanization-driven 
habitat losses due to their greater space needs, lower reproductive rates 
and increased persecution by humans25,26,29,30,56. While obligate carni-
vores (for example, bobcats and mountain lions) are often regarded 
as intolerant of urban environments29,31, more strictly carnivorous 
diets are not necessarily associated with more negative responses 
to urbanization. This may be because more carnivorous species are 
most frequently represented by generalist predators (for example, 
coyotes, foxes and raccoons), whose flexible, omnivorous diets enable 
them to exploit anthropogenic resources in urban environments30. As 
such, herbivores with more specialized diets may also be particularly 
sensitive to urbanization, and other species traits such as dietary flex-
ibility and diversity could provide more effective predictors of human 
impacts in future studies27,30. It is also important to acknowledge that 
assessments of functional traits and taxonomic diversity depend on 
how wildlife communities were sampled across landscapes, where the 
use of multiple survey methods (for example, camera traps, hair traps 
and live traps) may help future studies reduce potential biases, such 
as the under-sampling of smaller-bodied species57,58. Nevertheless, 
species functional traits play critical roles in community assembly 
across urbanization gradients by driving individual species distribu-
tions6, and our results indicate the importance of further examining 
how variation in species responses to human landscape change are 
linked with a wider diversity of species traits and how such patterns 
vary within and among cities14.

Although we found that the effects of anthropogenic landscape 
change can vary among species with diverse traits and in relation to 
environmental conditions at multiple spatial scales, the temporal 
dimensions of these relationships require further exploration. Our 
study was focused on the North American summer season, in part 
because this was the season in which we expected regional bioclimatic 
variables and local impacts of urbanization to influence mammal com-
munities most strongly across cities. However, intra-annual variations 
in species-level and community-level responses to urbanization war-
rant additional consideration, as seasonal differences in climate and 
resource availability can lead to shifts in fine-scale wildlife habitat use 
and community composition across urbanization gradients59. For 
instance, during winter seasons, urban environments in colder cities 
may become more suitable for certain species, due to year-round 
anthropogenic resource provisioning and urban heat island effects 
counteracting the climate-driven extremes of the surrounding natural 
environments, providing food and thermal refugia that increase spe-
cies survival60. Furthermore, the use of human-dominated environ-
ments by wildlife communities can vary substantially across years, 
driven by changes in human land use/land cover and fluctuations in 
resource availability and human activity29,47,59,61–63. Although we con-
trolled for confounding effects of interannual variation in wildlife 
community drivers in our analyses, evaluating temporal dynamics was 
beyond the scope of this study. Important next steps include examin-
ing and understanding how wildlife communities vary in relation to 
changing landscapes and climates through time64.

To conserve biodiversity in a rapidly changing world, we must con-
sider how wildlife communities respond to human-caused landscape 
change across local and regional scales. We specifically found that 
species richness and diversity at local scales can demonstrate varying 
responses to urbanization that depend on broad-scale climatic fac-
tors, reflecting the potential for synergistic effects between multiple 
drivers of global biodiversity loss3,8,14. For example, mammal species 
and communities in warmer, less vegetated cities appeared to be more 
negatively affected by urbanization, which could have implications for 
how biodiversity is impacted by a warming climate65–67. However, there 
are other key differences in warmer and greener cities that can drive 
these patterns (for example, biome characteristics, vegetation com-
munities, water availability and size of the regional species pool), and 
future studies could further explore potential mechanisms underlying 
these cross-scale relationships8,14. Likewise, when comparing the differ-
ent results of past urban ecological studies, it is imperative to consider 
the broader context of the regional environment that includes (but is 
not limited to) climate and vegetation16.

Interactions between urbanization and broad-scale environmen-
tal gradients suggest it is important to prioritize biodiversity loss 
mitigation measures differently among cities with distinct biophysi-
cal characteristics and regional species pools11,66–68. For instance, in 
warmer cities, it might be more important to provision thermal ref-
uges and water resources for wildlife, with particular consideration 
given to the needs of species most sensitive to the combined impacts 
of urbanization and climate53,69. Effectively protecting biodiversity 
from the impacts of landscape change necessitates that ecological 
understanding of human-modified habitats be more thoroughly 
integrated into landscape design processes53,70,71. Towards this end, 
identifying key areas in which region-specific conservation priorities 
align with existing human-centred urban sustainability goals and man-
agement practices should be a priority for future research54. Finally, 
we emphasize that research networks spanning multiple cities and 
continents can identify interconnected biodiversity threats and offer 
recommendations to mitigate the impacts of global change14,18,68. Lev-
eraging such broad transdisciplinary networks can lead to the develop-
ment of climate-conscious urban conservation strategies that enable 
declining species and communities to better persist in an increasingly 
human-dominated world.

Methods
Site selection and experimental design
We used camera-trap data collected in the summer months to assess 
mammal species occupancy, richness and diversity across 20 cities in 
the United States and Canada (Fig. 1 and Extended Data Table 1)38. The 
data were collected using a camera-trapping protocol established by 
UWIN for the long-term monitoring of ground-dwelling wildlife spe-
cies18. In each city, passive infrared-triggered wildlife cameras were 
located along likely wildlife travel corridors (for example, parks, pre-
serves, riparian corridors, trails, alleys and canals) across a gradient of 
urbanization (defined as the percentage of impervious surface cover) 
and positioned a minimum of 1 km apart from one another to increase 
the independence of each sampling site.

Data collection
We identified mammals in camera-trap photos to the species or 
genus level. All photo identification was conducted by trained 
personnel, including university students and faculty, community 
member volunteers, and wildlife professionals in governmental and 
non-governmental organizations. Primarily due to limitations in the 
ability to identify species solely on the basis of wildlife camera photo-
graphs, observations of seven sets of closely related congeneric species 
(antelope ground squirrels, chipmunks, cottontail rabbits, flying squir-
rels, grey squirrels, jackrabbits and weasels) were grouped for estimat-
ing species presence, detection and community composition. Although 
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certain small mammals were also widely detected and identified across 
all cities (for example, squirrel species), mid-to-large-sized mammal 
species were probably over-represented, and many smaller-bodied 
species were under-represented or not detected at all in our sampling, 
a potential source of bias typical of camera trapping as a method for 
sampling wildlife communities58.

We analysed data for 37 mammal species and species groups (we 
hereafter refer to both as ‘species’ for simplicity) that were observed 
at least once across all cities during a 35-day summer sampling period 
(29 June–2 August; Supplementary Table 1). Each UWIN partner began 
and ended data collection at different times between 2016 and 2020, 
with certain cities having only a single full or partial year’s worth of data 
available at the time of this analysis (for example, Manhattan, Kansas, 
stopped collecting data in 2016). We thus chose a single year’s summer 
sampling period per city for inclusion in this analysis, focusing on the 
specific sampling year that maximized the number of sites in each city 
(Extended Data Table 1). We specifically selected the summer season 
for analysis as we predicted that this would be the season of great-
est mammal activity across North American biomes, increasing our 
ability to detect potential effects of regional bioclimatic variables on 
responses to urbanization. Due to data availability, focusing our analy-
sis on a single season additionally enabled us to utilize data from cities 
spanning a wider range of environmental characteristics and wildlife 
communities. The combined dataset included observations from  
725 camera-trap sites that were sampled for a minimum of 12 days and 
a maximum of 35 days. From 2016 through 2020, no regional species 
colonization events are known to have occurred, allowing us to assume 
the closure of regional species pools across years. We limit any discus-
sion of species-level results to the 29 species with more than ten daily 
detections (0.05% of the total trap-days). As described in our statistical 
modelling framework below, we treated ‘city’ as a random effect in the 
estimation of species occupancy and community composition, allow-
ing for greater parameter uncertainty in cities with lower sample sizes 
and capturing the combined statistical influences of other potentially 
influential but ultimately excluded among-city variables.

Variables
Within-city covariates. We estimated a within-city urbanization covari-
ate as the mean percentage of impervious surface cover within 1 km 
of each site, on the basis of the combination of data from the 2016 
National Land Cover Database Imperviousness dataset (for all US cit-
ies) and road and building footprint data (for Edmonton)72–74. In the 
R programming language version 4.0.1 (ref. 75), we then calculated a 
series of potential within-city variables of landscape composition and 
configuration around each camera site using the 2015 North American 
Land Cover Monitoring System 30-metre dataset76,77 and the R pack-
age landscapemetrics78. We used two of these variables as additional 
within-city covariates for species occupancy, richness and diversity: 
agricultural footprint and patch density. We calculated agricultural 
footprint as the proportion of the 1 km buffered area surrounding 
each site classified as ‘Cropland’. We quantified patch density as the 
number of natural patches—defined as contiguous areas of non-urban, 
non-agricultural land-cover classes—within the 1 km buffer. Differences 
in patch densities represented local variation in habitat patchiness 
and fragmentation, which are observably greater in areas of moder-
ate urbanization (Extended Data Fig. 4). To reduce the influence of 
differences in sample size (the number of wildlife cameras) among 
cities, the values of all within-city covariates were standardized by 
city prior to model implementation, following best-practice recom-
mendations for multilevel modelling79,80. Lastly, we tested for potential 
cross-scale interactions between local effects of human development 
and the regional environmental context by allowing within-city spe-
cies occupancy and each species’ relationship between occupancy 
and urbanization to partially vary according to species traits and to a 
set of covariates that varied among cities (explained in detail below).

Among-city covariates. We quantified an array of metrics for their 
potential use as among-city covariates of regional species richness 
and differences in within-city urbanization–occupancy trends, 
including average bioclimatic values, land cover proportions and 
landscape heterogeneity metrics within a 10 km buffer surround-
ing all sites in each city (Extended Data Fig. 5). We included four 
of these variables as among-city covariates in our model on the 
basis of their alignment with regional environmental characteris-
tics hypothesized to drive regional species diversity and influence 
urbanization–community relationships. We measured vegetation 
greenness using the EVI, calculated in Google Earth Engine on the 
basis of Landsat 5 TM 32-Day composite imagery from 1984 to 201281. 
We considered the EVI to be associated with metrics of precipita-
tion, aridity, natural patch density and latitude, based on an arbi-
trary cut-off of Pearson’s coefficient > 0.5 (Extended Data Fig. 5). 
Mean annual temperature (MAT) was derived from 1 km down-
scaled climate data for the 1981–2010 normal period produced by 
ClimateNA82 and was associated with mean summer temperature, 
potential evapotranspiration, aridity and latitude (Extended Data  
Fig. 5). The proportional amount of urban land-cover type across the 
entire city—what we refer to as regional urbanization (URB)—was asso-
ciated with regional agricultural and natural land-cover types, as well 
as the aggregation of urban land-cover patches (Extended Data Fig. 5). 
We measured city age (AGE) using the years since the approximate date 
of the earliest Euroamerican colonization or settlement of each city’s 
metropolitan area, following the methods of Aronson et al.9. Although 
we chose to model the effects of these four city-level characteristics 
on the basis of their hypothesized influences on among-city differ-
ences in local and regional mammal communities, such variation in 
communities among cities may further result from attributes of cities 
not included in this analysis (for example, human population density 
and precipitation).

Species trait covariates. We assessed among-species variation in spe-
cies occupancy and urbanization effects on the basis of species trait 
data for all 37 species sourced from the EltonTraits and PanTHERIA 
databases83,84. We selected two traits to serve as species-level covariates 
that are hypothesized to mediate species presence across urbanization 
gradients by influencing space use and habitat requirements26–29: body 
mass and carnivory (Supplementary Data 1). We log-transformed body 
mass, which was positively collinear with home range size (r = 0.57), 
and we calculated carnivory as the total percentage of the species’ 
diet consisting of vertebrate prey. For the seven species that represent 
assemblages of multiple taxonomic species (antelope ground squir-
rels, cottontail rabbits, flying squirrels, jackrabbits, grey squirrels, 
chipmunks and weasels), we calculated mean trait values among the 
known species in each assemblage.

Multi-city community occupancy model
We estimated site-level and city-level occupancy of all observed 
mammal species using a multi-city, multi-species occupancy model. 
Because the home range size of large mammal species included in 
this analysis probably exceeded the 1 km buffer between cameras, 
all resulting estimates of species occupancy or presence should 
be interpreted as ‘relative use’ rather than true occupancy15. On 
the basis of the multi-region community occupancy model struc-
tures described by Sutherland et al.37 and Tenan et al.85, our model 
estimates the probability that (1) a species is present in the species 
pool of a given city; (2) a species is present at a site in a city, given 
its presence in a city’s species pool; and (3) a species is detected at 
a site, given its presence.

City-level species presence. To model the occurrence of each of s in 
1, …, S species in each of r in 1, …, R cities, we treat ωs,r as a Bernoulli ran-
dom variable that denotes whether species s is in the species pool of city 
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r, and we let Ωr (the completeness of each regional species pool) be the 
probability that all S species are in the species pool of city r, such that

ω

s,r

∼ Bernoulli(Ω
r

) (1)

We further define the regional species richness (γr) as ∑S

s

ω

s,r

, rep-
resenting the number of species in the species pool of city r. If a species 
was ever observed in city r, then ωs,r was initially set to 1 (that is, pres-
ence). If a species was not observed in city r during the sampling period 
but is known to exist in the regional species pool on the basis of previous 
observation by UWIN partners or known species ranges (for example, 
Mammals of North America and the USGS Gap Analysis Project)86,87, 
then the model estimated ωs,r with uncertainty. We did not augment 
matrices of species occurrence in cities beyond the total number of 
observed species (S = 37) because the purpose of this study was to 
evaluate patterns of known species richness while correcting for imper-
fect detection, not to estimate numbers of unknown species.

We used the logit link to allow the completeness of the regional 
species pool (Ωr) to vary from the logit-scale intercept ̄Ω as a function 
of standardized among-city (regional) covariates (mEVI, mMAT, mURB and 
mAGE), such that

logit(Ω
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where the ̄Ω and slope terms (θ) were all given vague normal priors (for 
example, ̄Ω ∼ Normal (0,

1

√

0.1

)

).

Site-level species presence. The second level of the model estimated 
species presence at a site in a city given that a species is in that city’s 
species pool. For j in 1, …, J sampled sites in city r, let zs,j,r be a Bernoulli 
random variable that takes the value of 1 when species s is present at site 
j in city r and is otherwise zero. Furthermore, let ψs,j,r be the probability 
of occupancy such that

z

s,j,r

∼ Bernoulli(ψ

s,j,r

× ω

s,r

) (3)

Given this specification, if a species is not in a city’s species pool, 
then ψs,j,r × ωs,r = 0 and species s cannot be present at any of the j sites 
of city r. We used partial pooling among cities and species to esti-
mate ψs,j,r, which we also made a function of among-city covariates  
(mEVI, mMAT, mURB and mAGE), within-city covariates (mUrbanization, mPatchDensity 
and mAgriculturalFootprint) and the interactions between the two (for example, 
mEVI × mUrbanization) via the logit link, such that
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(4)

where each φs,r represents each species’ city-specific logit-scale occu-
pancy intercept and slope parameters and ∈

Year,t

 estimates variation 
in occupancy associated with the individual sampling year t = 1, …, 5 
(2016–2020). We further let each species’ occupancy and relationship 
with within-city urbanization vary from community-level (that is, 
among-species average) hyperparameters β on the basis of species-level 
traits. In the model, among-species covariates were assumed to 

partially influence the degrees to which each species’ occupancy within 
a city φ0,s,r and among-city average relationship with urbanization 
δUrbanization,s both vary from their respective community-average mean 
parameters β0 and βUrbanization.
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(5)

where βOccupancyMass, βOccupancyCarnivory, βUrbanizationMass and βUrbanizationCarnivory are 
community-level slope terms representing the effects of species traits 
on occupancy probabilities and relationships with urbanization. We 
used a near-identical hierarchical parameterization for all intercept, 
slope and error terms in equations (4) and (5). As such, we explain only 
the model intercept prior specification, which was

β
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∼ Normal(0, 1.5)
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(6)

where β0 is the global logit-scale average intercept across all cities and 
species; δ0,s is the species-specific, city-averaged logit-scale intercept 
that varies around β0 via the standard deviation term σ

β

0

; and φ0,s,r is 
the species-specific and city-specific logit-scale intercept that varies 
around δ0,s via the standard deviation term σ

δ

0,s

.

Site-level species detection. The third and final level of the model 
accounted for imperfect detection. Let ys,j,r be a binomial random vari-
able that is the number of days species s was observed at site j in city r, 
ks,j,r be the total number of days a camera trap was functional and ρs,j,r 
be the probability a species is detected given its presence, such that

y

s,j,r

∼ Binomial(ρ

s,j,r

× z

s,j,r

, k

s,j,r

)

logit(ρ

s,j,r

) = η

0,s,r

(7)

where η0,s,r is the species-specific and city-specific logit-scale parameter 
for detection probability. We specified priors for the detection inter-
cept parameters following a hierarchical parameterization identical to 
that of the occupancy parameters shown in equation (6).

Model fitting. We implemented our multi-city community occupancy 
model in a Bayesian framework using R version 4.0.1 (ref. 75) and JAGS 
version 4.3.0 (ref. 88). Following a 10,000-step adaptation and a 
120,000-step burn-in, we sampled the posterior of each model 180,000 
times across three chains. We thinned each chain by 3 to reduce com-
plexity in monitoring the model parameters, resulting in a total of 
60,000 posterior samples. We verified convergence by examining the 
Gelman–Rubin diagnostics ( ̂

R < 1.1) and by visually inspecting trace-
plots for all modelled parameters89.

Deriving species richness and diversity. We used the model to predict 
two site-specific Hill numbers (qD) that correspond to two common 
biodiversity metrics: species richness (q = 0, the absolute sum of spe-
cies present) and species diversity (q = 1, an exponentiated Shannon 
entropy index)85,90. Parameter estimates from 10,000 posterior sam-
ples were randomly extracted from the model and used to predict 
occupancy probabilities (ψs,j,r) and latent occupancy states (zs,j,r) for 
each species at each site. Species richness (0D) was derived as the sum 
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of all species occupancy states at that site15,91. Following the methods 
of Broms et al.92 and Tenan et al.85, we used occupancy estimates as 
stand-ins for abundance in the calculation of species diversity85,92. We 
chose the metric of species diversity (1D) as a representation of the 
effective number of species in a manner that accounts for the rela-
tive abundance of species at each site, with greater values of species 
diversity indicating both higher species richness and higher evenness.

Community composition meta-analysis
Treating the species richness and diversity estimates derived from 
the multi-city community occupancy model above as metrics of local 
community composition, we then modelled community composition 
in relation to within-city and among-city covariates using a Bayesian 
meta-analysis approach. We used two log-link generalized linear mod-
els to allow species richness (0D) and species diversity (1D) to individu-
ally vary as functions of the same set of covariates from the multi-city 
community occupancy model (for example, within-city covariate 
mUrbanization, among-city covariate mEVI and the combined interaction 
between the two mEVI × mUrbanization), such that
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(8)

where ∝0,j is the log-scale intercept of each community composition 
metric, the remaining ∝ terms are slope parameters representing the 
effects of each covariate or combination of covariates, and ∈j,r is an 
additional error term that allowed each data point to vary from the 
modelled relationship (that is, the standard residual error term in a 
log-linear model). All intercept and slope parameters were given vague 
normal priors (for example, α0,r ~ Normal(0, 10)). We parameterized 
normal priors for qD on the basis of ̄

D and σD, which respectively cor-
respond to the mean and standard deviation of 10,000 site-specific 
composition estimates. As such, this model propagates the uncertainty 
of species richness and diversity estimates from the occupancy model 
into this secondary analysis.

Evaluating modelled covariate relationships
We evaluated the hypothesized influences of the model covariates in 
the multi-city community occupancy and diversity models by exam-
ining the posterior distributions of each covariate’s random slope 
parameters. For each covariate effect parameter, we used the propor-
tion of the posterior estimates sharing a sign (positive or negative) 
with the mean of the estimates (f statistic) to represent the probability 
of a substantial occupancy–covariate relationship being present. For 
instance, if 90% of the posterior distribution of a slope parameter had 
a negative value, then we considered there to be a 90% probability of 
detecting a negative relationship, though the magnitude of that nega-
tive relationship may vary. We additionally assessed the likelihood of 
covariate relationships using the CRIs and whether or not they over-
lap zero. In multilevel models such as ours, estimates of lower-level 
random parameters (for example, our species-specific parameters) 
tend to be drawn towards the mean value of the upper-level param-
eters from which they are derived (for example, our community-mean 
parameters), resulting in the shrinkage of lower-level parameters93. 
When necessary to account for the effect of parameter shrinkage in 

our models, we utilized multiple confidence levels in our terminology 
when referencing the likelihood of detecting informative covariate 
slope parameters, referring to relationships with >85% probability 
as ‘likely’ and relationships with >95% probability as ‘highly likely’29,94.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data that support the findings of this study and that were used in 
the production of all figures are publicly available on Zenodo at https://
doi.org/10.5281/zenodo.8083504.

Code availability
All code that supports the findings of this study and that was used in 
the production of all figures is publicly available on Zenodo at https://
doi.org/10.5281/zenodo.8083504.
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Extended Data Fig. 1 | Community-average occupancy probability, species 
richness, and species diversity across gradients of local environmental 
predictors. a-c, urbanization. d-f, natural patch density. g-i, agricultural 
footprint. Across 725 sites in 20 North American cities, we used a Bayesian 
multi-city community occupancy model and accompanying community 
composition meta-analysis models to estimate the local, within-city response 
variables community-average occupancy (a,d,g), species richness (b,e,h) and 
species diversity (c,f,i). These three response variables respectively refer to the 
average probability of site use among the mammal community, the total number 
of species at each site (Hill Number 0), and the number of species at each site 

weighted by species evenness (the exponentiated Shannon index; Hill Number 1).  
Based on modeled effects of within-city variables on occupancy (Table 1, Effect 
Type 1) and on richness and diversity (Table 2, Effect Type 1), we predicted 
occupancy, richness, and diversity values across hypothetical ranges of each 
within-city variable, with all other variables held constant at their mean values; 
we then represented the median and 95% Bayesian credible interval of these 
predicted values using the trendlines and their corresponding shaded regions. 
The points and bars correspond to the mean and 95% CRI of 10,000 posterior 
estimates of richness and diversity at each camera site, based on actual ranges of 
within-city variables.
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Extended Data Fig. 2 | Regional species richness in relation to regional 
environmental covariates. a-d, vegetation greenness (a); temperature (b); 
urbanization (c); and city age (d). Estimates of regional species richness γr were 
calculated as the sum of predicted species presence values within each of 20 
cities (γ

r

=

∑

S

s

ω

s,r

), using the probability of regional species presence Ωr to 
correct observed species richness for the region-wide imperfect detection of 
species. Points correspond to each city’s mean value of γr across 60,000 Bayesian 
posterior estimates. Trendline and shaded region respectively depict the median 

and 95% Bayesian credible interval of γr predicted across hypothetical ranges of 
among-city covariate values, where all other covariates were held constant at 
their mean. We represented regional vegetation greenness using the Enhanced 
Vegetation Index (EVI), regional temperature corresponds to mean annual 
temperature (in °C), regional urbanization was estimated as the city’s overall 
percentage of urban land cover types, and we measured city age as the 
approximate number of years since Euroamerican colonization of the 
metropolitan region.
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Extended Data Fig. 3 | Influences of species traits on site-level mammal 
occupancy. a, body mass, represented by the log-transformed mean body mass 
of each species (in kg). b, carnivory, calculated as the percentage of vertebrate 
prey in each species’ diet. Each point and bar respectively represent the mean 
and 95% Bayesian credible interval (CRI) of estimated occupancy probabilities 

for 29 mammal species commonly detected across 725 camera sites in 20 North 
American cities (excluding eight species detected in fewer than 10 total trap-
days). Trendline and shaded region depict the median and 95% CRI of response 
variables predicted across a hypothetical range of trait values. Results primarily 
demonstrate that more carnivorous species are generally rarer.

http://www.nature.com/natecolevol


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-023-02166-x

Extended Data Fig. 4 | Collinearity between pairs of local (within-city) 
covariates. Within-city covariates include local urbanization, natural patch 
density, and agricultural intensity across 725 sites in 20 North American cities. 
The diagonal cells of the figure depict the frequency distribution of values for 

each covariate, upper-right half of the figure depicts the Pearson correlation 
between each pair of covariates, and the lower-left half visualizes each 
correlation in the form of a scatterplot.
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Extended Data Fig. 5 | Collinearity between pairs of regional variables of 20 
North American cities. The diagonal cells of the figure depict the frequency 
distribution of values for each variable, upper-right half of the figure depicts  
the Pearson correlation between each pair of variables, and the lower-left  
half visualizes each correlation in the form of a scatterplot. We selected four 
variables to include in our final analysis as among-city covariates: vegetation 
greenness, mean annual temperature, regional urbanization, and city age.  
EVI = Enhanced Vegetation Index; PET = potential evapotranspiration;  

MAT = mean annual temperature; MAP = mean annual precipitation;  
MST = mean summer temperature; MSP = mean summer precipitation;  
CMD = climatic moisture deficit; URB = urban land cover (regional urbanization); 
AGR = agricultural land cover (regional agricultural area); NAT = natural land 
cover; FOR = woody vegetation (forest, shrubland) cover; PD = natural patch 
density; AGE = city age (years since colonization); LAT = latitude of city center; 
LON = longitude of city center.
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Extended Data Table 1 | Summary characteristics of 20 study cities included in the analysis of mammal presence and community composition.  
Species observation data from each city were collected via motion-triggered camera traps during the same 35-day summer period within different sampling years within 
different study areas. We represented sampling effort of each city using the total number of sites sampled and the across-site sum of its camera trap-days, the number 
of days in which each site was functional and collecting data. Total sampling effort was 20,176 camera trap-days across all 725 sites. We used four regional environmental 
variables to differences in among-city environment in our analysis: regional vegetation greenness (Enhanced Vegetation Index; EVI); regional temperature (mean annual 
temperature, in °C; MAT); regional urbanization (% urban land cover; URB); regional city age (years since colonization; AGE)
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