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We propose an on-axis deflectometric system for the accurate
measurement of freeform surfaces with large slope ranges.
A miniature plane mirror is attached on the illumination
screen to fold the optical path and achieve the on-axis deflec-
tometric testing. Due to the existence of the miniature folding
mirror, the deep-learning method is applied to recover the
missing surface data in a single measurement. Low sensi-
tivity to the calibration error of system geometry and high
testing accuracy can be achieved with the proposed system.
The feasibility and accuracy of the proposed system have
been validated. The system is low in cost and simple in con-
figuration, and it provides a feasible way for the flexible and
general testing of freeform surfaces, with a significant poten-
tial of the application in on-machine testing. © 2023 Optica
Publishing Group

https://doi.org/10.1364/OL.486170

Freeform optics have been widely used in high-performance
optical systems as they provide additional degrees of free-
dom for optimization. However, due to the loss of rotational
symmetry and high slope range in surface profile, it is very
challenging to achieve the freeform surface testing with high
accuracy and flexibility. As a non-contact and full-field metrol-
ogy method, interferometry can achieve accurate surface testing
of the order of subwavelength. However, it is limited in measur-
able dynamic range and flexibility, and additional null optics,
such as a computer-generated hologram (CGH) [1], are required
for the testing of surfaces with large slope ranges. Such null
optics are expensive to fabricate and only work for one specific
tested surface, and it is also difficult to adjust the null position,
making them inflexible and unsuitable for testing the freeform
surfaces with large slope ranges.

Deflectometry has been investigated as a promising approach
for freeform surface testing, as it has both large slope dynamic
range and simple system configuration. In 2004, Knauer,
Kaminski, and Hausler proposed phase-measuring deflectom-
etry (PMD) [2] to measure a freeform surface for the first time.
Since then, PMD has been intensively studied and widely applied
in many areas, such as specular surface inspection [3], deforma-
tion measurement [4], and refractive surface reconstruction [5].
A typical PMD system generally consists of a liquid crystal dis-
play (LCD) screen, a camera, and the surface under test (SUT).
To retrieve the surface profile from the captured images, the

system geometry needs to be well calibrated, and then the sur-
face slope can be calculated and integrated to reconstruct the
tested surface. The testing accuracy of PMD highly depends
on the achievable accuracy in system geometry calibration, and
additional surface measurement error (especially low-frequency
surface error) could be introduced due to inaccurate calibration
(geometric error) [6]. To address this issue, various methods
have been proposed to minimize the effect of geometric error.
One type of the method is computer-aided calibration, including
the model-based PMD (MPMD) [7] and computer-aided reverse
optimization [6,8]. In these methods, various merit functions
are defined to optimize the system geometry parameters, and
the geometrical aberrations can be effectively removed based on
the calibrated geometry parameters. These methods are easy to
perform, however, overcorrection may exist and could introduce
residual geometrical aberrations. Another approach is to employ
the on-axis system configuration, by which the testing is much
less sensitive to geometric uncertainty relative to that in the tra-
ditional off-axis configuration [9]. It provides a feasible way to
address the system miscalibration. In addition, the camera can
capture the SUT perpendicularly, making the measurement free
from perspective distortion. This configuration is also preferable
in stereo deflectometry as it greatly reduces shadows caused by
discontinuities in the SUT and makes the system more compact
[10,11]. The existing on-axis configurations of PMD systems
are built based on a beam splitter [9,11,12], which is applied
to combine the two optical axes in the fringe-illumination path
and imaging path. The geometry sensitivity can be significantly
reduced with this configuration. However, its effective work-
ing space is limited by the dimension of the beam splitter and
an additional systematic error could be inherently introduced
due to the thickness and shape variation of the beam split-
ter. To minimize the effect of the beam splitter, a high-quality
beam splitter with additional calibration is generally required,
making the system setup costly and measurement process
complicated.

In this Letter, a novel on-axis deflectometric system (ODS) is
proposed for the accurate freeform surface measurement. Instead
of using a traditional beam splitter to build the on-axis configu-
ration, the proposed ODS uses a miniature plane mirror, which
is attached on the illumination screen, to fold the optical path.
Thus, the limited working space and inherent systematic error
from the beam splitter can be avoided. Furthermore, a distortion-
corrected imaging system is aligned on the folded optical axis to
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Fig. 1. Schematic of the ODS: (a) system layout and (b)
measurement principle.

record the deformed pattern reflected by the SUT. Both a high
measurement accuracy and large slope dynamic range can be
achieved with the ODS. In addition to being much less sensitive
to geometric error relative to the off-axis configuration, the ODS
is low in cost and easy to operate, making it extremely promis-
ing for the accurate, flexible, and general testing of freeform
surfaces.

The schematic configuration of the proposed ODS is shown
in Fig. 1(a). An LCD illumination screen (INNOCN 27C1U,
resolution, 3480× 2160; pixel size, 0.1554 mm) is aligned with
the optical axis of SUT and illuminates the SUT with coded
sinusoidal fringe patterns. A miniature folding plane mirror M
(diameter, 2 mm; flatness, 78.6 nm) is attached on the screen
to fold the optical path. The reflected deformed fringe from
the SUT is collected by a distortion-corrected imaging lens
group consisting of four doublet lenses L1–L4 (L1 and L2,
Thorlabs AC508-150-A; diameter, 2′′; L3 and L4, Thorlabs
AC254-050-A; diameter, 1′′) and imaged on a CCD camera
(PointGrey, FL3-U3-13S2M-CS; resolution, 1328× 1048; pixel
size; 3.63µm). To reduce the distortion in the imaging, an
adjustable pinhole is placed at the conjugate position of the
mirror M between the lenses L2 and L3 to form a symmetrical
optical system, in which the transversal aberrations before and
after the stop have opposite signs. M and L1 are the entrance
pupil and field aperture, respectively, and the maximum mea-
surable surface diameter is approximately 82 mm. With a finite
size of the aperture, a pinhole camera model can be used to
uniquely define the mapping relationship between the incident
and reflected rays on the SUT. The wavefront reconstruction
principle of ODS is similar with that of a typical PMD sys-
tem [13], except that our camera and SUT are aligned on-axis.
Sinusoidal fringes in the x and y directions at three different
frequencies are displayed on the illumination screen to illumi-
nate the SUT. The absolute phase distribution corresponding to
the distorted fringe patterns can be retrieved with a temporal
phase unwrapping algorithm [14] to determine the incident and
reflected rays on the SUT, from which the tested surface can be
reconstructed.

The principle of the ODS can be interpreted as a reverse
Hartmann test, as is shown in Fig. 1(b). The rays start from the
center of mirror M, then are reflected by the SUT, and finally
reach the screen plane, which results in a spot distribution (xactual,
yactual). By building an ideal system model corresponding to the
actual system configuration, the ideal spot distribution (xideal,
yideal) can be obtained with ray tracing from the aperture to screen
plane. The SUT surface error can be obtained with a virtual null
testing. By comparing the actual and ideal spot distributions, we
have the slope of the surface error according to the transverse

ray aberration model [15]:{︃
∆wx = ∂W(x, y)/∂x ≅ −∆xspot/dm2scr

∆wy = ∂W(x, y)/∂y ≅ −∆yspot/dm2scr
, (1)

where dm2scr is the distance between the SUT and illumination
screen, ∆xspot = xactual − xideal ,∆yspot = yactual − yideal ; (∆wx, ∆wy)
are the slopes of the surface error in x and y directions, and
W(x, y) is the wavefront aberration. The tested surface error
can be obtained by integrating the slopes (∆wx, ∆wy). The ODS
provides a flexible way for accurate freeform surface testing with
a large slope range.

There are three key performance parameters in the ODS, those
are the slope range ξs, spatial resolution δx, and angular reso-
lution δα . The slope range δs is determined by the illumination
screen size Lscr and the distance dm2scr between the SUT and illu-
mination screen, and we have the slope range ξs = Lsrc/2dm2scr.
There is a trade-off between the spatial and angular resolutions
[2], which can be expressed as δxċδα = πλ/Q, where λ is the illu-
mination wavelength and Q is the system quality factor related
to the signal-to-noise ratio (SNR). The ideal spatial resolution
δx is given by the diffraction limitation, δr = 1.22λ/D, where D
is the diameter of the entrance pupil. The angular uncertainty is
δα = δpixel Uphase /2dm2scr [13], where δpixel is the pixel pitch of the
illumination screen and Uphase is the phase uncertainty. Thus, we
have the slope dynamic range ξs = 0.98 rad, spatial resolution
δr = 0.057 mm, and slope resolution δa = 4.6µrad, correspond-
ing to the given the phase uncertainty Uphase = 0.01 pixel, screen
size Lsrc = 335.6 mm, screen pixel size δpixel = 0.1554 mm, dis-
tance dm2scr = 170 mm, aperture diameter D = 2 mm, and central
illumination wavelength λ = 0.55µm.

The calibration of the system geometry, including the posi-
tions and orientations of the SUT, illumination screen, and
camera aperture, is a key issue in traditional PMD. Miscali-
bration of the system geometry could introduce a significant
residual error in the final result. To validate the flexibility of the
proposed ODS, a ray-tracing-based simulation was performed
to analyze the effect of the system geometry uncertainty on the
traditional off-axis PMD and the ODS, in which the SUT was
a 1-inch aspheric mirror with the conic constant K = −0.8 and
radius R = 25 mm. The distance between the SUT and illumi-
nation screen, and that between the SUT and camera aperture
in z direction are 170 mm and 165 mm, respectively, and the
off-axis distance h of the camera varies from 0 to 150 mm (cor-
responding to the change from on-axis configuration to off-axis
configuration with various off-axis distances). Without loss of
generality, the camera is set to be off-axis in the x direction. The
lateral displacement uncertainty of the camera in the x and y
directions are both 0.1 mm, and the tilt angle uncertainty of the
illumination screen about the x and y axes are both 0.05 degrees.
The wavefront error introduced by the geometry uncertainty
could be represented with Zernike polynomials {Zi}. Figure 2
shows the low-order aberrations introduced by various geomet-
ric errors under different off-axis distances, where the Zernike
terms Z5–Z11 refer to astigmatism x and y, coma x and y, trefoil
x and y, and primary spherical aberration, respectively. It can be
seen from Fig. 2 that, as the system departures from the on-axis
configuration, the low-order aberrations, especially astigmatism
and coma, grow significantly with off-axis distance of the cam-
era. For the off-axis configuration with 150-mm off-axis distance
of camera, the 0.05° tilt error about the y axis would introduce
0.43-µm astigmatism, 0.20-µm coma, 0.09-µm trefoil, and 0.05-
µm primary spherical aberrations, respectively; however, there
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Fig. 2. Sensitivity to geometric uncertainties of PMD. Aberra-
tions induced by 0.1-mm camera position uncertainty in (a) x and
(b) y directions, and those induced by 0.05° screen tilt uncertainty
about the (c) x and (d) y axes.

are only 0.06-nm astigmatism, 28-nm coma, 0.02-nm trefoil, and
0.003-nm primary spherical aberrations in the on-axis configu-
ration with the same angle of uncertainty. In the case of the ODS
with an on-axis configuration, all the low-order aberrations,
except for coma (which is very small compared to that of the off-
axis configuration), induced by various geometric uncertainties
are restricted to near zero. Therefore, the on-axis configuration
design makes the ODS much less sensitive to geometric errors,
where the low-order aberrations, especially astigmatism due to
geometry miscalibration, can be well restricted.

To demonstrate the feasibility and high accuracy of the ODS,
an aspheric mirror with the conic constant K = −0.8 and radius
R = 25 mm was measured with the system. The distance dm2scr

between the SUT and illumination screen is approximately 170
mm, and the working distance of the camera is 165 mm. The
system geometry was calibrated using a coordinate measuring
machine (TESA micro-hite 3D; accuracy, 7.0µm), and the imag-
ing system was calibrated with Zhang’s method [16]. Figure 3(a)
shows the surface map measured with the ODS, with the peak-
to-valley (PV) and root mean square (rms) values of 2.3135µm
and 0.6361µm, respectively. For comparison, the tested surface
has also been measured with a Zygo Verifire interferometer, and
the obtained surface map is shown in Fig. 3(d), with the PV
and rms values of 2.1933µm and 0.6299µm. To verify the low
sensitivity of the ODS to the calibration error of the system
geometry and its flexibility in practical application, an addi-
tional geometrical error (AGE), including with a 10-µm lateral
displacement error of camera and a 0.05° tilt error of illumina-
tion screen about the y axis, was added in the ray-tracing model,
with the obtained surface map being shown in Fig. 3(b). To

Fig. 3. Measured surface maps of an aspheric surface: (a) pro-
posed ODS; (b) ODS with AGE; (c) off-axis configuration; and (d)
Zygo interferometer.

Fig. 4. Comparison of Zernike coefficients in the testing of an
aspheric mirror.

Fig. 5. Measurement results of a freeform surface. (a) Nominal
surface. (b) Measured surfaces with the ODS. (c) Interferogram
acquired with Zygo interferometer.

further show the advantage of the ODS over the off-axis con-
figuration, the SUT was shifted in the x direction for 100 mm,
and additional measurement with the re-calibrated off-axis sys-
tem was performed, with the measurement result being shown in
Fig. 3(c) (PV= 2.7598µm, rms= 0.6854µm). Figure 4 presents
the comparison of the Zernike coefficients (Z5–Z15) of the meas-
ured surface maps in Fig. 3. From Figs. 3 and 4, we can clearly
see that the measurement result obtained with the ODS agrees
well with that of the Zygo interferometer, and the difference
in rms value is 0.0062µm, indicating the feasibility and high
accuracy of the proposed ODS. The geometrical aberration in
the ODS is much less than that of the off-axis configuration. In
addition, even though an additional calibration error is added,
the change in the reconstructed surface is only of the order of
nanometers, demonstrating the low sensitivity of ODS to geo-
metric errors. It should be noted that a minor deviation from the
Zygo result in the low-order Zernike coefficients can be seen in
Fig. 4, and it is mainly caused by the slight system misalignment.

To further validate the feasibility of the ODS for the freeform
surface testing with a large slope range, a diamond-turning
freeform surface with the conic constants Kx = −2 and Ky =

−1, radius Rx = 23.5 mm and Ry = 26.5 mm was measured.
Figure 5(a) shows the nominal surface map of the tested
freeform surface, whose PV and rms values are 44.2481µm and
9.3376µm, respectively. The slope range of the tested freeform
surface is 0.2152 rad, and it exceeds the measurable range of a
conventional laser interferometer [with the acquired interfero-
gram being shown in Fig. 5(c)]. Figure 5(b) shows the surface
map measured with the ODS, with the PV and rms values of
45.0240µm and 9.3556µm, respectively. The comparison of
the Zernike coefficients for the nominal surface map and the
surface measured with the ODS is given in Fig. 6. According to
Figs. 5 and 6, a good agreement between the nominal surface and
the measured one with ODS are achieved, with the rms differ-
ence being 0.0180µm. Therefore, the proposed ODS provides a
feasible way for the flexible testing of freeform surfaces.
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Fig. 6. Comparison of Zernike coefficients in the testing of a
freeform surface.

Fig. 7. Missing data recovery in the measured surface maps. (a)
Surface map with missing data. Recovered surface maps with (b)
spline interpolation, (c) stitching method, and (d) D-UNet.

The folding mirror M could introduce a measurement error
due to its imperfect surface shape. According to the ray-tracing
results, the rms of the introduced wavefront error from the flat-
ness of the mirror M is 1.24 nm, which is negligible. Due to the
existence of the folding mirror M attached on the illumination
screen, partial sampling rays from the screen to the SUT would
be blocked, resulting in the missing data in the central region of
the SUT [Figs. 3(a) and 5(b)]. Various solutions can be adopted
to address this issue, including the interpolation, stitching tech-
nique, and deep-learning method. Interpolation (such as spline
interpolation) is a direct and simple approach to filling the miss-
ing data; however, it fails in the case of a large missing region.
The stitching method requires an additional measurement to
acquire the missing surface data by laterally shifting the SUT.
As an efficient tool in image inpainting [17], the deep-learning
method provides a flexible approach to addressing the partially
missing data in the measurement, even feasible in the case of a
large missing region. The D-UNet network [18] can be applied
to retrieve the missing data due to the existence of the folding
mirror M in the ODS. This network uses full-scale skip connec-
tions to extract multi-scale features to achieve both high accuracy
and robustness. A dataset of 10,000 normalized surface maps
with missing data and additional Gaussian noise were randomly
generated, in which 8000 figures were used to train the network
and the other 2000 figures were assigned to the test dataset. The
rms of the difference between the prediction and ground truth
is set as the loss function to train the network, and the final
test loss is 6× 10−4, indicating that the trained D-UNet is high
in accuracy and robust to noise. Figure 7(a) shows the original
surface map (PV= 1.3615µm, rms= 0.2893µm) with missing
data in the central 10% region of Fig. 3(a), and Figs. 7(b)–7(d)
are the surface maps with the missing data recovered with the
spline interpolation (PV= 1.4159µm, rms= 0.2912µm), stitch-

ing method (PV= 1.3615µm, rms= 0.2903µm), and D-UNet
algorithm (PV= 1.3615µm, rms= 0.2906µm), respectively.
From Fig. 7, a better agreement between the recovered sur-
faces with the D-UNet algorithm and the stitching method (with
the result taken as the ground truth) can be observed relative to
that of interpolation, validating the reliability and flexibility of
the D-UNet algorithm for missing data recovery with a single
measurement in the ODS.

In conclusion, the proposed ODS provides an accurate, flex-
ible, and general way for the testing of freeform surfaces with
large slope dynamic ranges. Due to its on-axis configuration,
the proposed system is much less sensitive to system geomet-
ric error than the traditional off-axis PMD. In addition, the use
of a miniature folding mirror avoids the limitation in work-
ing space and inherent systematic error in the existing beam
splitter-based on-axis PMD, making the system low in cost
and simple in configuration. Both the high accuracy and large
slope dynamic range have been verified. It provides a powerful
tool for the flexible and general testing of freeform surfaces,
with a significant potential of the application in on-machine
testing.
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