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EC OLOG Y 

Where to live? Landfast sea ice shapes emperor penguin 
habitat around Antarctica 
Sara Labrousse1*, David Nerini2, Alexander D. Fraser3, Leonardo Salas4, Michael Sumner5, 

Frederic Le Manach6, Stephanie Jenouvrier7, David Iles8, Michelle LaRue9,10 

Predicting species survival in the face of climate change requires understanding the drivers that influence their 
distribution. Emperor penguins (Aptenodytes forsteri) incubate and rear chicks on landfast sea ice, whose extent, 
dynamics, and quality are expected to vary substantially due to climate change. Until recently, this species’ con- 
tinent-wide observations were scarce, and knowledge on their distribution and habitat limited. Advances in 
satellite imagery now allow their observation and characterization of habitats across Antarctica at high resolu- 
tion. Using circumpolar high-resolution satellite images, unique fast ice metrics, and geographic and biological 
factors, we identified diverse penguin habitats across the continent, with no significant difference between 
areas with penguins or not. There is a clear geographic partitioning of colonies with respect to their defining 
habitat characteristics, indicating possible behavioral plasticity among different metapopulations. This coin- 
cides with geographic structures found in previous genetic studies. Given projections of quasi-extinction for 
this species in 2100, this study provides essential information for conservation measures. 

 

Copyright © 2023 

The Authors, some 

rights reserved; 

exclusive licensee 

American Association 

for the Advancement 

of Science. No claim to 

original U.S. Government 

Works. Distributed 

under a Creative 

Commons Attribution 

License 4.0 (CC BY). 

 

 

INTRODUCTION 

Human actions are causing increased extinction of species around 
the world that is tens to hundreds of times higher than the average 
rate over the past 10 million years (1). There is an urgent need for 
understanding the processes that construct and maintain species 
habitats, to determine potential future refugia for threatened 
species, bring attention to their fate, and determine efficient conser- 
vation measures to safeguard them. The emperor penguin (Apteno- 
dytes forsteri) is an iconic Antarctic species that is threatened by 
climate change and associated sea ice losses over the past century 
(2, 3), as their breeding habitat is critically dependent on seasonal 
sea ice (4). Hence, only a drastic reduction in anthropogenic green- 
house gas emissions would reduce threats for this species, and 
failing to do so could result in important declines in emperor 
penguin populations (5–7). 

Since the inception of regular satellite monitoring in late 1978, 
Antarctic sea ice has shown an overall near-zero trend of surface 
extent, despite regionally contrasted variations and considerable in- 
terannual variability (8). Most climate models indicate that Antarc- 
tic sea ice extent should have decreased over the past several decades 
(9). However, multiple anthropogenic forcings (ozone and green- 
house gases) and complicated processes involving the ocean, atmo- 
sphere, and adjacent ice sheet are leading to low confidence in 
projections of Antarctic sea ice (10). As a result, models cannot 
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be used to characterize the sea icescape at high spatial resolution, 
as they for instance provide crude estimates of landfast ice, 
thereby hampering habitat modeling of sea ice–dependent 
species. Given that emperor penguins are sensitive to local and re- 
gionally contrasted sea ice conditions on the short to medium terms 
(10, 11), and given the complexity of the main drivers of Antarctic 
sea ice and limits of climate models, threats to emperor penguin on 
the short-term associated with sea ice changes are uncertain and 
difficult to predict from one region to another. Therefore, we 
need to understand the diversity of habitats and fine scale parame- 
ters that shape emperor penguin presence in Antarctica. 

Emperor penguins are, throughout their breeding period, intri- 
cately linked to landfast ice (henceforth, “fast ice”), i.e., the narrow 
band of coastal, compact sea ice that is held in place by ice shelves 
and grounded icebergs (12). Unfortunately, measuring and model- 
ing fast ice remains challenging at the circumpolar scale (13, 14), 
and trends in coastal fast ice may be independent of those in sea 
ice extent (2). Loss of fast ice such as early breakout can cause 
massive breeding failure and even adult mortality in emperor pen- 
guins (5, 15). The importance and medium-term impact of occa- 
sional massive perturbations are only now becoming apparent 
(16, 17). 

We sought to describe the habitat of emperor penguins through 
an approach that helps identify the underlying processes construct- 
ing and maintaining those habitats. Here, we first investigated the 

diversity of habitats shaping the presence of emperor penguin 
around Antarctica based on unique fast ice extent and variability 
data, intra/interspecific trophic competition factors, and geography. 
The first part of our study was made possible by the recent pub- 

lication of a new, unique time series of fast ice extent from March 
2000 to March 2018 (18), which contains 432 contiguous maps of 
fast ice extent at a 1 km and 15-day resolution. This dataset, created 

from NASA Moderate Resolution Imaging Spectroradiometer 
(MODIS) sensors onboard the Terra and Aqua satellites (19, 20) 
is revolutionizing the way emperor penguin habitat can be charac- 
terized. We assumed that changes in fast ice persistence, seasonality, 
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timing of the maximum and minimum extents, and frequency of 
breaking out would influence where the emperor penguins would 
settle their breeding colonies. We also assumed that intraspecific 
competition may determine the distribution of emperor penguin 
colonies around Antarctica [colonies are evenly spaced 220 km 
apart; (21)]. Similarly, we hypothesized that interspecific trophic 
competition [trophic competitors are Adélie penguins (Pygoscelils 
adeliae) and Weddell seals (Leptonychotes weddellii)] may deter- 
mine the geography locations of emperor penguin colonies (21, 
22). Last, geography such as the slope of the bathymetry, distance 
to certain isobaths, and ocean depths may aggregate prey where 
local upwellings stimulate primary production (23). Previous 
work suggests that regions with particular bathymetric features 
over or near the continental slope were prime foraging habitat for 
emperor penguins during the breeding season (24–29). Thus, geog- 
raphy is an important parameter to consider regarding emperor 
penguin habitat around Antarctica. 

Species distribution combined with interdisciplinary science 
(short-term sea ice dynamics, geographic, and trophic competition) 
are essential for understanding ecological responses and population 
viability to their environment widely, but also at a regional scale. 
Here, we assess the habitat-species relationships of emperor 
penguin and emphasize the importance of considering metapopu- 
lations with hypothesis on their behavioral plasticity and dispersal 
abilities as adaptive tools against habitat change locally and at re- 
gional scales, which are of important consequences for manage- 
ment and conservation on decadal time frames. 

 
RESULTS 

The developed approach for the study of emperor penguin habitat 
relies on two main methods (see details in Methods and Discus- 
sion): principal component (PC) analysis (steps 1 and 3 of Fig. 1) 
of the environmental variables and a Bayesian statistical approach 
for classification (model-based clustering, steps 2 and 3 of Fig. 1). 
PC analysis on the 177 presence data was conducted on 13 input 
variables (three geographic, seven fast ice, and three biological var- 
iables; step 1 in Fig. 1). The analysis revealed that physical variables, 
including fast ice persistence, its magnitude, and the slope of the 
bathymetry best describe variation in emperor penguin habitat, ac- 
counting for 32% of variability. The first PC axis explained 19% of 
variance in habitat conditions across occupied colonies, and loaded 
heavily on fast ice variables: fast ice persistence (contribution of 
28%; cos2 of 0.7; Fig. 2) and the magnitude of the fast ice annual 
cycle (contribution of 22%; cos2 of 0.55; Fig. 2). Positive values on 
this axis describe colonies with greater fast ice persistence and 
greater amplitude in the magnitude of the fast ice annual cycle. 
The second PC axis explained an additional 13% of variance in 
habitat conditions and loaded heavily on the slope of the bathyme- 
try (contribution of 27%; cos2 of 0.47; Fig. 2). Positive values on this 
axis correspond to greater slope index. The third PC explained an 
additional 11.08% (fig. S1) and was represented by the distance to 
Adélie penguin colonies (contribution of 36%; cos2 of 0.51) and the 
distance to isobath 800 m (contribution of 32%; cos2 of 0.22). Pos- 
itive values on this axis correspond with short distance to Adélie 
penguin colonies and long distances to the isobath 800 m. 

Absence observations were then projected in the space of the 
previous PC analysis so as to summarize the 13 variables in compos- 
ite PC coordinates (step 3 in Fig. 1). Displaying the first three PC 

coordinates of colony locations into geographical space allows visu- 
alizing spatial patterns in conditions that are consistent with the 
presence of emperor penguin colonies. Some spatial structure 
arises and are described in fig. S2. 

Colonies were then clustered into a small number of classes that 
share similar environmental conditions by running a model-based 

clustering (step 2 in Fig. 1) analysis using coordinates of the first 
four PC (corresponding to 55% of the cumulated variance; fig. 
S1). The model proposed five clusters (log likelihood of 1109, 
Bayesian Information Criterion (BIC) of 2384, Integrated Complete 
Likelihood (ICL) of 2430, n = 177, and df = 32) composed of 49, 
47, 8, 20, and 53 emperor penguin presence observations, respec- 
tively. Taking an arbitrary threshold of 80% certainty of cluster at- 

tribution, 50 colonies of 55 were assigned a cluster (Figs. 3A and 4), 
and among those 50, three colonies (Alexander Island, Bowman 

Island, and Dresher) can be assigned to two clusters. The five col- 
onies without cluster based on the 80% threshold were West Ice 
Shelf, Barrier Bay, Thurston Glacier, Cape Colbeck, and Cape 
Washington. When using a threshold of 59% certainty, all the 55 
colonies had an identified cluster. On the basis of the 80% threshold, 
clusters 1 through 5 had 15, 16, 3, 6, and 13 colonies, respectively. 
To identify regions sharing consistent environmental condi- 

tions, we then predicted those clusters on the absence data when 
projecting observations in the presence’s PC analysis space (step 3 
in Fig. 1). The geographic structure of these clusters for a given 
threshold above 80% is very similar to the one described for 

Fig. 3A (Fig. 3B). 
Last, to understand emperor penguin habitat requirements, we 

then represented for each cluster the range of value for each vari- 
ables for both presence and absence based on a threshold of 80% 
certainty (Fig. 5). All medians and SDs are available in table S1. Sig- 
nificance at 5% level between clusters for each variable is available in 
fig. S3 and table S2. For each cluster, presence data are not signifi- 
cantly different from absence data for the most contributing vari- 
ables (fig. S4 and table S3). We removed absence data within 
some range (10, 20, and 30 km) around each colonies and tested 
again the significance between absence and presence data for each 
cluster. The significance did not change [except for 30 km, one 
cluster (5) for only one variable (fast ice persistence); tables S4 
to S6]. 

We observed four geographical regions: (i) the region from 
Gould ( 47°W) to Ragnhild ( 27°E), named the Weddell sea 
region, was dominated by the first cluster; then (ii) the region 
from Gunnerus ( 34°E) to Dibble Glacier ( 135°E), the East Ant- 
arctica region, was dominated by cluster 5 with the exception of 
Kloa Point, Fold Island, and Taylor Glacier ( 60°E); (iii) in the 
region from Pointe Géologie ( 140°E) to Cape Crozier ( 169°E), 
the Ross Sea region, colonies were associated with cluster 2; and 
last, (iv) in the region from Cape Colbeck ( 157°W) to Smith 
( 60°W), the West Antarctic region, we found a mix of clusters 2, 
4, and 5 (Table 1 and Fig. 3A). Variables that explained habitat for 
emperor penguins in the different regions are described in Tables 1 
and 2. 

We then computed the probability to be close to high-density 
habitat areas (i.e., to be close to the center of the five clusters, exam- 
ples in Figs. 4 and 6A) and conditional probability to belong to a 
given cluster (examples in Figs. 4 and 6B), which provide some 
complementary information on the hard clustering (step 4 in 
Fig. 1). We found that the Weddell Sea region, for example, has 
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Fig. 1. Workflow of the design of the study composed of four main steps. A PC analysis is achieved on the correlation matrix of presence data (step I). Using four PCs of 

this analysis, parameters of the model-based clustering are estimated and presence data are clustered in five groups (step II). Absence observations are then projected in 

the presence’s PC analysis space and assigned to a single cluster given with model-based clustering (step III). Using the properties of the mixture Gaussian model pro- 

vided by the model-based clustering, a probability that measures the accuracy of the classification can be associated to each absence data and a probability that measures 

the closeness to optimal habitat conditions (step IV). 

 

mainly observations with a low probability of being close to high- 
density areas (dark blue areas), while they have a high probability to 
be classified in a given cluster (red areas; Fig. 6, A and B). In contrast 
the East Antarctic, Ross Sea and West Antarctic regions have many 
observations with a high probability of being close to high-density 
areas (red areas), while their certainty to belong to a given cluster is 
low in some particular pocket areas (white areas; Fig. 6, A and B). 

 
DISCUSSION 

Our study reveals that emperor penguins apparently use a range of 
different type of habitats, presumably, the habitat available to them 
when they were born. Crucially, we show that the different habitats 
were matching the four known genetic metapopulations (30). We 
did not find difference between habitats where emperor penguins 
are present or absent; however, our sample sizes may not be suffi- 
cient to correctly assess this difference. This study radically changes 
our perceptions of the “emperor penguin habitat,” which is gener- 
ally described as a unique type of habitat and indicates behavioral 
plasticity among different metapopulations of penguins. On the 
basis of the apparent absence of differences between absence and 
presence data, we hypothesized that intraspecific competition may 
be one of the most important factor conditioning the distribution of 
emperor penguin colonies around Antarctica as colonies are evenly 
spaced ( 220 km apart) around Antarctica (21). 

Previous studies have described the consequences of habitat var- 
iability on breeding success or population numbers of emperor pen- 
guins based on sea ice extent (6, 15, 31–33), fast ice extent (13, 34, 
35), wind strength, air and sea temperatures, fast ice extent and po- 
lynyas (36), or distance to neighboring colonies, polynyas, and sub- 
marine canyons (21). The latter suggested that the gaps between 
colonies may well represent areas where emperor penguins could 
move to if current locations become unfavorable/unavailable; the 
research here would support that result, since there is no apparent 
difference between the variables explaining absence or presence of 
emperors. However, previous studies mostly concerned one or two 
colonies, presence-only data, and were based on large temporal or 
spatial scales. Other studies have highlighted the consequences on 
breeding success or population numbers of extreme event or early 
fast ice break up (17, 37, 38), and most studies project population 
numbers based on large-scale sea ice extent from climate models (2, 
39). Our study is the first to describe and quantify the circumpolar 
emperor penguin habitats at fine scale, which was previously ham- 
pered by the difficulty to characterize fast ice at fine scale and over 
long time periods. 

Our methodology and results, based on a unique and unbal- 
anced set of presence/absence data, constitute a useful tool for char- 
acterizing habitat-species relationships and for identifying potential 
refugia in the future among a set of environmental variables for 
both terrestrial and marine animals. This tool is transient and 

D
o

w
n
lo

ad
ed

 fro
m

 h
ttp

s://w
w

w
.scien

ce.o
rg

 at U
n

iv
ersity

 o
f C

an
terb

u
ry

 o
n

 S
ep

tem
b

er 2
7

, 2
0
2
3
 

http://www.science.org/


SCIENCE ADVANCES | RESEARCH ARTICLE  

Labrousse et al., Sci. Adv. 9, eadg8340 (2023)  27 September 2023 4 of 13 

 

 

 

 

 
 

Fig. 2. PC analysis. Representation of the projection of the variables into the two- 

dimension space for the emperor penguin presence data. (A) represents the first 

and second components and (B) the variable contribution to variance considering 

the first two components. The first PC axis explained 19% of variance in habitat 

conditions across occupied colonies and loaded heavily on fast ice variables: fast 

ice persistence (contribution of 28%; cos2 of 0.7) and the magnitude of the fast ice 

annual cycle (contribution of 22%; cos2 of 0.55). Positive values on this axis de- 

scribe colonies with greater fast ice persistence and greater amplitude in the mag- 

nitude of the fast ice annual cycle. The second PC axis explained an additional 13% 

of variance in habitat conditions and loaded heavily on the slope of the bathyme- 

try (contribution of 27%; cos2 of 0.47). Positive values on this axis correspond to 

greater slope index. 

could be transferred and improved with the use of new variables and 
higher spatio-temporal resolution. 

The developed approach relies on two main methods: PC anal- 
ysis of the environmental variables (40) and a Bayesian statistical 
approach for classification [model-based clustering; (41)]. PC anal- 
ysis is a widely used method especially for the analysis of environ- 
mental data (40). In our case, this method presents two main 
advantages. First, it is a dimension reduction technique, which 
allows summarizing the set of environmental variables into a 
small number of composite variables (the PCs). It is especially 
advised in our case because the number of presence observations 
is quite low regarding the number of variables. Reducing the dimen- 
sion of variables gives more robustness to outlier observations (42), 
and is especially recommended before any classification purpose as 
the density of observations increases in a low-dimensional space. 
The second advantage of the PC analysis is its ability to easily 
project new observations sampled on every location in this 
reduced space of habitat. Absence data can be positioned condition- 
ally to the structure of the PC space of habitat conditions built on 
presence data and then easily compared. In the same way, the infer- 
ence step provided with the Bayesian approach used for clustering 
habitat conditions on presence data is also well suited when the 
number of observations is quite low. The construction of the 
mixture Gaussian model with some simple structure for covariance 
matrices reduces the number of parameters to be estimated. It gives 
the ability both to assign absence data to a single cluster of habitat 
condition and to associate some measure of uncertainty to this as- 
signment as probabilities. 

Among the different geographic, trophic competition, and fast 
ice variables, the most contributing variables explaining emperor 
penguin habitats were fast ice persistence, the slope of the bathyme- 
try, and the magnitude of the fast ice annual cycle. Fast ice variables 
appear to influence the emperor presence in a different way, de- 
pending on the habitat (cluster). Prediction of habitat clusters for 
absence data using the model-based clustering model built with 
presence data shows that emperor penguins inhabit regions with 
various fast ice characteristics: The Weddell Sea region had interme- 
diate fast ice persistence and low magnitude of annual cycle; East 
Antarctica was dominated by high fast ice persistence and high 
magnitude, and the Ross Sea was described by low fast ice persis- 
tence and low magnitude of the annual cycle. Such regional differ- 
ences in the direction of an environmental effect on a population/ 
species is not rare [see review by (43)], and habitat-species relation- 
ships were shown to vary between colonies, even for those hundreds 
of kilometers apart, for several species. Such examples include, e.g., 
Scopoli’s shearwaters (Calonectris Diomedea) at four colonies in the 
Mediterranean sea (44), Cassin’s auklet (Ptychoramphus aleuticus) 
in the southern and northern California currents (45), and snow 
petrels (Pagodroma nivea) at two different colonies in Antarctica 
(46). These studies, complemented by ours, raise the question of 
whether spatio-temporal extrapolation/transferability in habitat 
modeling is biologically meaningful, correct, and robust [see 
review by (47)]. For example, intrinsic predictability was shown to 
be spatially variable across populations of Adélie penguin (48). Even 
by using detailed times series across various colonies, the spatial 
forecast horizons for Adélie penguin breeding colonies were unex- 
pectedly short. 

Regarding the other fast ice variables with a contribution above 
20%, most clusters had low median fast ice extent (except cluster 3), 
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Fig. 3. Antarctic maps with habitat clusters displayed for each emperor penguin colony. (A) Hard clustering obtained with the model-based clustering on the 

presence data. (B) Hard clustering of absence data conditionally to model-based clustering on presence data. For (A), all colonies are assigned to a single cluster. For 

(B), only data with 80% certainty in the classification are represented. Four geographical regions were observed: (i) the region from Gould ( 47°W) to Ragnhild ( 27°E), 

named the Weddell Sea region, was dominated by the first cluster; then, (ii) the region from Gunnerus ( 34°E) to Dibble Glacier ( 135°E), the East Antarctica region, was 

dominated by cluster 5 with the exception of Kloa Point, Fold Island, and Taylor Glacier ( 60°E); (iii) in the region from Pointe Geologie ( 140°E) to Cape Crozier ( 169°E), 

the Ross Sea region, colonies were associated with cluster 2; and last, (iv) in the region from Cape Colbeck ( 157°W) to Smith ( 60°W), the West Antarctic region, we found a 

mix of clusters 2, 4, and 5. Black polygons on (A) refer to the four genetic metapopulations identified in (30). 
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Fig. 4. Model-based clustering display based on the four PC. Each color corresponds with one of the five identified clusters. The arrow with the letter “a” represents for 

one observation with a high probability to be close to the center of the five clusters (i.e., probability to be close to high-density habitat areas) but a low accuracy to belong 

to the red cluster. In contrast, the arrow with the letter “b” corresponds with a high accuracy to belong to the red cluster but a low probability to be close to high-density 

habitat areas. 

 

low volatility, and fast ice trend close to zero or a tendency to be 
negative for clusters 1, 3, and 4. These results are in agreement 
with all previous studies mentioning the need for a stable fast ice 
platform (i.e., no strongly negative trends and low volatility) and 
an easy access to foraging areas (i.e., short distances and low but 
nonzero fast ice extent) for feeding the chicks during the breeding 
season (13, 34, 49). Unexpectedly, most clusters had a timing of fast 
ice minimum later in the season (after March), but we are yet to find 
a biological reason. One possible explanation would be the existence 
of a stable platform early in the season for them to start breeding or 
shorter distance to walk to the colony location upon return in 
autumn/beginning of winter. Density dependence and trophic 
competition also differ between areas and may be correlated with 
local prey availability and/or whether these areas host other compet- 
itive species (i.e., Weddell seals or Adélie penguins). Distance to 
Weddell seals was not an important contributing variable; 
however, we did not take into account colony size, while in (50), 
they showed a relationship between distances to Weddell seals, spe- 
cifically, for large colonies of emperor penguins. Colonies with nu- 
merous birds were associated with lower presence of Weddell seals. 
Distance to Adélie penguin colonies appears to be an important 
contributing variable as we observed that emperor penguin colonies 
maintain a similar distance from Adélie penguin colonies (between 
15 ± 45 km and 64 ± 69 km on average), except for the Weddell Sea 

region (cluster 1). However, this latter result was expected, as there 
are few Adélie penguin colonies in this region (21, 50, 51). 

We do not know whether we are characterizing the fundamental 
niche or the realized ones, and the absence of differences (for most 
clusters and variables; despite the sample size) between presence 
and absence data may be associated with this question. Organisms 
do not always occupy all best suitable habitats (or conversely, they 
may occupy unsuitable ones), either as a result of dispersal barriers, 
gregarious behavior, anthropogenic disturbances, biotic exclusion 
(e.g., competition, parasitism), or simply because these habitats 
no longer exist (47). The emperor penguin presence data at our dis- 
posal may not always correspond to the best suitable habitats but 
rather to a combination of suitable environmental conditions (in- 
cluding the ones not taken into account), presence of physical bar- 
riers to access breeding sites such as ice shelves or icebergs, and the 
ratio between prey availability and intra/inter specific competition 
for resources. 

Here, we reveal the existence of a range of diverse habitats, and 
the four habitat regions that we identify (Fig. 3A) appear to corre- 
spond to four distinct genetic metapopulations identified by (30), 
leading to the conclusion that multiple, regional metapopulations 
existed rather than a single panmictic population. Cluster 1 corre- 
sponds to the Weddell Sea metapopulation, the three colonies asso- 
ciated with cluster 3 correspond to the Mawson coast 
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Fig. 5. Boxplots of each habitat cluster for each variable and for presence (lighter color) and absence (darker color) data. Only data with 80% certainty in the 

classification are represented. For illustration purpose, we removed the variable “distance to the nearest emperor penguin colony” as this distance is very similar among 

regions and between colonies as detailed in the Results and Discussion. For each cluster, presence data are not significantly different from absence data for the most 

contributing variables. Variables that explained habitat for emperor penguins in the different regions are described in Tables 1 and 2. 
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Fig. 6. Model-based clustering quality. (A) represents the probability to be close to high-density habitat areas (i.e., probability to be close to the center of the five 

clusters) and (B) represents a measure of accuracy to belong to a given cluster. For example, the Weddell Sea has mainly observations with a low probability of being close 

to high-density areas (dark blue areas), while they have a high probability to be classified in a given cluster (red areas). In contrast, the East Antarctic, Ross Sea, and West 

Antarctic regions have many observations with a high probability of being close to high-density areas (red areas), while their certainty to belong to a given cluster is low in 

some particular pocket areas. 
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metapopulation, cluster 5 to the East Antarctic coast metapopula- 
tion, and cluster 2 to the Ross Sea metapopulation (black polygons 
on Fig. 3A). Adaptation/plasticity to specific conditions (e.g., the 
three colonies on the Mawson coast) may be associated with specific 
genetic structure; the identified breeding populations and habitats 
should be considered as separate units for management and popu- 
lations projections (30), as certain metapopulations may be able to 
survive in certain conditions and others not. We posit that regions 
with a mixture of different habitat clusters may represent regions 
where emperor penguin dispersal have mixed the genetic structure 
[for example, the region from Cape Colbeck ( 157°W) to Smith 
( 60°W), which corresponds to a mixture between classes 2, 4, 
and 5; Fig. 3A]. Several studies have observed emperor penguin 
shifting colony sites to more favorable places (52–54). Although 
emperor penguins are philopatric; they may occasionally disperse 
massively, which could facilitate gene flow, thus potentially provid- 
ing new, adaptative alleles (30). However, the impact of dispersal on 
the future global population size is relatively small compared to the 
impact of climate change mitigation (7, 55). 

Our study raises the question of whether certain habitats have a 
better quality than others and would host larger size colonies than 
others. Given that our study showed that emperor penguins seem to 
breed in a wider range of habitats than originally thought, short to 
medium-term adaptation strategies to habitat change and variabil- 
ity may include splitting into smaller colonies. However, this would 
assume that there are suitable areas to shift to in the future, which 
leads to the need for future research to continue monitoring the size 
and location of emperor penguin colonies to determine their fate. 
We assessed the spatial sorting of colonies by population size esti- 
mated in 2009 (56). Two areas where colonies with a larger size than 
the population average (in red; fig. S7) are located within the area of 
clusters 1 and 2 (Weddell Sea and Ross Sea regions), while colonies 
smaller than the average (in blue; fig. S7) are located mainly within 
the other clusters 3 to 5 (remaining regions). Our research suggests 
that some habitats may be more favorable than others to host larger 
colonies; however, further research is needed to clarify these links. 
Mechanistic linkages between population size and habitats may 
result from a combination of factors, but we were not able to con- 
sider prey availability in our study, which may be an important 
factor driving emperor penguin habitats, along with the other pa- 
rameters studied here. We hypothesized that if larger colonies are 
associated with better habitat quality, then smaller emperor 
penguin colonies are more vulnerable to impacts and more likely 
to decrease, and thus that conservation efforts should focus on 
the areas where the larger colonies reside, as these may be more re- 
silient to impacts. However this remains to be determined. 

In terrestrial and marine Antarctic ecological studies, the habitat 
of a given species is often considered homogeneous, while metapo- 
pulations may exist and have different habitat-species relationships 
(57), adaptive (e.g., behavioral plasticity and microevolutionary 
processes), and dispersal abilities (58). This may increase species re- 
silience under climate change/variability (43, 59). For the first time, 
our study describes a range of diverse habitats for emperor pen- 
guins, with different sea ice conditions matching the existing 
genetic metapopulation (30). Given the projection of quasi-extinc- 
tion of this species due to global warming, this study provides es- 
sential information for the conservation of this species on short to 
medium terms, and is an ongoing work that should be updated reg- 
ularly for medium-term management. 

 
MATERIALS AND METHODS 

Experimental design 

For the purpose of this work, we only used areas where fast ice is 
present; to achieve this, a mask was applied so that all pixels with 
a fast ice persistence below 10 6 were removed. The initial grid res- 
olution for fast ice variables was of 0.025° (i.e., 1 km). Emperor 
penguin presence cells were all the cells within 3 km of the 55 
emperor penguin colony locations. The grid was then aggregated 
to a 5-km grid (0.1°) for all variables. 

Fast ice variables 

Fast ice variables were derived from the recent publication of a new 
unique time series of fast ice extent (18) at a 1 km and 15-day res- 
olution, generated by compositing cloud-free visible and thermal 
infrared imagery from NASA MODIS sensors onboard the Terra 
and Aqua satellites (19, 20). It is important to mention that these 
are all per-pixel quantities and require no spatial averaging to 

Table 1. Description of each habitat cluster including the geographic 
extent and the main environmental characteristics. 

Habitat 
cluster 

 

  

Weddell Sea 

 East Antarctica 

 Ross sea 

 

 
 

Several West Antarctica 

classes incl. 

cluster 4 

Environmental 
 

 

 

 

 

 

 

No fast ice trend 

 

 

 

 

 

 

 

Lowest fast ice persistence 

(class 4) 

 

No fast ice trend (class 4) 

Low fast ice extent (class 4) 
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Regions     

(0–100%) 
Magnitude of the fast 

    

Fast ice extent (km)    

 

 

 

 
 

 Presence Absence  Presence Absence  Presence Absence  Presence Absence  Presence Absence 

Cluster 1/ 24 ± 31% 24 ± 29%  0.15 0.17  0.13 0.18  6 ± 12 km 3 ± 16 km  0.04 0.04 

Weddell Sea    ± 0.06 ± 0.07  ± 0.11 ± 0.14     ± 0.11 ± 0.13 

Cluster 5/East 24 ± 31% 70 ± 16%  0.17 0.18  0.48 0.44  11 ± 15 ±  0.01 ± 0.1 0.01 

Antarctic    ± 0.04 ± 0.04  ± 0.16 ± 0.15  15 km 16 km   ± 0.14 

Cluster 2/ 20 ± 29% 3 ± 30%  - -  0.17 0.03 ± 014  4 ± 18 km 0.5 ±  - - 

Ross Sea       ± 0.18    17 km    

Cluster 3/3 - -  - -  - -  66 ± 9 km 53 ±  - - 

colonies           14 km    

 

 
obtain these quantities. Seven variables were derived from this 
dataset from March 2010 to March 2018. The time period was se- 
lected to match with the ongoing circumpolar satellite monitoring 
of emperor penguin populations to provide the possibility of com- 
bining our findings with population estimates in further research. 
Volatility (i) is a measure of the short time scale (1 month) variabil- 
ity of fast ice coverage. It is calculated by subtracting from the raw 
time series a three-point (i.e., ±15 days) boxcar-smoothed time 
series (three points are about 45 days wide). This provides the 
“high-frequency” signal of fast ice coverage. Then, for each pixel, 
we calculated the root mean square of the result, providing a 
single number for volatility for each pixel between 0 and 1. Persis- 
tence (ii) is a simple measure of the mean fast ice residence across 
the 9 year time series. A 0% indicates that fast ice never covers a 
pixel, while 100% indicates that the pixel was permanently 
covered. The timing of fast ice maximum and minimum (iii and 
iv) represent the time of year when that pixel tends to reach max/ 
min coverage. It is calculated by fitting a fourth-order Fourier series 
to 13-point (i.e., approximately 6 months) boxcar-smoothed data, 
then calculating the time of year when that sinusoid reaches 
minimum/maximum. We then transform the date for fast ice 
maximum into a categorical value as follows: early was 5 (July), 
median 0 (September), and late was 5 (December). Values of min 
and max timing of fast ice are discarded (multiplied by 0) when 
the magnitude of the annual cycle is below 0.4, because these 
values represent regions of extremely high or low fast ice persis- 
tence, so timing results are noisy/biased. For fast ice minimum, 
the timing was coded as follows: early was 5 (December), 
median 0 (March), late was 5 (May). The magnitude of the 
annual cycle (v) is a measure of the magnitude of the annual 
cycle of fast ice (values between 0 and 1). The magnitude is zero 
both in regions of 0 and 100% persistence. As with the calculation 
of the timing of fast ice maximum and minimum, it is calculated by 
fitting a Fourier series to a 13-point smoothed time series, then re- 
trieving the magnitude of that series. The fast ice trend (vi) is the 
trend calculated from March 2010 to 2018 per cell, and the fast 
ice extent (vii) was calculated from the median of the first 15 days 
of October among years per cell in kilometer. All Fourier fitting was 
done using the MPFIT routine implemented in IDL (60), which im- 
plements the Levenberg-Marquardt algorithm for least squares 
minimization. 

 
There is a bell-shaped curve relationship between fast ice volatil- 

ity and persistence and also between the magnitude of the fast ice 
annual cycle and persistence; for medium persistence there is a high 
volatility (i.e., forms and breaks on short time scale) and an high 
amplitude of the magnitude of the fast ice annual cycle (fig. S5). 

Bathymetric and biological variables 

Following procedures previously described in (61), a bathymetric 
grid of the Southern Ocean was obtained at a 500 m horizontal res- 
olution [IBCSO v1.0; (62)]. Within ArcMap, a land and ice shelf 
layer (63) was used to mask out these areas from the bathymetric 
grid. From this layer then, a bathymetry line shapefile at 800 m 
was created using the Contour tool of ArcGIS; slope was calculated 
in degrees using the Slope tool of ArcGIS. To derive the mean depth 
and 365 mean slope, the bathymetric grid and slope grid were aver- 
aged across 10 × 10 500-m cells using the Aggregate tool of ArcGIS. 
The Aggregate tool allows for the creation of grids at different res- 
olutions. Because we aggregated by 10 × 10 cells, the resulting grid is 
of 5 km resolution. The 5-km grids was then used to create the 5-km 
sampling location shapefile (i.e., the cell centroids from the raster) 
using the Raster to Point tool of ArcGIS. Each 5-km cell was then 
associated with a mean slope and bathymetry. We then calculated 
distance to the 800-m isobath using the Near tool of ArcGIS. The 
resulting shapefile was then ready for use in the R environment. 
Within R, each sampling location was further attributed with spa- 
tially overlapping grid values or distances to shapefile features. Last, 
the distances to the nearest Adélie penguin colony were derived 
from (64, 65) to the nearest Weddell seals from (66) and to the 
nearest emperor penguin colony were computed for each cell of 
the 5-km grid. 

Statistical analysis 
Emperor penguin habitat 
The dataset contains M = 177 cells with emperor penguin presence 
data compared with N = 58,580 cells of absence data within fast ice. 
We dispose of a presence/absence variable to predict that it would 
have been preferable to direct the analysis toward some suitable su- 
pervised statistical methods such as classification tree, discriminant 
analysis, or logistic regression. However, we face an important 
problem of unbalanced dataset (177 presences versus 58,580 ab- 
sences); even if the model never predicts the presence, we would 
have about 99.7% chance of a good prediction accuracy when 
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K X 

X 

 

predicting only absence, with no possibility to improve the model. 
Moreover, presence data were neither heavily associated with a 
single variable nor a threshold, as shown with distribution 
between presence and absence data for each variable (fig. S6). We 
ran a PC analysis on a correlation matrix for presence data (function 
PCA from R package FactoMineR; step 1 in Fig. 1; please see details 

previous coefficients, including mixture coefficients π1:K, this distri- 
bution model for the environmental variables allows to assign a 
class zn {1, , K} to each observation xn. One may define a 
joint distribution over the couples (zn, xn),m = 1,…,M, and using 
the Bayes rule, a discrete conditional distribution of zn is associated 
to each observation xn and is given with 

in the next section). This implies that same weight is given to the 
variables in the analysis by scaling their variance to unity. Once 
the first four PCs were obtained, observations of absence data are 
projected in their space391 (function predict.PCA from R package 
FactoMineR), accounting for a sufficient amount of variability 
(90%). The idea of running a PC analysis on presence data is to 

pðzn ¼ k ½j�xnÞ ¼ 

 
¼ 1; � � � ; 

K 

pðzn ¼ kÞpðxn ½j�zn ¼ kÞ 

pðxnÞ 

 πkϕkðxn; μk; ΣkÞ 
; k

 

πlϕlðxn; μl; ΣlÞ 
l¼1 

shape the habitat space with the environmental conditions of the These conditionals reflect the updated beliefs concerning z after 
presence. Projecting the absence onto the structure of the presence’s 
PC analysis space helps visualize any differences between presence xn is observed. Before x 

n 

n is observed, the prior belief that it belongs 

and absence. The environmental conditions of an absence value far 
from the environmental conditions of presence values will be made 
more evident with this transformation of the covariate dataset. 

Constructing clusters of habitat 

The objectives and design of the study are presented in the workflow 
(Fig. 1). Start by computing the correlation matrix for presence 
dataset using P variables describing habitat conditions. Step I is a 
dimension reduction step achieved with PC analysis on the correla- 
tion matrix giving rise to a small number Q < P of composite var- 
iables (the PCs). The M observations of presence dataset are 
represented in their Q PC space of reduced dimension. Step II pro- 
vides clusters of habitat conditions with model-based clustering 
using the Q composite variables of presence data as predictors. 
The Gaussian mixture model gives the ability to assign a probability 
of belonging to a cluster for each observation. This leads to step III: 
using the previous clusters of habitat conditions, the N absence data 
are projected in the PC space of presence dataset and are assigned to 
a class with some probabilities. It is then possible to map these prob- 
abilities in the geographical space and to appreciate the vicinity of 
suitable habitat conditions around the Antarctica continent. 
Another way to proceed is provided with step IV: Using the joint 
density (the mixture Gaussian distribution) provided with the 
model-based clustering, one can compute a measure of closeness 
to optimal habitat conditions as a probability of belonging to favor- 
able habitat conditions (see details below). Spatial mapping of these 
quantities can also be realized for the entire set of observations 
(presence and absence data). 

Clusters of habitat are constructed using a Bayesian approach 
with model-based clustering model-based clustering is an unsuper- 
vised method of clustering in which a statistical model is fit to data 
to identify the inherent groupings. Starting with the sample x1, …, 
xN of the M presence data projected in a Q-dimensional space of 
previous PC analysis (Q = 4 accounts for more than 55% of ex- 
plained variance), it is assumed that they are generated from a mul- 
tivariate density p(x) considered as a finite mixture of component 
models of the form 

K 

pðxÞ ¼ πkϕkðx; μk; ΣkÞ 
k¼1 

Component ϕk is assumed to be a multivariate Gaussian distri- 
bution with parameters μk (mean vector) and Σk (covariance 
matrix). If the number K of components is known, as well as the 

to cluster k has probability πk. After xn is observed, this belief is 
updated considering the likelihood of xn under each Gaussian com- 
ponent. The conditional distribution provides what is called a soft 
clustering since some probability is assigned to observation xn to 
belong to cluster k. If a hard clustering is required, observation xn 
is assigned to a single class zn by selecting the value of k {1, …, K} 
for which the conditional distribution p(zn = k [ ]xn) is maximum 
(maximum likelihood estimation). If an = maxk=1,…,K{p(zn = k 
[ ]xn)} defines a measure of accuracy for the classification of obser- 
vation xn, the quantity un = 1 an is a measure of uncertainty of that 
classification. In the same way, the joint distribution p(x) may be 
used for constructing a measure of closeness to optimal habitat con- 
ditions defined by high-density regions of this distribution. Suppose 
an observation xn and define the domain Dn = {x 4 s. t. p(x) 
p(xn)}, which corresponds to the domain (connex or not) enclosed 
by the contour line of the density with height p(xn). Compute the 
probability pn = Dn 

p(x)dx, which goes to 1 as xn moves far from 
the cloud of points. Then, the quantity cn = 1 pn defines a measure 
of closeness to high-density region of optimal habitat. From a prac- 
tical point of view, the value pn is approximated numerically (trap- 
ezoidal rule), which may be time-consuming. 

The R package mclust is used to estimate the number of compo- 
nents K and the parameters μ1:K, Σ1;K, and π1:K using a numerical 
method (expectation-maximization algorithm). It provides some 
advisable criteria for model selection, such as Bayes information cri- 
terion, that allow choosing among different candidate models of co- 
variance structure and number of mixture components. Partitions 
from clusters 2 to 7 were explored using the covariance structure 
VEI (see entries from function Mclust), which refers to diagonal co- 
variance matrices with varying volume and equal shape across com- 
ponent models. 

Once the parameters of the component models have been esti- 
mated on presence data, inference can be done on absence data. 
Start by projecting absence data in the space of the PCs of presence 
data to construct observations xm, m = 1, …, M constituted with Q = 
4 PC coordinates. Absence data can now be assigned to a single 
cluster from those estimated with presence data. Then, both quan- 
tities am, the measure of classification accuracy, and cm, the measure 
of closeness to optimal habitat, are computed for absence data xm 
and are mapped in the spatial domain. The spatial mapping of 
these probabilities gives the ability to evaluate coastal areas where 
penguin habitat is potentially optimal. 
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