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Abstract

We study numerical algorithms for solving Biot’s model. Based on a three-field reformula-

tion, we present some algorithms that are inspired by the work of Chaabane et al. (Comput

Math Appl 75(7):2328–2337) and Lee (Unconditionally stable second order convergent parti-

tioned methods for multiple-network poroelasticity arXiv:1901.06078, 2019) for decoupling

the computation of Biot’s model. A new theoretical framework is developed to analyze

the algorithms. Considering a uniform temporal discretization, these algorithms solve the

coupled model on the first time level. On the remaining time levels, one algorithm solves a

reaction-diffusion subproblem first and then solves a generalized Stokes subproblem. Another

algorithm reverses the order of solving the two subproblems. Our algorithms manage to

decouple the numerical computation of the coupled system while retaining the convergence

properties of the original coupled algorithm. Theoretical analysis is conducted to show that

these algorithms are unconditionally stable and optimally convergent. Numerical experiments

are also carried out to validate the theoretical analysis and demonstrate the advantages of the

proposed algorithms.

Keywords Biot’s model · Decoupled algorithms · Finite element method · Unconditionally

stable

Mathematics Subject Classification 65M60 · 65N30 · 74F10

1 Introduction

The theory of poroelasticity describes the interaction between deformable porous media

solids and fluid flow. The fundamental model of poroelasticity is called Biot’s model [5, 6],

which is a coupled system of partial differential equations (PDEs). It has drawn much atten-

tion because of its wide applications in petroleum engineering, geoscience, and biomedical

engineering [20]. However, Biot’s model is a multiphysics problem involving both elasticity

and porous media flow, which leads to numerical difficulties, such as elasticity locking and
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pressure oscillation, particularly for the two-field formulation based model [13, 23, 31, 33].

To overcome these difficulties, discontinuous Galerkin method [29], stabilized Finite Element

methods [31, 32], and various three-field or four-field reformulations have been proposed

[15, 23, 27, 34]. Following [23, 27], an intermediate variable, called “total pressure”, is

introduced to develop a three-field formulation for Biot’s model in this paper, which allows

one to view Biot’s model as a combination of a generalized Stokes problem and a reaction-

diffusion problem. This reformulation has advantages in several aspects. First, one can apply

the classical inf-sup stable Stokes elements for the displacement and the total pressure, and

the Lagrange elements for the fluid pressure. Secondly, existing fast solvers in multigrid and

domain decomposition methods can be directly invoked. Investigations based on this three-

field reformulation may be found in [17, 18, 20, 22–24, 27]. Other relevant works include the

optimal order error estimates of a coupled scheme [30] and a virtual element discretization

[10].

The numerical difficulties in solving Biot’s system call for the development of effective

and efficient numerical algorithms. The numerical methods for solving Biot’s model can

be categorized into three types: (i) The fully-coupled algorithms, in which all variables are

solved in a coupled way on each time level [18, 23, 27, 30]; (ii) The iterative algorithms [17,

21, 25], in which submodels are solved iteratively on each time level, using the approximate

solution of the previous iteration step until the error tolerance is reached; (iii) The decoupled

algorithms [15, 20], in which submodels are solved on each time level yet without itera-

tions. Theoretically, fully-coupled algorithms achieve optimality in stability, convergence,

and accuracy, however, are more computationally demanding. Investigation on efficient pre-

conditioners to accelerate the convergence of the Krylov subspace methods can be found in

[1, 11, 13, 23]. The preconditioners are applied to various iterative algorithms [7, 16, 17, 21,

25, 34] to reduce the computational cost due to smaller cost for submodels in each iteration,

and legacy code can be invoked for each submodel. Among these iterative algorithms, the

fixed-stress splitting method is widely used in the engineering community due to its uncon-

ditional stability [7, 14, 25]. However, it is important to note that this method may require a

certain stabilization parameter to be sufficiently large in order to ensure convergence. Instead

of using an iterative procedure, the decoupled algorithms split the original coupled prob-

lem into smaller sub-systems to reduce the computational cost. By applying a stabilization

parameter, a splitting-based method is devised for the two-field formulation in [14]. To avoid

stabilization parameters, several conditionally convergent decoupled algorithms are proposed

in [3, 15]. However, most of these existing decoupled approaches assume additional condi-

tions such as the specific storage coefficient c0 > 0 [25], or the weak coupling condition [3],

or large enough stabilization parameters in discretization [7, 14, 21, 25, 29].

In this paper, we present some algorithms, which solve a coupled system only on the

first time level, while applying decoupled computation on the subsequent time levels. These

algorithms are inspired by [14] which is based on a stabilized two-field formulation, and

[22], which uses a three-field formulation and considers 2nd-order time schemes for a more

general multiple-network Biot’s model. Our algorithms can be thought of as a degenerate

1st-order scheme of [22] for the single-network Biot’s model. We developed a new theoretical

framework to analyze the proposed algorithms. Solving a coupled system on the first time

level initially enables us to get the computation started, and retain the approximation accuracy,

yet not to impose small time step constraints for stability in time marching for subsequent time

levels, (see [15] for the analysis of the stability constraint). Combined with this initialization

technique, we may then follow the decoupled algorithms proposed in recent works [20, 22].

We will prove that the algorithms are unconditionally stable and optimally convergent. Since
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these new algorithms are decoupled from the second time level, they are not only stable and

convergent but also computationally efficient.

The rest of the paper is organized as follows. In Sect. 2, we describe the three-field for-

mulation of Biot’s consolidation model and its corresponding variational formulation. The

new algorithms are presented in Sect. 3. The convergence analysis of the new algorithms is

given in Sect. 4. Finally, in Sect. 5, numerical experiments are given to validate the theoretical

results.

2 Mathematical Formulations

Let Ω ⊂ R
d (d = 2 or 3) be a bounded polygonal domain with boundary ∂Ω . We consider

the quasi-static Biot system which reads as follows.

−divσ(u) + α∇ p = f , (1)

∂t (c0 p + αdivu) − divK (∇ p − ρ f g) = Qs, (2)

where

σ(u) = 2με(u) + λ(divu)I, ε(u) = 1

2

[

∇u + (∇u)T
]

.

In these equations, the primary unknowns are the displacement vector of the solid u and

the fluid pressure p, the coefficient α > 0 is the Biot–Willis constant which is close to 1,

f is the body force, c0 ≥ 0 is the specific storage coefficient, K represents the hydraulic

conductivity, ρ f is the fluid density, g is the gravitational acceleration, Qs is a source or sink

term, I represents the identity matrix, the Lamé constants λ and μ are related to Young’s

modulus E and the Poisson ratio ν as follows (Fig. 1):

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
.

Suitable boundaries and initial conditions should be provided to complete the system. As

shown in Fig. 1, we assume ∂Ω = Γu ∪ Γσ = Γp ∪ Γq with |Γu| > 0, |Γp| > 0, and

consider the following boundary conditions:

u = 0 on Γu, (3)

(σ (u) − α p I) n = h on Γσ , (4)

p = 0 on Γp, (5)

K (∇ p − ρ f g) · n = g2 on Γq , (6)

where n is the unit outward normal to the boundary. The initial conditions are given by

u(0) = u0, p(0) = p0. (7)

Following [23, 27], we introduce an intermediate variable ξ , called “total pressure”,

defined by ξ = α p − λdivu. Then, (1)–(2) can be rewritten as the following three-field

formulation.

−2μdiv(ε(u)) + ∇ξ = f , (8)

divu + 1

λ
ξ − α

λ
p = 0, (9)
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Fig. 1 Two distinct types of

boundary conditions can be

imposed on ∂Ω: one is for the

displacement (left), and the other

is for the pressure (right)

(

c0 + α2

λ

)

∂t p − α

λ
∂tξ − divK (∇ p − ρ f g) = Qs . (10)

After the reformulation, the boundary conditions (3)–(6) and initial conditions (7) with ξ(0) =
α p0−λdivu0 can still be applied. For ease of presentation, we assume the gravity acceleration

g = 0 in the rest of the paper.

Let H k(Ω) be the classical Sobolev spaces with norm ‖ · ‖H k (Ω). Denote H k
0,Γ (Ω) be the

subspace of H k(Ω) with the vanishing trace on Γ ⊂ ∂Ω . In this paper, we will use (·, ·) and

〈·, ·〉 to denote the standard L2(Ω) and L2(∂Ω) inner products, respectively. Moreover, we

use C to denote a generic positive constant independent of mesh sizes and x � y to denote

x ≤ Cy. Let V = H1
0,Γu

(Ω), W = L2(Ω) and M = H1
0,Γp

(Ω). For u, v ∈ V , ξ, φ ∈ W ,

and p, ψ ∈ M , we define the following bilinear forms:

a1(u, v) = 2μ

∫

Ω

ε(u) : ε(v), b(v, φ) =
∫

Ω

φ divv,

a2(ξ, φ) = 1

λ

∫

Ω

ξφ, c(p, φ) = α

λ

∫

Ω

pφ,

a3(p, ψ) =
(

c0 + α2

λ

) ∫

Ω

pψ, d(p, ψ) = K

∫

Ω

∇ p · ∇ψ.

Multiplying (8)–(10) by test functions, integrating by parts, and applying boundary conditions

(3)–(6) yields the following variational formulation: for a given t > 0, find (u, ξ, p) ∈
V × W × M such that

a1(u, v) − b(v, ξ) = ( f , v) + 〈h, v〉Γσ , ∀v ∈ V , (11)

b(u, φ) + a2(ξ, φ) − c(p, φ) = 0, ∀φ ∈ W , (12)

a3(∂t p, ψ) − c(ψ, ∂tξ) + d(p, ψ) = (Qs, ψ) + 〈g2, ψ〉Γq , ∀ψ ∈ M . (13)

The well-posedness of Problem (11)–(13) is established in [27]. The Korn’s inequality

[26] holds on V , that is, there exists a constant Ck = Ck(Ω, Γu) > 0 such that

‖v‖H1(Ω) ≤ Ck‖ε(v)‖L2(Ω), ∀v ∈ V . (14)

Furthermore, the following inf-sup condition [8] holds: there exists a constant β > 0 depend-

ing only on Ω and Γu such that

sup
v∈V

b(v, φ)

‖v‖H1(Ω)

≥ β‖φ‖L2(Ω), ∀φ ∈ W .

123



Journal of Scientific Computing            (2023) 97:48 Page 5 of 33    48 

3 Finite Element Discretization and Numerical Algorithms

Let Th be a partition of the domain Ω into triangles in R
2 or tetrahedrons in R

3, and h be the

maximum diameter over all elements in the mesh. We define finite element spaces on Th

V h := {vh ∈ H1
0,Γu

(Ω) ∩ C0(Ω̄); vh |E∈ Pk(E), ∀E ∈ Th},
Wh := {φh ∈ L2(Ω) ∩ C0(Ω̄); φh |E∈ Pk−1(E), ∀E ∈ Th},
Mh := {ψh ∈ H1

0,Γp
(Ω) ∩ C0(Ω̄); ψh |E∈ Pl(E), ∀E ∈ Th},

where k ≥ 2 and l ≥ 1 are integers. In this paper, the Taylor-Hood elements are adopted for

the pair (u, ξ), and the Lagrange finite elements are adopted for p, respectively. As we use

a stable Stokes element pair, the corresponding finite element spaces satisfy the following

discrete inf-sup condition, i.e., there exists a positive constant β̃ independent of h such that

sup
vh∈V h

b(vh, φh)

‖vh‖H1(Ω)

≥ β̃‖φh‖L2(Ω), ∀φh ∈ Wh . (15)

Following the common practice as in [24, 30], two projection operators are introduced.

First, the Stokes projection operator Ru × Rξ : V × W → V h × Wh is defined by

a1(Ruu, vh) − b(vh, Rξ ξ) = a1(u, vh) − b(vh, ξ), ∀vh ∈ V h, (16)

b(Ruu, φh) = b(u, φh), ∀φh ∈ Wh . (17)

Second, the elliptic projection operator Rp : M → Mh is defined by

d(Rp p, ψh) = d(p, ψh), ∀ψh ∈ Mh . (18)

If u ∈ Hk+1
0,Γu

(Ω), ξ ∈ H k(Ω), and p ∈ H l+1
0,Γp

(Ω), then the following error estimates hold

for the Stokes projection operator and the elliptic projection operator [9].

‖u − Ruu‖H1(Ω) + ‖ξ − Rξ ξ‖L2(Ω) ≤ Chk(‖u‖H k+1(Ω) + ‖ξ‖H k (Ω)), (19)

‖p − Rp p‖H1(Ω) ≤ Chl‖p‖H l+1(Ω). (20)

Under the assumption that the domain Ω has the full elliptic regularity [24], there holds

‖p − Rp p‖L2(Ω) ≤ Chl+1‖p‖H l+1(Ω). (21)

An equidistant partition 0 = t0 < t1 < · · · < tN+1 = T with a step size Δt = T
N+1

is

used for the time discretization. Denote un = u(tn), ξn = ξ(tn) and pn = p(tn). The initial

conditions may then be approximated by u0
h = Ruu0, ξ0

h = Rξ ξ
0 = Rξ (α p0 −λdivu0), and

p0
h = Rp p0 in terms of the projection operators and the initial data in (7) from the original

model.

Based on the three-field formulation (8)–(10), the backward Euler method for the time

discretization leads to a coupled scheme.

Coupled algorithm: Given (un
h, ξn

h , pn
h ) ∈ V h × Wh × Mh , find (un+1

h , ξn+1
h , pn+1

h ) ∈
V h × Wh × Mh such that

a1(un+1
h , vh) − b(vh, ξn+1

h ) = ( f n+1, vh) + 〈hn+1, vh〉Γσ , ∀vh ∈ V h, (22)

b(un+1
h , φh) + a2(ξ

n+1
h , φh) − c(pn+1

h , φh) = 0, ∀φh ∈ Wh, (23)

a3

(

pn+1
h − pn

h

Δt
, ψh

)

− c

(

ψh,
ξn+1

h − ξn
h

Δt

)
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+ d(pn+1
h , ψh) = (Qn+1

s , ψh) + 〈gn+1
2 , ψh〉Γq , ∀ψh ∈ Mh . (24)

The Coupled algorithm is unconditionally stable and convergent. To decouple the com-

putation involving three governing variables on the current time level in the coupled system,

we note that from past experiences, simply approximating any variable on the current time

level n + 1 in (22) and (23) by their computed data from the previous time level would easily

lead to certain explicit behavior and thus destroy the stability property in the implicit coupled

algorithm. For example, the authors of [3] have highlighted the essential requirement for

imposing additional conditions on the physical parameters in such scenarios. Mathemati-

cally, the major difficulty lies in that the continuous equations (11) and (12) corresponding

to (22) and (23) are time-independent, only describing certain physical balance conditions in

space. To enable the information of the governing variables, essentially the displacement and

pressure, to be carried on in computation as time evolves, we may instead mathematically

equivalently first take the time derivative on (12) to replace it by

b(∂t u, φ) + a2(∂tξ, φ) − c(∂t p, φ) = 0, ∀φ ∈ W ,

and then apply the implicit backward Euler scheme for time discretization to obtain the

discrete counterpart to replace (23) by

b

(

un+1
h − un

h

Δt
, φh

)

+ a2

(

ξn+1
h − ξn

h

Δt
, φh

)

− c

(

pn+1
h − pn

h

Δt
, φh

)

= 0, ∀φh ∈ Wh .

This leads to a new coupled algorithm, which is also an implicit scheme and thus is uncon-

ditionally stable and convergent, too. However, it now allows the displacement and pressure

data, as well as their physical balance condition in space, to be carried on as time evolves.

Moreover, the decoupling may be realized by further approximating the time derivative finite

difference term
pn+1

h −pn
h

Δt
with the computed data on the previous time level

pn
h −pn−1

h

Δt
for decou-

pling the pressure from the displacement, yet the stability of the displacement is still enforced

by its implicit in-time discretization for its dynamics. This strategy has also been applied in

the literature, such as similar to [14, 20, 22], and in decoupling fluid-solid interactions com-

putation where intrinsic Robin condition based decoupled algorithms are devised [12, 35].

However, this is a two-step procedure and requires computed data for pressure
pn

h−pn−1
h

Δt
on the

previous two time levels. To start with the decoupled computation on subsequent time levels,

we propose to first apply the above coupled, yet one-step, algorithm to compute (u1
h, ξ1

h , p1
h)

on the first time level, followed on subsequent time levels by alternatively solving the gen-

eralized Stokes equations and the reaction-diffusion problem independently. This results in

the first version of the decoupled algorithms referred to as the StR algorithm.

StR algorithm:

Initial step: Given (u0
h, ξ0

h , p0
h) ∈ V h × Wh × Mh , find (u1

h, ξ1
h , p1

h) ∈ V h × Wh × Mh such

that

a1(u1
h, vh) − b(vh, ξ1

h ) = ( f 1, vh) + 〈h1, vh〉Γσ , ∀vh ∈ V h, (25)

b(u1
h, φh) + a2(ξ

1
h , φh) − c(p1

h, φh) = 0, ∀φh ∈ Wh, (26)

a3

(

p1
h − p0

h

Δt
, ψh

)

− c

(

ψh,
ξ1

h − ξ0
h

Δt

)
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+ d(p1
h, ψh) = (Q1

s , ψh) + 〈g1
2, ψh〉Γq , ∀ψh ∈ Mh . (27)

Subsequent steps: For n ≥ 1,

StR step 1: given pn−1
h , pn

h ∈ Mh , find (un+1
h , ξn+1

h ) ∈ V h × Wh such that

a1(un+1
h , vh) − b(vh, ξn+1

h ) = ( f n+1, vh) + 〈hn+1, vh〉Γσ , ∀vh ∈ V h, (28)

b(un+1
h − un

h, φh) + a2(ξ
n+1
h − ξn

h , φh) = c(pn
h − pn−1

h , φh), ∀φh ∈ Wh . (29)

StR step 2: find pn+1
h ∈ Mh such that

a3

(

pn+1
h − pn

h

Δt
, ψh

)

− c

(

ψh,
ξn+1

h − ξn
h

Δt

)

+ d(pn+1
h , ψh) = (Qn+1

s , ψh) + 〈gn+1
2 , ψh〉Γq , ∀ψh ∈ Mh . (30)

Alternatively, one can solve the reaction-diffusion problem first and then the generalized

Stokes equations by decoupling ξ from p in (24) through the approximation of the backward

difference of ξ using the computed data on the previous time levels similarly, which is referred

to as the RtS algorithm.

RtS algorithm:

Initial step: The same as (25) – (27)

Subsequent steps: For n ≥ 1,

RtS step 1: given ξn−1
h , ξn

h ∈ Wh , find pn+1
h ∈ Mh such that

a3

(

pn+1
h − pn

h

Δt
, ψh

)

+ d(pn+1
h , ψh)

= (Qn+1
s , ψh) + 〈gn+1

2 , ψh〉Γq + c

(

ψh,
ξn

h − ξn−1
h

Δt

)

, ∀ψh ∈ Mh . (31)

RtS step 2: find (un+1
h , ξn+1

h ) ∈ V h × Wh such that

a1(un+1
h , vh) − b(vh, ξn+1

h ) = ( f n+1, vh) + 〈hn+1, vh〉Γσ , ∀vh ∈ V h, (32)

b(un+1
h − un

h, φh) + a2(ξ
n+1
h − ξn

h , φh) − c(pn+1
h − pn

h , φh) = 0, ∀φh ∈ Wh . (33)

4 Convergence Analysis

We now present the convergence analysis and error estimates for the decoupled StR algo-

rithm and RtS algorithm, where the following regularity assumptions are imposed.

Assumption 1 Assume that u ∈ L∞(0, T ; Hk+1
0,Γu

(Ω)), ∂t u ∈ L2(0, T ; Hk+1
0,Γu

(Ω)),

∂t t u ∈ L2(0, T ; H1
0,Γu

(Ω)), ξ ∈ L∞(0, T ; H k(Ω)), ∂tξ ∈ L2(0, T ; H k(Ω)), ∂t tξ ∈
L2(0, T ; L2(Ω)), p ∈ L∞(0, T ; H l+1

0,Γp
(Ω)), ∂t p ∈ L2(0, T ; H l+1

0,Γp
(Ω)), ∂t t p ∈

L2(0, T ; L2(Ω)).

For ease of presentation, the error terms are decomposed as

en
u = un − un

h = (un − Ruun) + (Ruun − un
h) =: eI ,n

u + eh,n
u ,

en
ξ = ξn − ξn

h = (ξn − Rξ ξ
n) + (Rξ ξ

n − ξn
h ) =: e

I ,n
ξ + e

h,n
ξ ,
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en
p = pn − pn

h = (pn − Rp pn) + (Rp pn − pn
h ) =: eI ,n

p + eh,n
p .

We also denote

Dn+1
u := eh,n+1

u − eh,n
u , Dn+1

ξ := e
h,n+1
ξ − e

h,n
ξ , Dn+1

p := eh,n+1
p − eh,n

p .

Both the StR algorithm and RtS algorithm involve the Initial step (25)–(27), which has

the following error estimates for (u1
h, ξ1

h , p1
h). The proof is a direct consequence of Theorem

4.1 and Theorem 4.2 for the Coupled algorithm in [18].

Theorem 1 Let (u, ξ, p) and (u1
h, ξ1

h , p1
h) be solutions of Eqs. (11)–(13) and Eqs. (25)–(27),

respectively. Under Assumption 1, we have

1

Δt

(

‖ε(D1
u)‖2

L2(Ω)
+ ‖D1

ξ ‖2
L2(Ω)

+ ‖D1
p‖2

L2(Ω)

)

+ ‖∇eh,1
p ‖2

L2(Ω)

� (Δt)2

∫ t1

0

(

‖∂t t u‖2
H1(Ω)

+ ‖∂t tξ‖2
L2(Ω)

+ ‖∂t t p‖2
L2(Ω)

)

ds

+ h2k

∫ t1

0

(

‖∂t u‖2
H k+1(Ω)

+ ‖∂tξ‖2
H k (Ω)

)

ds + h2l+2

∫ t1

0

‖∂t p‖2
H l+1(Ω)

ds, (34)

and

‖ε(eh,1
u )‖2

L2(Ω)
+ ‖e

h,1
ξ ‖2

L2(Ω)
+ ‖eh,1

p ‖2
L2(Ω)

� (Δt)2

∫ t1

0

(

‖∂t t u‖2
H1(Ω)

+ ‖∂t tξ‖2
L2(Ω)

+ ‖∂t t p‖2
L2(Ω)

)

ds

+ h2k

∫ t1

0

(

‖∂t u‖2
H k+1(Ω)

+ ‖∂tξ‖2
H k (Ω)

)

ds + h2l+2

∫ t1

0

‖∂t p‖2
H l+1(Ω)

ds. (35)

We also cite below two propositions that are used frequently in our following analysis,

their proofs can also be found in [18].

Proposition 1 Let f : R → R be a function that has k + 1 continuous derivatives on an

open interval (a, b). For any t0, t ∈ (a, b), there holds

f (t) = f (t0) + f ′(t0)(t − t0) + · · · + f (k)(t0)

k! (t − t0)
k + 1

k!

∫ t

t0

f (k+1)(s)(t − s)kds.

Then, the following estimate for the L2-norm of the last term holds.

∥
∥
∥
∥

1

k!

∫ t

t0

f (k+1)(s)(t − s)kds

∥
∥
∥
∥

2

L2(Ω)

� (b − a)2k+1

∣
∣
∣
∣

∫ t

t0

‖ f (k+1)‖2
L2(Ω)

ds

∣
∣
∣
∣
. (36)

Proposition 2 Let B be a symmetric bilinear form, there holds

2B(u, u − v) = B(u, u) − B(v, v) + B(u − v, u − v),

which immediately implies the following inequality

2B(u, u − v) ≥ B(u, u) − B(v, v). (37)
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4.1 A Priori Error Estimates for the StR Algorithm

In this subsection, we present the a priori error estimates of the StR algorithm.

Theorem 2 Let (u, ξ, p) and (un+1
h , ξn+1

h , pn+1
h ) for n ≥ 1 be the solutions of Eqs. (11)–(13)

and Eqs. (28)–(30), respectively. Under Assumption 1, there holds

N
∑

n=1

(

μ‖ε(Dn+1
u )‖2

L2(Ω)
+ 1

4λ
‖αDn+1

p − Dn+1
ξ ‖2

L2(Ω)

)

+ K

2
Δt‖∇eh,N+1

p ‖2
L2(Ω)

≤ C̃

[

(Δt)3

∫ T

0

(

‖∂t t u‖2
H1(Ω)

+ ‖∂t tξ‖2
L2(Ω)

+ ‖∂t t p‖2
L2(Ω)

)

ds

+ h2kΔt

∫ T

0

(

‖∂t u‖2
H k+1(Ω)

+ ‖∂tξ‖2
H k (Ω)

)

ds + h2l+2Δt

∫ T

0

‖∂t p‖2
H l+1(Ω)

ds

]

.

(38)

Here, C̃ = C̃(c0, λ, α).

Proof Subtracting (28), (29), (30) from (11), (12), (13), respectively, we derive

a1(e
n+1
u , vh) − b(vh, en+1

ξ ) = 0,

b(en+1
u − en

u, φh) + a2(e
n+1
ξ − en

ξ , φh) = c(pn+1 − pn − pn
h + pn−1

h , φh),

a3

(

∂t pn+1 −
pn+1

h − pn
h

Δt
, ψh

)

+ d(en+1
p , ψh) = c

(

ψh, ∂tξ
n+1 −

ξn+1
h − ξn

h

Δt

)

.

By using the projection operators introduced in (16), (17), and (18), we can reformulate the

above equations as

a1(e
h,n+1
u , vh) − b(vh, e

h,n+1
ξ ) = 0, (39)

b(Dn+1
u , φh) + a2(e

n+1
ξ − en

ξ , φh) = c(pn+1 − pn − pn
h + pn−1

h , φh), (40)

a3(Dn+1
p , ψh) − c(ψh, Dn+1

ξ ) + Δtd(eh,n+1
p , ψh)

= a3(Rp pn+1 − Rp pn − Δt∂t pn+1, ψh) − c(ψh, Rξ ξ
n+1 − Rξ ξ

n − Δt∂tξ
n+1). (41)

We take the difference of the (n + 1)-th and the n-th levels of (39) to get

a1(Dn+1
u , vh) − b(vh, Dn+1

ξ ) = 0, (42)

By using the definitions of Dn+1
ξ and Dn

p , we reformulate (40) as

b(Dn+1
u , φh) + a2(Dn+1

ξ , φh) − c(Dn
p, φh)

= −a2(ξ
n+1 − ξn, φh) + c(pn+1 − pn, φh)

+ a2(Rξ ξ
n+1 − Rξ ξ

n, φh) − c(Rp pn − Rp pn−1, φh). (43)

From (12) we obtain

b(un+1 − un) = −a2(ξ
n+1 − ξn, φh) + c(pn+1 − pn, φh), (44)

b(Δt∂t u
n+1, φh) + a2(Δt∂tξ

n+1, φh) − c(Δt∂t pn+1, φh) = 0. (45)
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Combining (43), (44), and (45) yields

b(Dn+1
u , φh) + a2(Dn+1

ξ , φh) − c(Dn
p, φh) = b(un+1 − un − Δt∂t u

n+1, φh)

+ a2(Rξ ξ
n+1 − Rξ ξ

n − Δt∂tξ
n+1, φh) − c(Rp pn − Rp pn−1 − Δt∂t pn+1, φh). (46)

Choosing vh = Dn+1
u in (42), φh = Dn+1

ξ in (46), and ψh = Dn+1
p in (41), we deduce

that

a1(Dn+1
u , Dn+1

u ) + a2(Dn+1
ξ , Dn+1

ξ ) + a3(Dn+1
p , Dn+1

p )

− c(Dn+1
p , Dn+1

ξ ) + Δtd(eh,n+1
p , Dn+1

p )

= b(un+1 − un − Δt∂t u
n+1, Dn+1

ξ ) + a2(Rξ ξ
n+1 − Rξ ξ

n − Δt∂tξ
n+1, Dn+1

ξ )

+ c(Δt∂t pn+1 − Rp pn + Rp pn−1, Dn+1
ξ ) + a3(Rp pn+1 − Rp pn − Δt∂t pn+1, Dn+1

p )

+ c(Dn+1
p ,Δt∂tξ

n+1 − Rξ ξ
n+1 + Rξ ξ

n) + c(Dn
p, Dn+1

ξ ). (47)

From the definition of the bilinear form c(·, ·), the following identity holds.

1

2λ
‖Dn+1

ξ ‖2
L2(Ω)

+ α2

2λ
‖Dn+1

p ‖2
L2(Ω)

− c(Dn+1
p , Dn+1

ξ ) = 1

2λ
‖αDn+1

p − Dn+1
ξ ‖2

L2(Ω)
.

(48)

Applying (48) to the left hand side of (47), and summing over the index n from 1 to N , we

derive

N
∑

n=1

[

2μ‖ε(Dn+1
u )‖2

L2(Ω)
+ 1

2λ
‖Dn+1

ξ ‖2
L2(Ω)

+
(

c0 + α2

2λ

)

‖Dn+1
p ‖2

L2(Ω)

+ 1

2λ
‖αDn+1

p − Dn+1
ξ ‖2

L2(Ω)

]

+ Δt

N
∑

n=1

d(eh,n+1
p , Dn+1

p ) =
6

∑

i=1

Ti , (49)

where

T1 =
N

∑

n=1

b(un+1 − un − Δt∂t u
n+1, Dn+1

ξ ),

T2 =
N

∑

n=1

a2(Rξ ξ
n+1 − Rξ ξ

n − Δt∂tξ
n+1, Dn+1

ξ ),

T3 =
N

∑

n=1

c(Δt∂t pn+1 − Rp pn + Rp pn−1, Dn+1
ξ ),

T4 =
N

∑

n=1

a3(Rp pn+1 − Rp pn − Δt∂t pn+1, Dn+1
p ),

T5 =
N

∑

n=1

c(Dn+1
p ,Δt∂tξ

n+1 − Rξ ξ
n+1 + Rξ ξ

n),

T6 =
N

∑

n=1

c(Dn
p, Dn+1

ξ ).
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Next, we bound the terms Ti for i = 1, 2, . . . , 6. Recalling the definition of b(·, ·), we can

apply the Cauchy-Schwarz inequality, Young’s inequality to derive the following estimate

for the term T1 with any ε1 > 0.

T1 =
N

∑

n=1

∫

Ω

Dn+1
ξ div(un+1 − un − Δt∂t u

n+1)

≤ ε1

3

N
∑

n=1

‖Dn+1
ξ ‖2

L2(Ω)
+ C

ε1

N
∑

n=1

‖div(un+1 − un − Δt∂t u
n+1)‖2

L2(Ω)
.

Then, we can apply (36) to control the last item as follows.

T1 ≤ ε1

3

N
∑

n=1

‖Dn+1
ξ ‖2

L2(Ω)
+ C

ε1
(Δt)3

∫ T

0

‖∂t t u‖2
H1(Ω)

ds.

Considering the same ε1, we then estimate the T2 term in the same manner.

T2 =
N

∑

n=1

1

λ

∫

Ω

Dn+1
ξ (Rξ ξ

n+1 − Rξ ξ
n − Δt∂tξ

n+1)

≤ ε1

3

N
∑

n=1

‖Dn+1
ξ ‖2

L2 + C

ε1λ2

N
∑

n=1

‖Rξ ξ
n+1 − Rξ ξ

n − Δt∂tξ
n+1‖2

L2(Ω)

≤ ε1

3

N
∑

n=1

‖Dn+1
ξ ‖2

L2 + C

ε1λ2

N
∑

n=1

(

‖ξn+1 − ξn − Δt∂tξ
n+1‖2

L2(Ω)

+ ‖Rξ (ξ
n+1 − ξn) − (ξn+1 − ξn)‖2

L2(Ω)

)

.

Applying (36) and (19), we can bound T2 as follows.

T2 ≤ ε1

3

N
∑

n=1

‖Dn+1
ξ ‖2

L2(Ω)
+ C

ε1λ2

[

(Δt)3

∫ T

0

‖∂t tξ‖2
L2(Ω)

ds

+ h2kΔt

∫ T

0

(

‖∂t u‖2
H k+1(Ω)

+ ‖∂tξ‖2
H k (Ω)

)

ds

]

.

To estimate the term T3, we need to reformulate it first.

T3 =
N

∑

n=1

[

c(Δt∂t pn+1 − Δt∂t pn, Dn+1
ξ ) + c(Δt∂t pn − Rp pn + Rp pn−1, Dn+1

ξ )
]

=
N

∑

n=1

α

λ

∫

Ω

Dn+1
ξ (Δt∂t pn+1 − Δt∂t pn) +

N
∑

n=1

α

λ

∫

Ω

Dn+1
ξ (Δt∂t pn − Rp pn + Rp pn−1)

≤ ε1

3

N
∑

n=1

‖Dn+1
ξ ‖2

L2(Ω)
+ Cα2

ε1λ2

N
∑

n=1

(

‖Δt∂t pn+1 − Δt∂t pn‖2
L2(Ω)

+ ‖pn − pn−1 − Δt∂t pn‖2
L2(Ω)

+ ‖Rp(pn − pn−1) − (pn − pn−1)‖2
L2(Ω)

)

.

123



   48 Page 12 of 33 Journal of Scientific Computing            (2023) 97:48 

We then apply (36) and (21) to derive the following estimate.

T3 ≤ ε1

3

N
∑

n=1

‖Dn+1
ξ ‖2

L2(Ω)
+ Cα2

ε1λ2

[

(Δt)3

∫ T

0

‖∂t t p‖2
L2(Ω)

ds + h2l+2Δt

∫ T

0

‖∂t p‖2
H l+1(Ω)

ds

]

.

Similarly, we recall the definition of a3(·, ·) to derive the following estimate for the term T4

with any ε2 > 0.

T4 =
N

∑

n=1

(

c0 + α2

λ

) ∫

Ω

Dn+1
p (Rp pn+1 − Rp pn − Δt∂t pn+1)

≤ c0

N
∑

n=1

‖Dn+1
p ‖2

L2(Ω)
+ ε2α

2

4

N
∑

n=1

‖Dn+1
p ‖2

L2(Ω)

+ C

(

c0 + α2

ε2λ2

)[

(Δt)3

∫ T

0

‖∂t t p‖2
L2(Ω)

ds + h2l+2Δt

∫ T

0

‖∂t p‖2
H l+1(Ω)

ds

]

.

Using the same technique, we can bound T5 and T6 as follows.

T5 =
N

∑

n=1

α

λ

∫

Ω

Dn+1
p (Δt∂tξ

n+1 − Rξ ξ
n+1 + Rξ ξ

n)

≤ ε2α
2

4

N
∑

n=1

‖Dn+1
p ‖2

L2(Ω)
+ C

ε2λ2

[

(Δt)3

∫ T

0

‖∂t tξ‖2
L2(Ω)

ds

+ h2kΔt

∫ T

0

(

‖∂t u‖2
H k+1(Ω)

+ ‖∂tξ‖2
H k (Ω)

)

ds

]

,

T6 =
N

∑

n=1

α

λ

∫

Ω

Dn+1
ξ Dn

p ≤ 1

2λ

N
∑

n=1

‖Dn+1
ξ ‖2

L2(Ω)
+ α2

2λ

N
∑

n=1

‖Dn
p‖2

L2(Ω)
.

From (37), we also have the following inequality.

Δt

N
∑

n=1

d(eh,n+1
p , Dn+1

p ) ≥ Δt

N
∑

n=1

(
K

2
‖∇eh,n+1

p ‖2
L2(Ω)

− K

2
‖∇eh,n

p ‖2
L2(Ω)

)

= K

2
Δt‖∇eh,N+1

p ‖2
L2(Ω)

− K

2
Δt‖∇eh,1

p ‖2
L2(Ω)

. (50)

We denote C̃ a constant related to ε1, ε2 and other coefficients, which will be discussed later.

Combining (49), (50), and the bounds of Ti for i = 1, 2, . . . , 6, we obtain

N
∑

n=1

[

2μ‖ε(Dn+1
u )‖2

L2(Ω)
+ α2

2λ
‖Dn+1

p ‖2
L2(Ω)

+ 1

2λ
‖αDn+1

p − Dn+1
ξ ‖2

L2(Ω)

]

+ K

2
Δt‖∇eh,N+1

p ‖2
L2(Ω)

− K

2
Δt‖∇eh,1

p ‖2
L2(Ω)

≤ ε1

N
∑

n=1

‖Dn+1
ξ ‖2

L2(Ω)
+ ε2α

2

2

N
∑

n=1

‖Dn+1
p ‖2

L2(Ω)
+ α2

2λ

N
∑

n=1

‖Dn
p‖2

L2(Ω)

+ C̃

[

(Δt)3

∫ T

0

(

‖∂t t u‖2
H1(Ω)

+ ‖∂t tξ‖2
L2(Ω)

+ ‖∂t t p‖2
L2(Ω)

)

ds
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+ h2kΔt

∫ T

0

(

‖∂t u‖2
H k+1(Ω)

+ ‖∂tξ‖2
H k (Ω)

)

ds + h2l+2Δt

∫ T

0

‖∂t p‖2
H l+1(Ω)

ds

]

.

(51)

Using the inf-sup condition (15), (42) yields

β̃‖Dn+1
ξ ‖2

L2(Ω)
≤ sup

vh∈V h

b(vh, Dn+1
ξ )

‖vh‖H1(Ω)

= sup
vh∈V h

a1(Dn+1
u , vh)

‖vh‖H1(Ω)

≤ 2μC1‖ε(Dn+1
u )‖2

L2(Ω)
,

(52)

which directly implies

α2

2
‖Dn+1

p ‖2
L2(Ω)

≤ ‖αDn+1
p − Dn+1

ξ ‖2
L2(Ω)

+ ‖Dn+1
ξ ‖2

L2(Ω)

≤ ‖αDn+1
p − Dn+1

ξ ‖2
L2(Ω)

+ 2μC1

β̃
‖ε(Dn+1

u )‖2
L2(Ω)

. (53)

According to (52), we determine coefficient ε1 = β̃
4C1

such that ε1‖Dn+1
ξ ‖2

L2(Ω)
≤

μ
2
‖ε(Dn+1

u )‖2
L2(Ω)

. And we recall (53) to set ε2 = min{ 1
4λ

,
β̃

4C1
} such that ε2α2

2
‖Dn+1

p ‖2
L2(Ω)

≤ μ
2
‖ε(Dn+1

u )‖2
L2(Ω)

+ 1
4λ

‖αDn+1
p − Dn+1

ξ ‖2
L2(Ω)

. From (51), we see that

N
∑

n=1

(

μ‖ε(Dn+1
u )‖2

L2(Ω)
+ 1

4λ
‖αDn+1

p − Dn+1
ξ ‖2

L2(Ω)

)

+ K

2
Δt‖∇eh,N+1

p ‖2
L2(Ω)

≤ C̃

[

(Δt)3

∫ T

0

(

‖∂t t u‖2
H1(Ω)

+ ‖∂t tξ‖2
L2(Ω)

+ ‖∂t t p‖2
L2(Ω)

)

ds

+ h2kΔt

∫ T

0

(

‖∂t u‖2
H k+1(Ω)

+ ‖∂tξ‖2
H k (Ω)

)

ds

+ h2l+2Δt

∫ T

0

‖∂t p‖2
H l+1(Ω)

ds

]

+ α2

2λ
‖D1

p‖2
L2(Ω)

+ K

2
Δt‖∇eh,1

p ‖2
L2(Ω)

.

We then apply (34) to handle the last two terms on the right-hand side. When c0 → 0,

λ → ∞, the constant C̃ exhibits robustness with respect to c0, λ, and α because

C̃ = C̃(c0, λ, α) � 1 + c0 + 1 + α2

λ
+ 1 + α2

λ2
.

The proof of (38) is completed. ��

Theorem 3 Let (u, ξ, p) and (un+1
h , ξn+1

h , pn+1
h ) for n ≥ 1 be the solutions of Eqs. (11)–(13)

and Eqs. (28)–(30), respectively. Under Assumption 1, there holds

μ‖ε(eh,N+1
u )‖2

L2(Ω)
+ ‖e

h,N+1
ξ ‖2

L2(Ω)
+

(

c0 + α2

λ

)

‖eh,N+1
p ‖2

L2(Ω)

+ KΔt

N
∑

n=1

‖∇eh,n+1
p ‖2

L2(Ω)

≤ C̃

[

(Δt)2

∫ T

0

(

‖∂t t u‖2
H1(Ω)

+ ‖∂t tξ‖2
L2(Ω)

+ ‖∂t t p‖2
L2(Ω)

)

ds
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+ h2k

∫ T

0

(

‖∂t u‖2
H k+1(Ω)

+ ‖∂tξ‖2
H k (Ω)

)

ds + h2l+2

∫ T

0

‖∂t p‖2
H l+1(Ω)

ds

]

. (54)

Here, C̃ = C̃(T , c0, λ, α).

Proof Choosing vh = Dn+1
u in (39), φh = e

h,n+1
ξ in (46) and ψh = e

h,n+1
p in (41) yields

a1(e
h,n+1
u , Dn+1

u ) − b(Dn+1
u , e

h,n+1
ξ ) = 0, (55)

b(Dn+1
u , e

h,n+1
ξ ) + a2(Dn+1

ξ , e
h,n+1
ξ ) − c(Dn+1

p , e
h,n+1
ξ )

= b(un+1 − un − Δt∂t u
n+1, e

h,n+1
ξ )

+ a2(Rξ ξ
n+1 − Rξ ξ

n − Δt∂tξ
n+1, e

h,n+1
ξ )

− c(Rp pn − Rp pn−1 − Δt∂t pn+1, e
h,n+1
ξ ) − c(Dn+1

p − Dn
p, e

h,n+1
ξ ), (56)

a3(Dn+1
p , eh,n+1

p ) − c(eh,n+1
p , Dn+1

ξ ) + Δtd(eh,n+1
p , eh,n+1

p )

= a3(Rp pn+1 − Rp pn − Δt∂t pn+1, eh,n+1
p )

− c(eh,n+1
p , Rξ ξ

n+1 − Rξ ξ
n − Δt∂tξ

n+1). (57)

Then, we take the summation of (55), (56), and (57) over the index n from 1 to N

LHS :=
N

∑

n=1

[

a1(e
h,n+1
u , Dn+1

u ) + a2(Dn+1
ξ , e

h,n+1
ξ ) − c(Dn+1

p , e
h,n+1
ξ )

+ a3(Dn+1
p , eh,n+1

p ) − c(eh,n+1
p , Dn+1

ξ ) + Δtd(eh,n+1
p , eh,n+1

p )

]

=
6

∑

i=1

Ei , (58)

where

E1 =
N

∑

n=1

b(un+1 − un − Δt∂t u
n+1, e

h,n+1
ξ ),

E2 =
N

∑

n=1

a2(Rξ ξ
n+1 − Rξ ξ

n − Δt∂tξ
n+1, e

h,n+1
ξ ),

E3 =
N

∑

n=1

c(Δt∂t pn+1 − Rp pn + Rp pn−1, e
h,n+1
ξ ),

E4 =
N

∑

n=1

a3(Rp pn+1 − Rp pn − Δt∂t pn+1, eh,n+1
p ),

E5 =
N

∑

n=1

c(eh,n+1
p ,Δt∂tξ

n+1 − Rξ ξ
n+1 + Rξ ξ

n),

E6 =
N

∑

n=1

c(Dn+1
p − Dn

p,−e
h,n+1
ξ ).

Using the definitions of a2(·, ·), a3(·, ·) and c(·, ·), we have the following identity.

a2(Dn+1
ξ , e

h,n+1
ξ ) − c(Dn+1

p , e
h,n+1
ξ ) + a3(Dn+1

p , eh,n+1
p ) − c(eh,n+1

p , Dn+1
ξ )
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= 1

λ

∫

Ω

(αDn+1
p − Dn+1

ξ )(αeh,n+1
p − e

h,n+1
ξ ) + c0

∫

Ω

(eh,n+1
p − eh,n

p )eh,n+1
p . (59)

Applying (37) and (59) to (58), we can estimate that

N
∑

n=1

(

μ‖ε(eh,n+1
u )‖2

L2(Ω)
− μ‖ε(eh,n

u )‖2
L2(Ω)

+ c0

2
‖eh,n+1

p ‖2
L2(Ω)

− c0

2
‖eh,n

p ‖2
L2(Ω)

+ 1

2λ
‖αeh,n+1

p − e
h,n+1
ξ ‖2

L2(Ω)

− 1

2λ
‖αeh,n

p − e
h,n
ξ ‖2

L2(Ω)
+ KΔt‖∇eh,n+1

p ‖2
L2(Ω)

)

≤ LHS,

which directly implies that

1

2

(

2μ‖ε(eh,N+1
u )‖2

L2(Ω)
− 2μ‖ε(eh,1

u )‖2
L2(Ω)

+ c0‖eh,N+1
p ‖2

L2(Ω)

− c0‖eh,1
p ‖2

L2(Ω)
+ 1

λ
‖αeh,N+1

p − e
h,N+1
ξ ‖2

L2(Ω)

− 1

λ
‖αeh,1

p − e
h,1
ξ ‖2

L2(Ω)

)

+ KΔt

N
∑

n=1

‖∇eh,n+1
p ‖2

L2(Ω)
≤ LHS. (60)

Next, we bound the terms Ei for i = 1, 2, . . . , 6. We use the Cauchy-Schwarz inequality,

Young’s inequality, (19), (21) and (36) to estimate E1, E2, and E3 with any ε1 > 0 as follows.

E1 ≤ ε1

6
Δt

N
∑

n=1

‖e
h,n+1
ξ ‖2

L2(Ω)
+ C

ε1
(Δt)2

∫ T

0

‖∂t t u‖2
H1(Ω)

ds,

E2 ≤ ε1

6
Δt

N
∑

n=1

‖e
h,n+1
ξ ‖2

L2(Ω)
+ C

ε1λ2

[

(Δt)2

∫ T

0

‖∂t tξ‖2
L2(Ω)

ds

+ h2k

∫ T

0

(

‖∂t u‖2
H k+1(Ω)

+ ‖∂tξ‖2
H k (Ω)

)

ds

]

,

E3 =
N

∑

n=1

[

c(Δt∂t pn+1 − Δt∂t pn, e
h,n+1
ξ )

+c(Δt∂t pn − Rp pn + Rp pn−1, e
h,n+1
ξ )

]

≤ ε1

6
Δt

N
∑

n=1

‖e
h,n+1
ξ ‖2

L2(Ω)
+ Cα2

ε1λ2

[

(Δt)2

∫ T

0

‖∂t t p‖2
L2(Ω)

ds

+ h2l+2

∫ T

0

‖∂t p‖2
H l+1(Ω)

ds

]

.

Using the Cauchy-Schwarz inequality, Young’s inequality, (19), (21), and (36), we can bound

E4 and E5 with any ε2 > 0 as follows.

E4 ≤ c0

2
Δt

N
∑

n=1

‖eh,n+1
p ‖2

L2(Ω)
+ ε2α

2

8
Δt

N
∑

n=1

‖eh,n+1
p ‖2

L2(Ω)

+ C

(

c0 + α2

ε2λ2

) [

(Δt)2

∫ T

0

‖∂t t p‖2
L2(Ω)

ds + h2l+2

∫ T

0

‖∂t p‖2
H l+1(Ω)

ds

]

,
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E5 ≤ ε2α
2

8
Δt

N
∑

n=1

‖eh,n+1
p ‖2

L2(Ω)
+ C

ε2λ2

[

(Δt)2

∫ T

0

‖∂t tξ‖2
L2(Ω)

ds

+ h2k

∫ T

0

(

‖∂t u‖2
H k+1(Ω)

+ ‖∂tξ‖2
H k (Ω)

)

ds

]

.

Then, we estimate the term E6 with any ε3 > 0 as follows.

E6 =
N

∑

n=1

[

−c(Dn+1
p , e

h,n+1
ξ ) + c(Dn

p, Dn+1
ξ ) + c(Dn

p, e
h,n
ξ )

]

= −c(DN+1
p , e

h,N+1
ξ ) +

N
∑

n=1

c(Dn
p, Dn+1

ξ ) + c(D1
p, e

h,1
ξ )

≤
N

∑

n=1

(
α2

2λ
‖Dn+1

p ‖2
L2(Ω)

+ 1

2λ
‖Dn+1

ξ ‖2
L2(Ω)

)

+ α2

ε32λ2
‖DN+1

p ‖2
L2(Ω)

+ ε3

2
‖e

h,N+1
ξ ‖2

L2(Ω)
+ α2

λ
‖D1

p‖2
L2(Ω)

+ 1

2λ
‖e

h,1
ξ ‖2

L2(Ω)
.

Again, we denote C̃ a constant related to ε1, ε2 and other coefficients, which will be discussed

later. Combining the bounds of Ei for i = 1, 2, . . . , 6, together with (58), we derive that

2μ‖ε(eh,N+1
u )‖2

L2(Ω)
− 2μ‖ε(eh,1

u )‖2
L2(Ω)

+ c0‖eh,N+1
p ‖2

L2(Ω)
− c0‖eh,1

p ‖2
L2(Ω)

+ 1

λ
‖αeh,N+1

p − e
h,N+1
ξ ‖2

L2(Ω)
− 1

λ
‖αeh,1

p − e
h,1
ξ ‖2

L2(Ω)
+ 2KΔt

N
∑

n=1

‖∇eh,n+1
p ‖2

L2(Ω)

≤ ε1Δt

N
∑

n=1

‖e
h,n+1
ξ ‖2

L2(Ω)
+ c0Δt

N
∑

n=1

‖eh,n+1
p ‖2

L2(Ω)
+ ε2α

2

2
Δt

N
∑

n=1

‖eh,n+1
p ‖2

L2(Ω)

+ ε3‖e
h,N+1
ξ ‖2

L2(Ω)
+

N
∑

n=1

α2

λ
‖Dn+1

p ‖2
L2(Ω)

+
N

∑

n=1

1

λ
‖Dn+1

ξ ‖2
L2(Ω)

+ α2

ε3λ2
‖DN+1

p ‖2
L2(Ω)

+ C̃

[

(Δt)2

∫ T

0

(

‖∂t t u‖2
H1(Ω)

+ ‖∂t tξ‖2
L2(Ω)

+ ‖∂t t p‖2
L2(Ω)

)

ds

+ h2k

∫ T

0

(

‖∂t u‖2
H k+1(Ω)

+ ‖∂tξ‖2
H k (Ω)

)

ds + h2l+2

∫ T

0

‖∂t p‖2
H l+1(Ω)

ds

]

+ 2α2

λ
‖D1

p‖2
L2(Ω)

+ 1

λ
‖e

h,1
ξ ‖2

L2(Ω)
, (61)

Using the inf-sup condition (15), (39) yields

β̃‖e
h,n+1
ξ ‖2

L2(Ω)
≤ sup

vh∈V h

b(vh, e
h,n+1
ξ )

‖vh‖H1(Ω)

= sup
vh∈V h

a1(e
h,n+1
u , vh)

‖vh‖H1(Ω)

≤ 2μC1‖ε(eh,n+1
u )‖2

L2(Ω)
,

(62)

which easily implies that

α2

2
‖eh,n+1

p ‖2
L2(Ω)

≤ ‖αeh,n+1
p − e

h,n+1
ξ ‖2

L2(Ω)
+ ‖e

h,n+1
ξ ‖2

L2(Ω)
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≤ ‖αeh,n+1
p − e

h,n+1
ξ ‖2

L2(Ω)
+ 2μC1

β̃
‖ε(eh,n+1

u )‖2
L2(Ω)

. (63)

First, we set ε1 = β̃
4C1

such that ε1‖e
h,n+1
ξ ‖2

L2(Ω)
≤ μ

2
‖ε(eh,n+1

u )‖2
L2(Ω)

, ε2 =

min{ 1
λ
,

β̃
4C1

} such that ε2α2

2
‖e

h,n+1
p ‖2

L2(Ω)
≤ 1

λ
‖αe

h,n+1
p −e

h,n+1
ξ ‖2

L2(Ω)
+μ

2
‖ε(eh,n+1

u )‖2
L2(Ω)

,

ε3 = β̃
2C1

such that ε3‖e
h,N+1
ξ ‖2

L2(Ω)
≤ μ‖ε(eh,N+1

u )‖2
L2(Ω)

. Then, we apply (38) to bound

the summation of the ‖Dn+1
p ‖2

L2(Ω)
, ‖Dn+1

ξ ‖2
L2(Ω)

terms. Additionally, we can use (34) and

(35) to bound the last two terms ‖D1
p‖2

L2(Ω)
and ‖e

h,1
ξ ‖2

L2(Ω)
in the first time step t = t1, and

reformulate (61) as follows.

μ‖ε(eh,N+1
u )‖2

L2(Ω)
+ c0‖eh,N+1

p ‖2
L2(Ω)

+ 1

λ
‖αeh,N+1

p − e
h,N+1
ξ ‖2

L2(Ω)

+ 2KΔt

N
∑

n=1

‖∇eh,n+1
p ‖2

L2(Ω)

≤ Δt

N
∑

n=1

(

μ‖ε(eh,n+1
u )‖2

L2(Ω)
+ c0‖eh,n+1

p ‖2
L2(Ω)

+ 1

λ
‖αeh,n+1

p − e
h,n+1
ξ ‖2

L2(Ω)

)

+ C̃

[

(Δt)2

∫ T

0

(

‖∂t t u‖2
H1(Ω)

+ ‖∂t tξ‖2
L2(Ω)

+ ‖∂t t p‖2
L2(Ω)

)

ds

+ h2k

∫ T

0

(

‖∂t u‖2
H k+1(Ω)

+ ‖∂tξ‖2
H k (Ω)

)

ds + h2l+2

∫ T

0

‖∂t p‖2
H l+1(Ω)

ds

]

.

Finally, we apply the discrete Grönwall’s inequality to obtain

μ‖ε(eh,N+1
u )‖2

L2(Ω)
+ c0‖eh,N+1

p ‖2
L2(Ω)

+ 1

λ
‖αeh,N+1

p − e
h,N+1
ξ ‖2

L2(Ω)

+ 2KΔt

N
∑

n=1

‖∇eh,n+1
p ‖2

L2(Ω)

≤ C̃

[

(Δt)2

∫ T

0

(

‖∂t t u‖2
H1(Ω)

+ ‖∂t tξ‖2
L2(Ω)

+ ‖∂t t p‖2
L2(Ω)

)

ds

+ h2k

∫ T

0

(

‖∂t u‖2
H k+1(Ω)

+ ‖∂tξ‖2
H k (Ω)

)

ds + h2l+2

∫ T

0

‖∂t p‖2
H l+1(Ω)

ds

]

.

Here, the constant C̃ has the following estimate:

C̃ = C̃(T , c0, λ, α) � exp(CT )

(

1 + c0 + 1 + α2

λ
+ 1 + α2

λ2

)

.

Since the inequality ‖eN+1
ξ ‖2

L2(Ω)
� μ‖ε(eh,N+1

u )‖2
L2(Ω)

is implied in (62), we can use (63)

to deduce the desired result (54). This completes the proof. ��
Corollary 1 Let (u, ξ, p) and (un+1

h , ξn+1
h , pn+1

h ) for n ≥ 1 be the solutions of Eqs. (11)–(13)

and Eqs. (28)–(30), respectively. Under Assumption 1, there holds

√
μ‖ε(eN+1

u )‖L2(Ω) + ‖eN+1
ξ ‖L2(Ω)

+

√

c0 + α2

λ
‖eN+1

p ‖L2(Ω) � (Δt + hk + hl+1), (64)
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√
K‖∇eN+1

p ‖L2(Ω) � (Δt + hk + hl). (65)

Proof Applying the triangle inequality, we observe that the following inequality holds.

√
μ‖ε(eN+1

u )‖L2(Ω) + ‖eN+1
ξ ‖L2(Ω) +

√

c0 + α2

λ
‖eN+1

p ‖L2(Ω)

≤

⎛

⎝
√

μ‖ε(eI ,N+1
u )‖L2(Ω) + ‖e

I ,N+1
ξ ‖L2(Ω) +

√

c0 + α2

λ
‖eI ,N+1

p ‖L2(Ω)

⎞

⎠

︸ ︷︷ ︸

I

+

⎛

⎝
√

μ‖ε(eh,N+1
u )‖L2(Ω) + ‖e

h,N+1
ξ ‖L2(Ω) +

√

c0 + α2

λ
‖eh,N+1

p ‖L2(Ω)

⎞

⎠

︸ ︷︷ ︸

II

. (66)

To estimate I, we apply the estimates for projection operators (19) and (21). There holds

I � hk(‖uN+1‖H k+1(Ω) + ‖ξ N+1‖H k (Ω)) + hl+1‖pN+1‖H l+1(Ω).

The bound of II can be estimated directly from inequality (54) in Theorem 3. Then, we see

that (64) holds. Similarly, the following inequality holds true.
√

K‖∇eN+1
p ‖L2(Ω) ≤

√
K‖∇eI ,N+1

p ‖L2(Ω)
︸ ︷︷ ︸

III

+
√

K‖∇eh,N+1
p ‖L2(Ω)

︸ ︷︷ ︸

IV

. (67)

The estimate for projection operator (20) provides III � hl‖pN+1‖H l+1(Ω). The bound of

IV can be estimated by inequality (38) in Theorem 2. Then we complete the proof of (65). ��

4.2 A Priori Error Estimates for the RtS Algorithm

In this subsection, we give the a priori error estimates of the RtS algorithm. The main

conclusions are similar to those in the previous subsection, but the proofs are slightly different.

Theorem 4 Let (u, ξ, p) and (un+1
h , ξn+1

h , pn+1
h ) for n ≥ 1 be the solutions of Eqs. (11)–(13)

and Eqs. (31)–(33), respectively. Under Assumption 1, there holds

N
∑

n=1

(

μ‖ε(Dn+1
u )‖2

L2(Ω)
+ 1

4λ
‖αDn+1

p − Dn+1
ξ ‖2

L2(Ω)

)

+ K

2
Δt‖∇eh,N+1

p ‖2
L2(Ω)

≤ C̃

[

(Δt)3

∫ T

0

(

‖∂t t u‖2
H1(Ω)

+ ‖∂t tξ‖2
L2(Ω)

+ ‖∂t t p‖2
L2(Ω)

)

ds

+ h2kΔt

∫ T

0

(

‖∂t u‖2
H k+1(Ω)

+ ‖∂tξ‖2
H k (Ω)

)

ds + h2l+2Δt

∫ T

0

‖∂t p‖2
H l+1(Ω)

ds

]

.

(68)

Here, C̃ = C̃(c0, λ, α).

Proof We subtract (31), (32), (33) from (11), (12), (13), respectively, to derive

a1(e
n+1
u , vh) − b(vh, en+1

ξ ) = 0,
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b(en+1
u − en

u, φh) + a2(e
n+1
ξ − en

ξ , φh) = c(en+1
p − en

p, φh),

a3

(

∂t pn+1 −
pn+1

h − pn
h

Δt
, ψh

)

+ d(en+1
p , ψh) = c

(

ψh, ∂tξ
n+1 −

ξn
h − ξn−1

h

Δt

)

.

By using the projection operators (16), (17) and (18), one has

a1(e
h,n+1
u , vh) − b(vh, e

h,n+1
ξ ) = 0, (69)

b(Dn+1
u , φh) + a2(e

n+1
ξ − en

ξ , φh) = c(en+1
p − en

p, φh), (70)

a3(Dn+1
p , ψh) − c(ψh, Dn

ξ ) + Δtd(eh,n+1
p , ψh)

= a3(Rp pn+1 − Rp pn − Δt∂t pn+1, ψh) − c(ψh, Rξ ξ
n − Rξ ξ

n−1 − Δt∂tξ
n+1). (71)

We apply the same technique as that used in (42) and (46) to derive

a1(Dn+1
u , vh) − b(vh, Dn+1

ξ ) = 0, (72)

b(Dn+1
u , φh) + a2(Dn+1

ξ , φh) − c(Dn+1
p , φh) = b(un+1 − un − Δt∂t u

n+1, φh)

+ a2(Rξ ξ
n+1 − Rξ ξ

n − Δt∂tξ
n+1, φh) − c(Rp pn+1 − Rp pn − Δt∂t pn+1, φh). (73)

Again, we take vh = Dn+1
u in (72), φh = Dn+1

ξ in (73) and ψh = Dn+1
p in (71) to obtain

a1(Dn+1
u , Dn+1

u ) + a2(Dn+1
ξ , Dn+1

ξ ) + a3(Dn+1
p , Dn+1

p )

− c(Dn+1
p , Dn+1

ξ ) + Δtd(eh,n+1
p , Dn+1

p )

= b(un+1 − un − Δt∂t u
n+1, Dn+1

ξ ) + a2(Rξ ξ
n+1 − Rξ ξ

n − Δt∂tξ
n+1, Dn+1

ξ )

+ c(Δt∂t pn+1 − Rp pn+1 + Rp pn, Dn+1
ξ ) + a3(Rp pn+1 − Rp pn − Δt∂t pn+1, Dn+1

p )

+ c(Dn+1
p ,Δt∂tξ

n+1 − Rξ ξ
n + Rξ ξ

n−1) + c(Dn+1
p , Dn

ξ ). (74)

Applying (48) to the left hand side of (74), and taking the summation over the index n from

1 to N yields

N
∑

n=1

[

2μ‖ε(Dn+1
u )‖2

L2(Ω)
+ 1

2λ
‖Dn+1

ξ ‖2
L2(Ω)

+
(

c0 + α2

2λ

)

‖Dn+1
p ‖2

L2(Ω)

+ 1

2λ
‖αDn+1

p − Dn+1
ξ ‖2

L2(Ω)

]

+ Δt

N
∑

n=1

d(eh,n+1
p , Dn+1

p ) =
6

∑

i

T̃i , (75)

where

T̃1 = T1, T̃2 = T2, T̃3 =
N

∑

n=1

c(Δt∂t pn+1 − Rp pn+1 + Rp pn, Dn+1
ξ ),

T̃4 = T4, T̃5 =
N

∑

n=1

c(Dn+1
p ,Δt∂tξ

n+1 − Rξ ξ
n + Rξ ξ

n−1), T̃6 =
N

∑

n=1

c(Dn+1
p , Dn

ξ ).

Since T̃1, T̃2, T̃4 are estimated in Theorem 2 already, here we estimate T̃3, T̃5, T̃6 by using

the Cauchy-Schwarz inequality, Young’s inequality, (19), (21), and (36) with any ε1 > 0 and

ε2 > 0.
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T̃3 ≤ ε1

3

N
∑

n=1

‖Dn+1
ξ ‖2

L2(Ω)
+ Cα2

ε1λ2

[

(Δt)3

∫ T

0

‖∂t t p‖2
L2(Ω)

ds

+ h2l+2Δt

∫ T

0

‖∂t p‖2
H l+1(Ω)

ds

]

,

T̃5 =
N

∑

n=1

[

c(Dn+1
p ,Δt∂tξ

n+1 − Δt∂tξ
n) + c(Dn+1

p ,Δt∂tξ
n − Rξ ξ

n + Rξ ξ
n−1)

]

≤ ε2α
2

4

N
∑

n=1

‖Dn+1
p ‖2

L2(Ω)
+ C

ε2λ2

[

(Δt)3

∫ T

0

‖∂t tξ‖2
L2(Ω)

ds

+ h2kΔt

∫ T

0

(

‖∂t u‖2
H k+1(Ω)

+ ‖∂tξ‖2
H k (Ω)

)

ds

]

,

T̃6 =
N

∑

n=1

α

λ

∫

Ω

Dn+1
p Dn

ξ ≤ α2

2λ

N
∑

n=1

‖Dn+1
p ‖2

L2(Ω)
+ 1

2λ

N
∑

n=1

‖Dn
ξ ‖2

L2(Ω)
.

Applying the bounds of T̃i for i = 1, 2, . . . , 6 to (75), we see that

N
∑

n=1

[

2μ‖ε(Dn+1
u )‖2

L2(Ω)
+ 1

2λ
‖Dn+1

ξ ‖2
L2(Ω)

+ 1

2λ
‖αDn+1

p − Dn+1
ξ ‖2

L2(Ω)

]

+ K

2
Δt‖∇eh,N+1

p ‖2
L2(Ω)

− K

2
Δt‖∇eh,1

p ‖2
L2(Ω)

≤ ε1

N
∑

n=1

‖Dn+1
ξ ‖2

L2(Ω)
+ ε2α

2

2

N
∑

n=1

‖Dn+1
p ‖2

L2(Ω)
+ 1

2λ

N
∑

n=1

‖Dn
ξ ‖2

L2(Ω)

+ C̃

[

(Δt)3

∫ T

0

(

‖∂t t u‖2
H1(Ω)

+ ‖∂t tξ‖2
L2(Ω)

+ ‖∂t t p‖2
L2(Ω)

)

ds

+ h2kΔt

∫ T

0

(

‖∂t u‖2
H k+1(Ω)

+ ‖∂tξ‖2
H k (Ω)

)

ds + h2l+2Δt

∫ T

0

‖∂t p‖2
H l+1(Ω)

ds

]

.

Next, the same technique used in Theorem 2 is applied here, with a slight difference between

the terms T̃6 and T6. Recalling that (52) and (53) hold true here, we can determine coefficients

ε1 = β̃
4C1

and ε2 = min{ 1
4λ

,
β̃

4C1
}. Then, we apply (34) to handle the terms ‖D1

ξ ‖2
L2(Ω)

,

‖∇e
h,1
p ‖2

L2(Ω)
, which completes the proof of (68). ��

Theorem 5 Let (u, ξ, p) and (un+1
h , ξn+1

h , pn+1
h ) for n ≥ 1 be the solutions of Eqs. (11)–(13)

and Eqs. (31)–(33), respectively. Under Assumption 1, there holds

μ‖ε(eh,N+1
u )‖2

L2(Ω)
+ ‖e

h,N+1
ξ ‖2

L2(Ω)
+

(

c0 + α2

λ

)

‖eh,N+1
p ‖2

L2(Ω)

+ KΔt

N
∑

n=1

‖∇eh,n+1
p ‖2

L2(Ω)

≤ C̃

[

(Δt)2

∫ T

0

(

‖∂t t u‖2
H1(Ω)

+ ‖∂t tξ‖2
L2(Ω)

+ ‖∂t t p‖2
L2(Ω)

)

ds
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+ h2k

∫ T

0

(

‖∂t u‖2
H k+1(Ω)

+ ‖∂tξ‖2
H k (Ω)

)

ds + h2l+2

∫ T

0

‖∂t p‖2
H l+1(Ω)

ds

]

. (76)

Here, C̃ = C̃(T , c0, λ, α).

Proof Choosing vh = Dn+1
u in (69), φh = e

h,n+1
ξ in (73) and ψh = e

h,n+1
p in (71), we have

a1(e
h,n+1
u , Dn+1

u ) − b(Dn+1
u , e

h,n+1
ξ ) = 0, (77)

b(Dn+1
u , e

h,n+1
ξ ) + a2(Dn+1

ξ , e
h,n+1
ξ ) − c(Dn+1

p , e
h,n+1
ξ )

= b(un+1 − un − Δt∂t u
n+1, e

h,n+1
ξ ) + a2(Rξ ξ

n+1 − Rξ ξ
n − Δt∂tξ

n+1, e
h,n+1
ξ )

− c(Rp pn+1 − Rp pn − Δt∂t pn+1, e
h,n+1
ξ ), (78)

a3(Dn+1
p , eh,n+1

p ) − c(eh,n+1
p , Dn+1

ξ ) + Δtd(eh,n+1
p , eh,n+1

p )

= a3(Rp pn+1 − Rp pn − Δt∂t pn+1, eh,n+1
p )

− c(eh,n+1
p , Rξ ξ

n − Rξ ξ
n−1 − Δt∂tξ

n+1) − c(eh,n+1
p , Dn+1

ξ − Dn
ξ ). (79)

Similar to the previous proof, after summing up (77), (78), (79) over the index n from 1 to

N , we can apply (37) and (59) to derive

1

2

(

2μ‖ε(eh,N+1
u )‖2

L2(Ω)
− 2μ‖ε(eh,1

u )‖2
L2(Ω)

+ c0‖eh,N+1
p ‖2

L2(Ω)

− c0‖eh,1
p ‖2

L2(Ω)
+ 1

λ
‖αeh,N+1

p − e
h,N+1
ξ ‖2

L2(Ω)

− 1

λ
‖αeh,1

p − e
h,1
ξ ‖2

L2(Ω)

)

+ KΔt

N
∑

n=1

‖∇eh,n+1
p ‖2

L2(Ω)
≤

6
∑

i=1

Ẽi , (80)

where

Ẽ1 = E1, Ẽ2 = E2, Ẽ3 =
N

∑

n=1

c(Δt∂t pn+1 − Rp pn+1 + Rp pn, e
h,n+1
ξ ),

Ẽ4 = E4, Ẽ5 =
N

∑

n=1

c(eh,n+1
p ,Δt∂tξ

n+1 − Rξ ξ
n + Rξ ξ

n−1),

Ẽ6 =
N

∑

n=1

c(−eh,n+1
p , Dn+1

ξ − Dn
ξ ).

The bounds of Ẽ1, Ẽ2, Ẽ4 have been estimated in Theorem 3. Using the Cauchy-Schwarz

inequality, Young’s inequality, the Poincaré inequality, (19), (21), and (36), we can estimate

Ẽ3, Ẽ5, Ẽ6 with any ε1 > 0, ε2 > 0, ε3 > 0 as follows.

Ẽ3 ≤ ε1

6
Δt

N
∑

n=1

‖e
h,n+1
ξ ‖2

L2(Ω)
+ Cα2

ε1λ2

[

(Δt)2

∫ T

0

‖∂t t p‖2
L2(Ω)

ds

+ h2l+2

∫ T

0

‖∂t p‖2
H l+1(Ω)

ds

]

.

Ẽ5 =
N

∑

n=1

[

c(eh,n+1
p ,Δt∂tξ

n+1 − Δt∂tξ
n) + c(eh,n+1

p ,Δt∂tξ
n − Rξ ξ

n + Rξ ξ
n−1)

]

123



   48 Page 22 of 33 Journal of Scientific Computing            (2023) 97:48 

≤ ε2α
2

8
Δt

N
∑

n=1

‖eh,n+1
p ‖2

L2(Ω)
+ C

ε2λ2

[

(Δt)2

∫ T

0

‖∂t tξ‖2
L2(Ω)

ds

+ h2k

∫ T

0

(

‖∂t u‖2
H k+1(Ω)

+ ‖∂tξ‖2
H k (Ω)

)

ds

]

,

Ẽ6 =
N

∑

n=1

[

−c(eh,n+1
p , Dn+1

ξ ) + c(Dn+1
p , Dn

ξ ) + c(eh,n
p , Dn

ξ )
]

= −c(eh,N+1
p , DN+1

ξ ) +
N

∑

n=1

c(Dn+1
p , Dn

ξ ) + c(eh,1
p , D1

ξ )

≤
N

∑

n=1

(
α2

2λ
‖Dn+1

p ‖2
L2(Ω)

+ 1

2λ
‖Dn+1

ξ ‖2
L2(Ω)

)

+ ε3α
2

2
‖eh,N+1

p ‖2
L2(Ω)

+ 1

ε32λ2
‖DN+1

ξ ‖2
L2(Ω)

+ α2

2λ
‖eh,1

p ‖2
L2(Ω)

+ 1

λ
‖D1

ξ ‖2
L2(Ω)

.

Using the bound of Ẽi for i = 1, 2, . . . , 6, we can reformulate (80) to obtain

2μ‖ε(eh,N+1
u )‖2

L2(Ω)
− 2μ‖ε(eh,1

u )‖2
L2(Ω)

+ c0‖eh,N+1
p ‖2

L2(Ω)
− c0‖eh,1

p ‖2
L2(Ω)

+ 1

λ
‖αeh,N+1

p − e
h,N+1
ξ ‖2

L2(Ω)
− 1

λ
‖αeh,1

p − e
h,1
ξ ‖2

L2(Ω)
+ 2KΔt

N
∑

n=1

‖∇eh,n+1
p ‖2

L2(Ω)

≤ ε1Δt

N
∑

n=1

‖e
h,n+1
ξ ‖2

L2(Ω)
+ c0Δt

N
∑

n=1

‖eh,n+1
p ‖2

L2(Ω)
+ ε2α

2

2
Δt

N
∑

n=1

‖eh,n+1
p ‖2

L2(Ω)

+ ε3α
2‖eh,N+1

p ‖2
L2(Ω)

+
N

∑

n=1

α2

λ
‖Dn+1

p ‖2
L2(Ω)

+
N

∑

n=1

1

λ
‖Dn+1

ξ ‖2
L2(Ω)

+ 1

ε3λ2
‖DN+1

ξ ‖2
L2(Ω)

+ C̃

[

(Δt)2

∫ T

0

(

‖∂t t u‖2
H1(Ω)

+ ‖∂t tξ‖2
L2(Ω)

+ ‖∂t t p‖2
L2(Ω)

)

ds

+ h2k

∫ T

0

(

‖∂t u‖2
H k+1(Ω)

+ ‖∂tξ‖2
H k (Ω)

)

ds + h2l+2

∫ T

0

‖∂t p‖2
H l+1(Ω)

ds

]

+ α2

λ
‖eh,1

p ‖2
L2(Ω)

+ 2

λ
‖D1

ξ ‖2
L2(Ω)

. (81)

Next, the same technique used in Theorem 3 is applied here, with a slight difference between

the terms Ẽ6 and E6. Recalling that (62) and (63) holds true here, we choose ε1 = β̃
4C1

,

ε2 = min{ 1
2λ

,
β̃

4C1
}, ε3 = min{ 1

2λ
,

β̃
2C1

} to handle the first, third, fourth terms on the right-

hand side. We can apply (68) to bound the summations of ‖Dn+1
ξ ‖2

L2(Ω)
, ‖Dn+1

p ‖2
L2(Ω)

,

and use (35) to handle ‖e
h,1
p ‖2

L2(Ω)
, ‖D1

ξ ‖2
L2(Ω)

. Finally, applying the discrete Grönwall’s

inequality, we come to the conclusion that the desired result (76) holds by using (62). ��

Corollary 2 Let (u, ξ, p) and (un+1
h , ξn+1

h , pn+1
h ) for n ≥ 1 be the solutions to problems

(11)–(13) and (31)–(33), respectively. Under Assumption 1, there holds

√
μ‖ε(eN+1

u )‖L2(Ω) + ‖eN+1
ξ ‖L2(Ω)
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+

√

c0 + α2

λ
‖eN+1

p ‖L2(Ω) � Δt + hk + hl+1, (82)

√
K‖∇eN+1

p ‖L2(Ω) � Δt + hk + hl . (83)

Proof The same technique as that used in Corollary 1 is applied here. Firstly, (82) can

be obtained from the projection estimates (19), (21), and (76) in Theorem 5. Applying the

projection estimate (20) and (68) in Theorem 4, we see that (83) holds true. ��

5 Benchmark Tests

In this section, we carry out numerical examples on two-dimensional domains to validate the

theoretical predictions described in Sect. 4. Some benchmark tests that have been reported

in the literature [14, 20, 33] are considered here. We will test the convergence rates under

various settings of the time step size Δt , the mesh size h, finite element polynomial degrees

k and l, and other physical parameters. All computations are implemented in the open-source

software FEniCS [2].

Example 1 Let Ω = [0, 1]2 and the final time is T = 1.0. We choose the body force f , the

source/sink term Qs , initial conditions and Dirichlet boundary data on ∂Ω = Γu = Γp such

that the exact solution is as follows:

u1 = 1

10
et (x + y3), u2 = 1

10
t2(x3 + y3), p = 10e

x+y
10 (1 + t3).

Following [14], the other physical parameters are chosen as follows:

μ = 1.0, λ = 1.0, c0 = 1.0, α = 1.0, K = 1.0.

To show the convergence orders in time, we fix the mesh size h = 1
64

, use k = 3, l = 2 in

spatial discretization, and refine the time step size Δt . In Table 1, we summarize the results

of errors and convergence orders in time. We observe that the orders of H1-error of u, the

L2-error of ξ , and the L2 & H1 errors of p are all around 1, which verifies the theoretical

analysis of the time error order.

Example 2 Let Ω = [0, 1]2 with Γ1 = {(1, y); 0 ≤ y ≤ 1}, Γ2 = {(x, 0); 0 ≤ x ≤ 1}, Γ3 =
{(0, y); 0 ≤ y ≤ 1}, Γ4 = {(x, 1); 0 ≤ x ≤ 1} and the final time T = 1.0. Let Neumann

boundary ΓN = Γ2 ∪ Γ4 = Γσ ∪ Γq , and Dirichlet boundary ΓD = Γ1 ∪ Γ3 = Γu ∪ Γp . We

choose the body force f , the source/sink term Qs , and initial conditions such that the exact

solution is as follows:

u1 = e−t

(

sin (2π y)(cos (2πx) − 1) + 1

μ + λ
sin (πx) sin (π y)

)

,

u2 = e−t

(

sin (2πx)(1 − cos (2π y)) + 1

μ + λ
sin (πx) sin (π y)

)

,

p = e−t sin (πx) sin (π y).

The fixed physical parameters are E = 1.0, α = 1.0. To verify the theoretical error estimates,

we consider the time step size and the mesh size to satisfy Δt = (2h)k = (2h)l+1.

First, we consider parameters ν = 0.3, K = 1.0, c0 = 1.0. In Table 2. We show the

numerical convergence under the finite element discretization with the order k = 2 and
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Table 1 Errors and convergence rates of different algorithms for Example 1

Method Δt H1-err of u Orders L2-err of ξ Orders L2 & H1 errs of p Orders

StR alg. 1/4 9.276e−02 6.473e+00 1.769e−01 & 8.272e−01

1/8 5.536e−02 0.74 3.742e+00 0.79 1.250e−01 & 5.835e−01 0.50 & 0.50

1/16 3.021e−02 0.87 2.005e+00 0.90 7.139e−02 & 3.331e−01 0.81 & 0.81

1/32 1.577e−02 0.94 1.037e+00 0.95 3.792e−02 & 1.769e−01 0.91 & 0.91

1/64 8.055e−03 0.97 5.271e−01 0.98 1.952e−02 & 9.104e−02 0.96 & 0.96

RtS alg. 1/4 3.907e−02 3.728e−01 1.753e−01 & 8.192e−01

1/8 2.332e−02 0.74 1.438e−01 1.37 1.228e−01 & 5.733e−01 0.51 & 0.51

1/16 1.269e−02 0.88 6.964e−02 1.04 7.030e−02 & 3.280e−01 0.81 & 0.81

1/32 6.625e−03 0.94 3.532e−02 0.98 3.736e−02 & 1.743e−01 0.91 & 0.91

1/64 3.391e−03 0.97 1.794e−02 0.98 1.924e−02 & 8.973e−02 0.96 & 0.96

1
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l = 1. From Table 2, we see that the orders of H1-error of u, the L2-error of ξ and the

L2-error of p are around 2, the order of H1-error of p is around 1. While in Table 3, we

summarize the results based on k = 3 and l = 2. From Table 3, we see that the orders of

H1-error of u, the L2-error of ξ and the L2-error of p are around 3, the order of H1-error

of p is around 2. From these two tables, our algorithms exhibit the optimal approximation

orders.

Second, we consider parameters ν = 0.49999 (correspondingly, λ ≈ 1.67 × 105), K =
10−6, c0 = 0.0 to test the robustness of the proposed schemes with respect to physical

parameters. Some relevant tests of the robustness with respect to the material parameters can

be founded in [20]. The numerical results for errors and convergence orders using the finite

element order k = 2 and l = 1 are presented in Table 4. From the table, we can see that the

proposed two algorithms also exhibit optimal order of convergence. The results indicate that

our schemes are robust when λ is large and when K and/or c0 are relatively small.

Example 3 We consider the point-source benchmark in poroelasticity called the Barry-

Mercer’s problem [4, 19, 28, 29], for which an analytical series solution is available. We

assume that the width and length of the domain Ω satisfy a = b = 1. The boundary:

Γ1 = {(1, y); 0 ≤ y ≤ 1}, Γ2 = {(x, 0); 0 ≤ x ≤ 1}, Γ3 = {(0, y); 0 ≤ y ≤ 1}, Γ4 =
{(x, 1); 0 ≤ x ≤ 1}. The source/sink term Qs is located at the point (x0, y0) = (0.25, 0.25).

The description of the boundary conditions and problem setting is shown in Fig. 2. The initial

and boundary conditions are given as follows.

u = 0, p = 0 in Ω × {0},
u1 = 0 on Γ j × (0, T ], j = 2, 4,

u2 = 0 on Γ j × (0, T ], j = 1, 3,

p = 0, h = 0, g2 = 0 on Γ j × (0, T ], j = 1, 2, 3, 4.

The body force term f = 0, and the source/sink term

Qs = 2βδ(x − x0)δ(y − y0) sin (βt),

where β = (λ+2μ)K , δ(·) represents the Dirac function. The physical parameters are given

as:

c0 = 0.0, α = 1.0, E = 105, ν = 0.1, K = 10−2.

Denote λn = nπ , λq = qπ , and λnq = λ2
n + λ2

q , then the analytical solution is as follows:

p(x, y, t) = −4(λ + 2μ)

∞
∑

n=1

∞
∑

q=1

p̂(n, q, t) sin (λn x) sin (λq y),

u1(x, y, t) = 4

∞
∑

n=1

∞
∑

q=1

û1(n, q, t) cos (λn x) sin (λq y),

u2(x, y, t) = 4

∞
∑

n=1

∞
∑

q=1

û2(n, q, t) sin (λn x) cos (λq y),

where

p̂(n, q, t) = −2 sin (λn x0) sin (λq y0)

λ2
nq + 1

(

λnq sin (βt) − cos (βt) + e−λnqβt
)

,
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Table 2 Errors and convergence rates of different algorithms for Example 2 using FE orders k = 2 and l = 1 with ν = 0.3, K = 1.0, c0 = 1.0

Method h Δt H1-err of u Orders L2-err of ξ Orders L2& H1 errs of p Orders

StR alg. 1/4 1/4 5.600e−01 1.250e−01 2.597e−02 & 3.052e−01

1/8 1/16 1.516e−01 1.89 3.080e−02 2.02 6.724e−03 & 1.582e−01 1.95 & 0.95

1/16 1/64 3.897e−02 1.96 7.749e−03 1.99 1.726e−03 & 7.994e−02 1.96 & 0.98

1/32 1/256 9.823e−03 1.99 1.941e−03 2.00 4.346e−04 & 4.008e−02 1.99 & 1.00

RtS alg. 1/4 1/4 5.723e−01 1.463e−01 3.477e−02 & 3.285e−01

1/8 1/16 1.590e−01 1.85 4.448e−02 1.72 7.825e−03 & 1.590e−01 2.15 & 1.05

1/16 1/64 4.213e−02 1.92 1.321e−02 1.75 1.995e−03 & 8.004e−02 1.97 & 0.99

1/32 1/256 1.081e−02 1.96 3.607e−03 1.87 5.015e−04 & 4.009e−02 1.99 & 1.00

1
23



Jo
u

rn
alo

f
Scien

tifi
c

C
o

m
p

u
tin

g
           (2

0
2

3
) 9

7
:4

8
 

P
ag

e 2
7

 o
f 3

3
   4

8
 

Table 3 Errors and convergence rates of different algorithms for Example 2 using FE orders k = 3 and l = 2 with ν = 0.3, K = 1.0, c0 = 1.0

Method h Δt H1-err of u Orders L2-err of ξ Orders L2& H1 errs of p Orders

StR alg. 1/4 1/8 1.426e−01 1.988e−02 3.136e−03 & 4.704e−02

1/8 1/64 1.598e−02 3.16 2.312e−03 3.10 3.919e−04 & 1.210e−02 3.00 & 1.96

1/16 1/512 1.866e−03 3.10 2.632e−04 3.14 4.881e−05 & 3.068e−03 3.01 & 1.98

1/32 1/4096 2.273e−04 3.04 3.102e−05 3.08 6.110e−06 & 7.721e−04 3.00 & 1.99

RtS alg. 1/4 1/8 1.546e−01 3.799e−02 8.361e−03 & 5.907e−02

1/8 1/64 1.769e−02 3.13 5.145e−03 2.88 9.495e−04 & 1.276e−02 3.14 & 2.21

1/16 1/512 2.064e−03 3.10 6.300e−04 3.03 1.176e−04 & 3.109e−03 3.01 & 2.04

1/32 1/4096 2.500e−04 3.05 7.705e−05 3.03 1.468e−05 & 7.746e−04 3.00 & 2.00

1
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Table 4 Errors and convergence rates of different algorithms for Example 2 using FE orders k = 2 and l = 1 with ν = 0.49999, K = 10−6, c0 = 0.0

Method h Δt H1-err of u Orders L2-err of ξ Orders L2& H1 errs of p Orders

StR alg. 1/4 1/4 5.343e−01 8.976e−02 9.539e−02 & 5.476e−01

1/8 1/16 1.445e−01 1.89 1.609e−02 2.48 2.182e−02 & 1.850e−01 2.13 & 1.57

1/16 1/64 3.711e−02 1.96 3.659e−03 2.14 5.293e−03 & 8.332e−02 2.04 & 1.15

1/32 1/256 9.355e−03 1.99 8.977e−04 2.03 1.308e−03 & 4.050e−02 2.02 & 1.04

RtS alg. 1/4 1/4 5.343e−01 8.976e−02 8.420e−02 & 5.797e−01

1/8 1/16 1.445e−01 1.89 1.609e−02 2.48 1.732e−02 & 1.933e−01 2.28 & 1.58

1/16 1/64 3.711e−02 1.96 3.659e−03 2.14 4.200e−03 & 8.515e−02 2.04 & 1.18

1/32 1/256 9.355e−03 1.99 8.977e−04 2.03 1.041e−03 & 4.076e−02 2.01 & 1.06
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Fig. 2 Boundary conditions for the Barry-Mercer’s problem

û1(n, q, t) = λn

λnq

p̂(n, q, t), û2(n, q, t) = λq

λnq

p̂(n, q, t).

We conducted simulations for the Barry-Mercer’s problem using the Coupled algorithm,

the StR algorithm, and the RtS algorithm with finite element orders k = 2 and l = 1. The

final time is set to T = π/(2β), and a mesh size of h = 1/64 is used. Two different time step

sizes, Δt = π/(20β) and Δt = π/(200β), are considered. The results of these simulations

are presented in Fig. 3.

As shown in Fig. 3, we present the analytical solution and the numerical solutions obtained

by using the different algorithms along a specified straight line γ : x = 0.25. From the results,

the numerical solutions generated by the different approaches exhibit close agreement, par-

ticularly when employing a small time step size. The RtS algorithm and the StR algorithm

exhibit stability and result in reliable solutions even with larger time step sizes, although their

performance is slightly inferior to that of the Coupled algorithm.

Next, we conduct simulations to investigate the phenomenon of pressure oscillations by

using a small permeability value of K = 10−6 and a small time step size of Δt = (π/2) ×
10−9. We recall that the proposed decoupled algorithms rely on the solutions computed

by the Coupled algorithm for the first step. Different choices of finite element orders are

considered in this experiment, and the results are presented in Fig. 4.

In the first step, we applied the Coupled algorithm and used subfigures a, b, and c to

represent the results obtained with the P1 − P1 − P1 method, P2 − P1 − P1 method, and

P3 − P2 − P2 method, respectively. It is observed that the P1 − P1 − P1 method exhibits

pressure oscillations, while the P2 − P1 − P1 method significantly reduces these oscillations,

and the P3−P2−P2 method performs the best by effectively eliminating pressure oscillations.

Additionally, subfigure d displays the cross-section of the pressure at the line γ : x = 0.25

in the second time step using different algorithms with the P3 − P2 − P2 method. Notably,

no pressure oscillations were observed in this case. Furthermore, in comparison to the RtS
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Fig. 3 The analytical solution, and the numerical solutions of the different algorithms for the pressure and

the displacement along the line γ x = 0.25 at T = π/(2β) with time step sizes Δt = π/(20β) (left) and

Δt = π/(200β) (right)

algorithm, the StR algorithm demonstrates a performance that is more closely aligned with

that of the Coupled algorithm.

6 Conclusions

In this paper, based on a new three-field formulation, we present some algorithms for decou-

pling the computation of Biot’s model. A new theoretical framework is developed to analyze

the algorithms. These algorithms only solve the system in a coupled way at the first time step.

In the subsequent time steps, numerical computations are divided into solving two typical

mathematical models. Error analysis is given to show that these algorithms are uncondition-

ally stable and optimally convergent. Furthermore, numerical experiments are carried out to

verify the prediction of error estimates. We highlight that our algorithms are unconditionally

stable, efficient, and convergent in optimal order.
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(a) P1 − P1 − P1 method (b) P2 − P1 − P1 method

(c) P3 − P2 − P2 method (d) P3 − P2 − P2 method

Fig. 4 Cross-sectional views of the pressure distribution for Barry-Mercer’s problem. a Pressure cross-section

using the P1 − P1 − P1 method in the first step. b Pressure cross-section using the P2 − P1 − P1 method in

the first step. c Pressure cross-section using the P3 − P2 − P2 method in the first step. (d) Cross-section of

the pressure along the line γ x = 0.25 in the second time step, obtained using different algorithms with the

P3 − P2 − P2 method
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