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Abstract

We study numerical algorithms for solving Biot’s model. Based on a three-field reformula-
tion, we present some algorithms that are inspired by the work of Chaabane et al. (Comput
Math Appl 75(7):2328-2337) and Lee (Unconditionally stable second order convergent parti-
tioned methods for multiple-network poroelasticity arXiv:1901.06078, 2019) for decoupling
the computation of Biot’s model. A new theoretical framework is developed to analyze
the algorithms. Considering a uniform temporal discretization, these algorithms solve the
coupled model on the first time level. On the remaining time levels, one algorithm solves a
reaction-diffusion subproblem first and then solves a generalized Stokes subproblem. Another
algorithm reverses the order of solving the two subproblems. Our algorithms manage to
decouple the numerical computation of the coupled system while retaining the convergence
properties of the original coupled algorithm. Theoretical analysis is conducted to show that
these algorithms are unconditionally stable and optimally convergent. Numerical experiments
are also carried out to validate the theoretical analysis and demonstrate the advantages of the
proposed algorithms.

Keywords Biot’s model - Decoupled algorithms - Finite element method - Unconditionally
stable

Mathematics Subject Classification 65M60 - 65N30 - 74F10

1 Introduction

The theory of poroelasticity describes the interaction between deformable porous media
solids and fluid flow. The fundamental model of poroelasticity is called Biot’s model [5, 6],
which is a coupled system of partial differential equations (PDEs). It has drawn much atten-
tion because of its wide applications in petroleum engineering, geoscience, and biomedical
engineering [20]. However, Biot’s model is a multiphysics problem involving both elasticity
and porous media flow, which leads to numerical difficulties, such as elasticity locking and
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pressure oscillation, particularly for the two-field formulation based model [13, 23, 31, 33].
To overcome these difficulties, discontinuous Galerkin method [29], stabilized Finite Element
methods [31, 32], and various three-field or four-field reformulations have been proposed
[15, 23, 27, 34]. Following [23, 27], an intermediate variable, called “total pressure”, is
introduced to develop a three-field formulation for Biot’s model in this paper, which allows
one to view Biot’s model as a combination of a generalized Stokes problem and a reaction-
diffusion problem. This reformulation has advantages in several aspects. First, one can apply
the classical inf-sup stable Stokes elements for the displacement and the total pressure, and
the Lagrange elements for the fluid pressure. Secondly, existing fast solvers in multigrid and
domain decomposition methods can be directly invoked. Investigations based on this three-
field reformulation may be found in [17, 18, 20, 22-24, 27]. Other relevant works include the
optimal order error estimates of a coupled scheme [30] and a virtual element discretization
[10].

The numerical difficulties in solving Biot’s system call for the development of effective
and efficient numerical algorithms. The numerical methods for solving Biot’s model can
be categorized into three types: (i) The fully-coupled algorithms, in which all variables are
solved in a coupled way on each time level [18, 23, 27, 30]; (ii) The iterative algorithms [17,
21, 25], in which submodels are solved iteratively on each time level, using the approximate
solution of the previous iteration step until the error tolerance is reached; (iii) The decoupled
algorithms [15, 20], in which submodels are solved on each time level yet without itera-
tions. Theoretically, fully-coupled algorithms achieve optimality in stability, convergence,
and accuracy, however, are more computationally demanding. Investigation on efficient pre-
conditioners to accelerate the convergence of the Krylov subspace methods can be found in
[1, 11, 13, 23]. The preconditioners are applied to various iterative algorithms [7, 16, 17, 21,
25, 34] to reduce the computational cost due to smaller cost for submodels in each iteration,
and legacy code can be invoked for each submodel. Among these iterative algorithms, the
fixed-stress splitting method is widely used in the engineering community due to its uncon-
ditional stability [7, 14, 25]. However, it is important to note that this method may require a
certain stabilization parameter to be sufficiently large in order to ensure convergence. Instead
of using an iterative procedure, the decoupled algorithms split the original coupled prob-
lem into smaller sub-systems to reduce the computational cost. By applying a stabilization
parameter, a splitting-based method is devised for the two-field formulation in [14]. To avoid
stabilization parameters, several conditionally convergent decoupled algorithms are proposed
in [3, 15]. However, most of these existing decoupled approaches assume additional condi-
tions such as the specific storage coefficient cg > 0 [25], or the weak coupling condition [3],
or large enough stabilization parameters in discretization [7, 14, 21, 25, 29].

In this paper, we present some algorithms, which solve a coupled system only on the
first time level, while applying decoupled computation on the subsequent time levels. These
algorithms are inspired by [14] which is based on a stabilized two-field formulation, and
[22], which uses a three-field formulation and considers 2nd-order time schemes for a more
general multiple-network Biot’s model. Our algorithms can be thought of as a degenerate
1st-order scheme of [22] for the single-network Biot’s model. We developed a new theoretical
framework to analyze the proposed algorithms. Solving a coupled system on the first time
level initially enables us to get the computation started, and retain the approximation accuracy,
yet not to impose small time step constraints for stability in time marching for subsequent time
levels, (see [15] for the analysis of the stability constraint). Combined with this initialization
technique, we may then follow the decoupled algorithms proposed in recent works [20, 22].
We will prove that the algorithms are unconditionally stable and optimally convergent. Since
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these new algorithms are decoupled from the second time level, they are not only stable and
convergent but also computationally efficient.

The rest of the paper is organized as follows. In Sect.2, we describe the three-field for-
mulation of Biot’s consolidation model and its corresponding variational formulation. The
new algorithms are presented in Sect.3. The convergence analysis of the new algorithms is
given in Sect. 4. Finally, in Sect. 5, numerical experiments are given to validate the theoretical
results.

2 Mathematical Formulations

Let 2 C R? (d = 2 or 3) be a bounded polygonal domain with boundary 8£2. We consider
the quasi-static Biot system which reads as follows.

—dive (u) +aVp = f, 1
& (cop + adivu) —divK(Vp — prg) = Qs, 2)

where
o (u) = 2ue(@) + A(divi) I, &(u) = % [Vu n (Vu)T] :

In these equations, the primary unknowns are the displacement vector of the solid # and
the fluid pressure p, the coefficient « > 0 is the Biot—Willis constant which is close to 1,
f is the body force, ¢y > 0 is the specific storage coefficient, K represents the hydraulic
conductivity, p ¢ is the fluid density, g is the gravitational acceleration, Q; is a source or sink
term, I represents the identity matrix, the Lamé constants A and p are related to Young’s
modulus E and the Poisson ratio v as follows (Fig. 1):

Ev E
A= , M= .
(I+v)(I =2v) 201+ v)
Suitable boundaries and initial conditions should be provided to complete the system. As

shown in Fig. 1, we assume 0§2 = I, U I, = I, U Iy with [I3,] > 0,[I,| > 0, and
consider the following boundary conditions:

u=0 onl}, 3)

(o(u) —apl)n=h on Iy, 4)
p=0 onl), 5)

K(Vp—prg) -n=g only, (6)

where n is the unit outward normal to the boundary. The initial conditions are given by
u©0)=u", p©) =p°. (7

Following [23, 27], we introduce an intermediate variable &, called “total pressure”,
defined by & = ap — Adivu. Then, (1)-(2) can be rewritten as the following three-field
formulation.

—2udiv(e(m)) + V& = f, (®)

divi+ 26— %p—0 ©)
ivu+ —&E— —p=0,
PR

@ Springer



48  Page4of33 Journal of Scientific Computing (2023) 97:48

Fig.1 Two distinct types of

boundary conditions can be Fu \
imposed on 952: one is for the \
displacement (left), and the other O

is for the pressure (right)

2
o o .
<CO+7)a,p—xa,s—dwK(Vp—pfgﬁQs. (10)

After the reformulation, the boundary conditions (3)—(6) and initial conditions (7) with £ (0) =

o p®—rdivu® can still be applied. For ease of presentation, we assume the gravity acceleration
g = 0 in the rest of the paper.

Let H*(£2) be the classical Sobolev spaces with norm || - | Hk(22)- Denote H& 1 (£2) be the
subspace of H¥(£2) with the vanishing trace on I C 8£2. In this paper, we will use (-, -) and
(-, -) to denote the standard L2(£2) and L2(3£2) inner products, respectively. Moreover, we
use C to denote a generic positive constant independent of mesh sizes and x < y to denote
x <Cy.LletV=Hj(2),W=L*Q) and M = H&’FP(Q). Foru,ve V,&, ¢ € W,
and p, ¥ € M, we define the following bilinear forms:

a(u,v) = 2,u/ e(m):e), b, ¢)= / ¢ divo,
Q Q

1
w(E. ¢) = X/Qw, c(p,¢) = %/ﬂm

2

a3(p,1ﬂ)=<60+a7>/ py, d(p, W)ZK/ Vp-Vi.
o) 2

Multiplying (8)—(10) by test functions, integrating by parts, and applying boundary conditions
(3)—(6) yields the following variational formulation: for a given t > 0, find (u, &, p) €
V x W x M such that

ar(u,v) —b,&) = (f,v)+ (h,v)r,, YveV, (11)
b(u,d) +ax§,¢) —c(p,¢) =0, VoeWw, (12)
az(0rp, ¥) — (¥, &) +d(p,¥) = (Qs. ¥) + (82, V)1, VyeM. (13)

The well-posedness of Problem (11)—(13) is established in [27]. The Korn’s inequality
[26] holds on V, that is, there exists a constant Cy = C($2, I,) > 0 such that

vl g2y < Cklle@ 22y, Yv e V. (14)

Furthermore, the following inf-sup condition [8] holds: there exists a constant 8 > 0 depend-
ing only on §2 and I, such that

b(v, 9)

> Bldl2e)y, Yo e W.
veV ”vHHl(_Q)
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3 Finite Element Discretization and Numerical Algorithms

Let 7;, be a partition of the domain §2 into triangles in R? or tetrahedrons in R?, and % be the
maximum diameter over all elements in the mesh. We define finite element spaces on 7},

Vi = {vy € Hy . (2) N C*(2); vplge Pr(E), VE € Ty},
Wi = {¢n € L*(2)NC°(2); ¢nlpe Pi1(E), VE € Tp},
My = {Yn € Hy 1, (2) N C*(Q); Ynlpe PUE), VE € Ti),

where k > 2 and / > 1 are integers. In this paper, the Taylor-Hood elements are adopted for
the pair (u, £), and the Lagrange finite elements are adopted for p, respectively. As we use
a stable Stokes element pair, the corresponding finite element spaces satisfy the following
discrete inf-sup condition, i.e., there exists a positive constant B independent of £ such that

b(vp, ¢p) _ -
——— = Blignll2 2y, Yo € Wi (15)
v, eV, ||Uh||[-11(9)

Following the common practice as in [24, 30], two projection operators are introduced.
First, the Stokes projection operator Ry, x Re : V x W — V, x W, is defined by

ar(Ryu, vy) — b(vp, Re§) = ai(u, vp) — b(vp, §), Vvp € Vi, (16)
b(Ruu, gpp) = b(u, dn), Von € Wi. a7

Second, the elliptic projection operator R, : M — My, is defined by
d(Rpp, yn) =d(p, ¥n), Yy € Mp. (18)

Ifu e H’é}lu (£2),¢ € H* (£2),and p € Hé}lp (£2), then the following error estimates hold
for the Stokes projection operator and the elliptic projection operator [9].

lu — Ryullgio) + 11§ — Reéll 2y < Chk(||u||Hk+1(Q) + 18 gr(2))s (19)

Ip = Rppllaia) < CH Pl g (a)- (20)

Under the assumption that the domain 2 has the full elliptic regularity [24], there holds
lp = Rppllzze) < CHIpll g @) 1)
An equidistant partition 0 = 19 < ] < --- < ty4+1 = T with a step size At = % is

used for the time discretization. Denote u" = u(t,), £" = &(t,) and p" = p(t,). The initial
conditions may then be approximated by u2 = R,u°, 5,? = Rgéo = R: (o p° — 2divu®), and
p,? = R, p? in terms of the projection operators and the initial data in (7) from the original
model.

Based on the three-field formulation (8)—(10), the backward Euler method for the time
discretization leads to a coupled scheme.
Coupled algorithm: Given (u]l, &', pi) € Vi x Wy x My, find ()™, &/, pith) e
Vi x Wy x My, such that

ar @™ vp) — bop, £ = (" o) + B v, Yop € Vi, (22)

b, o) + ar (€T dn) — (P gn) =0, Vo € Wi, (23)
n+l _ n n+l _ ¢n
az <ph Y Pi ) 1/fh> —c (th, A Y. Sh)
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+dp ™ ) = QT ) + (&5 ), Vi€ M. (24)

The Coupled algorithm is unconditionally stable and convergent. To decouple the com-
putation involving three governing variables on the current time level in the coupled system,
we note that from past experiences, simply approximating any variable on the current time
level n + 1 in (22) and (23) by their computed data from the previous time level would easily
lead to certain explicit behavior and thus destroy the stability property in the implicit coupled
algorithm. For example, the authors of [3] have highlighted the essential requirement for
imposing additional conditions on the physical parameters in such scenarios. Mathemati-
cally, the major difficulty lies in that the continuous equations (11) and (12) corresponding
to (22) and (23) are time-independent, only describing certain physical balance conditions in
space. To enable the information of the governing variables, essentially the displacement and
pressure, to be carried on in computation as time evolves, we may instead mathematically
equivalently first take the time derivative on (12) to replace it by

b(0iu, ¢) + a2(9,§, ¢) — c(d;p, ) =0, Ve W,

and then apply the implicit backward Euler scheme for time discretization to obtain the
discrete counterpart to replace (23) by

un+l —u §n+l —gn
b<hAth’¢h +ar hTth’¢h

n+l _ n
s (”"Atph,m) =0, Voue W

This leads to a new coupled algorithm, which is also an implicit scheme and thus is uncon-
ditionally stable and convergent, too. However, it now allows the displacement and pressure
data, as well as their physical balance condition in space, to be carried on as time evolves.
Moreover, the deCO}lpling may be realized by further approximating the time derilvative finite
difference term %;pz with the computed data on the previous time level #Tpth for decou-
pling the pressure from the displacement, yet the stability of the displacement is still enforced
by its implicit in-time discretization for its dynamics. This strategy has also been applied in
the literature, such as similar to [14, 20, 22], and in decoupling fluid-solid interactions com-
putation where intrinsic Robin condition based decoupled algorithms are devised [12, 35].
However, this is a two-step procedure and requires computed data for pressure LI;;”I on the
previous two time levels. To start with the decoupled computation on subsequent time levels,
we propose to first apply the above coupled, yet one-step, algorithm to compute (u,ll, Shl, p}l)
on the first time level, followed on subsequent time levels by alternatively solving the gen-
eralized Stokes equations and the reaction-diffusion problem independently. This results in
the first version of the decoupled algorithms referred to as the StR algorithm.

StR algorithm:

Initial step: Given (ug, E}?, pg) e Vi x Wy x My, find (u}l, 5}}, p}L) € Vi x W, x My, such
that

ar(u}, vp) —bn, &) = (f o) + (k' on)r,, Yo, € Vi, (25)
b(u, dn) + ax(EL, ¢n) — c(pjy, dn) =0, Yo, € W, (26)

1.0 150
as (phAtph, Wh) —c (W, 5n =& At£h>
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+d(pym) = (O, ¥m) + (3. ¥n)r,. YU € M. 7

Subsequent steps: For n>1,
StR step 1: given p) ,ph € My, find (u’”rl S”H) € Vj, x Wy, such that

ar@p ™ o) — b, EMY = (F" v + (T o), Yo € Vi, (28)
b —ul o) +ar €T — € ) = c(pf — P dn), Ve € Wi (29)

StR step 2: find pZH € M, such that

ntl nl
as (phmphﬂﬁh) —C(W,s AP Sh)
+dppt v = (O um) + (&5 ), Y, € My, (30)

Alternatively, one can solve the reaction-diffusion problem first and then the generalized
Stokes equations by decoupling & from p in (24) through the approximation of the backward
difference of £ using the computed data on the previous time levels similarly, which is referred
to as the RtS algorithm.

RtS algorithm:

Initial step: The same as (25) — (27)

Subsequent steps: For n>1,

RtS step 1: given Eh , &) € Wy, find p"+l € M, such that

pn+1 —p .
as (llAth Yn ) +d(p), H , Yn)

n n—1
= Q7 ) + (&5 ), (Wh, H) ) Yyn € Mj. (B

RtS step 2: find () !, &) € V), x W, such that

ar@y ™ o) = b, & = (" o) + T o) Von € Vi, (32)
b —uj, dn) +ax (T =& ) — eyt = pi i) =0, Vo € Wi (33)

4 Convergence Analysis

We now present the convergence analysis and error estimates for the decoupled StR algo-
rithm and RtS algorithm, where the following regularity assumptions are imposed.

Assumption 1 Assume that u € L0, T; Hi'! (2)), du € L0, T: HGH (2)),
du € L*O0,T; Hy , (2)), § € L0, T; Hk(fz)), & € L*0,T; HX(Q)), 94k €
L*O.T; LX), p € L®O.T:Hylp (), dp € L*O.T:Hylp (), dup €
L2(0, T; L%(2)).
For ease of presentation, the error terms are decomposed as
ey =u"—uy =" — R,u") + (Ryu" —uj) =: e +eu ,

= E" £l = (6" — Re&") + (Re&" — &) = el + ",

@ Springer



48  Page 8of33 Journal of Scientific Computing (2023) 97:48

ey =p" —pp =" = Rpp") + (Rpp" — pj) = ¢} + ¢}
We also denote

n+l . hon+l h,n n+l ., hn-H hn n+1 — hn+1 h,n
D,m =¢, -, D7 i=e; e, D, i=e, —e,n.

Both the StR algorithm and RtS algorithm involve the Initial step (25)—(27), which has
the following error estimates for (u}l, & ,l , P ,]l). The proof is a direct consequence of Theorem
4.1 and Theorem 4.2 for the Coupled algorithm in [18].

Theorem 1 Let (u, &, p) and (u}, &}, p}) be solutions of Egs. (11)~(13) and Egs. (25)~(27),
respectively. Under Assumption 1, we have

1 1\12 1142 12 h,12
~ (1@ 20y + 1DH 2y + 1D} 220 ) +19€5 122 g
2 [ 2 2 2
< (A /0 (NorutlZys ) + N0 1220 + 181 P 12 g ) ds

131 "
+ h2k/0 <||3,u|| HEH () + ”at%_”Hk(_Q)) ds + h2l+2/0 ||8tp||ill+l(9)ds, (34)
and
h,1 ,
”8(631)”12(9) + ||€E ”%2(52) 4 ”eg 1 ”iZ(Q)

1
< (An? /0 (||anu||§,1(m +110u€ 172 o) + ||at,p||iz(m) ds
1 1
1 [ (10 gy + 10 By ) ds 48772 [ 100 s s G9)

We also cite below two propositions that are used frequently in our following analysis,
their proofs can also be found in [18].

Proposition1 Let f : R — R be a function that has k + 1 continuous derivatives on an
open interval (a, b). For any to, t € (a, b), there holds

F® )
Xl

@)= f(t0) + f/(t0)(t —t0) + -+ (t —t0)* + — / FED ) — 5)*ds.

Then, the following estimate for the L?-norm of the last term holds.

2
H % / t FED@) @ - s)kas o S (b —a)*! / £ 4 V2 gy ds|. (36)
Proposition 2 Let B be a symmetric bilinear form, there holds
2B(u,u —v) = B(u,u) — B(v,v) + B(u —v,u —v),
which immediately implies the following inequality
2B(u,u —v) > B(u,u) — B(v, v). (37

@ Springer



Journal of Scientific Computing (2023) 97:48 Page90of33 48

4.1 A Priori Error Estimates for the StR Algorithm
In this subsection, we present the a priori error estimates of the StR algorithm.

Theorem 2 Let (u, &, p) and (u) ™', &1, pi*) forn > 1 be the solutions of Egs. (11)~(13)
and Egs. (28)—(30), respectively. Under Assumption 1, there holds

> (une(Dz*')niZ(m + 4 Dy — D ||L2(Q)> + S AtIVey I g,

T
< c[<m>3 f (Norcalys gy + 10E 12 2y + 101 P1132 g ) s

T
#0281 [ (Vs + 106 ) 1280 [ Wl ]
38)

Here, C = C'(co, A, o).
Proof Subtracting (28), (29), (30) from (11), (12), (13), respectively, we derive
ai(ey™, vp) = b(oy, €T =0,

ble ™! — e on) +ax(er™ = e, gy =" = p" = P+ P gn),

n+1 n+l
p p &' —&
as <8tp"1 Ww)+d(e*;,+1,wh>=c<wh,a@”“ - ”)

By using the projection operators introduced in (16), (17), and (18), we can reformulate the
above equations as

a(ep"™ o) — (v, el =0, (39)
bDRH, gn) + az(el ™ —ef, dn) = c(p" = p" = ph 4 p ), (40)
as(D ) — c(n. DI + Ard (el )

=a3(Ryp"™" — Ryp" — Atd, p" ' ) — c(Yn, ReE" — Re&" — Argi&"th). (41)
We take the difference of the (n + 1)-th and the n-th levels of (39) to get

a (Dy*!, vy) — b(vy. DI =0, (42)
By using the definitions of D”Jr1 and D” we reformulate (40) as

bD, gn) + ax(DLT, ¢n) — (D}, )
= —ay & =& )+ c(p" = P )

+ ay(ReE™ — Re&", ) — c(Ryp" — Rpyp" L, ). 43)

From (12) we obtain
bt —u"y = —ar (" — £ gp) + (P — P, i), (44)
b(Atdu", ¢p) + ar(Atd, " ) — c(Atd p" T, ¢p) = 0. (45)
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Combining (43), (44), and (45) yields
by, dn) + ar(DET, gn) — c(Dly, pn) = b —u" — Atdu"t', ¢n)
+ ar(Re" ! — Re&™ — Atd 6" dp) — c(Rpp" — Rpp" ™' — Atd, p" ™, ). (46)

Choosing v, = D!*!in (42), ¢ = Dg“ in (46), and ¥, = D! in (41), we deduce
that

al(Dn-H Dn+1)+a2(Dn+1 Dn+1)+ax(D;+l,D;+l)
—C(DZH,D"H)—}-Atd(eh n+1 Dn+l)
— b(un-‘rl —u" = Ata,u"'H, DgH—l) +a2(R§gn+1 _ ngn _ At3,§"+1, Dgl-‘rl)
+C(Atatpn+l _R pn + Rppn71 Dn+1) +a3(Rppn+l _ Rppn _ Ata,p”“, D;Jrl)
+C(D;+1’Atatsn+l R Sn-‘rl +RE$ )+C(Dn,Dn+1). (47)

From the definition of the bilinear form c(-, -), the following identity holds.

+1 o? +12
. n _ n
IID + ZA 1D,

”LZ(_Q) _ C(DZ+1, Dn+1) — 7“ D}’H-l Dn+l

” LZ(Q)
(48)

”LZ(Q)

Applying (48) to the left hand side of (47), and summing over the index n from 1 to N, we
derive

N 2
1 o
> [mue(Dz“)uiz(m + o 1DE o) + (Co + ﬁ) 1D 13 )

n=1
1 N 6
d D = DI g [ A Y ae D =S 69
n=1 =
where

N
T1 — Zb(un-‘rl —u" = Atatun+], [)2_1—9—1)7

T2 — ZaZ(RS$n+1 _ Ré_%-rl _ Al8t$n+l’ Dg+l)7
n=1
N

Ty =Y c(Atd p"™ = Ryp" + R,p" ", DY),
n=1

Ty=) as(R,p""" — R,p" — Arg;p™*', DIFY),

n=1
N
Ts =) c(Dpt', Atg " — ReE"™' + Re&™),
n=1
N
Te =Y c(Dy, D).
n=1
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Next, we bound the terms 7; fori = 1, 2, ..., 6. Recalling the definition of b(-, -), we can
apply the Cauchy-Schwarz inequality, Young’s inequality to derive the following estimate
for the term 7 with any €; > 0.

N
T, = Z[ Dt div™! —u" — Argu"t)
2

I /\

N
C .
- Z 1D 20, + o Do ldiv@ ™ — " — Ard a7 g
n=1
Then, we can apply (36) to control the last item as follows.

N T
€] C
Ti< > Z 1D 13 ) + Z(A’)3 /0 1902131, ds-

Considering the same €1, we then estimate the 7, term in the same manner.

T2 — Z / D:;l"rl(RS%-n-‘rl _ RSS” _ At8t§n+])

n=1

N
C
<2 ||D"+l 2t — ||Rs§"+1 Res" — At g™
L L2(2)
C
n+1 n+1 n n+1)2
< ZHD ||L2+6M2;<||s — & — A" 70 g

+ IR " — &) — " - s")niz(m).

Applying (36) and (19), we can bound 73 as follows.
T < D! € lan? ' &%, ond
) < —Zn 1720y + 2|07 | 10uE 1z g ds

+h* At /0 (Nl o) + ||ats||i,k(9))ds}.

To estimate the term 73, we need to reformulate it first.

N
=Y [c(ma,p"“ — At3,p", DY) + (413, p" — Ryp" + Ryp"”! Dg“)}

n=I

N

o —

_2 /D"“(Ata,p Aza,p")+§ x/;zDg+l(Atatpn—Rpp"+Rpp" 1
n=I

n=1

N 2 N
< €l Z |Dn+l” Ca 1 Atd ntl o Ap n“2
=3 LZ(.Q) ])\.2 tP 1P LZ(Q)
n=1 n=1

Hlp" = p" = A0 p g + IRy (P = " = (P = P 1)||L2(Q))
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We then apply (36) and (21) to derive the following estimate.

N 2 T T
€1 Ca
Ts <2 > U0 g, + 617[(4\03 /0 196 P17 2 s + K+ At /0 ||a,p||i,,+,(mds].

n=1

Similarly, we recall the definition of a3 (-, -) to derive the following estimate for the term 74
with any €, > 0.

N 2
o
Ty=) (Co + —) / DY (R, p" ! = Ry p" — At p"th
n=1 A 2
N 62012 N
n+1,2 n+1,2
=< <o E ”Dp ”Lz(.Q) + 4 E ”Dp ||L2(.Q)
n=1 n=1

2 T T
+C (co + T) [(Ar) /0 190 P72 g ds + h* 2 At fo ||atp||i,,+](mds].

Using the same technique, we can bound 75 and 7g as follows.

N
o
Ts Z o /Q DI (AL, E" T — ReE™! + Re£™)

T

6206 +1 ¢ :
ZIID” I+ 2 €22 [(At) /o s lizas

+h2kAt/ (||31u|| k(o) T ||3t§||1.1k(9))d ]

+1 +1
T(,_Z [z DZsz—ZIID" ||L2(Q)+ZAZIID"IIL2<Q>

From (37), we also have the following inequality.

K
At Zd(eh ,n+1 DYH—I) > At Z < ||V€h ,n+1 ”LZ(Q) _ Enveﬁ’n”%}(g))

n=1

K K
= EAtHVe};‘NH 2 At||Veh !

” L2 (_(2) (50)

” L2 ( _(2)
We denote C a constant related to €1, €p and other coefficients, which will be discussed later.
Combining (49), (50), and the bounds of 7; fori =1, 2, ..., 6, we obtain

N
1
Z|:2M|5(D”+l)||L2(Q)+ D5 W) + 5 e D = D"“an(Q)}

n=1

K K
+ S AV T o) — S ATV 17

”LZ(Q)

620[
<aZ||D"“||Lz(Q)+ ZMD"“HLZ(Q) ZAZHD"MMQ)

n=1

T
+C[<Ar>3 /0 (Nousw2 gy + 1013209, + 102122 ) ) s

£2)
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T T
2k 2 2 2042 2
+h* Ar /0 (N s ) + 106 12 g ) s + W22 A0 fo ||a,p||H,+1(mds].

(51)
Using the inf-sup condition (15), (42) yields
b(vy, D{*) ar (D' vy)
BIDI 7, sup ————— = sup ——~u——> < 2uC1le(Dy 720
L (Q) v, eVy ”vh”Hl(Q) v,eVy ||1)h ”Hl(_Q) " L2
(52)
which directly implies
o? 12 1 +1 +1
7||D;l)+ ||L2(Q) S ”(XDZ+ Dn ||L2(Q) + ”Dn ”LZ(Q)
21
< llaDy™ = Do) + === : ||s(D”+‘>||§2(Q). (53)
According to (52), we determine coefficient €; = 4(’5;1 such that 61||D”+] ||L2(_Q) <
& ||8(D"‘H)||L2(m And we recall (53) to set ex = mln{41/\ 3¢, } such that 62“ ||D”'"1 ||L2(Q)

< BlleDEHI2,, ) + 7l DB+ — DEFY2, . From (51), we see that

L2(£2) L2(2)

N
1 K
> (uns(D::“)niz(m + ol = D"“||L2(Q)> + 5 AtlVer N i g,

T
< c[<m>3 /0 (Norealys gy + 1081320y + 191 P132 g ) ds

T

2k 2 2
+ % At /0 (N0 ) + 10012 ) s

2042 r 2 o? 12 K h1y2
+h + At/o ”atp”HH—l(_Q)ds] +a”DP”L2(.Q)+5At”VeP ”LZ(Q)

We then apply (34) to handle the last two terms on the right-hand side. When ¢ — 0,
A — 00, the constant C exhibits robustness with respect to cg, A, and o because

1+ o? 1+ a?
+ 7

The proof of (38) is completed. O

C=Cloha) S1+co+

Theorem 3 Let (u, &, p) and (u} ™', &1, pi™) forn > 1 be the solutions of Egs. (11)~(13)
and Egs. (28)—(30), respectively. Under Assumption 1, there holds
hN+1 h,N+1 o? hN+1
,LL”&‘(B )”L2(Q) + ||€ ||L2(.Q) + (C() + 7) ||€ ||L2(Q)

N
+ KAtZ ||VeZ’”+1||iz(Q)

n=1

T
< c[moz /0 (Norcalys ) + 1081320y + 18P g ) s
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T T
4 p /0 (N0 r ) + NHE W g ) s + 12+ fo 100121 (Q)ds]_ (54)
Here, C = C(T, co, A, ).

Proof Choosing v, = D" in (39), ¢), = eh "+1in (46) and ¥y, = eh "1 in (41) yields

al(eh n+1 Dn+l) _ b(DVH—l eh,i‘l+1) — 0’ (55)
b(DZ-H h, n+l) +a (Dn—H’ g n+l) _ C(DZ-H g n+l)
— b(un+l —u" - Ata[u +1’ gn+l)

+112(R§$n+1 _ Rggn Atd S,H_I hﬂ+1)
—c(Rpp" — Rpp" ™" — Atd, p" el — (DT — DY e, (56)

1 h, 1 h, 1 1 h, 1 h.n+l
as(DRFY ey — eyt DETY) + Ard(ey" T et

= a3(Rpp”+1 —R,p" — Atatp"H,ei’;”H)
—c(ei‘,’"‘“, Rg&"“ — Re&" — Ard,e"H). (57)
Then, we take the summation of (55), (56), and (57) over the index n from 1 to N
N
LHS = Z |:a1(eh ,n+1 Dn+1) +ar (D”'H, éln—}—l) _ C(D;H, ?’H_l)

n=1

+az(D ety — (el DI + Atd (el eﬁ’”+l):| => Ei. (59
where

N
— Zb(un+l —u'— Ata,u” IgnJrl)’

N
E2 — ZGZ(RSSVLJ’_I _ Résn Atd En-&-l h, n+1)
n=1
N
- h,n+1
E3 = Zc(Atatp"+l - Rppn + Rppn l’ %‘ i )a
n=1

Ey=Y " a3(R,p"*" = R,p" — Atd,p" ', el th,
n=1
N
Es =Y c(eh"", Arg,e"" — Re&"! + Reg™),
n=1
N
h 1
Eg=Y oDyt — D, —ef ™).

n=1
Using the definitions of ax (-, -), a3(:, ) and ¢(-, -), we have the following identity.

h,n+1 h,n+1
a2(Dn+l’ Eﬂ‘i’ )_ C(D’;;Jrl,e%_ n+ )+a3(DZ+1’eZ,n+l) _ ( Z’H—l D§+l)
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1
= X/ (@Dt — DI el — el +c0/ (el — el el (59)
2 2

Applying (37) and (59) to (58), we can estimate that
N

h,n+1y,2 h 2 h,n+1
Z(ulle(e " )Ile(m—Mlls(eu’")lle(m —||e "

n=1

€0\ hony2 hotl _ hn+1
- ?IIep'"IILZ(Q) + ||Ol€ " ||L2(Q)

1 n
= 5 lae” = eg”niz(m + KA Ve T g

which directly implies that

> < LHS,

(mns(eh N 7@y = 21lleen D20y + ol ™ T g

2
h,N+1
C()”e 1||L2(.Q) + 7”0[6/1 N e;’& * ”LZ(Q)
1 N
1 12 hon+12
= ey e ||L2(m> + K At Zl IVely" 17 o, < LHS. (60)
n=
Next, we bound the terms E; fori = 1, 2, ..., 6. We use the Cauchy-Schwarz inequality,

Young’s inequality, (19), (21) and (36) to estimate E, E», and E3 with any €] > 0 as follows.

E;

| /\

T
ot ¢
Ath g+ @07 [ 10l g ds

E;

I /\

T
AzZn N e [(Arﬁ /0 104€ 117 2 s

T
42 fo (N ) + 10012 ) ds],
N
Es=) [c(Ata,p — Ardyp, et
n=1

—|—C(At3tpn _ Rppn + Rppn 1 62 n+l)]
hont Ca ! 2
¥
< —At} lef " 32+ =3 [(Ar) /0 1010 P22 g ds

+ h21+2 /(\) ”atp”%{l-%—l(g)ds]

Using the Cauchy-Schwarz inequality, Young’s inequality, (19), (21), and (36), we can bound
E4 and E5 with any €, > 0 as follows.

h,n+1 h,n+1
E4<?AIZ||€ o + 2 Aane 17200,

n=1 n=1
2 T
o
+c<co+7> [(At) / ||a,,p||iz(9)ds+h2”2/0 IIa,plli,M(Q)ds},
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2 N
e C
Es < —— Aty :||e§;»"+1||L2(9)+ [(Az) / 19::& 172 s
n=1

T
+ b /0 (N gy + 1€ e ) ds].

Then, we estimate the term E¢ with any €3 > 0 as follows.

N
Eo= Y [—eDpth el ) + c(Dy, DI + e(D), o™ ]

n=1

= —c(Dp M + Zc(D;’,, DY + (D), et

N 2
Z n+1 n+1 o N+1
(7|ID ||L2(.Q) + 7”D ”LZ(.Q)) + 632)\2 ”D ”LZ(SZ)

h,N+1 o 12 h12
” ”LZ(Q) + THDPHLZ(Q) + a”e%— ||L2(Q)'

Again, we denote C aconstant related to € 1, €2 and other coefficients, which will be discussed
later. Combining the bounds of E; fori = 1, 2, ..., 6, together with (58), we derive that

2ulleey ™ D7) — 20lletey T2 o) + colley VT2 g, — colley 720,
N
1 1 h,N+12 h,l1 h,1,2 12
ey — eI ) = Clleey ! = e Ta g, + 2K ALY IV T g
n=1
N
h,n+1
< ElAt Z ”e i “LZ(.Q) + COAt Z ”eh ntl ”LZ(.Q) + At Z ”eh ntl ||L2(Q)
n=1 n=1

2
h,N 1
+ €3 ||€ * 2(9) + Z ||Dn+1|| 2(9) + Z ||Dn+1 LZ(Q) + 2 ||DN+1||L2(Q)

n=1

T
+ C[(At)2 /O (Norcalys gy + 1001220y + 181213 g ) ds

T T
+ bk /0 (N gy + 10E e ) ) s + 1242 /0 ||azp||§,,+1(mds]

20% 1o IR
+T”Dp”L2(_Q)+X”eE ”LZ(Q)’ (61)

Using the inf-sup condition (15), (39) yields

h,n+1 hon41
hontl b(vp, e ") ar(en™ ! vy
ﬂ”e ||L2(.Q) E Sup =

Bl 2
—_— = — 2 <2uCle(ep"t W20y
wevy vnllg g wevy  nllgie)

(62)

which easily implies that

2
o

hon+1,2 h,n+1 _ h +1 h,n+1
7”6 i ||L2(.(2) = ||Ol€p i " ||L2(.Q) + ||€ ! ”LZ(Q)
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21
h,n41 h,n+1 h,n+1
S ”Olep’n-i_ e " ||L2(Q) + ,3 ” ( ot )||L2(.Q) (63)
- B hon+1 hn+1
First, we set € = % such that ei]|e; ”LZ(Q) < Slleten )||L2(9),
.1 B hon+1 hon+l h +1 h,n+1
mln{x }SUChthat€2a ” " ”LQ(_Q) — )\” € " " ”LZ(Q) M”‘E(e " )”LZ(Q)’

h,N+1 h.N+1
I )37

€ = 2/(5; such that e3||e 2@ = < ulle(ey Then, we apply (38) to bound

Dn+l ”

L2(2)
terms. Additionally, we can use (34) and

the summation of the || D"+l 12

L2(_(‘))7 ” L2(Q)

(35) to bound the last two terms || D! IILZ(Q) and ||e€ ||Lz(9) in the first time step # = 1, and
reformulate (61) as follows.
wleel ™ 1220, + colle V32 o) + - ||aeh R [P
N
+2K ALY || Vel ||L2(9)
n=1
al 1
<ary <M||8(€Z’n+l)||2Lz(Q) + collely ™7, + 5 el — ! ||L2(m)
n=1

T
+ c[(Ar>2 /0 (Norea 3 gy + 10E 132 g + 101 P12 ) s

T T
1 [ (10 gy + 106 B ) s +74 [ ||atp||§,,+](mds].

Finally, we apply the discrete Gronwall’s inequality to obtain

h,N+1 h,N+1 hN+1 _ hN+l

/’LHS(e )||L2((2) +C0”e ”LZ(.Q) ||Ol€ ||L2(.(2)
N
+2K 8319 g
n=1

T
< c[moz /0 (N2 gy + 10 132 gy + 101122 ) ) s

T T
2 [ (10 g+ 1€ e ) ds+ 1752 ||afp||§,,+1(mds].

Here, the constant C has the following estimate:

- - 1 2 1 2
CZC(T,co,x,a)gexp(CT)<l+CO+ tol  1ta )

A2

N+1 ” hN+1)”

Since the inequality ||e 1202) S < ullee 12(2) is implied in (62), we can use (63)
to deduce the desired result (54). This completes the proof. O
Corollary 1 Let (u, &, p) and (u"+l E”H, pZH)forn > 1 be the solutions of Egs. (11)—~(13)
and Egs. (28)—(30), respectively. Under Assumption 1, there holds

1 N+1
Villeey ™2y + lled T2

2
o
+‘/c0+7||eg+1||Lz(m < (Ar + BF 4+ h'*h, (64)
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VE|IVeN 20y S (At +1F + 1. (65)

Proof Applying the triangle inequality, we observe that the following inequality holds.

2
1 N+1 o 1
Villeteg Dl + leg iz +1 o+ ey iz
I.N+1 I,N+1 g N+1
< | Vrletey " D2 + leg 222y +4/co+ 7||€,,’ 202

I

2
h,N+1 o
+ [ Villetep ™ D20y + leg *||Lz<9>+,/co+7||e’,;’N+‘||Lz(g) . (66)

I

To estimate I, we apply the estimates for projection operators (19) and (21). There holds
LS ™ e @) + 18" k@) + AN g ).

The bound of II can be estimated directly from inequality (54) in Theorem 3. Then, we see
that (64) holds. Similarly, the following inequality holds true.

VE(VeN 120y < VEIVeR N 120y + VEIVERN T 120 - (67)

I v

The estimate for projection operator (20) provides IIT < | pNH| Hi+1(g2)- The bound of
IV can be estimated by inequality (38) in Theorem 2. Then we complete the proof of (65). O

4.2 A Priori Error Estimates for the RtS Algorithm

In this subsection, we give the a priori error estimates of the RtS algorithm. The main
conclusions are similar to those in the previous subsection, but the proofs are slightly different.

Theorem 4 Let (u, &, p) and (u} ™', &Y, pi*) forn > 1 be the solutions of Egs. (11)~(13)
and Egs. (31)—(33), respectively. Under Assumption 1, there holds

N
1 K
> (une(D;:“)niz(m + o5 le Dyt - Dg’“uiz(m) + S AtIVer i g

n=1

T
< C[<Ar>3 fo (ua,,uni,l(m + 11981720, + ||anp||iz(m)ds
T
+h2kAt/ (
0

Here, C = é(co, A, Q).

T
100121y + 101y ) ds + 22 Ae /0 ||atp||i,,+](mds].
(68)

Proof We subtract (31), (32), (33) from (11), (12), (13), respectively, to derive

we) = b, et =0,

ai(e,
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bel™ — e, ) + az(eg —ef, ¢n) = c(e”+l e, dn),

n+1 n n n—1
Py =P & —§&
a3 (atp” o ”At’wh)+d(e;“,wh>=c<wh,a,s"“—hmh>.

By using the projection operators (16), (17) and (18), one has

ar(ep"™ o) — b, el ) =0, (69)

b(D i)+ ar(ef T — e gn) = c(el ! — € ), (70)
as(D yn) — e, DY) + Ard (el yy)
=a3(Rpp" ™" = Ry p" — Atd; p"™' yn) — e, ReE" — Re&"™' — Arg, "), (71)
We apply the same technique as that used in (42) and (46) to derive
ar(Dy*! ) = b(vy, D) =0, (72)
bDRHY gn) + ax(DF ) — (DT dp) = b — u" — Ardu" !, ¢n)
+ay(Re&" — Re&" — Ardi 8" dy) — c(Rpp" ™ — Ry p" — Atd p" ! ). (73)

Again, we take v, = DI'*1in (72), ¢, = Dg“ in (73) and ¥y, = DZ“ in (71) to obtain

al(DZ+l, DZ+1)+a2(Dn+1 Dn+1) +a3(D;+l, D;Jrl)
—c(D;‘,H,D”“)—i—Atd(eh 1 Dn+l)
— b(un+] —u— AtB,u”+], Dg+1) +a2(Rgc§”+1 — ReE" — AtB,S”'H, Dg+1)
+c(Atdp" = Ryp" + Ry p”, DI + a3 (R p"t — Ry p" — Atd p" T, DI
+ (DY, Arg " — Reg" 4+ Re&") + (D), D). (74)

Applying (48) to the left hand side of (74), and taking the summation over the index n from
1to N yields

N o2
> [2u||s(D”+1)||L2(Q) + 5 1DE o) + (co + ) 1D 172 )
n=1
1 6
4 ZH(XDZJFI Dn+1”L2(Q)i| +Atzd(eh ,n+1 Dn+l — ZTH (75)
n=1 i
where

N
'fl =T, fQ =1, f3 = ZC(Ata,pn — R pn+] + R pn Dn+1),
n=1
N N
Ti=Ti Ts=) c(Dp Ag " — Re&" + Reg"™), To =) e(Dy*. D).

n=l1 n=1

Since Ty, T», Ty are estimated in Theorem 2 already, here we estimate T3, Ts, Tg by using
the Cauchy-Schwarz inequality, Young’s inequality, (19), (21), and (36) with any €; > 0 and
€ > 0.
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Ca T
T3<—Z||D”“||L2(Q)+ [(Ar) fo 196 P11 2 )l

+ 0P A /0 ||a,p||§,l+1(mds],

N
Ts = Z [C(D;“, At " — Atd,E") + (DR AtdE" — Reg" + Rgs"*l)]
n=1
2 N T
era C
< 20 ey + 3 [(Azf fo 1908 1172yl

n=

1
2k ’
+h At/() (||8,u|| HEL(2) + ”afS“Hk(Q))d i|
n—H n n+1

Applying the bounds of 7; fori = 1,2, ..., 6 to (75), we see that

N
1
> [mns(Dz“)niz(m + —uD”*‘an(m + 5 le Dy — D"“MLZ(Q)}

n=1

K K
+ —At||Veh’N+1 2 = —At||Veh’1||iQ

”L2(9) (£2)

= €] Z ”Dn+l LZ(Q) + Z ”Dn+1”L2(9) + - N Z ”Dg ||L2(.Q)

n=1

T
+C[(Ar>3 /0 (Norca s ) + 1081220y + 101 P113 g ) s

T T
+h* At /0 (Nore s gy + 1€ e ) ds + W2+ /0 ||atp||§,,+l(mds].

Next, the same technique used in Theorem 2 is applied here, with a slight difference between
the terms 7 and Tg. Recalling that (52) and (53) hold true here, we can determine coefficients

€ = % and e = mm{“, icr }. Then, we apply (34) to handle the terms ||D 1%
”Vep ”

sy

122) which completes the proof of (68). O

Theorem 5 Let (u, &, p) and (u”+1 E”H, pZH)forn > 1 be the solutions of Egs. (11)—(13)
and Egs. (31)—(33), respectively. Under Assumption 1, there holds

2
1 hN+1 o 1
wleen ™ D7) + e e g, + (Co + 7) ey 100,

N
+ KAtZ ||ve2~"+1||2Lz(Q)

n=1

T
< c[moz /0 (Norcalys ) + 10E 1320 + 18P g ) s
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T T
+ h2 fo (N0 s ) + 10E W g ) ds + H2 42 /0 ||atp||i,,+1(mds]. (76)
Here, C = C'(T, co, A, @).

Proof Choosing v, = D!'*! in (69), ¢, = e? 10 (73) and Yy = ez 10 (71), we have

al(eh n+1 D}’l+1) b(Dn+l h, il+]) — 0 (77)
b(Dn+l hn+1)+a (Dn+l ng»l) C(D;’l)-‘rl §n+l)

=b@"t —u" — A" ") + ap(ReE" — Reg" — ArdE" ! )
_C(Rppn+l —Ryp" — Atd, p"t +1 gn+1)7 (78)
aS(D;L)+1,eZ,n+1) —c(e’;’”“,Dg‘+1)+Azd(eZ’”+1,eZ’”+')
=a3(Rpp"+l —R,p" — Atazpn+l’e;17,n+l)
— ()", Reg" — Re&" ' — Arg, ") — ey, DI — D). (79)

Similar to the previous proof, after summing up (77), (78), (79) over the index n from 1 to
N, we can apply (37) and (59) to derive

2<2u||s(e’* M 132y = 21lleer D2 o) + ol ™ IZa g

h N+1
—colley 1720 + fnae" M — e a0
1 6
= eyt —e ||Lz(9)> + K At Z Ve M3 < Z (80)
n=1 i=1
where
N
Ey=Ei, Ey=Ey E3=Y c(Adp"™ = Rpp" 4 Ryp" "),
n=1
N
Ey=Es, Es=Y cleh", Atg,"" — Re&" + Reg"™™"),
n=1
N
L h,n+1 n+1
Eg=) c(—el"*', DI — Dp).
n=1

The bounds of E 1, Ez, E4 have been estimated in Theorem 3. Using the Cauchy-Schwarz
iljeqllalitz, Young’s inequality, the Poincaré inequality, (19), (21), and (36), we can estimate
Es, Es, Eqg withany €] > 0, € > 0, €3 > 0 as follows.

Ca T
h, l
E3<—At2|l e+ 57 [(Ar)z /0 180 P17 ) ds

T p22 /0 ||a,p||§,l+1(mds].

N
Es=)" [c(ef;”“, At E" — At E") + c(eh" !, ArdE" — Reg" + Rg”*l)]
n=1
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N

o? hon+1 C ’ 2
——ArY el ||L2(9)+ (Ar)? | 10uE 2 g5

n=1

T
+ h* /0 (||atu||i,k+1(m - ||a,s||§,k(m)ds],

N
o=y [—e(e}™", D) + (D, DY) + c(ey™, DY)
n=1

N
—c(e/;‘N“, DQIH) + ZC(D”Jrl D) + c(eh ! Dg)

n=1

N
§ : 1

<7” n+1||L2(Q) + 7”Dn+ ||L2(Q)> + ” . N+l||L2(Q)
n=1

N+1 a2 12
+ )\’2 ”D ||L2(Q)+ﬁ”el7 ”LZ(Q) X”Dg”LZ(Q)

Using the bound of El- fori =1,2,...,6, we can reformulate (80) to obtain

h,N+1
2,

2ulle(el @ — 21lleen Do) + colley T2 o) — colley 1720

N
1
1 _ h N+1 h,1 2 : h,n+1
”aeh N HLZ(Q) ”ae;j ”LZ(SZ) +2KAt HV mt ”Lz(ﬂ)

n=1

N
h l
<e1Az leg ™ 720, +codt Y llel ™ I7, Ar ||eh mHh2,
L (2) L (9) L=(2)

n=1 n=1

1
+ 3o’ lelt N+1||L2(9)+Z IID”“Ile(m+Z ||D"“|\L2(m - AZ 1D 720,

T
+ c[(m)2 /0 (Nl gy + 100E 122 ) + 100 P1 g ) ds
2k T 2 2 2042 g 2
+h [0 (||a,u||Hk+l(m+||a,sum(m)ds+h +f0 ||a,p||H,+,(Q)ds]
+—||e“\|wm ||D§\|Lz(m (81)

Next, the same technique used in Theorem 3 is applied here, with a slight difference between
the terms Es and E¢. Recalling that (62) and (63) holds true here, we choose €; = %,
€ = min{ﬁ, 4%} €3 = min{ﬁ %} to handle the first, third, fourth terms on the right-

hand side. We can apply (68) to bound the summations of ||D"+1 IILZ(Q), ||D”+1||L2(_Q),

and use (35) to handle ||e » || 122) ||Dg 112 122) Finally, applying the discrete Gronwall’s
inequality, we come to the conclusion that the desired result (76) holds by using (62). ]

Corollary2 Let (u, &, p) and (u”"'1 E"'H, pZ'H) for n > 1 be the solutions to problems
(11)-(13) and (31)—(33), respectively. Under Assumption 1, there holds

N+1
Vileley ™Ollz) + led iz
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2
o
+./co+ 7||ef,’+1||L2(m < At +hE 4 pltE (82)

VEIVeN 20y S At +h* + 1! (83)

Proof The same technique as that used in Corollary 1 is applied here. Firstly, (82) can
be obtained from the projection estimates (19), (21), and (76) in Theorem 5. Applying the
projection estimate (20) and (68) in Theorem 4, we see that (83) holds true. O

5 Benchmark Tests

In this section, we carry out numerical examples on two-dimensional domains to validate the
theoretical predictions described in Sect.4. Some benchmark tests that have been reported
in the literature [14, 20, 33] are considered here. We will test the convergence rates under
various settings of the time step size Az, the mesh size £, finite element polynomial degrees
k and [, and other physical parameters. All computations are implemented in the open-source
software FEniCS [2].

Example 1 Let 2 = [0, 11? and the final time is T = 1.0. We choose the body force f, the
source/sink term Qy, initial conditions and Dirichlet boundary data on 0§2 = I, = I'), such
that the exact solution is as follows:

1 1 Xty
= —e(x+yY), ur=—( 4y}, p=10eT (14,
10 10
Following [14], the other physical parameters are chosen as follows:
uw=10, A=10, ¢=10, =10, K=1.0.

To show the convergence orders in time, we fix the mesh size h = &, usek =3,/ =2in
spatial discretization, and refine the time step size At. In Table 1, we summarize the results
of errors and convergence orders in time. We observe that the orders of H Uerror of u, the
L2-error of &, and the L? & H! errors of p are all around 1, which verifies the theoretical
analysis of the time error order.

Example2 Let 2 =[0, 11 with I = {(1,y); 0 <y <1}, ={(x,0;0<x <1}, I3 =
{(0,y);0 <y <1}, Iy = {(x,1);0 < x < 1} and the final time 7 = 1.0. Let Neumann
boundary I'y = I U Ty = I'; U Ty, and Dirichlet boundary I'p = MU T3 =T, UT,. We
choose the body force f, the source/sink term Qj, and initial conditions such that the exact
solution is as follows:

uy=e! <sin 2my)(cos mx) — 1) + ! Iy sin (T x) sin (ny)) ,

A+

ur =e ! <sin Q2rx)(1 —cos 2my)) + sin (77 x) sin (7ty)> ,

M+ A
p = e 'sin(wx)sin (7 y).

The fixed physical parameters are £ = 1.0, « = 1.0. To verify the theoretical error estimates,

we consider the time step size and the mesh size to satisfy Ar = Qh* = )L,

First, we consider parameters v = 0.3, K = 1.0, ¢ = 1.0. In Table 2. We show the
numerical convergence under the finite element discretization with the order k = 2 and
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Table 1 Errors and convergence rates of different algorithms for Example 1

Method At H'-errof u Orders L2-err of & Orders L% & H! errs of )4 Orders

StR alg. 1/4 9.276e—02 6.473e+00 1.769¢e—01 & 8.272e—01
1/8 5.536e—02 0.74 3.742e+00 0.79 1.250e—01 & 5.835e—01 0.50 & 0.50
1/16 3.021e—02 0.87 2.005e+00 0.90 7.139e—02 & 3.331e—01 0.81 & 0.81
1/32 1.577e—02 0.94 1.037e+00 0.95 3.792e—02 & 1.769¢e—01 091 & 091
1/64 8.055e—03 0.97 5.271e—01 0.98 1.952e—02 & 9.104e—02 0.96 & 0.96

RtS alg. 1/4 3.907e—02 3.728e—01 1.753e—01 & 8.192e—01
1/8 2.332e—02 0.74 1.438e—01 1.37 1.228e—01 & 5.733e—01 0.51 & 0.51
1/16 1.269¢—02 0.88 6.964e—02 1.04 7.030e—02 & 3.280e—01 0.81 & 0.81
1/32 6.625e—03 0.94 3.532e—02 0.98 3.736e—02 & 1.743e—01 091 & 0.91
1/64 3.391e—03 0.97 1.794e—02 0.98 1.924e—02 & 8.973e—02 0.96 & 0.96
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! = 1. From Table 2, we see that the orders of H!-error of u, the L?-error of & and the
L2-error of p are around 2, the order of H Lerror of p is around 1. While in Table 3, we
summarize the results based on k = 3 and / = 2. From Table 3, we see that the orders of
H'-error of u, the L2-error of & and the L2-error of p are around 3, the order of H Lerror
of p is around 2. From these two tables, our algorithms exhibit the optimal approximation
orders.

Second, we consider parameters v = 0.49999 (correspondingly, A &~ 1.67 x 10°), K =
107%, cg = 0.0 to test the robustness of the proposed schemes with respect to physical
parameters. Some relevant tests of the robustness with respect to the material parameters can
be founded in [20]. The numerical results for errors and convergence orders using the finite
element order k = 2 and / = 1 are presented in Table 4. From the table, we can see that the
proposed two algorithms also exhibit optimal order of convergence. The results indicate that
our schemes are robust when A is large and when K and/or ¢ are relatively small.

Example 3 We consider the point-source benchmark in poroelasticity called the Barry-
Mercer’s problem [4, 19, 28, 29], for which an analytical series solution is available. We
assume that the width and length of the domain §2 satisfy @ = b = 1. The boundary:
N={0y;0=<y=1}L1={x,0;0=<x < 1L I3 ={0,y:;0=<y <1} I} =
{(x, 1); 0 < x < 1}. The source/sink term Qj is located at the point (xg, yo) = (0.25, 0.25).
The description of the boundary conditions and problem setting is shown in Fig. 2. The initial
and boundary conditions are given as follows.
u=0, p=0 in 2 x {0},
ur=0 onl; x(0,T], j=2,4,
up =0 onl; x(0,T], j=1,3,
p=0,h=0 =0 onl; x(0,T], j=1,2,3,4.

The body force term f = 0, and the source/sink term

Oy =2B3(x — x0)8(y — yo) sin (B1),
where 8 = (A+2u1) K, 8(-) represents the Dirac function. The physical parameters are given
as:

=00, a=10, E=10°, v=0.1, K =102

Denote A, = nw, Ay = gqm,and A,y = A% + k;, then the analytical solution is as follows:

oo o0

POy, 1) = =400 +2u) )Y~ p(n, g, 1) sin () sin (g y),
n=1g=1

(o ole o]
w(x,y.1) =4 " i1 (n, . 1) cos (Ayx) sin (g ).
n=1g=1

oo o0
up(x,y, 1) =43 dip(n. . 1) sin (Ayx) cos (hg),
n=1¢g=1

where
2 sin (Apx0) sin (A4 yo)
A2, 1

p(n.q,1) =— (Dng sin (Bt) — cos (Bt) + e *raP1) |
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Table 2 Errors and convergence rates of different algorithms for Example 2 using FE orders k =2 and/ = 1 withv = 0.3, K = 1.0,¢9 = 1.0

Method h At H'-errof u Orders L%-errof Orders L2& H' errs of p Orders

StR alg. 1/4 1/4 5.600e—01 1.250e—01 2.597e—02 & 3.052¢—01
1/8 1/16 1.516e—01 1.89 3.080e—02 2.02 6.724e—03 & 1.582¢—01 1.95 & 0.95
1/16 1/64 3.897e—02 1.96 7.749¢—03 1.99 1.726e—03 & 7.994e—02 1.96 & 0.98
1/32 1/256 9.823e—03 1.99 1.941e—03 2.00 4.346e—04 & 4.008¢—02 1.99 & 1.00

RtS alg. 1/4 1/4 5.723e—01 1.463e—01 3.477e—02 & 3.285e—01
1/8 1/16 1.590e—01 1.85 4.448e—02 1.72 7.825e—03 & 1.590e—01 2.15 & 1.05
1/16 1/64 4.213e—02 1.92 1.321e—02 1.75 1.995e—03 & 8.004e—02 1.97 & 0.99
1/32 1/256 1.081e—02 1.96 3.607e—03 1.87 5.015e—04 & 4.009e—02 1.99 & 1.00
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Table 3 Errors and convergence rates of different algorithms for Example 2 using FE orders k =3 and/ =2 withv = 0.3, K = 1.0,¢9 = 1.0

Method h At H'-errof u Orders L2-err of & Orders L2& H! errs of P Orders

StR alg. 1/4 178 1.426e—01 1.988e—02 3.136e—03 & 4.704e—02
1/8 1/64 1.598e—02 3.16 2.312e—03 3.10 3.919e—04 & 1.210e—02 3.00 & 1.96
1/16 1/512 1.866e—03 3.10 2.632e—04 3.14 4.881e—05 & 3.068e—03 3.01 & 1.98
1/32 1/4096 2.273e—04 3.04 3.102e—05 3.08 6.110e—06 & 7.721e—04 3.00 & 1.99

RtS alg. 1/4 1/8 1.546e—01 3.799e—02 8.361e—03 & 5.907e—02
1/8 1/64 1.769e—02 3.13 5.145e—03 2.88 9.495e—04 & 1.276e—02 3.14 & 221
1/16 1/512 2.064e—03 3.10 6.300e—04 3.03 1.176e—04 & 3.109e—03 3.01 &2.04
1/32 1/4096 2.500e—04 3.05 7.705e—05 3.03 1.468e—05 & 7.746e—04 3.00 & 2.00
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Table 4 Errors and convergence rates of different algorithms for Example 2 using FE orders k = 2 and / = 1 with v = 0.49999, K = 1079, co=0.0

Method h At H'-errof u Orders L%-errof Orders L2& H' errs of p Orders

StR alg. 1/4 1/4 5.343e—01 8.976e—02 9.539e—02 & 5.476e—01
1/8 1/16 1.445e—01 1.89 1.609e—02 248 2.182e—02 & 1.850e—01 213 & 1.57
1/16 1/64 3.711e—02 1.96 3.659¢—03 2.14 5.293e—03 & 8.332¢e—02 2.04 & 1.15
1/32 1/256 9.355¢—03 1.99 8.977e—04 2.03 1.308¢—03 & 4.050e—02 2.02 & 1.04

RtS alg. 1/4 1/4 5.343e—01 8.976e—02 8.420e—02 & 5.797e—01
1/8 1/16 1.445e—01 1.89 1.609e—02 2.48 1.732e—02 & 1.933e—01 2.28 & 1.58
1/16 1/64 3.711e—02 1.96 3.659¢—03 2.14 4.200e—03 & 8.515e—02 2.04 & 1.18
1/32 1/256 9.355¢e—03 1.99 8.977e—04 2.03 1.041e—03 & 4.076e—02 2.01 & 1.06
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Fig.2 Boundary conditions for the Barry-Mercer’s problem
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We conducted simulations for the Barry-Mercer’s problem using the Coupled algorithm,
the StR algorithm, and the RtS algorithm with finite element orders k = 2 and / = 1. The
final time is setto T = 7 /(28), and a mesh size of 1 = 1/64 is used. Two different time step
sizes, At = 7w /(208) and Ar = 7/(2008), are considered. The results of these simulations
are presented in Fig. 3.

As shown in Fig. 3, we present the analytical solution and the numerical solutions obtained
by using the different algorithms along a specified straightline y : x = 0.25. From the results,
the numerical solutions generated by the different approaches exhibit close agreement, par-
ticularly when employing a small time step size. The RtS algorithm and the StR algorithm
exhibit stability and result in reliable solutions even with larger time step sizes, although their
performance is slightly inferior to that of the Coupled algorithm.

Next, we conduct simulations to investigate the phenomenon of pressure oscillations by
using a small permeability value of K = 10~° and a small time step size of Ar = (7/2) x
1072, We recall that the proposed decoupled algorithms rely on the solutions computed
by the Coupled algorithm for the first step. Different choices of finite element orders are
considered in this experiment, and the results are presented in Fig. 4.

In the first step, we applied the Coupled algorithm and used subfigures a, b, and ¢ to
represent the results obtained with the P; — P; — P; method, P, — P; — P; method, and
P; — P, — P, method, respectively. It is observed that the P — P; — P; method exhibits
pressure oscillations, while the P, — P; — P; method significantly reduces these oscillations,
and the Pz — P, — P, method performs the best by effectively eliminating pressure oscillations.
Additionally, subfigure d displays the cross-section of the pressure at the line y : x = 0.25
in the second time step using different algorithms with the P; — P, — P> method. Notably,
no pressure oscillations were observed in this case. Furthermore, in comparison to the RtS
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Fig. 3 The analytical solution, and the numerical solutions of the different algorithms for the pressure and
the displacement along the line y x = 0.25 at T = 7 /(2p) with time step sizes At = 7 /(208) (left) and
At = 7t/(2008) (right)

algorithm, the StR algorithm demonstrates a performance that is more closely aligned with
that of the Coupled algorithm.

6 Conclusions

In this paper, based on a new three-field formulation, we present some algorithms for decou-
pling the computation of Biot’s model. A new theoretical framework is developed to analyze
the algorithms. These algorithms only solve the system in a coupled way at the first time step.
In the subsequent time steps, numerical computations are divided into solving two typical
mathematical models. Error analysis is given to show that these algorithms are uncondition-
ally stable and optimally convergent. Furthermore, numerical experiments are carried out to
verify the prediction of error estimates. We highlight that our algorithms are unconditionally
stable, efficient, and convergent in optimal order.

@ Springer



Journal of Scientific Computing (2023) 97:48 Page310f33 48

le-10 The First Time Step le-11 The First Time Step
5 —6— x=0.036
—&- x=0.107
4 —4— x=0.179
—— x=0250

pressure p
pressure p
~

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

y y
(a) Py — P; — P; method (b) P2 — Py — P method
le-10 The First Time Step 1e-10 The Second Time Step
—o— x=0.036 7 —6— Coupled algorithm
—5- x=0.107 -5~ StR algorithm
20 —A— x=0.179 € -A- RS algorithm
—— x=0.250 s
g1’ o
> 54
@ @
D10 D3
= =
2
05
1
0.0 0
0.0 02 04 056 038 1.0 0.0 02 0.4 06 08 10
y y
(C) P3 — Ps — P> method (d) P3 — P> — P> method

Fig.4 Cross-sectional views of the pressure distribution for Barry-Mercer’s problem. a Pressure cross-section
using the P| — P; — P method in the first step. b Pressure cross-section using the Py — P; — P; method in
the first step. ¢ Pressure cross-section using the P3 — P, — P> method in the first step. (d) Cross-section of
the pressure along the line y x = 0.25 in the second time step, obtained using different algorithms with the
Py — P, — P method
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