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Abstract. In a stochastic reaction network setting we consider the problem of tracking the4
fate of individual molecules. We show that using the classical large volume limit results, we may5
approximate the dynamics of a single tracked molecule in a simple and computationally efficient6
way. We give examples on how this approach may be used to obtain various characteristics of single-7
molecule dynamics (for instance, the distribution of the number of infections in a single individual8
in the course of an epidemic or the activity time of a single enzyme molecule). Moreover, we show9
how to approximate the overall dynamics of species of interest in the full system with a collection10
of independent single-molecule trajectories, and give explicit bounds for the approximation error in11
terms of the reaction rates. This approximation, which is well defined for all times, leads to an12
efficient and fully parallelizable simulation technique for which we provide some numerical examples.13
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1. Introduction. Recent advances in modeling molecular systems, especially18

our improved ability to track individual proteins, and the deluge of data from the19

observations of both molecular and macro system (think, for instance, of the ongoing20

COVID-19 pandemic), have created new scientific challenges of considering models21

of very high resolution where the dynamics of a specific bio-molecule or a particu-22

lar individual are of interest. In general, such ’agent-based’ models are known to be23

computationally very costly, due to complex stochastic dynamics and highly noisy24

behavior of individual agents. However, it appears that, at least in some cases, sim-25

ple yet satisfactory approximation of individual molecular trajectory may be directly26

inferred with the help of a classical approach of stochastic chemical kinetics that as-27

sumes that all molecules or individuals are indistinguishable and consequently focuses28

only on their aggregated counts. As an example of one such idea, originally proposed29

in [7] and latter expanded in [15], consider the stochastic ’susceptible-infected’ (SI)30

chemical reaction network where a collection of m + n molecules (or individuals) is31

partitioned into two types: susceptible (S) and infected (I) with initially n being of32

type S and remaining m of type I. The stochastic network evolves in time according33

to a Markov jump process that counts the ’infection events’, that is, the interactions34

of one molecule of I-type with one molecule of S-type. Each such interaction creates35

a new molecule of I-type and removes one of S-type (equivalently, a molecule changes36

its type from S to I). Accordingly, in the reaction network notation described below37

in Section 2.2 this model may be represented as38

(1.1) S + I −−→ 2I.39

If the rate constant of the above reaction is β/n and we assume the usual mass action40

kinetics [6], it is well know that the above stochastic reaction network satisfies the41
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2 D. CAPPELLETTI AND G. REMPALA

law of large numbers, in the sense that as m,n→ ∞ and m/n→ ρ > 0 the surviving42

proportion st of the S-type molecules follows the logistic equation that may be written43

in the form44

(1.2) − ṡt/st = β(1 + ρ− st) st(0) = 1.45

Consequently, for t ≥ 0 we have46

(1.3) st =
1 + ρ

1 + ρ exp(β(1 + ρ)t)
.47

Thus, from the viewpoint of a single, randomly selected S-type molecule, the quantity48

st defines a survival function describing the limiting probability of surviving beyond49

time t > 0. The formula (1.3) led to the method of approximating the distribution50

of surviving molecules of S dubbed ‘dynamical survival analysis’ (DSA) described51

in [15] and applied recently to epidemic modeling [8,9,14,21,23]. The idea is further52

illustrated in Figure 1 where the average of the Markov process (1.1) is compared to53

the average of independent realizations of single molecule dynamics (which may be54

efficiently calculated using modern parallel computing capabilities). Note (1.2) may55

be also interpreted as the equation for the hazard function associated with st. This56

fact has some relevance for statistical inference, and is further exploited, for instance,57

in [9, 15].58

Beyond the simple SI example, the DSA approach has been applied (mostly in59

the context of epidemics) only to a handful of reaction networks representing the so-60

called one-directional transfer models [7]. In all such networks individual molecules61

can only change their state in an ordered way, hence previously visited states are no62

longer attainable (for instance in the SI model a molecule of S-type can only change63

into I-type, but not vice-versa).64

In the current paper we formally expand the survival function approach for track-65

ing the fate of individual molecules to a much broader class of networks, including66

those where molecules can return to their previous stages. A simple example is ob-67

tained by augmenting the SI network with the additional reaction I → S, leading68

to the so-called SIS model (which is of interest in epidemiology) discussed in more69

detail in Example 4.4 below. To establish our results for such networks, we explore a70

different representation of the DSA approximation, which does not explicitly involve71

the survival function. Continuing with the SI model example, denote by Y i(t) the72

binary variable that takes value 1 or 0 according to whether i-th molecule is of type73

S or I. The limit dynamics of an i-th individual molecule (initially of type S) is then74

given by75

Y i(t) = 1−N i

(
β

∫ t

0

Y i(u)(1 + ρ− su)du

)
76

where N i is the unit Poisson process tracking the transition of the i-th molecule77

from S-type to I-type. Note that the argument of N i is the cumulative hazard78

corresponding to integral of the right-hand side of (1.2) (see [15]). Such Poisson79

process representation is of course completely equivalent to simply having the time80

of switching of the i-th molecule from S to I follow the survival function (1.3), but81

it allows for a description of more complex scenarios than one-directional transfer82

models. For example, we will prove below that the limit dynamics of a single molecule83
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Fig. 1. Survival approximation in the SI model. The empirical trajectory of the proportion
of the remaining S molecules in the SI model described in (1.1) as compared to the deterministic
function st defined in (1.2) and the average of 1, 000 independent single trajectories of individuals
who become infected according to st. For the simulation we considered n = 1, 000, m = 10, β = 1,
and ρ = 0.01.

in the SIS model can be written as84

Y i(t) = 1−N i
1

(
β

∫ t

0

Y i(u)(1 + ρ− su)du

)
+N i

2

(
κ

∫ t

0

(1− Y i(u))du

)
85

for independent and identically distributed unit-rate Poisson processes N i
1 and N i

2.86

Here, κ is the rate constant of the reaction I → S.87

In this work we study the Poisson process representation of the DSA approxima-88

tion and give conditions under which it describes a single-molecule trajectory of the89

original network. In particular, we explicitly derive error bounds of the DSA approxi-90

mation, in terms of the underlying reaction network rates. We illustrate via numerical91

examples how this novel technique could be useful to infer quantities pertaining to92

single-molecule dynamics (such as the distribution of the number of infections a single93

individual undergoes in a SIS model, or the time a single enzyme spends in the bound94

state) in a computationally efficient way.95

Further, we consider the problem of comparing the dynamics of an original full96

reaction network with that of a collection of independent approximations of single-97
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4 D. CAPPELLETTI AND G. REMPALA

molecule trajectories and provide explicit bounds on the error. Having the dynamics98

of the whole system approximated by a number of independent trajectories allows for99

computationally efficient simulation techniques, that are fully parallelizable. More-100

over, since the DSA approximation is defined for all times, it does not suffer from the101

problem of exiting the state space as it is known to happen in other methods such102

as diffusion approximations or tau leaping [4, 5, 12, 18]. Finally, the independence of103

the single-molecule trajectories also allows for much simplified statistical inferential104

procedures. Such applications were already considered in the context of SIR networks105

in recent papers on the COVID-19 pandemic [8,9,14,21,23]. A thorough investigation106

of these techniques in general reaction networks is currently being conducted and will107

appear in a future work.108

The paper is organized as follows: in Section 2 we provide the necessary concepts109

pertaining to reaction network theory followed by the result on the approximation110

in classical scaling in Section 3. In Section 4 we give a formal definition of what we111

refer to as ‘status’ of the molecules of interest. In Section 5 we state our main112

results. In particular, in Section 5.1 we give the theorem on the Poisson process113

representation of the DSA approximation for a single-molecule trajectory, and give114

examples of its applications in Section 5.2. Finally, in Section 5.3 we state the result115

on the approximation of the original full network via independent single-molecule116

trajectories, and give numerical examples. Proofs and explicit error bounds are given117

in the Appendix A.118

2. Background definitions.119

2.1. Notation. We denote by R, R>0, and R≥0 the real, positive real, and non-120

negative real numbers, respectively. Similarly, we denote by Z, Z≥1, and Z≥0 the real,121

positive real, and non-negative real numbers, respectively. Given a number r ∈ R, we122

denote by |r| its absolute value, and by ⌊r⌋ the largest m ∈ Z such that m ≤ r.123

Given a vectors v ∈ R
n, we denote its ith component by vi, for all 1 ≤ i ≤ n. We124

further denote125

‖v‖∞ = max
1≤i≤n

|vi| and ⌊v⌋ = (⌊v1⌋, . . . , ⌊vn⌋).126

Given two vectors u, v ∈ R
n
≥0, we write127

uv =

m∏

i=1

uvi

i ,128

with the convention that 00 = 1. We also write u ≥ v if the inequality holds129

component-wise. Furthermore, for any vector v ∈ Z
n
≥0, we write130

v! =

m∏

i=1

vi! .131

Given a set A, we denote its cardinality by #A or, if it leads to no ambiguity, by |A|.132

We assume the reader is familiar with basic notions from stochastic process theory,133

such as the definition of continuous-time Markov chains and Poisson processes [19].134

Consider a sequence of random variables {Xn}n∈Z≥0
and a random variable X,135

all defined on the same probability space and with values in a normed space (E, ‖ · ‖).136
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INDIVIDUAL MOLECULES DYNAMICS 5

We say that Xn converges in probability to X if for all η ∈ R>0137

lim
n→∞

P (‖Xn −X‖ > η) = 0.138

Given a topological space E we will denote by DE [0, T ] the set of right-continuous139

left-bounded functions defined from [0, T ] to E, endowed with the Skorokhod J1 topol-140

ogy. In particular, we say that the sequence of processes {Xn} with sample paths in141

DE [0, T ] converges in probability to the process X (or simply that Xn converges in142

probability to X) if the Skorokhod distance between Xn and X converges to 0 in143

probability (for more details, see for example [11, Chapter 3]).144

2.2. Stochastic reaction networks. A reaction network is a triple G = {X , C,R},145

where (a) X is an ordered finite sequence of d symbols, called species; (b) C is a finite146

set of linear combinations of species over Z≥0, called complexes; (c) R is a finite set147

of elements of C ×C, called reactions. We assume that no element of the form (y, y) is148

in R, for any complex y, even though our results do not depend on this assumption.149

Following the usual notation of reaction network Theory, we further denote a reaction150

(y, y′) ∈ R by y → y′. We finally assume that each complex appears in at least151

one reaction, and that each species has a positive coefficient in at least one complex.152

Under this assumption and up to ordering of the set of species, a reaction network is153

uniquely determined by the set R, or equivalently by the directed graph (C,R), called154

reaction graph. As an example, consider the reaction graph155

(2.1) A+B −−⇀↽−− 2B, B −−→ C.156

In this case, the associated species are A, B, and C, C = {A + B, 2B,B,C}, and157

R = {A+B → 2B, 2B → A+B,B → C}.158

In this paper we will implicitly identify R
|X | with R

d, and therefore each S ∈ X159

with a canonical basis vector of R
d. With this in mind, the complexes are linear160

combination of species and can be therefore considered as vectors in Z
d
≥0. As an161

example, if we order the species of (2.1) alphabetically, then the complex A+B can be162

associated with the vector (1, 1, 0), the complex 2B can be associated with (0, 2, 0), the163

complex C with (0, 0, 1), and so on. We will tacitly use the identification of complexes164

with integer vectors throughout the paper. Moreover, for each vector v ∈ R
d and for165

each species S ∈ X we denote by vS the entry of v related to the canonical vector166

associated with S. We further define the support of v as supp(v) = {S ∈ X : vS > 0}.167

As an example, with the species of (2.1) alphabetically ordered, the support of (1, 1, 0)168

is {A,B}, the support of (0, 2, 0) is {B}, and so on.169

Deterministic and stochastic dynamical systems can be associated with a reaction170

network. The stochastic model is usually utilized when few individuals are present,171

so the stochastic component of the dynamic behaviour should not be ignored. In172

this case, the time evolution of the number of individuals of the different species is173

considered, for certain given propensities of the reactions to occur, and modeled via174

a continuous time Markov chain. More precisely, a stochastic kinetics for a reac-175

tion network G is a correspondence between a reaction y → y′ and a rate function176

λy→y′ : Zd
≥0 → R≥0, such that λy→y′(x) > 0 only if x ≥ y. A stochastic reaction177

system is a continuous time Markov chain {X(t) : t ≥ 0} with state space Z
d
≥0 and178

transition rates from a state x to a state x′ defined by179

q(x, x′) =
∑

y→y′∈R
y′−y=x′−x

λy→y′(x).180
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6 D. CAPPELLETTI AND G. REMPALA

The associated generator is defined by181

Af(x) =
∑

y→y′∈R
λy→y′(x)

(
f(x+ y′ − y)− f(x)

)
182

for any function f : Zd
≥0 → R and any x ∈ Z

d
≥0. Equivalently, the process X can be183

described by184

X(t) = X(0) +
∑

y→y′∈R
(y′ − y)Ny→y′

(∫ ∞

0

λy→y′(X(s))ds

)
,185

where the processes {Ny→y′}y→y′∈R are independent unit-rate Poisson processes. For186

more details on this representation, we refer to [6] or [11, Chapter 6].187

In the deterministic setting, the concentration of the different species are assumed188

to evolve according to an ordinary differential equation (ODE). Specifically, a deter-189

ministic kinetics for a reaction network G is a correspondence between the reactions190

y → y′ and the rate function λy→y′ : Rd
≥0 → R≥0, such that λy→y′(x) > 0 only191

if xi > 0 whenever yi > 0. A deterministic reaction system is the solution to the192

ordinary differential equation193

(2.2)
d

dt
Z(t) =

∑

y→y′∈R
(y′ − y)λy→y′(x).194

While our results hold in a more general scenario, all the simulations we show195

assume mass-action kinetics, a popular choice of kinetics derived by the assumption196

that all the species molecules are well-mixed in the available volume [6]. Specifically,197

a stochastic reaction system is a stochastic mass-action system if for every reaction198

y → y′ ∈ R we have199

λy→y′(x) = κy→y′
x!

(x− y)!
✶{x≥y},200

for some positive constant κy→y′ called rate constant. Similarly, a deterministic re-201

action system is a deterministic mass-action system if for every reaction y → y′ ∈ R202

we have203

λy→y′(x) = κy→y′xy,204

for some positive constant κy→y′ also called rate constant.205

3. Classical scaling. Consider a reaction network G = {X , C,R}, and a family206

of stochastic kinetics {λVy→y′ : y → y′ ∈ R} indexed by V . Let XV denote the207

associated continuous time Markov chain. V should be thought to as a parameter208

expressing the volume, or the magnitude of the number of the present individuals.209

Under the following technical but reasonable assumption the classical scaling of [11,16]210

holds:211

Assumption 3.1. We assume that for any reaction y → y′ ∈ R there exists a212

locally Lipschitz function λy→y′ : Rd
≥0 → R

d
≥0 such that for any compact set K ⊂ R

d
≥0213

we have214

lim
V→∞

sup
z∈K

∣∣∣∣∣
λVy→y′(⌊V z⌋)

V
− λy→y′(z)

∣∣∣∣∣ = 0.215
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Theorem 3.2. Assume that Assumption 3.1 holds. Furthermore, assume that216

the random variables XV (0)/V converge in probability to a constant z∗ as V goes to217

infinity. Finally, let {Z(t) : t ≥ 0} be the unique solution to (2.2) with Z(0) = z∗.218

Then, for any ε > 0 and any T > 0219

lim
V→∞

P

(
sup

t∈[0,T ]

∥∥∥∥
XV (t)

V
− Z(t)

∥∥∥∥
∞
> ε

)
= 0.220

Note that the distribution of the fate of a single molecule is not given, since the221

classical scaling concerns average dynamics. The goal of this paper is to address this222

issue, by providing a technique to simulate an approximation of the time evolution of223

a single observable species, as described in the next section.224

4. Molecular status. We consider the problem of tracking the fate of an indi-225

vidual molecule through its transformations into different species in a certain stochas-226

tic reaction network. For instance, we could be interested in the change in status of227

a single tracked individual of type S in the SI model, discussed in the Introduction.228

To introduce a more general scenario where it is desirable to track the time evolution229

of different parts of a species molecule, we give the following example.230

Example 4.1. Consider the following reaction network, depicting a Michaelis-231

Menten mechanism where the product protein and the enzyme can spontaneously232

transform into each other:233

(4.1) E + S −−⇀↽−− C −−→ E + P, P −−⇀↽−− E.234

In particular, the complex C represents a molecule of substrate S and enzyme E235

bound together. When the bond is broken, the molecule of enzyme is released while236

the molecule of substrate is either released or transformed into the product P . Suppose237

we want to keep track of the history of a molecule of substrate S. If we were dealing238

with a classic Michaelis-Menten kinetics, i.e. without the reactions P ⇋ E, then we239

could simply consider S, C, and P as status for the tracked molecule, corresponding240

to unbound substrate, bound substrate, and product, respectively. Since the reactions241

P ⇋ E are present, if we want to keep track of the fate of a molecule of substrate we242

need to take into account the fact that it can ultimately (via complex, then protein) be243

transformed into an enzyme, so E becomes a possible status of the molecule. We now244

need to differentiate between the parts of a complex molecule of C that a molecule of245

E and a molecule of S get transformed into by the reaction E + S → C. The part246

of a (complex) molecule of C that a molecule of E gets transformed into will become247

a free enzyme again via the reaction C → E + P , while the part a molecule of C248

that a molecule of S gets transformed into will become a molecule of product P via249

C → E + P . Here and below by “part of a molecule” we mean a part of a molecular250

complex rather then one of atoms comprising the specific molecule. To formally251

describe such dynamics we consider {E,S, P,CE , CS} as the set of molecular status,252

where CE denotes we are tracking a molecule of E bound in the complex C, and CS253

denotes we are tracking a molecule of S bound in C. Note that some status correspond254

to species, some other status do not. In order to avoid any notational confusion255

between the potentially different sets of chemical species and molecule status, we256

adopt the convention of using tildes for status. In the present example, we will denote257

the set of tracked molecule status by {Ẽ, S̃, P̃ , C̃E , C̃S}.258

Based on the above example, we see that the molecules whose dynamics we want259

to follow may or may not correspond to a subset of the chemical species X . To deal260
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8 D. CAPPELLETTI AND G. REMPALA

with this general setting, we formally represent status by a set T of symbols endowed261

with a function σ : T → X∪{0} which links every status with its corresponding species262

in X . For instance, in Example 4.1 above we will choose σ(S̃) = S and σ(C̃E) = C.263

Note that the number of status defined in this way can be less than, equal to, or264

larger than the number of species. A molecule that changes its status with time will265

be referred to as a tracked molecule.266

The set T needs to include the special state ∆ to denote the potential degradation267

of the tracked molecule, and we set σ(∆) = 0. To simplify the notation, for all268

x, y ∈ Z
d
≥0 and τ ∈ T \ {∆} we denote by θy(τ, x) the probability that a certain269

molecule of species σ(τ) is chosen if yσ(τ) molecules are uniformly drawn out of xσ(τ)270

molecules of σ(τ) available. Specifically,271

θy(τ, x) =





(
xσ(τ) −1

yσ(τ)−1
)

(xσ(τ)
yσ(τ)

)
=

yσ(τ)

xσ(τ)
if xσ(τ) ≥ yσ(τ) ≥ 1

0 otherwise

.272

For completeness, we define θy(∆, x) = 0. Finally, note that in reactions such as273

2A → B + C we can imagine a molecule of A is transformed into a molecule of B,274

while the other molecule of A turns into a molecule of C. If we are tracking the275

fate of A molecules and the reaction 2A → B + C occurs, it is reasonable to assume276

the molecule we are tracking has a 50% change of turning into a molecule of B,277

and a 50% change of becoming a molecule of C. We denote these probabilities with278

p2A→B+C(A,B) and p2A→B+C(A,C), respectively, and in general allow for different279

value choices, as along as p2A→B+C(A,B) + p2A→B+C(A,C) = 1. The definition of280

tracking stochastic reaction system in the most general setting is below.281

Definition 4.2 (Tracking stochastic reaction system). Let G = {X , C,R} be a282

reaction network. Consider a family of stochastic kinetics {λVy→y′ : y → y′ ∈ R}283

indexed by V , and let XV denote the associated continuous time Markov chains.284

Let T be a set of status. We define the tracking stochastic reaction system as the285

continuous-time Markov chain (Y V , XV ) with state space T ×Z
d
≥0 and transition rates286

q
(
(∆, x), (τ ′, x′)

)
= ✶{τ ′}(∆)

∑

y→y′∈R
y′−y=x′−x

λVy→y′(x)287

288

and for all τ 6= ∆289

q
(
(τ, x), (τ ′, x′)

)
=
∑

y→y′∈R
y′−y=x′−x

(
(1− θy(τ, x))✶{τ ′}(τ) + θy(τ, x)py→y′(τ, τ ′)

)
λVy→y′(x),290

291

where for all reactions y → y′ ∈ R the following holds:292

• for any τ ∈ T , τ ′ ∈ T ∪ {∆} we have 0 ≤ py→y′(τ, τ ′) ≤ 1;293

• py→y′(τ, τ ′) = 0 whenever σ(τ) /∈ supp(y) or σ(τ ′) /∈ supp(y′) ∪∆;294

• if σ(τ) ∈ supp(y) then295

∑

τ ′∈T :σ(τ ′)∈supp(y′)∪∆

py→y′(τ, τ ′) = 1.296

In the above definition, the usual stochastic reaction system is coupled with the297

fate of a single tracked molecule: a molecule in status τ can transform whenever298
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a reaction y → y′ occurs, with a probability given by θy(τ, τ
′). By definition, the299

quantity θy(τ, τ
′) denotes precisely the probability that the tracked molecule takes300

part in the reaction y → y′, assuming that the reacting molecules are uniformly chosen301

among those present. If that happens, the new state of the tracked molecule is drawn302

according to the probability distribution {py→y′(τ, τ ′)}τ ′∈supp(y′)∪∆ (see Example 4.5303

for a case where this distribution is non-trivial). If the tracked molecule is irreversibly304

degraded, its status becomes ∆ and cannot be further changed. In what follows, we305

will sometimes identify the state space of Y V , given by T , with the canonical basis306

of R|T |, similarly to how complexes are implicitly identified with vectors in R
d.307

The only technical requirement to have a tracking stochastic reaction system308

is establishing a rule on the status changes of the tracked molecules involved in a309

reaction. Mathematically, this can always be done. For instance, choose T = X and310

let σ be the identity. Consider a reaction y → y′. If ‖y‖1 ≤ ‖y′‖1, then an injective311

map from the molecules consumed to the molecules created can be defined, giving a312

rule for molecular status change. If instead ‖y‖1 > ‖y′‖1, then any molecule consumed313

can be either injectively mapped to a molecule created, or mapped to the cemetery314

status ∆. Hence, formally the requirements of Definition 4.2 can always be satisfied315

for some choices of T and σ. However, care needs to be exercised if we want status316

changes to reflect physical properties of the system (see Example 4.1).317

Remark 4.3. The generator of a tracking stochastic reaction system, as defined318

in Definition 4.2, is given by319

Af(∆, x) =
∑

y→y′∈R
λVy→y′(x)

(
f(∆, x+ y′ − y)− f(∆, x)

)
320

and for τ 6= ∆321

322

Af(τ, x) =
∑

y→y′∈R
(1− θy(τ, x))λ

V
y→y′(x)

(
f(τ, x+ y′ − y)− f(τ, x)

)
323

+
∑

y→y′∈R

∑

τ ′∈supp(y′)∪∆

θy(τ, x)py→y′(τ, τ ′)λVy→y′(x)
(
f(τ ′, x+ y′ − y)− f(τ, x)

)
,324

325

for all functions f : (T )× Z
d
≥0 → R.326

Example 4.4. Consider the SI reaction network described in (1.1), which we re-327

peat here for convenience:328

(4.2) S + I −−→ 2I.329

In this case, we are interested in describing the history of susceptible individuals who330

become infected. The set of status is therefore T = {S̃, Ĩ} with σ(S̃) = S and σ(Ĩ) =331

I. Furthermore, we choose the probabilities pS+I→2I(S̃, Ĩ) = 1 and pS+I→2I(Ĩ , Ĩ) =332

1. Alternatively, one can simply consider T = {S̃}, with the understanding that333

whenever a susceptible individual gets infected we consider it as irreversibly degraded,334

and its state becomes ∆. In this case, pS+I→2I(S̃,∆) = 1.335

The state of single individuals can be tracked also in the more complex model336

(4.3) S + I −−→ 2I, I −−→ S.337

Here, the set of status is {S̃, Ĩ}, with σ(S̃) = S and σ(Ĩ) = I, and the transforma-338

tion probabilities are pS+I→2I(S̃, Ĩ) = 1, pS+I→2I(Ĩ , Ĩ) = 1, pI→S(Ĩ , S̃) = 1. Here,339
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relevant questions on the fate of a single individual could concern, for example, the340

number of infections it undergoes in a given time, or after how long the nth infection341

occurs. We can even extend the model to include migrations, and obtain342

(4.4) S + I −−→ 2I, I −−→ S, 0 −−⇀↽−− S, 0 −−⇀↽−− I.343

In this case, it is natural to assume pS→0(S̃,∆) = 1 and pI→0(Ĩ ,∆) = 1. Relevant344

questions could involve, for example, the average number of infection a susceptible345

individual undergoes before migrating.346

Example 4.5. Consider the following reaction network, where a protein P pro-347

motes its own phosphorylation:348

(4.5) 2P −−→ P + P ∗, P ∗ −−→ P, P −−→ 0.349

Here, we may assume we are interested in observing the dynamics of a molecule350

of protein P . Hence, the set of status is {P̃ , P̃ ∗} with σ(P̃ ) = P and σ(P̃ ∗) =351

P ∗. It is natural to assume that the two molecules of P involved in the reaction352

2P → P + P ∗ have the same probability of being phosphorylated or serving as the353

reaction catalyst. Hence, p2P→P+P∗(P̃ , P̃ ) = p2P→P+P∗(P̃ , P̃ ∗) = 1/2. The other354

transformation probabilities are given by pP∗→P (P̃
∗, P̃ ) = 1 and pP→0(P̃ ,∆) = 1.355

Example 4.6. Consider the reaction network of Example 4.1:356

(4.6) E + S −−⇀↽−− C −−→ E + P, P −−⇀↽−− E.357

We consider the set of status {Ẽ, S̃, P̃ , C̃E , C̃S}, as described above. In this case the358

function σ associates every status of the molecules with the chemical species they359

are part of: σ(Ẽ) = E, σ(S̃) = S, σ(P̃ ) = P , σ(C̃E) = C, and σ(C̃S) = C. The360

transformation probabilities are given by361

pE+S→C(Ẽ, C̃E) = 1 pC→E+S(C̃E , Ẽ) = 1 pC→E+P (C̃E , Ẽ) = 1

pE+S→C(S̃, C̃S) = 1 pC→E+S(C̃S , S̃) = 1 pC→E+P (C̃S , P̃ ) = 1

pP→E(P̃ , Ẽ) = 1 pE→P (Ẽ, P̃ ) = 1

362

Remark 4.7. The interpretation of a tracking stochastic reaction system is that363

of a regular stochastic reaction system with the subsequent tranformations of a given364

particle being tracked. If the initial state Y V (0) of the tracked molecule is not present365

in the initial XV (0), that is if XV
σ(Y V (0))(0) = 0, then the initial condition of (Y V , XV )366

is not consistent with the interpretation of the process. The process (Y V , XV ) is still367

well-defined and its evolution can be studied, but its interpretation is no longer valid.368

In order to obtain meaningful results, we therefore tacitly assume that XV
σ(Y V (0))(0) >369

0, even if we do not require it formally.370

4.1. Representation as a regular stochastic reaction network. In this371

section we show how a tracking stochastic reaction system (Y V , XV ) can be realized372

as a regular stochastic reaction system with species set given by T ⊔ X , where ⊔373

denotes a disjoint union. In particular, the state space is Z
|T |
≥0 × Z

d
≥0, where for374

convenience we consider the first coordinates to refer to T , and the rest to the species375

of the original process X . We denote by (x̃, x) a generic state in Z
|T |
≥0 ×Z

d
≥0. Consider376

the set of reactions R∪ R̃ where377

R̃ = {τ + y → τ ′ + y′ : y → y′ ∈ R, τ, τ ′ ∈ T and py→y′(τ, τ ′) > 0}378
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and endow them with the following reaction rates:379

λVy→y′(x̃, x) =
∑

τ∈T
x̃τ (1− θy(τ, x))λ

V
y→y′(x)380

λVτ+y→τ ′+y′(x̃, x) = x̃τθy(τ, x)py→y′(τ, τ ′)λVy→y′(x).381382

Note that the second component of the process has the same transitions as XV , with383

exactly the same rates. Hence, we can safely denote the process associated with the384

above stochastic reaction network by (Ỹ V , XV ). Note that the quantity
∑

τ∈T x̃τ385

is conserved by all possible transitions. Hence, if we consider an initial condition386

(Ỹ (0), X(0)) with
∑

τ∈T Ỹτ (0) = 1, then at any time point t exactly one entry of the387

vector Ỹ (t) is 1, and the other entries are zero. It follows that there is a bijection388

between the possible values of Ỹ and T , given by the function supp(Ỹ (t)). In this389

case, by identifying status with vectors of the canonical basis of R|T | as already done390

in the paper for the species in X , the transition rates can be equivalently written as391

λVy→y′(x̃, x) =
∑

τ∈T
✶{τ}(x̃)(1− θy(τ, x))λ

V
y→y′(x)392

λVτ+y→τ ′+y′(x̃, x) = ✶{τ}(x̃)θy(τ, x)py→y′(τ, τ ′)λVy→y′(x),393394

Hence, if
∑

τ∈T Ỹτ (0) = 1 then the transitions and the rates of (Y V , XV ) and395

(Ỹ V , XV ) coincide, and (Y V , XV ) can be therefore realized as a stochastic reaction396

network with an appropriate initial condition. In particular, we can write397

XV (t) = XV (0) +
∑

y→y′∈R
(y′ − y)Ny→y′

(∫ t

0

λVy→y′(XV (s))ds

)(4.7)

398

Y V (t) = Y V (0) +
∑

y+τ→y′+τ ′∈R̃

(τ ′ − τ)Ny+τ→y′+τ ′

(∫ t

0

λVτ+y→τ ′+y′(Y V (s), XV (s))ds

)(4.8)

399

400

where Nr for r ∈ R∪ R̃ are independent unit-rate Poisson processes. Note that with401

the above writing, all the processes in the set {(Y V , XV )}V ∈Z≥1
can be defined on402

the same probability space.403

5. Results. In this section we state our main results and illustrate their appli-404

cations.405

5.1. Classical scaling for the fate of a single molecule. In this section we406

state a law of large number for the process Y V . In order to do this, we consider a407

family of tracking stochastic reaction systems (Y V , XV ), with V varying in the integer408

numbers greater than one. We then assume that Assumption 3.1 is satisfied for some409

locally Lipschitz functions λy→y′ , and denote by Z the solution to (2.2). Hence, we410

know by Theorem 3.2 that V −1XV will converge to Z path-wise with the uniform411

convergence topology over compact intervals of time, for V going to infinity.412

In this section we express (Y V , XV ) by means of independent unit-rate Poisson413

processes, as in (4.7) and (4.8). With the notation introduced in the previous section414

in mind, we have the following first technical result:415

This manuscript is for review purposes only.



12 D. CAPPELLETTI AND G. REMPALA

Lemma 5.1. Assume that Assumption 3.1 holds. Then, for any τ +y → τ ′+y′ ∈416

R̃, any w ∈ T , and any compact set K ⊂ R
d
>0 we have417

(5.1) lim
V→∞

sup
z∈K

∣∣∣λV
τ+y→τ ′+y′∈R̃(w, ⌊V z⌋)− λy→y′(w, z)

∣∣∣ = 0,418

where the function λτ+y→τ ′+y′ : T × R
d
≥0 is defined as419

λτ+y→τ ′+y′(w, z) = ✶{w}(τ)py→y′(τ, τ ′)yσ(τ)
λy→y′(z)

zσ(τ)
420

if both zσ(τ) and yσ(τ) are positive, and zero otherwise. Moreover, the function421

λτ+y→τ ′+y′ is locally Lipschitz if restricted to T × R
d
>0.422

Proof. If yσ(S) = 0, then both λV
τ+y→τ ′+y′∈R̃ and λy→y′ are constantly zero, hence423

(5.1) holds. If yσ(S) is positive, then for all z ∈ K we have424

425 ∣∣∣λV
τ+y→τ ′+y′∈R̃(w, ⌊V z⌋)− λy→y′(w, z)

∣∣∣ =426

✶{w}(τ)py→y′(τ, τ ′)

∣∣∣∣θy(τ, ⌊V z⌋)λ
V
y→y′(⌊V z⌋)− yσ(S)

λy→y′(z)

zσ(S)

∣∣∣∣427

428

Let m = minz∈K zστ , which is positive because K is a compact set contained in R
d
>0.429

If V is large enough such that V m > yστ then430

431 ∣∣∣λV
τ+y→τ ′+y′∈R̃(w, ⌊V z⌋)− λy→y′(w, z)

∣∣∣ =432

✶{w}(τ)py→y′(τ, τ ′)yσ(S)

∣∣∣∣∣
λVy→y′(⌊V z⌋)

V · (⌊V zσ(τ)⌋/V )
− λy→y′(z)

zσ(S)

∣∣∣∣∣433

434

Hence, (5.1) follows from Assumption 3.1 and435

max
z∈K

∣∣∣∣
⌊V zσ(τ)⌋

V
− zσ(τ)

∣∣∣∣ ≤
1

V
.436

To conclude the proof, we only need to show that λτ+y→τ ′+y′ restricted to T ×R
d
>0 is437

locally Lipschitz. However, this follows from it being the product (up to multiplication438

by a constant) of the two locally Lipschitz functions z 7→ 1/zσ(τ) and λy→y′ .439

The main goal of this section is to prove a classical scaling limit for a single-440

molecule trajectory. To this aim, define the process Y by441

(5.2)

Y (t) = Y (0) +
∑

τ+y→τ ′+y′∈R̃

(τ ′ − τ)Nτ+y→τ ′+y′

(∫ t

0

λτ+y→τ ′+y′(Y (s), Z(s))ds

)
.442

Then, the following result holds, where we implicitly identify the states of Y V and Y443

with the canonical basis of R|T |. Note that the assumption that all the components444

of the solution Z are strictly positive in the time interval [0, T ] is made, but this is445

only a mild restriction to avoid unnecessary technicality, and is always verified under446

mass-action kinetics as long as Z(0) ∈ R
d
>0 (see Remark 5.3). The proof of the result447

is postponed to Appendix A, where more precise bounds are given.448
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Theorem 5.2. Assume that Assumption 3.1 holds. Furthermore, assume that449

the random variables XV (0)/V converge in probability to some z∗ ∈ R
d
>0 as V goes450

to infinity, and let Z(0) = z∗. Assume that the solution Z to (2.2) with Z(0) = z∗451

exists over the interval [0, T ] and that452

m = min
i=1,2,...,d
u∈[0,T ]

Zi(u) > 0.453

Finally, assume that Y V (0) = Y (0) for all positive integers V . Then454

(5.3) lim
V→∞

sup
t∈[0,T ]

P
(
Y V (t) 6= Y (t)

)
= lim

V→∞
sup

t∈[0,T ]

E
[
‖Y V (t)− Y (t)‖∞

]
= 0.455

Remark 5.3. If we consider mass-action kinetics, then the deterministic solutions456

never touch the boundaries, provided that the initial condition is strictly positive [22].457

In this case, the existence of m as assumed in Theorem 5.2 is then guaranteed by458

z∗ ∈ R
d
>0.459

Remark 5.4. Theorem 5.2 implies finite dimensional distribution convergence of460

Y V to Y in the following sense: for all 0 ≤ t1 < t2 < · · · < tn ≤ T we have461

P

(
max
1≤i≤n

‖Y V (ti)− Y (ti)‖∞ > 0

)
≤

n∑

i=1

P
(
‖Y V (ti)− Y (ti)‖∞ > 0

)
,462

and the latter tends to 0 as V tends to ∞, under the conditions of Theorem 5.2.463

Some simulations of the process Y are proposed in Figure 2 for the case of the464

SIS model (4.3). We conclude this section with the following result, concerning the465

convergence of Y V to Y as processes with sample paths in DT [0, T ]. We note how466

this result is necessary for the convergence of continuous functionals of DT [0, T ], as467

highlighted in Section 5.2.468

Theorem 5.5. Assume that Assumption 3.1 holds. Furthermore, assume that the469

random variables XV (0)/V converge weakly to a constant z∗ as V goes to infinity,470

and let Z(0) = z∗. Assume that the solution Z to (2.2) with Z(0) = z∗ exists over471

the interval [0, T ] and that472

m = min
S∈X

u∈[0,T ]

ZS(u) > 0.473

Finally, assume that Y V (0) = Y (0) for all positive integers V . Then Y V converges474

in probability to Y as processes with sample paths in DT [0, T ] (where we identify T475

with the elements of the canonical basis of R|T | and embed it with the metric ‖ · ‖∞,476

or any equivalent one).477

The proof is given in Appendix A.478

5.2. Applications of Theorem 5.5. The convergence of Theorem 5.5 allows479

us to state convergence in probability of f(Y V ) to f(Y ), where f : DT [0, T ] → R is480

a functional that is continuous with respect to the Skorokhod J1 topology. Classical481

examples are f(x) = supt∈[0,T ] ‖x(t)‖∞, f(x) =
∫ T

0
φ(x(s))ds for some continuous482

function φ, or f(x) = supt∈[0,T ](x(t) − x(t−)) where x(t−) = limh↑t x(h) (see for483

example [11, Chapter 3]). More concretely, a functional we may want to consider is484

the number of times an individual gets infected in the interval [0, T ], assuming the485
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Fig. 2. The process Y in SIS model. Consider the model (4.3), and let Y be as in (5.2).
The first panel shows the concentration of infected individuals ZI according to the deterministic
solution to (2.2) with ZS(0) = 0.99 and ZI(0) = 0.01. Mass-action kinetics is assumed, with the
rate constants of S + I → 2I and I → S being 1 and 0.5, respectively. According to (5.2), ZI

determines the rate at which the single-individual process Y turns from ’susceptible’ to ’infected’.
The last three panels show independent realizations of Y . The times in the x-axes of the four panels
are aligned.

model of equation (4.3) is in place. We denote this functional by ψ. Note that the486

convergence of XV /V to its deterministic fluid limit, as stated in Theorem 3.2, does487

not give any mean of inferring the distribution of ψ(Y V ). However, knowing that488

ψ(Y V ) converges in probability to ψ(Y ), if V is large enough we can approximate the489

distribution of the former by the distribution of the latter. Obtaining an estimate of490

the distribution of ψ(Y ) only requires the simulation of enough independent copies of491

Y , whose jump rates are deterministic and therefore do not require a simulation of492

XV to be computed, as opposed to the much more expensive strategy of simulating493

multiple independent trajectories of (Y V , XV ) via the Gillespie algorithm (which is494

especially cumbersome for large values of V ). The empirical distributions obtained495

with he two strategies are compared in Figure 3. Similarly, we can apply our results496

to a Michaelis-Menten mechanism. Consider the model497

(5.4) E + S −−⇀↽−− C −−→ E + P, P −−→ S,498
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Fig. 3. Empirical distribution of number of infections in SIS model. Consider the model
(4.3), and let ψ be the number of infections a randomly selected individual undergoes up to time T .
The empirical distributions of ψ(Y V ) and ψ(Y ) are compared, the former obtained by the simulation
of 1,000 independent copies of (Y V , XV ) via the Gillespie algorithm (applied to the formulation in
terms of usual stochastic reaction networks discussed in Section 4.1), and the latter obtained via the
simulation of 1,000 copies of Y . Here, V = 1, 000 and the initial portion of infected individuals is
1% (so we are initially close to the boundary and we may expect some minor discrepancy between
XV /V and its deterministic limit Z, see also Figure 5). Mass-action kinetics is assumed, with the
rate constants of S + I → 2I and I → S being 1 and 0.5, respectively.

where the enzyme activities counterbalances a spontaneous transformation of mole-499

cules of type P into molecules of type S. To measure the activity level of the enzymes,500

we may want to study for how long a randomly chosen enzyme molecule is in bound501

state C up to a given time T . Let us call this quantity υ(Y V ). The classical scal-502

ing of Theorem 3.2 does not allow for inference of the distribution of υ(Y V ), but503

Theorem 5.5 ensures that it converges to the distribution of υ(Y ) as V tends to ∞.504

Figure 4 compares the empirical distributions of υ(Y V ) and υ(Y ) obtained by the505

simulation of 1, 000 independent copies of (Y V , XV ) and 1, 000 independent copies of506

Y , respectively. For this comparison we chose V = 1, 000.507

5.3. Approximating the system dynamics with single-molecule trajec-508

tories. Let X ⊆ X be the set of tracked species, i.e. the set of chemical species whose509
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Fig. 4. Empirical density of time in bound state in Michaelis-Menten model. Consider
the model (5.4), and let υ be the time a randomly selected molecule of enzyme is in bound state C
up to time T . The empirical distributions of υ(Y V ) and υ(Y ) are compared, the former obtained
by the simulation of 1,000 independent copies of (Y V , XV ) via the Gillespie algorithm (applied to
the formulation in terms of usual stochastic reaction networks discussed in Section 4.1), and the
latter obtained via the simulation of 1,000 copies of Y . Here, V = 1, 000 and Z(0) = X(0)/V =
(0.5, 10, 0.5, 1), where the species are ordered as in E,S,C, P . Mass-action kinetics is assumed, with
the rate constants of E + S → C, C → E + S, C → E + P , and P → S being 1, 5, 1, and 0.5,
respectively.

molecules (or parts thereof) can be tracked:510

X = {S ∈ X : S = σ(τ) for some τ ∈ T \ {∆}}.511

Moreover, let π : Rd → R
|X | be the projection of the state space onto the coordinates512

relative to the species in X . The aim of this section is to approximate the dynamics513

of π(XV ) by means of a sum of independent processes distributed as in (5.2) (po-514

tentially with rescaled dynamics, as shown in the statement of Theorem 5.8). Note515

that the goal of such an approximation is not to provide a faster simulation method516

than those present in the literature: our goal is to break down the dynamics of sev-517

eral correlated particles into a set of independent single-molecule trajectories which518

could be simulated simultaneously by a highly parallelizable algorithm. We begin by519

identifying each status τ ∈ T \ {∆} with a different part of the molecules of the520

species σ(τ): m molecules of species S ∈ X are available at time t if and only if for521
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all status τ with σ(τ) = S the quantity of the tracked molecules in status τ is m522

at time t. Under this assumption, clearly the process XV can be expressed in terms523

of the status changes of its tracked molecules, which are typically not independent524

of each other. We further restrict ourselves to models that are sub-conservative with525

respect to the tracked molecules. This means that while a tracked molecule can526

potentially be degraded (by changing its status to ∆), their total mass never in-527

creases. Equivalently, we assume that each time a tracked molecule is created it is by528

transformation of another molecule. We assume sub-conservativeness for simplicity:529

we want to consider independent single-molecule fates, whose agglomeration is still530

able to approximately describe the dynamics of the whole system. If we allowed for531

mass creation, we would need to introduce new molecules over time and track them.532

Defining the molecule creation times over a finite interval of time independently on533

each other is technically possible if the creation rate changes deterministically: it is534

sufficient to first simulate a Poisson random variable counting the total number of new535

molecules in the finite time interval, then consider each creation time as independent536

of the others with probability density proportional to the deterministic creation rate.537

However, this procedure requires the introduction of further notation and for the sake538

of clarity we decided to only present the simpler case of sub-conservative models (with539

respect to the status).540

Assumption 5.6. Let (Y V , XV ) be a family of tracking stochastic reaction sys-541

tems. We assume that for each reaction y → y′ ∈ R and for each τ ′ ∈ T \ {∆}542

∑

τ,∈T \{∆}
yσ(τ)py→y′(τ, τ ′) = y′σ(τ ′)543

For all S ∈ X , τ ∈ T \ {∆} define544

σ−1(S) = {τ ′ ∈ T : σ(τ ′) = S} and α(S) = #σ−1(S)545

The sub-conservation of the model with respect to the tracked molecules is formally546

stated as follows.547

Lemma 5.7. Let (Y V , XV ) be a family of tracking stochastic reaction systems548

satisfying Assumption 5.6. Then, for all V ∈ Z≥1 and for all t ∈ R>0549

(5.5) ‖π(XV (t))‖1 ≤
∑

S∈X

α(S)XV
S (t) ≤

∑

S∈X

α(S)XV
S (0).550

Proof. The first inequality of (5.5) simply follows from the fact that the quantities551

α(S) are greater than or equal to 1. For the second inequality, simply note that if a552

reactions y → y′ ∈ R occurs at time t, then553

∑

S∈X

α(S)XV
S (t)−

∑

S∈X

α(S)XV
S (t−) =

∑

S∈X

α(S)y′S −
∑

S∈X

α(S)yS554

=
∑

τ ′∈T \{∆}
y′σ(τ ′) −

∑

τ∈T \{∆}
yσ(τ)555

=
∑

τ ′∈T \{∆}

∑

τ,∈T \{∆}
yσ(τ)py→y′(τ, τ ′)−

∑

τ∈T \{∆}
yσ(τ)556

≤
∑

τ∈T \{∆}
yσ(τ) −

∑

τ∈T \{∆}
yσ(τ) = 0.557

558
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Note that in the third equality we used Assumption 5.6, and in the last equality we559

used
∑

τ ′∈T \{∆} py→y′(τ, τ ′) ≤ 1. Since the quantity
∑

S∈X α(S)X
V
S is not increasing560

with the occurrence of a reaction, (5.5) is proven.561

The main result of this section is the following one, a more detailed version of562

which is proven in the Appendix. In particular, in Theorem A.5 a convergence rate563

of the order of e−C
√
V for a positive constant C is proven, provided that the initial564

conditions of XV and X̃V are close enough.565

Theorem 5.8. Assume that Assumptions 3.1 and 5.6 are satisfied, and consider566

a family of tracking stochastic reaction systems (Y V , XV ). Assume that V −1XV (0)567

converges in distribution to some z∗ ∈ R
d
>0 as V goes to infinity and E[π(XV (0))] <568

∞ for all V ∈ Z≥1. Assume that the solution Z to (2.2) with Z(0) = z∗ exists over569

the interval [0, T ]. Let X̃V (0) = ⌊V z∗⌋ and define the process X̃V by570

(5.6) X̃V (t) =
∑

τ∈T \{∆}

X̃V
σ(τ)(0)∑

i=1

σ(Y τ,i(t))

α(σ(Y τ,i(t)))
,571

where the processes (Y τ,i)τ∈T \{∆},i∈Z≥1
are independent and satisfy572

Y τ,i(t) = τ+
∑

τ ′+y→τ ′′+y′∈R̃

(τ ′′−τ ′)Nτ,i
τ ′+y→τ ′′+y′

(∫ t

0

λτ ′+y→τ ′′+y′(Y τ,i(u), Z(u))du

)
,573

for a family of independent, identically distributed unit-rate Poisson processes {Nτ,i
r }τ∈T \{∆},i∈Z≥1,r∈R̃.574

Then,575

lim
V→∞

E

[
sup

0≤s≤t

∥∥∥∥∥
π(XV (t))

V
− X̃V (t)

V

∥∥∥∥∥

]
= 0.576

Note that in the definition of X̃V above we consider the number of independent577

single-molecule trajectories to match the number of molecules (or parts thereof) of578

trackable species that are in the system at time 0. A natural question is whether579

a good approximation of the original model XV can be obtained by considering the580

agglomeration of less independent single-molecule trajectories. However, a detailed581

study of the error in this case is out of the scope of the present paper.582

Example 5.9. Consider the SIS model of equation (4.3). We assume XV
S (0) =583

0.99V and XV
I (0) = 0.01V , and let V = 1, 000. We wish to approximate the number584

of susceptible individuals by585

XV
S (t)

V
≈ X̃V

S (t)

V
.586

In order to test the performance of the above approximation, we simulate 100 indepen-587

dent copies of XV and X̃, and plot them against each other in Figure 5. It is perhaps588

not surprising to note a higher variance for the trajectories of XV with respect of589

those of X̃V : the former is the result of several single-molecule trajectories that are590

naturally correlated with each other, specifically the rate at which a single molecule591

changes state is stochastic and given by the current state of all the other molecules. In592

the approximation, the dynamics of the single tracked molecules are independent and593
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their rates of transitions between states are completely determined by the determin-594

istic solution Z, which leads to fewer stochastic fluctuations. However, we do observe595

a discrepancy between the two models only at the beginning of the trajectories, when596

the number of infected individuals is rather low (only 10 individuals in the initial con-597

dition) and the deterministic approximation given by Theorem 3.2 is perhaps not yet598

accurate enough. As a matter of fact, Figure 6 shows that the difference in variance599

is considerably reduced if the initial counts of infected individuals is increased to 100.600

601

We are interested in bounding602

(5.7) P

(
sup

0≤t≤T

∣∣∣∣∣
XV

S (t)

V
− X̃V

S (t)

V

∣∣∣∣∣ > ε

)
,603

for a fixed ε ∈ R>0. Assume mass-action kinetics and let κ1 and κ2 be the rate604

constants of S + I → 2I and I → S, respectively. Moreover, assume for simplicity605

that XV (0) = X̃V (0) = V Z(0) and XV
S (0) + XV

I (0) = V . Since the total number606

of individual is conserved, for all 0 ≤ t ≤ T we have XV
S (t) + XV

I (t) = V . By607
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Fig. 5. Comparison in SIS model. Comparison of 100 independent trajectories of XV

S
/V

and X̃V

S
/V , considering the SIS model described in (4.3). Here, XV

S
(0) = 0.99V , XV

I
(0) = 0.01V ,

and V = 1, 000. Mass-action kinetics is assumed, with the rate constants of S + I → 2I and I → S
being 1 and 0.5, respectively.
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Fig. 6. Comparison in SIS model. Comparison of 100 independent trajectories of XV

S
/V

and X̃V

S
/V , considering the SIS model described in (4.3). Here, XV

S
(0) = 0.9V , XV

I
(0) = 0.1V ,

and V = 1, 000. Mass-action kinetics is assumed, with the rate constants of S + I → 2I and I → S
being 1 and 0.5, respectively.

superposition there exist two independent unit-rate Poisson processes ÑS+I→2I and608

ÑI→S such that for all 0 ≤ t ≤ T and for a fixed V we have (with a simplified notation609

that does not take into account the initial values of the independent single individual610

trajectories)611

ÑS+I→2I

(∫ t

0

κ1X̃
V
S (u)ZI(u)du

)
=

V∑

i=1

N i
S̃+S+I→Ĩ+2I

(∫ t

0

✶{S̃}(Y
i(u))ZI(u)du

)
612

ÑI→S

(∫ t

0

κ2X̃
V
I (u)du

)
=

V∑

i=1

N i
Ĩ+I→S̃+S

(∫ t

0

✶{Ĩ}(Y
i(u))du

)
.613

614

Then,615
616 ∣∣∣∣∣

XV
S (t)

V
− X̃V

S (t)

V

∣∣∣∣∣ ≤ ∆(t) +
1

V

∫ t

0

κ1X
V
S (u)

∣∣∣∣
XV

I (u)

V
− ZI(u)

∣∣∣∣ du617

+

∫ t

0

κ1

∣∣∣∣∣
XV

S (u)

V
− X̃V

S (u)

V

∣∣∣∣∣ZI(u)du+

∫ t

0

κ2

∣∣∣∣∣
XV

I (u)

V
− X̃V

I (u)

V

∣∣∣∣∣ du,618

619
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where620

∆(t) =
1

V

∣∣∣∣NS+I→2I

(∫ t

0

κ1
V
XV

S (u)XV
I (u)du

)
−
∫ t

0

κ1
V
XV

S (u)XV
I (u)du

∣∣∣∣621

+
1

V

∣∣∣∣NI→S

(∫ t

0

κ2X
V
I (u)du

)
−
∫ t

0

κ2X
V
I (u)du

∣∣∣∣622

+
1

V

∣∣∣∣ÑS+I→2I

(∫ t

0

κ1X̃
V
S (u)ZI(u)du

)
−
∫ t

0

κ1X̃
V
S (u)ZI(u)du

∣∣∣∣623

+
1

V

∣∣∣∣ÑI→S

(∫ t

0

κ2X̃
V
I (u)du

)
−
∫ t

0

κ2X̃
V
I (u)du

∣∣∣∣ .624
625

Using XV
I (t) = V −XV

I (t) and ZI(t) ≤ 1 for all 0 ≤ t ≤ T we obtain626

627 ∣∣∣∣∣
XV

S (t)

V
− X̃V

S (t)

V

∣∣∣∣∣ ≤ ∆(t) +

∫ t

0

κ1

∣∣∣∣
XV

I (u)

V
− ZI(u)

∣∣∣∣ du628

+

∫ t

0

(κ1 + κ2)

∣∣∣∣∣
XV

S (u)

V
− X̃V

S (u)

V

∣∣∣∣∣ du.629

630

By taking the supremum on 0 ≤ t ≤ T on both sides and by applying the Gronwall631

inequality, we have632

sup
0≤t≤T

∣∣∣∣∣
XV

S (t)

V
− X̃V

S (t)

V

∣∣∣∣∣ ≤
(

sup
0≤t≤T

∆(t) + κ1T sup
0≤t≤T

∣∣∣∣
XV

I (u)

V
− ZI(u)

∣∣∣∣
)
e(κ1+κ2)T .633

For notational convenience, let ν = εe−(κ1+κ2)T . Hence, (5.7) is smaller than634

(5.8) P

(
sup

0≤t≤T
∆(t) >

ν

2

)
+ P

(
sup

0≤t≤T

∣∣∣∣
XV

I (u)

V
− ZI(u)

∣∣∣∣ >
ν

2κ1T

)
.635

By noting that P (sup0≤t≤T ∆(t) > ν/2) is smaller than636

P

(
sup

0≤t≤T

1

V

∣∣∣∣NS+I→2I

(∫ t

0

κ1
V
XV

S (u)XV
I (u)du

)
−
∫ t

0

κ1
V
XV

S (u)XV
I (u)du

∣∣∣∣ >
ν

8

)
637

+ P

(
sup

0≤t≤T

1

V

∣∣∣∣NI→S

(∫ t

0

κ2X
V
I (u)du

)
−
∫ t

0

κ2X
V
I (u)du

∣∣∣∣ >
ν

8

)
638

+ P

(
sup

0≤t≤T

1

V

∣∣∣∣ÑS+I→2I

(∫ t

0

κ1X̃
V
S (u)ZI(u)du

)
−
∫ t

0

κ1X̃
V
S (u)ZI(u)du

∣∣∣∣ >
ν

8

)
639

+ P

(
sup

0≤t≤T

1

V

∣∣∣∣ÑI→S

(∫ t

0

κ2X̃
V
I (u)du

)
−
∫ t

0

κ2X̃
V
I (u)du

∣∣∣∣ >
ν

8

)
,640

641

we obtain that (5.8) is smaller than642

643

12 exp

(
κ1eT

2
− ν

24

√
V

)
+ 12 exp

(
κ2eT

2
− ν

24

√
V

)
644

+ 6 exp

(
κ1eT

2

(
1 +

ν

κ1T

)2

+
κ2eT

2

(
1 +

ν

κ1T

)
− ν

12κ1T
e−T (κ1−κ2)−ν

√
V

)
645

646
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by Lemma A.1 and Theorem A.2 (for the special case of the SIS model, see Exam-647

ple A.3). We note that exp(h) is defined as eh for all real numbers h. It follows648

that (5.7) tends to 0 as V tends to ∞ with the same rate as e−C
√
V for some positive649

constant C. This is always the case, and bounds for more general models are provided650

by Theorem A.5.651

Appendix A. Proofs and explicit bounds.652

In this section we give proofs for the results stated above, together with more653

precise bounds on the quantities of interest. To this aim, we first define the following654

quantities: for all V ∈ Z≥1 and ε ∈ R>0 let655

AV,ε,t =

{
sup

u∈[0,t]

∥∥∥∥
XV (u)

V
− Z(u)

∥∥∥∥
∞

≤ ε

}
and pV,ε,t = P (Ac

V,ε,t) = 1−P (AV,ε,t),656

where the superscript “c” denotes the complement. Note that, for any fixed V and ε,657

the sequence of events AV,ε,t is monotone in t, and pV,ε,t is a non-decreasing function658

of t attaining its maximum for the value t = T .659

Define the Zd
≥0-valued process XV,ε on [0, T ] in the following way: for any S ∈ X660

and any t ∈ [0, T ], let661

(A.1) XV,ε
S (t) = min{max{XV

S (t), V ZS(t)− V ε}, V ZS(t) + V ε}.662

Hence, by definition for all t ∈ R>0663

∥∥∥∥
XV,ε(t)

V
− Z(t)

∥∥∥∥
∞

≤ ε.664

Moreover, define the process X̂V,ε by665

X̂V,ε(t) = XV (0) +
∑

y→y′∈R
(y′ − y)Ny→y′

(∫ t

0

λVy→y′(XV,ε(u))du

)
666

for all t ∈ [0, T ], where the processes Ny→y′ are the same as in (4.7). Note that for667

any u ∈ [0, t] we have ✶AV,ε,t
XV,ε(u) = ✶AV,ε,t

XV (u) = ✶AV,ε,t
X̂V,ε(u). In particular,668

it follows that669

sup
0≤u≤t

∥∥∥∥
XV,ε(u)

V
− Z(u)

∥∥∥∥
∞

≤ ✶AV,ε,t
sup

0≤u≤t

∥∥∥∥∥
X̂V,ε(u)

V
− Z(u)

∥∥∥∥∥
∞

+ ✶Ac
V,ε,t

ε670

≤ sup
0≤u≤t

∥∥∥∥∥
X̂V,ε(u)

V
− Z(u)

∥∥∥∥∥
∞
.(A.2)671

672

The last inequality follows from noting that if Ac
V,ε,t occurs and if673

u∗ = inf

{
u ∈ [0, t] :

∥∥∥∥
XV (u)

V
− Z(u)

∥∥∥∥
∞

≥ ε

}
,674

then XV,ε(u) = XV (u) = X̂V,ε(u) for all u ∈ [0, u∗) and X̂V,ε(u∗) = XV (u∗). More-675

over, by the right continuity of XV and Z u∗ is in fact a minimum, which implies676

∥∥∥∥
XV (u∗)

V
− Z(u∗)

∥∥∥∥
∞

≥ ε.677
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Hence678

✶Ac
V,ε,t

sup
0≤u≤t

∥∥∥∥∥
X̂V,ε(u)

V
− Z(u)

∥∥∥∥∥
∞

≥ ✶Ac
V,ε,t

∥∥∥∥∥
X̂V,ε(u∗)

V
− Z(u∗)

∥∥∥∥∥
∞

679

= ✶Ac
V,ε,t

∥∥∥∥
XV (u∗)

V
− Z(u∗)

∥∥∥∥
∞

≥ ✶Ac
V,ε,t

ε.680

681

For any t ∈ [0, T ] and any ε ∈ R>0 let682

Ωε,t
1 = {Z(u) + h : u ∈ [0, t], h ∈ R

d, ‖h‖∞ ≤ ε} ∩ R
d
≥0683

be the (one-dimensional) neighbourhood of the solution Z on the interval [0, t] with684

amplitude ε, intersected with the non-negative orthant. Note that for all t ∈ [0, T ] we685

have XV,ε(t)/V ∈ Ωε,V
1 . Similarly, let686

Ωε,t
2 = {(Z(u) + h, Z(u) + h′) : u ∈ [0, t], h, h′ ∈ R

d, ‖h‖∞ ≤ ε, ‖h′‖∞ ≤ ε} ∩ R
2d
≥0687

be the two-dimensional neighbourhood of the Z restricted to [0, t] with amplitude ε,688

intersected with the non-negative orthant.689

To conclude, it is convenient to introduce in this section a notation for centered690

Poisson processes: given a Poisson process N , we denote by N the process defined691

by N(t) = N(t) − t for all t ∈ R≥0. In order to bound pV,ε,t from above and prove692

Theorem 5.8 we need the following results concerning centered Poisson processes. For693

completeness, we provide a proof as we were not able to find it in the literature, even694

if small variations of Lemma A.1 are well-known and obtained as an application of695

Doob’s inequality or Kolmogorov’s maximal inequality.696

Lemma A.1. Let N be a Poisson process and let T, ε ∈ R>0. Then, for all n ∈697

Z≥1698

P

(
sup

t∈[0,nT ]

∣∣∣∣
N(t)

n

∣∣∣∣ > ε

)
≤ 6 exp

(
e

2
T − ε

√
n

3

)
.699

Proof. For all j ∈ Z≥1 and all h ∈ R>0 define700

(A.3) Ξh
j =

2jh⋃

i=0

{
i

2j

}
.701

Since N is almost surely right continuous, we have that for all n ∈ Z≥1 and all702

T ∈ R>0703

sup
t∈[0,nT ]

∣∣∣∣
N(t)

n

∣∣∣∣ = lim
j→∞

max
t∈ΞnT

j

∣∣∣∣
N(t)

n

∣∣∣∣704

almost surely. Since for all j ∈ Z≥1 we have ΞnT
j ⊂ ΞnT

j+1, by continuity of the705

probability measure we have706

P

(
sup

t∈[0,nT ]

∣∣∣∣
N(t)

n

∣∣∣∣ > ε

)
= lim

j→∞
P

(
max
t∈ΞnT

j

∣∣∣∣
N(t)

n

∣∣∣∣ > ε

)
.707
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By Etemadi’s inequality we have708

P

(
max
t∈ΞnT

j

∣∣∣∣
N(t)

n

∣∣∣∣ > ε

)
≤ 3 max

t∈ΞnT
j

P

(∣∣∣∣
N(t)

n

∣∣∣∣ >
ε

3

)
.709

Moreover, for any real β ∈ (0, 1) and any real t ∈ (0, nT ) we have710

P

(∣∣∣∣
N(t)

n

∣∣∣∣ >
ε

3

)
≤ P

(
N(t)

n
>
ε

3

)
+ P

(
−N(t)

n
>
ε

3

)
711

= P

(
e

nβN(t)
n > e

nβε
3

)
+ P

(
e−

nβN(t)
n > e

nβε
3

)
712

≤ 2 exp

(
−n

βε

3

)
exp

(
t(en

β−1 − 1− nβ−1)
)

713

≤ 2 exp

(
−n

βε

3

)
exp

(
nT

n2β−2

2
en

β−1

)
,714

≤ 2 exp

(
−n

βε

3

)
exp

(
nT

n2β−2

2
e

)
,715

716

where the inequality in the third line follows from the Markov’s inequality and the717

known form of the moment generating function of a Poisson random variable, which718

leads to E[en
β−1N(t)] = e−nβ−1tet(e

nβ−1−1) and E[e−nβ−1N(t)] = en
β−1tet(e

−nβ−1−1).719

Hence, for all n ∈ Z≥1 we have that both E[en
β−1N(t)] and E[e−nβ−1N(t)] are less than720

or equal to et(e
nβ−1−1−nβ−1). The inequality in the forth line derives from the Taylor721

expansion of the exponential function. By choosing β = 1/2 we have722

P

(∣∣∣∣
N(t)

n

∣∣∣∣ >
ε

3

)
≤ 2 exp

(
−ε

√
n

3

)
exp

(e
2
T
)
,723

which completes the proof.724

A.1. Estimates for pV,ε,t. Many papers have focused on quantifying the dis-725

tance between the process XV and its fluid limit Z. Among these, we list [1–3, 13,726

17,20] with no claim of completeness. Here we use Lemma A.1 to show the following727

upper bound on pV,ε,t. While similar estimates are known in the reaction network728

community, we give a formal proof of the bound we propose as we could not find it729

in the literature. Before stating the result, we define the following quantities:730

R = max
y→y′∈R

‖y′ − y‖∞,731

Λε,t
0 = sup

z∈Ωε,t
1

∑

y→y′∈R
λy→y′(z), Λε,t

1 =

∫ t

0

Λε,u
0 du732

Lε,t
0 = sup

(z,z′)∈Ωε,t
2

z 6=z′

∑

y→y′∈R

|λy→y′(z)− λy→y′(z′)|
‖z − z′‖∞

, Lε,t
1 =

∫ t

0

Lε,u
0 du733

δV,ε,t0 = sup
z∈Ωε,t

1

∑

y→y′∈R

∣∣∣∣∣
λVy→y′(⌊V z⌋)

V
− λy→y′(z)

∣∣∣∣∣ , δV,ε,t1 =

∫ t

0

δV,ε,u0 du734

ηV,ε,t(γ) = e−L2ε,t
1 γε− δV,2ε,t1 ,735736
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where in the last definition γ is any real number in (0, 1]. Note that Λε,t
0 and δV,ε,t0 are737

finite for any t ∈ [0, T ], since the solution Z exists up to time T and the functions λy→y′738

are locally Lipschitz by Assumption 3.1. The local Lipschitzianity of the functions739

λy→y′ also implies that Lε,t
0 is finite for all ε ∈ R>0 and t ∈ [0, T ]. It also follows740

from Assumption 3.1 that δV,ε,t0 tends to zero as V tends to infinity. Furthermore,741

note that for fixed V ∈ Z≥1 and ε ∈ R>0, the quantities Λε,t
0 , Lε,t

0 , and δV,ε,t0 are742

all non-decreasing functions of t. As a consequence, for all t ∈ [0, T ], ε ∈ R>0, and743

V ∈ Z≥1 we have744

Λε,t
1 ≤ tΛε,t

0 , Lε,t
1 ≤ tLε,t

0 , and δV,ε,t1 ≤ tδV,ε,t0 .745

It follows that for all t ∈ [0, T ], ε ∈ R>0, and γ ∈ (0, 1] the quantity ηV,ε,t(γ) tends to746

the positive quantity e−L2ε,t
1 γε as V tends to infinity. We can now state the following747

theorem.748

Theorem A.2. For any ε, t ∈ R>0, any γ ∈ (0, 1], and any V ∈ Z≥1 large enough749

such that ηV,2ε,t(γ) > 0, we have750

pV,ε,t ≤ pV,(1−γ)εe−L
2ε,t
1 ,0 + 6 exp

(
e

2
Λ2ε,t
1 +

e

2
δV,2ε,t1 − 1

3R
ηV,ε,t(γ)

√
V

)
751

Proof. First, note that752

pV,ε,t = P

(
sup

u∈[0,t]

∥∥∥∥
XV (u)

V
− Z(u)

∥∥∥∥
∞
> ε

)
= P

(
sup

u∈[0,t]

∥∥∥∥
XV,2ε(u)

V
− Z(u)

∥∥∥∥
∞
> ε

)
753

= P

(
sup

u∈[0,t]

∥∥∥∥∥
X̂V,2ε(u)

V
− Z(u)

∥∥∥∥∥
∞
> ε

)
.754

755

Moreover, by superposition, for all V ∈ Z≥1 and all ε ∈ R>0 we can define a unit-rate756

Poisson process UV,2ε coupled with XV in such a way that for all t ∈ R≥0757

UV,2ε




∑

y→y′∈R

∫ t

0

λVy→y′(XV,2ε(u))du


 =

∑

y→y′∈R
Ny→y′

(∫ t

0

λVy→y′(XV,2ε(u))du

)
.758

Hence, by using (2.2) we have759

∥∥∥∥∥
X̂V,2ε(u)

V
− Z(u)

∥∥∥∥∥
∞

≤
∥∥∥∥∥
X̂V,2ε(0)

V
− Z(0)

∥∥∥∥∥
∞

+
R

V

∣∣∣∣∣∣

∑

y→y′∈R
Ny→y′

(∫ u

0

λVy→y′(XV,2ε(w))dw

)∣∣∣∣∣∣
760

+

∫ u

0

∣∣∣∣∣∣

∑

y→y′∈R

(
λVy→y′(XV,2ε(w))

V
− λy→y′

(
XV,2ε(w)

V

))
dw

∣∣∣∣∣∣
761

+

∫ u

0

∣∣∣∣∣∣

∑

y→y′

(
λy→y′

(
XV,2ε(w)

V

)
− λy→y′(Z(w))

)
dw

∣∣∣∣∣∣
762

≤
∥∥∥∥
XV (0)

V
− Z(0)

∥∥∥∥
∞

+
R

V

∣∣∣∣∣∣
U

V,2ε




∑

y→y′∈R

∫ u

0

λVy→y′(XV,2ε(w))dw




∣∣∣∣∣∣
763

+ δV,2ε,u1 +

∫ u

0

L2ε,w
0

∥∥∥∥
XV,2ε(w)

V
− Z(w)

∥∥∥∥
∞
dw764

765
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By using (A.2), by taking the supremum over [0, t] on both sides we obtain766

sup
0≤u≤t

∥∥∥∥∥
X̂V,2ε(u)

V
− Z(u)

∥∥∥∥∥
∞

≤
∥∥∥∥
XV (0)

V
− Z(0)

∥∥∥∥
∞

767

+
R

V
sup

0≤u≤t

∣∣∣∣∣∣
U

V,2ε




∑

y→y′∈R

∫ u

0

λVy→y′(XV,2ε(w))dw




∣∣∣∣∣∣
768

+ δV,2ε,t1 +

∫ t

0

L2ε,u
0 sup

0≤w≤u

∥∥∥∥∥
X̂V,2ε(w)

V
− Z(w)

∥∥∥∥∥
∞
du.769

770

By Gronwall’s inequality we get771

sup
0≤u≤t

∥∥∥∥∥
X̂V,2ε(t)

V
− Z(t)

∥∥∥∥∥
∞

≤eL
2ε,t
1

∥∥∥∥
XV (0)

V
− Z(0)

∥∥∥∥
∞

772

+
ReL

2ε,t
1

V
sup

0≤u≤t

∣∣∣∣∣∣
U

V,2ε




∑

y→y′∈R

∫ u

0

λVy→y′(XV,2ε(w))dw




∣∣∣∣∣∣
773

+ eL
2ε,t
1 δV,2ε,t1 .774775

By noting that for all t ∈ R≥0776

sup
z∈Ω2ε,t

1

∑

y→y′∈R

λVy→y′(⌊V z⌋)
V

≤ Λ2ε,t
0 + δV,2ε,t0 ,777

we get778

pV,ε,t ≤P
(
eL

2ε,t
1

∥∥∥∥
XV (0)

V
− Z(0)

∥∥∥∥
∞
> (1− γ)ε

)
779

+ P

(
ReL

2ε,t
1 sup

0≤u≤V (Λ2ε,t
1 +δV,2ε,t

1 )

∣∣∣∣∣
U

V,2ε
(u)

V

∣∣∣∣∣+ eL
2ε,t
1 δV,2ε,t1 > γε

)
780

781

for any γ in (0, 1]. The proof is concluded by Lemma A.1.782

Example A.3. Consider the SIS reaction network described in (4.3). In this case,783

in accordance with the classical mass-action choice of kinetics we have784

λVS+I→2I(x) =
1

V
κ1xSxI and λVI→S(x) = κ2xI785

for some positive constants κ1 and κ2. Hence, Assumption 3.1 is satisfied with786

λS+I→2I(z) = κ1zSzI and λI→S(z) = κ2zI .787

The corresponding solution Z exists for all non-negative times t, for all initial condi-788

tions Z(0) = z∗. Moreover, note that the sum of infected and susceptible individuals789

is kept constant, hence for all t ∈ R>0 we have ZS(t) + ZI(t) = z∗S + z∗I = ‖z∗‖1. In790

this case we can obtain the following rough estimates791

R = 2, Λε,t
0 ≤ (‖z∗‖1 + ε)[κ1(‖z∗‖1 + ε) + κ2], Lε,t

0 ≤ κ1(‖z∗‖1 + ε) + κ2,792

δV,ε,t0 = 0, ηV,ε,t ≥ εe−tκ1(‖z∗‖1+2ε)+tκ2 .793794
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If we assume XV (0) = V z∗, then pV,0,0 = 0. It follows from Theorem A.2 with the795

choice γ = 1 that in this case796

pV,ε,t ≤ 6 exp

(
t

2
(‖z∗‖1 + 2ε)[κ1(‖z∗‖1 + 2ε) + κ2]−

ε
√
V

6
e−t[κ1(‖z∗‖1+2ε)−κ2]

)
,797

where exp(h) is defined as eh for all real numbers h.798

A.2. Proof of Theorem 5.2. First of all, we define some quantities that are799

useful to give specific bounds on our approximation error. Define800

Λ̃t
0 = max

τ∈T

∑

τ+y→τ ′+y′∈R̃

λτ+y→τ ′+y′(τ, Z(t)),801

L̃ε,t
0 = sup

(z,z′)∈Ωε,t
2

z 6=z′

max
τ∈T

∑

τ+y→τ ′+y′∈R̃

|λτ+y→τ ′+y′(τ, z)− λτ+y→τ ′+y′(τ, z′)|
‖z − z′‖∞

802

δ̃V,ε,t0 = sup
z∈Ωε,t

1

max
τ∈T

∑

τ+y→τ ′+y′∈R̃

|λVτ+y→τ ′+y′(τ, ⌊V z⌋)− λτ+y→τ ′+y′(τ, z)|803

Λ̃t
1 =

∫ t

0

Λ̃u
0du, L̃ε,t

1 =

∫ t

0

Lε,u
0 du, δ̃V,ε,t1 =

∫ t

0

δ̃V,ε,u0 du.804
805

Note that Λ̃t
0 is finite for any t ∈ [0, T ], due to the fact that Z is defined over the806

whole interval [0, T ]. Moreover the functions λτ+y→τ ′+y′ are locally Lipschitz on R
d
>0807

by Lemma 5.1, hence L̃ε,t
0 is finite for all t ∈ [0, T ]. Finally, δ̃V,ε,t0 is finite for all808

t ∈ [0, T ] by Lemma 5.1. Note that, for fixed V and ε, the quantities L̃ε,t
0 and δ̃V,ε,t0809

are non-decreasing functions of t. As a consequence, for all t ∈ [0, T ], ε ∈ R>0, and810

V ∈ Z≥1 we have811

(A.4) Λ̃t
1 ≤ tΛ̃t

0, L̃ε,t
1 ≤ tL̃ε,t

0 , and δ̃V,ε,t1 ≤ tδ̃V,ε,t0 .812

Before proving Theorem 5.2 we show the following stronger result.813

Theorem A.4. Assume that Assumption 3.1 holds. Furthermore, assume that814

the random variables XV (0)/V converge in probability to a constant z∗ as V goes to815

infinity. Assume that the solution Z to (2.2) with Z(0) = z∗ exists over the interval816

[0, T ] and that817

m = min
S∈X

u∈[0,T ]

ZS(u) > 0.818

Finally, assume that Y V (0) = Y (0) for all positive integers V . Then,819

(A.5) P
(
Y V (t) 6= Y (t)

)
= E

[
‖Y V (t)− Y (t)‖∞

]
.820

Moreover, for any 0 < ε < m821

sup
t∈[0,T ]

E
[
‖Y V (t)− Y (t)‖∞

]
≤ pV,ε,T + (δ̃V,ε,T1 + εL̃ε,

1 )e
2Λ̃T

1 .822

Proof. First, note that823

(A.6) ‖Y V (t)− Y (t)‖∞ =

{
1 if Y V (t) 6= Y (t)

0 if Y V (t) = Y (t)
,824
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hence (A.5) holds. Consider the process825

(A.7)

Ŷ V (t) = Y (0)+
∑

τ+y→τ ′+y′∈R̃

(τ ′−τ)Nτ+y→τ ′+y′

(∫ t

0

λVτ+y→τ ′+y′(Ŷ V (u), XV,ε(u))du

)
.826

Note that if τ ′ 6= τ then ‖τ ′ − τ‖∞ = 1. Moreover, for a unit-rate Poisson process N ,827

we have828

|N(t1)−N(t2)| =
{
N(t1)−N(t2) if t1 ≥ t2

N(t2)−N(t1) otherwise
.829

In any case, |N(t1) − N(t2)| is distributed as N(|t1 − t2|). By equations (5.2) and830

(A.7), using the triangular inequality, we obtain831

E
[
‖Ŷ V (t)− Y (t)‖∞

]
832

≤ E




∑

τ+y→τ ′+y′∈R̃

‖τ ′ − τ‖∞
∣∣∣∣Nτ+y→τ ′+y′

(∫ t

0

λVτ+y→τ ′+y′(Ŷ V (u), XV,ε(u))du−
∫ t

0

λτ+y→τ ′+y′(Y (u), Z(u))du

)∣∣∣∣


833

≤ E



∫ t

0

∑

τ+y→τ ′+y′∈R̃

∣∣∣λVτ+y→τ ′+y′(Ŷ V (u), XV,ε(u))− λτ+y→τ ′+y′(Y (u), Z(u))
∣∣∣ du


834

≤ Υ1 +Υ2 +Υ3835836

where837

Υ1 = E



∫ t

0

∑

τ+y→τ ′+y′∈R̃

∣∣∣∣λ
V
τ+y→τ ′+y′(Ŷ V (u), XV,ε(u))− λτ+y→τ ′+y′

(
Ŷ V (u),

XV,ε(u)

V

)∣∣∣∣ du


838

Υ2 = E



∫ t

0

∑

τ+y→τ ′+y′∈R̃

∣∣∣∣λτ+y→τ ′+y′

(
Ŷ V (u),

XV,ε(u)

V

)
− λτ+y→τ ′+y′(Ŷ V (u), Z(u))

∣∣∣∣ du


839

Υ3 = E



∫ t

0

∑

τ+y→τ ′+y′∈R̃

∣∣∣λτ+y→τ ′+y′(Ŷ V (u), Z(u))− λτ+y→τ ′+y′(Y (u), Z(u))
∣∣∣ du


840

841

Since for every τ + y → τ ′ + y′ ∈ R̃ we have842

λVτ+y→τ ′+y′(w, x) = ✶{τ}(w)λ
V
τ+y→τ ′+y′(τ, x) for all x ∈ Z

d
≥0, w ∈ T843

λτ+y→τ ′+y′(w, z) = ✶{τ}(w)λ
V
τ+y→τ ′+y′(τ, z) for all z ∈ R

d
≥0, w ∈ T ,844845

we can write Υ1 ≤ δ̃V,ε,t1 . Similarly, Υ2 ≤ εL̃ε,t
1 . Finally,846

Υ3 = E



∫ t

0

∑

τ+y→τ ′+y′∈R̃

∣∣∣✶{τ}(Ŷ
V (u))− ✶{τ}(Y (u))

∣∣∣λτ+y→τ ′+y′(τ, Z(u))du


847

≤ E

[∫ t

0

∑

τ∈T

∣∣∣✶{τ}(Ŷ
V (u))− ✶{τ}(Y (u))

∣∣∣ Λ̃u
0du

]
848

=

∫ t

0

2P
(
Y V (u) 6= Y (u)

)
Λ̃u
0du = 2

∫ t

0

E
[
‖Ŷ V (u)− Y (u)‖∞

]
Λ̃u
0du,849

850
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where in the last equality we used (A.5). In conclusion,851

E
[
‖Ŷ V (t)− Y (t)‖∞

]
≤ (δ̃V,ε,t1 + εL̃ε,t

1 ) + 2

∫ t

0

E
[
‖Ŷ V (u)− Y (u)‖∞

]
Λ̃u
0du.852

By the Gronwall inequality we then have853

E
[
‖Ŷ V (t)− Y (t)‖∞

]
≤ (δ̃V,ε,t1 + εL̃ε,t

1 )e2Λ̃
t
1 .854

The result follows by taking the sup over t ∈ [0, T ] on both sides (the quantity855

on the right-hand side of the inequality is non-decreasing in t) and by noting that856

✶AV,ε,T
Ŷ V (t) = ✶AV,ε,T

Y V (t) for all t ∈ [0, T ]. Hence,857

‖Y V (t)− Y (t)‖∞ = ‖Y V (t)− Y (t)‖∞✶Ac
V,ε,T

+ ‖Ŷ V (t)− Y (t)‖∞✶AV,ε,T
858

≤ ✶Ac
V,ε,T

+ ‖Ŷ V (t)− Y (t)‖∞✶AV,ε,T
859

≤ ✶Ac
V,ε,T

+ ‖Ŷ V (t)− Y (t)‖∞.860
861

We are now ready to prove Theorem 5.2862

Proof of Theorem 5.2. It follows from Theorem A.4 that P
(
Y V (t) 6= Y (t)

)
=863

E
[
‖Y V (t)− Y (t)‖∞

]
. Moreover, for any ε > 0 we have limV→∞ pV,ε,T = 0 by864

Theorem 3.2, and limV→∞ δ̃V,ε,T1 = 0 by Lemma 5.1 and (A.4). Hence,865

lim
V→∞

sup
t∈[0,T ]

E
[
‖Y V (t)− Y (t)‖∞

]
≤ εL̃ε,T

1 e2Λ̃
T
1 ,866

which concludes the proof by the arbitrariness of ε > 0 and by the fact that L̃ε,T
0867

(hence L̃ε,T
1 ) is non-decreasing in ε.868

A.3. Proof of Theorem 5.8. Similarly to what was done in the previous sec-869

tion, we define the following quantities to give an upper bound for our approximation870

error. Define871

R̂ = max
y→y′∈R

‖π(y′ − y)‖∞, r̂ = max
τ+y→τ ′+y′∈R̃

∥∥∥∥
σ(τ ′)

α(σ(τ ′))
− σ(τ)

α(σ(τ))

∥∥∥∥
∞
,872

Λ̂t
0 = r̂

∑

τ+y→τ ′+y′∈R̃

λτ+y→τ ′+y′(τ, Z(t)), Λ̂t
1 =

∫ t

0

Λ̂u
0du,873

Λ̂t
2 = max

τ∈T \{∆}

∑

τ+y→τ ′+y′∈R̃

∫ t

0

λτ+y→τ ′+y′(τ, Z(u))du,874

Λ̂V,ε,t
3 =

∫ t

0

sup
z∈Ωε,u

1

∑

y→y′∈R

λVy→y′(⌊V z⌋)
V

du,875

ωε,t = r̂ sup
(z,z′)∈Ωε,t

2

‖z−z′‖∞≤ε

∑

τ+y→τ ′+y′∈R̃

|λτ+y→τ ′+y′ (τ, z)− λτ+y→τ ′+y′(τ, z′)| ,876

ζε,t =

∫ t

0

(‖Z(u))‖∞ + ε)du.877
878

Note that Λ̂t
0, Λ̂t

2, and ζε,t are finite for any t ∈ [0, T ], because Z is defined879

over the whole interval [0, T ] and the functions λτ+y→τ ′+y′ are continuous on R
d
>0 by880
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Lemma 5.1. Lemma 5.1 also implies that ωε,t is finite for all t ∈ [0, T ] and ε ∈ R>0.881

Finally, Λ̂V,ε,t
3 is finite by Assumption 3.1. Note that, for fixed V and ε, the quantities882

Λ̂V,ε,t
3 , ωε,t, and ζε,t are non-decreasing functions of t.883

We now state and prove the following result, which immediately implies Theo-884

rem 5.8. Note that δV,ε,t1 is as defined in Section A.1.885

Theorem A.5. Consider a family of tracking stochastic reaction systems (Y V , XV ),886

and assume that Assumptions 3.1 and 5.6 are satisfied. Let z∗ ∈ R
d
>0 and X̃V (0) =887

⌊V z∗⌋. Define the process X̃V by888

X̃V (t) =
∑

τ∈T \{∆}

X̃V
σ(τ)(0)∑

i=1

σ(Y τ,i(t))

α(σ(Y τ,i(t)))
,889

where the processes (Y τ,i)τ∈T \{∆},i∈Z≥1
are independent and satisfy890

Y τ,i(t) = τ+
∑

τ ′+y→τ ′′+y′∈R̃

(τ ′′−τ ′)Nτ,i
τ ′+y→τ ′′+y′

(∫ t

0

λτ ′+y→τ ′′+y′(Y (u)τ,i, Z(u))du

)
,891

for a family of independent, identically distributed unit-rate Poisson processes {Nτ,i
r }τ∈T \{∆},i∈Z≥1,r∈R̃.892

For arbitrary ν1, ν2, ν3 ∈ R>0 define893

ν = eΛ̂
T
1

(
R̂ν1 + r̂ν2 + ν3 + R̂δV,ε,T1 + ωε,T ζε,T

)
894

Then,895

896

P

(
sup

0≤t≤T

∥∥∥∥∥
π(XV (t))

V
− X̃V (t)

V

∥∥∥∥∥
∞
> ν

)
≤ 6 exp

(
eΛ̂V,ε,t

3

2
− ν1

√
V

3

)
897

+ 6 exp

(
ecΛ̂t

2

2
− ν2

√
V

3

)
+ P

(∥∥∥∥∥
π(XV (0))

V
− X̃V (0)

V

∥∥∥∥∥
∞
> ν3

)
+ pV,ε,T ,898

899

where c =
∑

S∈X α(S)z
∗
S.900

Proof. By the superposition property of Poisson processes, for all V ∈ Z≥1 there901

exist two unit-rate Poisson processes UV
1 and UV

2 such that for all t ∈ R≥0902

UV
1




∑

y→y′∈R

∫ t

0

λVy→y′(XV,ε(u))du


 =

∑

y→y′∈R
Ny→y′

(∫ t

0

λVy→y′(XV,ε(u))du

)
903

and904

905

UV
2




∑

τ∈T \{∆}

X̃V
σ(τ)(0)∑

i=1

∑

τ ′+y→τ ′′+y′∈R̃

∫ t

0

λτ ′+y→τ ′′+y′(Y τ,i(u), Z(u))du


906

=
∑

τ∈T \{∆}

X̃V
σ(τ)(0)∑

i=1

∑

τ ′+y→τ ′′+y′∈R̃

Nτ,i
τ ′+y→τ ′′+y′

(∫ t

0

λτ ′+y→τ ′′+y′(Y τ,i(u), Z(u))du

)
907

908
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Note that909
910

X̃V (t) = X̃V (0) +
∑

τ∈T \{∆}

∑

τ ′+y→τ ′′+y′∈R̃

X̃V
σ(τ)(0)∑

i=1

(
σ(τ ′′)

α(σ(τ ′′))
− σ(τ ′)

α(σ(τ ′))

)
×911

×Nτ,i
τ ′+y→τ ′′+y′

(∫ t

0

λτ ′+y→τ ′′+y′(Y (u)τ,i, Z(u))du

)
.912

913

Hence, by triangular inequality,914

sup
0≤u≤t

∥∥∥∥∥
π(X̂V,ε(u))

V
− X̃V (u)

V

∥∥∥∥∥
∞

≤
∥∥∥∥∥
π(XV (0))

V
− X̃V (0)

V

∥∥∥∥∥
∞

+
5∑

i=1

Υi915

916

where917

Υ1 = sup
0≤u≤t

∑

y→y′∈R
‖π(y′ − y)‖∞

1

V

∣∣∣∣Ny→y′

(∫ u

0

λVy→y′(XV,ε(w))dw

)∣∣∣∣918

≤ R̂

V
sup

0≤u≤t

∣∣∣∣∣∣
U

V

1




∑

y→y′∈R

∫ u

0

λVy→y′(XV,ε(w))dw




∣∣∣∣∣∣
919

Υ2 = sup
0≤u≤t

∑

τ∈T \{∆}

∑

τ ′+y→τ ′′+y′∈R̃

X̃V
σ(τ)(0)∑

i=1

∥∥∥∥
σ(τ ′′)

α(σ(τ ′′))
− σ(τ ′)

α(σ(τ ′))

∥∥∥∥
∞

×920

× 1

V

∣∣∣∣N
τ,i

τ ′+y→τ ′′+y′

(∫ u

0

λτ ′+y→τ ′′+y′(Y τ,i(w), Z(w))dw

)∣∣∣∣921

≤ r̂

V
sup

0≤u≤t

∣∣∣∣∣∣∣
U

V

2




∑

τ∈T \{∆}

∑

τ ′+y→τ ′′+y′∈R̃

X̃V
σ(τ)(0)∑

i=1

∫ u

0

λτ ′+y→τ ′′+y′(Y τ,i(w), Z(w))dw




∣∣∣∣∣∣∣
922

Υ3 = sup
0≤u≤t

∑

y→y′∈R
‖π(y′ − y)‖∞

∫ u

0

∣∣∣∣∣
λVy→y′(XV,ε(w))

V
− λy→y′

(
XV,ε(w)

V

)∣∣∣∣∣ dw923

≤ R̂δV,ε,t1924

Υ4 = sup
0≤u≤t

∥∥∥∥∥
∑

y→y′∈R
π(y′ − y)

∫ u

0

λy→y′

(
XV,ε(w)

V

)
dw925

−
∑

τ ′+y→τ ′′+y′∈R̃

(
σ(τ ′′)

α(σ(τ ′′))
− σ(τ ′)

α(σ(τ ′))

)∫ u

0

XV,ε
σ(τ ′)(w)

V
λτ ′+y→τ ′′+y′(τ ′, Z(w))dw

∥∥∥∥∥
∞

926

Υ5 = sup
0≤u≤t

∥∥∥∥∥
∑

τ ′+y→τ ′′+y′∈R̃

(
σ(τ ′′)

α(σ(τ ′′))
− σ(τ ′)

α(σ(τ ′))

)∫ u

0

XV,ε
σ(τ ′)(w)

V
λτ ′+y→τ ′′+y′(τ ′, Z(w))dw927

− 1

V

∑

τ∈T \{∆}

∑

τ ′+y→τ ′′+y′∈R̃

X̃V
σ(τ)(0)∑

i=1

(
σ(τ ′′)

α(σ(τ ′′))
− σ(τ ′)

α(σ(τ ′))

)∫ u

0

λτ ′+y→τ ′′+y′(Y τ,i(w), Z(w))dw

∥∥∥∥∥
∞

928

929

We first focus on rewriting Υ4 and Υ5. To this aim, first note that by identifying930

species with canonical vectors of Rd as previously done in the paper, we have that for931
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all y ∈ C932

π(y) =
∑

S∈X

ySS =
∑

τ∈T \{∆}

yσ(τ)σ(τ)

α(σ(τ))
.933

Hence, for all y → y′ ∈ R934

π(y′ − y) =
∑

τ ′∈T \{∆}

yσ(τ ′)σ(τ
′)

α(σ(τ ′))
−

∑

τ∈T \{∆}

yσ(τ)σ(τ)

α(σ(τ))
935

=
∑

τ ′∈T \{∆}

σ(τ ′)

α(σ(τ ′))

∑

τ∈T \{∆}
yσ(τ)py→y′(τ, τ ′)−

∑

τ∈T \{∆}

yσ(τ)

α(σ(τ))
σ(τ),936

937

where we used Assumption 5.6 in the last equality. By recalling that σ(∆) = 0 and938 ∑
τ ′∈T py→y′(τ, τ ′) for all y → y′ ∈ R and τ ∈ T , we further obtain939

π(y′ − y) =
∑

τ ′∈T

σ(τ ′)

α(σ(τ ′))

∑

τ∈T \{∆}
yσ(τ)py→y′(τ, τ ′)940

−
∑

τ∈T \{∆}

yσ(τ)

α(σ(τ))
σ(τ)

∑

τ ′∈T
py→y′(τ, τ ′)941

=
∑

τ∈T \{∆}

∑

τ ′∈T

(
σ(τ ′)

α(σ(τ ′))
− σ(τ)

α(σ(τ))

)
yσ(τ)py→y′(τ, τ ′).942

943

It follows that944

∑

y→y′∈R
π(y′ − y)

∫ u

0

λy→y′

(
XV,ε(w)

V

)
dw945

=
∑

τ ′+y→τ ′′+y′∈R̃

(
σ(τ ′′)

α(σ(τ ′′))
− σ(τ ′)

α(σ(τ ′))

)∫ u

0

yσ(τ ′)py→y′(τ ′, τ ′′)λy→y′

(
XV,ε(w)

V

)
dw946

=
∑

τ ′+y→τ ′′+y′∈R̃

(
σ(τ ′′)

α(σ(τ ′′))
− σ(τ ′)

α(σ(τ ′))

)∫ u

0

XV,ε
σ(τ)(w)

V
λτ ′+y→τ ′′+y′

(
τ ′,

XV,ε(w)

V

)
dw,947

948

which in turn implies949

Υ4 ≤ sup
0≤u≤t

∑

τ ′+y→τ ′′+y′∈R̃

∥∥∥∥
σ(τ ′′)

α(σ(τ ′′))
− σ(τ ′)

α(σ(τ ′))

∥∥∥∥
∞

×950

×
∫ u

0

XV,ε
σ(τ)(w)

V

∣∣∣∣λτ ′+y→τ ′′+y′

(
τ ′,

XV,ε(w)

V

)
− λτ ′+y→τ ′′+y′(τ ′, Z(w))

∣∣∣∣ dw951

≤ωε,tζε,t.952953

By summing over the values of the single-molecule trajectories, we also have954

955

∑

τ∈T \{∆}

X̃V
σ(τ)(0)∑

i=1

λτ ′+y→τ ′′+y′(Y τ,i(w), Z(w)) = X̃V
σ(τ ′)(w)λτ ′+y→τ ′′+y′(τ ′, Z(w)),956

957
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which implies958

Υ5 ≤ sup
0≤u≤t

∑

τ ′+y→τ ′′+y′∈R̃

∥∥∥∥
σ(τ ′′)

α(σ(τ ′′))
− σ(τ ′)

α(σ(τ ′))

∥∥∥∥
∞

∫ u

0

∣∣∣∣∣
XV,ε

σ(τ ′)(w)

V
−
X̃V

σ(τ ′)(w)

V

∣∣∣∣∣λτ ′+y→τ ′′+y′(τ ′, Z(w))dw959

≤
∫ t

0

∥∥∥∥∥
XV,ε(u)

V
− X̃V (u)

V

∥∥∥∥∥
∞

Λ̂u
0du960

=✶Ac
V,ε,t

∫ t

0

∥∥∥∥∥
XV,ε(u)

V
− X̃V (u)

V

∥∥∥∥∥
∞

Λ̂u
0du+ ✶AV,ε,t

∫ t

0

∥∥∥∥∥
X̂V,ε(u)

V
− X̃V (u)

V

∥∥∥∥∥
∞

Λ̂u
0du.961

≤✶Ac
V,ε,t

MV,ε,t +

∫ t

0

∥∥∥∥∥
X̂V,ε(u)

V
− X̃V (u)

V

∥∥∥∥∥
∞

Λ̂u
0du,962

963

where964

MV,ε,t =

∫ t

0

(
‖Z(u)‖∞ + ε+

∑

S∈X
α(S)

X̃V
S (0)

V

)
Λ̂u
0du965

is an almost surely finite random variable, non-decreasing in t. Hence, putting every-966

thing together and applying the Gronwall inequality we have that almost surely967

sup
0≤t≤T

∥∥∥∥∥
π(X̂V,ε(t))

V
− X̃V (t)

V

∥∥∥∥∥
∞

≤ eΛ̂
T
1
R̂

V
sup

0≤t≤T

∣∣∣∣∣∣
U

V

1




∑

y→y′∈R

∫ t

0

λVy→y′(XV,ε(u))du




∣∣∣∣∣∣
968

+ eΛ̂
T
1
r̂

V
sup

0≤t≤T

∣∣∣∣∣∣∣
U

V

2




∑

τ∈T \{∆}

∑

τ ′+y→τ ′′+y′∈R̃

X̃V
σ(τ)(0)∑

i=1

∫ t

0

λτ ′+y→τ ′′+y′(Y τ,i(u), Z(u))du




∣∣∣∣∣∣∣
969

+ eΛ̂
T
1

(∥∥∥∥∥
π(XV (0))

V
− X̃V (0)

V

∥∥∥∥∥
∞

+ R̂δV,ε,T1 + ωε,T ζε,T + ✶Ac
V,ε,T

MV,ε,T

)
.970

971

Now note that if A1, A2, . . . , Aj are random variables and a1, a2, . . . , aj are positive972

real numbers, then973

P

(
j∑

i=1

Ai >

j∑

i=1

ai

)
≤ P

(
j⋃

i=1

(Ai > ai)

)
≤

j∑

i=1

P (Ai > ai).974

Hence, if ν is as in the statement of the theorem and ν < ε,975

P

(
sup

0≤t≤T

∥∥∥∥∥
π(XV (t))

V
− X̃V (t)

V

∥∥∥∥∥
∞
> ν

)
= P

(
sup

0≤t≤T

∥∥∥∥∥
π(X̂V,ε(t))

V
− X̃V (t)

V

∥∥∥∥∥
∞
> ν

)
976

≤ P


 1

V
sup

0≤t≤T

∣∣∣∣∣∣
U

V

1




∑

y→y′∈R

∫ t

0

λVy→y′(XV,ε(u))du




∣∣∣∣∣∣
> ν1


977

+ P




1

V
sup

0≤t≤T

∣∣∣∣∣∣∣
U

V

2




∑

τ∈T \{∆}

∑

τ ′+y→τ ′′+y′∈R̃

X̃V
σ(τ)(0)∑

i=1

∫ t

0

λτ ′+y→τ ′′+y′(Y τ,i(u), Z(u))du




∣∣∣∣∣∣∣
> ν2


978

+ pV,ε,T .979980
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Since for all t ∈ [0, T ]981

∫ t

0

λVy→y′(XV,ε(u))du ≤ V Λ̂V,ε,t
3982

and983

∑

τ∈T \{∆}

∑

τ ′+y→τ ′′+y′∈R̃

X̃V
σ(τ)(0)∑

i=1

∫ t

0

λτ ′+y→τ ′′+y′(Y τ,i(u), Z(u))du ≤ V cΛ̂t
2,984

the proof is concluded by Lemma A.1.985

Proof of Theorem 5.8. Note that by Lemma 5.7 and by the fact that α(S) ≥ 1986

for all S ∈ X in (5.6),987

∥∥∥∥∥
π(XV (h))

V
− X̃V (h)

V

∥∥∥∥∥
1

≤
∥∥∥∥
π(XV (h))

V

∥∥∥∥
1

+

∥∥∥∥∥
X̃V (h)

V

∥∥∥∥∥
1

988

≤ 1

V



∑

S∈X

α(S)
(
XV

S (0) + X̃V
S (0)

)

 .989

990

Under the assumption that both XV (0) and X̃V (0) have finite expectation and con-991

verge in probability to z∗, and by the equivalence of norms in finite dimension, we992

conclude there exists M ∈ R>0 such that993

sup
V ∈Z≥1

E

[∥∥∥∥∥
π(XV (h))

V
− X̃V (h)

V

∥∥∥∥∥
∞

]
≤M.994

Hence, if ν is as in Theorem A.5, we have that995

996

E

[
sup

0≤t≤T

∥∥∥∥∥
π(XV (h))

V
− X̃V (h)

V

∥∥∥∥∥
∞

]
≤ ν + 6Me

Λ̂
V,ε,t
3
2 − ν1

√
V

3997

+ 6Me
cΛ̂t

2
2 − ν2

√
V

3 +MP

(∥∥∥∥∥
π(XV (0))

V
− X̃V (0)

V

∥∥∥∥∥
∞
> ν3

)
+MpV,ε,T .998

999

The proof is concluded if we can show that for all T ∈ R>0 and any arbitrary η > 0,1000

we can fix ν1, ν2, ν3 ∈ R>0 and ε ∈ (0,m) such that ν < η for large enough values1001

of V . Indeed, for any fixed ε ∈ (0,m), T ∈ R>0 the other terms on the right-hand1002

side of the above inequality tend to zero as V goes to infinity. To show that ν can1003

be made smaller than η, simply note that ν1, ν2, ν3 can be chosen as small as desired1004

among the positive real numbers, δV,ε,T1 tends to zero as V goes to infinity for all fixed1005

ε ∈ (0,m) by Assumption 3.1, and ωε,T tends to zero as ε tends to zero because the1006

functions λτ+y→τ ′+y′ are locally Lipschitz on T × R
d
>0 by Lemma 5.1.1007

A.4. Proof of Theorem 5.5. Note that under the assumptions of Theorem 5.5,1008

for all t ∈ [0, T ] Y V (t) converges in probability to Y (t) by Theorem 5.2. Hence, in1009

order to prove Theorem 5.5, we need to show relative compactness of {Y V } as a1010

sequence of processes with sample paths in DT [0, T ], and conclude by [10, Lemma1011

A2.1], stated here for convenience.1012
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Theorem A.6 (Lemma A2.1 in [10]). Consider a sequence of stochastic processes1013

{UV } with sample paths in DE [0, T ] defined on the same probability space. Suppose1014

that {UV } is relatively compact in DE [0, T ], (in the sense of convergence in distribu-1015

tion) and that for a dense set H ⊆ [0,∞), {UV (t)} converges in probability in E for1016

each t ∈ H. Then {UV } converges in probability in DE [0, T ].1017

To prove relative compactness of {Y V }, we use [11, Corollary 7.4, Chapter 3], which1018

we state here for convenience.1019

Theorem A.7 (Corollary 7.4 in Chapter 3 of [11]). Let (E, r) be complete and1020

separable, and let {UV } be a sequence of stochastic processes with sample paths in1021

DE [O, T ]. Then {UV } is relatively compact if and only if the following two conditions1022

hold:1023

1. For every ε > 0 and rational t > 0, there exists a compact set Γε,t ⊆ E such
that

lim inf
V→∞

P (UV (t) ∈ Γε,t) ≥ 1− ε.

2. For every ε > 0 and T > 0, there exists δ > 0 such that

lim sup
V→∞

P ( inf
{si}

max
i

sup
s,t∈[si−1,si)

r(UV (s), UV (t)) ≥ ε) ≤ ε,

where {si} ranges over all time sequences of the form 0 = s0 < s1 < · · · <1024

sn−1 < T ≤ sn with min1≤i≤n(si − si−1) > δ and n ≥ 1.1025

In our case, the topological space T with the distance induced by ‖ · ‖∞ is discrete,
complete, and separable. It is also compact, so the first condition in the theorem above
is always satisfied. Moreover, if a jump occurs at time t then ‖Y V (t−)−Y V (t)‖∞ = 1.
Let tVi with i ∈ Z≥1 denote the time of the ith jump of Y V , let tV0 = 0, and let TV

be the time of the last jump of Y V in [0, T ]. Then, as a direct consequence of
the theorem above we can state that the sequence of stochastic processes {Y V } with
sample paths in DT [O, T ] is relatively compact if and only if for all ε > 0 there exists
δ > 0 such that

lim sup
V→∞

P

(
min

j=1,...,TV
(tVj − tVj−1) ≤ δ

)
≤ ε.

Fix δ ∈ R>0 and for all j ∈ Z with −1 ≤ j ≤ T/δ let NV,δ
j be the number of jumps1026

of Y V in the interval [j/δ,min{j/δ + 2δ, T}]. The NV,δ
j are introduced to control the1027

time between jumps: whenever two jumps occur at times differing for less than δ,1028

there necessarily exists an interval [j/δ,min{j/δ+2δ, T}] with j ≥ 0 containing both1029

of them. Also, whenever the time of a jump is smaller than δ, then NV,δ
−1 ≥ 1. Hence,1030

for all ν ∈ R>0 with ν > m,1031

P

(
min

j=1,...,TV
(tVj − tVj−1) ≤ δ

)
≤ P

(
NV,δ

−1 ≥ 1 or max
j=1,...,⌊T/δ⌋

NV,δ
j ≥ 2

)
1032

≤ P
(
NV,δ

−1 ≥ 1
)
+

⌊T/δ⌋∑

j=1

P (NV,δ
j ≥ 2)1033

≤ P

(
sup

0≤t≤T

∥∥∥∥
XV

V
(t)− Z(t)

∥∥∥∥
∞
> ν

)
+ P (Nν(δ) ≥ 1) +

T

δ
P (Nν(2δ) ≥ 2),1034

1035

where Nν is a Poisson process with rate1036

Bν = sup
N∈Z≥1

sup
z∈Ων,T

1

max
S̃∈T

∑

S̃+y→S̃′+y′∈R̃

λV
S̃+y→S̃′+y′(S̃, ⌊V z⌋),1037

This manuscript is for review purposes only.



36 D. CAPPELLETTI AND G. REMPALA

which is finite by Lemma 5.1. Hence, by Theorem 3.21038

lim sup
V→∞

P

(
min

j=1,...,TV
(tVj − tVj−1) ≤ δ

)
≤ (1− e−δBν ) +

T

δ
(1− e−2δBν − 2δBνe

−2δBν ),1039

which tends to 0 as δ tends to 0. The proof is completed.1040
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