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INDIVIDUAL MOLECULES DYNAMICS IN REACTION NETWORK
MODELS*

DANIELE CAPPELLETTI! AND GRZEGORZ REMPALA?

Abstract. In a stochastic reaction network setting we consider the problem of tracking the
fate of individual molecules. We show that using the classical large volume limit results, we may
approximate the dynamics of a single tracked molecule in a simple and computationally efficient
way. We give examples on how this approach may be used to obtain various characteristics of single-
molecule dynamics (for instance, the distribution of the number of infections in a single individual
in the course of an epidemic or the activity time of a single enzyme molecule). Moreover, we show
how to approximate the overall dynamics of species of interest in the full system with a collection
of independent single-molecule trajectories, and give explicit bounds for the approximation error in
terms of the reaction rates. This approximation, which is well defined for all times, leads to an
efficient and fully parallelizable simulation technique for which we provide some numerical examples.

Key words. Single-molecule dynamics, mathematical epidemiology, law of large numbers, Pois-
son process representation, stochastic approximation, dynamical survival analysis, Skorokhod topol-
ogy

AMS subject classifications. 60J28, 92C40, 92C42, 60F05

1. Introduction. Recent advances in modeling molecular systems, especially
our improved ability to track individual proteins, and the deluge of data from the
observations of both molecular and macro system (think, for instance, of the ongoing
COVID-19 pandemic), have created new scientific challenges of considering models
of very high resolution where the dynamics of a specific bio-molecule or a particu-
lar individual are of interest. In general, such ’agent-based’ models are known to be
computationally very costly, due to complex stochastic dynamics and highly noisy
behavior of individual agents. However, it appears that, at least in some cases, sim-
ple yet satisfactory approximation of individual molecular trajectory may be directly
inferred with the help of a classical approach of stochastic chemical kinetics that as-
sumes that all molecules or individuals are indistinguishable and consequently focuses
only on their aggregated counts. As an example of one such idea, originally proposed
in [7] and latter expanded in [15], consider the stochastic ’susceptible-infected’ (ST)
chemical reaction network where a collection of m + n molecules (or individuals) is
partitioned into two types: susceptible (S) and infected (I) with initially n being of
type S and remaining m of type I. The stochastic network evolves in time according
to a Markov jump process that counts the ’infection events’, that is, the interactions
of one molecule of I-type with one molecule of S-type. Each such interaction creates
a new molecule of I-type and removes one of S-type (equivalently, a molecule changes
its type from S to I). Accordingly, in the reaction network notation described below
in Section 2.2 this model may be represented as

(1.1) S+1—2I

If the rate constant of the above reaction is §/n and we assume the usual mass action
kinetics [6], it is well know that the above stochastic reaction network satisfies the
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2 D. CAPPELLETTI AND G. REMPALA

law of large numbers, in the sense that as m,n — oo and m/n — p > 0 the surviving
proportion s; of the S-type molecules follows the logistic equation that may be written
in the form

Consequently, for ¢ > 0 we have

_ 1+p
~ L+ pexp(B(1+p)t)

(1.3) 5t

Thus, from the viewpoint of a single, randomly selected S-type molecule, the quantity
s¢ defines a survival function describing the limiting probability of surviving beyond
time ¢ > 0. The formula (1.3) led to the method of approximating the distribution
of surviving molecules of S dubbed ‘dynamical survival analysis’ (DSA) described
in [15] and applied recently to epidemic modeling [8,9,14,21,23]. The idea is further
illustrated in Figure 1 where the average of the Markov process (1.1) is compared to
the average of independent realizations of single molecule dynamics (which may be
efficiently calculated using modern parallel computing capabilities). Note (1.2) may
be also interpreted as the equation for the hazard function associated with s;. This
fact has some relevance for statistical inference, and is further exploited, for instance,
in [9,15].

Beyond the simple ST example, the DSA approach has been applied (mostly in
the context of epidemics) only to a handful of reaction networks representing the so-
called one-directional transfer models [7]. In all such networks individual molecules
can only change their state in an ordered way, hence previously visited states are no
longer attainable (for instance in the ST model a molecule of S-type can only change
into I-type, but not vice-versa).

In the current paper we formally expand the survival function approach for track-
ing the fate of individual molecules to a much broader class of networks, including
those where molecules can return to their previous stages. A simple example is ob-
tained by augmenting the ST network with the additional reaction I — S, leading
to the so-called STS model (which is of interest in epidemiology) discussed in more
detail in Example 4.4 below. To establish our results for such networks, we explore a
different representation of the DSA approximation, which does not explicitly involve
the survival function. Continuing with the ST model example, denote by Y*(t) the
binary variable that takes value 1 or 0 according to whether i-th molecule is of type
S or I. The limit dynamics of an i-th individual molecule (initially of type S) is then
given by

Yi(t)=1- N' <ﬁ /Ot Yi(u)(1+p— su)du>

where N? is the unit Poisson process tracking the transition of the i-th molecule
from S-type to I-type. Note that the argument of N’ is the cumulative hazard
corresponding to integral of the right-hand side of (1.2) (see [15]). Such Poisson
process representation is of course completely equivalent to simply having the time
of switching of the i-th molecule from S to I follow the survival function (1.3), but
it allows for a description of more complex scenarios than one-directional transfer
models. For example, we will prove below that the limit dynamics of a single molecule

This manuscript is for review purposes only.
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Fic. 1. Survival approximation in the SI model. The empirical trajectory of the proportion
of the remaining S molecules in the SI model described in (1.1) as compared to the deterministic
Sfunction s¢ defined in (1.2) and the average of 1,000 independent single trajectories of individuals
who become infected according to s¢. For the simulation we considered n = 1,000, m = 10, 8 =1,
and p = 0.01.

in the SIS model can be written as
Y'(t)=1— Ny <6/ Y'(u)(1+p— su)du) + N3 </<c/ (1- Y’(u))du)
0 0

for independent and identically distributed unit-rate Poisson processes Ni and N3.
Here, k is the rate constant of the reaction I — S.

In this work we study the Poisson process representation of the DSA approxima-
tion and give conditions under which it describes a single-molecule trajectory of the
original network. In particular, we explicitly derive error bounds of the DSA approxi-
mation, in terms of the underlying reaction network rates. We illustrate via numerical
examples how this novel technique could be useful to infer quantities pertaining to
single-molecule dynamics (such as the distribution of the number of infections a single
individual undergoes in a SIS model, or the time a single enzyme spends in the bound
state) in a computationally efficient way.

Further, we consider the problem of comparing the dynamics of an original full
reaction network with that of a collection of independent approximations of single-
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4 D. CAPPELLETTI AND G. REMPALA

molecule trajectories and provide explicit bounds on the error. Having the dynamics
of the whole system approximated by a number of independent trajectories allows for
computationally efficient simulation techniques, that are fully parallelizable. More-
over, since the DSA approximation is defined for all times, it does not suffer from the
problem of exiting the state space as it is known to happen in other methods such
as diffusion approximations or tau leaping [4,5,12,18]. Finally, the independence of
the single-molecule trajectories also allows for much simplified statistical inferential
procedures. Such applications were already considered in the context of SIR networks
in recent papers on the COVID-19 pandemic [8,9,14,21,23]. A thorough investigation
of these techniques in general reaction networks is currently being conducted and will
appear in a future work.

The paper is organized as follows: in Section 2 we provide the necessary concepts
pertaining to reaction network theory followed by the result on the approximation
in classical scaling in Section 3. In Section 4 we give a formal definition of what we
refer to as  ‘status’ of the molecules of interest. In Section 5 we state our main
results. In particular, in Section 5.1 we give the theorem on the Poisson process
representation of the DSA approximation for a single-molecule trajectory, and give
examples of its applications in Section 5.2. Finally, in Section 5.3 we state the result
on the approximation of the original full network via independent single-molecule
trajectories, and give numerical examples. Proofs and explicit error bounds are given
in the Appendix A.

2. Background definitions.

2.1. Notation. We denote by R, R+, and R>q the real, positive real, and non-
negative real numbers, respectively. Similarly, we denote by Z, Z>1, and Z>( the real,
positive real, and non-negative real numbers, respectively. Given a number r € R, we
denote by |r| its absolute value, and by |r]| the largest m € Z such that m < r.

Given a vectors v € R™, we denote its ith component by v;, for all 1 <7 < n. We
further denote

ol = max ol and (o] = (loa).-.. [en).

Given two vectors u,v € RY,, we write

with the convention that 0° = 1. We also write v > v if the inequality holds
component-wise. Furthermore, for any vector v € Z%,, we write

m
vl = Hvi! .
i=1

Given a set A, we denote its cardinality by #A or, if it leads to no ambiguity, by |A].
We assume the reader is familiar with basic notions from stochastic process theory,
such as the definition of continuous-time Markov chains and Poisson processes [19].
Consider a sequence of random variables {X,,},ez., and a random variable X,
all defined on the same probability space and with values in a normed space (E, | - ||).

This manuscript is for review purposes only.
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137 We say that X, converges in probability to X if for all n € Ryq

138 lim P (| X, —X]||>n) =0.
n—oo
139 Given a topological space E we will denote by Dg[0, T the set of right-continuous

140 left-bounded functions defined from [0, T] to E, endowed with the Skorokhod .J; topol-
141 ogy. In particular, we say that the sequence of processes {X,,} with sample paths in
142 Dg[0,T] converges in probability to the process X (or simply that X, converges in
143 probability to X) if the Skorokhod distance between X,, and X converges to 0 in
144 probability (for more details, see for example [11, Chapter 3]).

145 2.2. Stochastic reaction networks. A reaction network is a triple G = {X,C, R} J}
146 where (a) X is an ordered finite sequence of d symbols, called species; (b) C is a finite
147 set of linear combinations of species over Zxg, called complezes; (c) R is a finite set
148 of elements of C x C, called reactions. We assume that no element of the form (y, y) is
149 in R, for any complex y, even though our results do not depend on this assumption.
150 Following the usual notation of reaction network Theory, we further denote a reaction
151 (y,y') € R by y — y'. We finally assume that each complex appears in at least
152 one reaction, and that each species has a positive coefficient in at least one complex.
153  Under this assumption and up to ordering of the set of species, a reaction network is
154 uniquely determined by the set R, or equivalently by the directed graph (C, R), called
155 reaction graph. As an example, consider the reaction graph

156 (2.1) A+B+==2B, B—C.

157 In this case, the associated species are A, B, and C, C = {A + B,2B, B,C}, and
158 R={A+B —2B,2B— A+ B,B — C}.

159 In this paper we will implicitly identify RI?*! with R, and therefore each S € X
160 with a canonical basis vector of RY. With this in mind, the complexes are linear
161 combination of species and can be therefore considered as vectors in Z¢,. As an
162 example, if we order the species of (2.1) alphabetically, then the complex A+ B can be
163 associated with the vector (1,1, 0), the complex 2B can be associated with (0,2, 0), the
164 complex C with (0,0,1), and so on. We will tacitly use the identification of complexes
165 with integer vectors throughout the paper. Moreover, for each vector v € R¢ and for
166 each species S € X we denote by vg the entry of v related to the canonical vector
167 associated with S. We further define the support of v as supp(v) = {S € X : vg > 0}.
168 As an example, with the species of (2.1) alphabetically ordered, the support of (1, 1,0)
169 is {A, B}, the support of (0,2,0) is {B}, and so on.

170 Deterministic and stochastic dynamical systems can be associated with a reaction
171 network. The stochastic model is usually utilized when few individuals are present,
172 so the stochastic component of the dynamic behaviour should not be ignored. In
173 this case, the time evolution of the number of individuals of the different species is
174 considered, for certain given propensities of the reactions to occur, and modeled via
175 a continuous time Markov chain. More precisely, a stochastic kinetics for a reac-
176 tion network G is a correspondence between a reaction y — y’ and a rate function
177 Ayosyt Z8y — Rso, such that Ay, (x) > 0 only if # > y. A stochastic reaction
178 system is a continuous time Markov chain {X(¢) : ¢ > 0} with state space Z<, and
179 transition rates from a state x to a state =’ defined by B

180 q(z,x') = Z Ay—sy (2).

y—y ER
y' —y=a'—x

This manuscript is for review purposes only.
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6 D. CAPPELLETTI AND G. REMPALA

The associated generator is defined by

Af@) = Y Aoy(@)(fla+y —y) — @)

y—y' €ER

for any function f: Z%O — R and any x € Z%O. Equivalently, the process X can be
described by

XO=XO0+ 3 0/ =Ny ([ A (x(e5).

y—y €ER

where the processes { Ny, }y—yer are independent unit-rate Poisson processes. For
more details on this representation, we refer to [6] or [11, Chapter 6].

In the deterministic setting, the concentration of the different species are assumed
to evolve according to an ordinary differential equation (ODE). Specifically, a deter-
ministic kinetics for a reaction network G is a correspondence between the reactions
y — y' and the rate function Ay, : RE, — Rsg, such that A,/ (z) > 0 only
if z; > 0 whenever y; > 0. A deterministic reaction system is the solution to the
ordinary differential equation

(22) L20= Y 4 -y ()

y—y' €ER

While our results hold in a more general scenario, all the simulations we show
assume mass-action kinetics, a popular choice of kinetics derived by the assumption
that all the species molecules are well-mixed in the available volume [6]. Specifically,
a stochastic reaction system is a stochastic mass-action system if for every reaction
y —y € R we have

x!
z—y)
for some positive constant x,_,,s called rate constant. Similarly, a deterministic re-

action system is a deterministic mass-action system if for every reaction y — ¢y’ € R
we have

Ay—sy (T) = Fysyr ( !]I{IZy}’

_ Yy
Aoy (T) = Kyyra?,
for some positive constant k,_,,s also called rate constant.

3. Classical scaling. Consider a reaction network G = {X,C, R}, and a family
of stochastic kinetics {A;/%y, : y = vy € R} indexed by V. Let XV denote the
associated continuous time Markov chain. V should be thought to as a parameter
expressing the volume, or the magnitude of the number of the present individuals.
Under the following technical but reasonable assumption the classical scaling of [11,16]

holds:

Assumption 3.1. We assume that for any reaction y — 3’ € R there exists a
locally Lipschitz function Ay_: R%O — R%o such that for any compact set K C R%o
we have

AV (LV
lim sup M

V=00 ek 1% B Ayﬁyl (Z) =0

This manuscript is for review purposes only.
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THEOREM 3.2. Assume that Assumption 3.1 holds. Furthermore, assume that
the random variables XV (0)/V converge in probability to a constant z* as V goes to
infinity. Finally, let {Z(t) : t > 0} be the unique solution to (2.2) with Z(0) = z*.
Then, for any e >0 and any T >0

X;(t) _ Z(t)”oo > e> — 0.

Note that the distribution of the fate of a single molecule is not given, since the
classical scaling concerns average dynamics. The goal of this paper is to address this
issue, by providing a technique to simulate an approximation of the time evolution of
a single observable species, as described in the next section.

lim P | sup
V—o0 te[0,T

4. Molecular status. We consider the problem of tracking the fate of an indi-
vidual molecule through its transformations into different species in a certain stochas-
tic reaction network. For instance, we could be interested in the change in status of
a single tracked individual of type S in the SI model, discussed in the Introduction.
To introduce a more general scenario where it is desirable to track the time evolution
of different parts of a species molecule, we give the following example.

Ezxample 4.1. Consider the following reaction network, depicting a Michaelis-
Menten mechanism where the product protein and the enzyme can spontaneously
transform into each other:

(4.1) E4+S==C—E+P, P=E.

In particular, the complex C represents a molecule of substrate S and enzyme E
bound together. When the bond is broken, the molecule of enzyme is released while
the molecule of substrate is either released or transformed into the product P. Suppose
we want to keep track of the history of a molecule of substrate S. If we were dealing
with a classic Michaelis-Menten kinetics, i.e. without the reactions P = FE, then we
could simply consider S, C, and P as status for the tracked molecule, corresponding
to unbound substrate, bound substrate, and product, respectively. Since the reactions
P = FE are present, if we want to keep track of the fate of a molecule of substrate we
need to take into account the fact that it can ultimately (via complex, then protein) be
transformed into an enzyme, so E becomes a possible status of the molecule. We now
need to differentiate between the parts of a complex molecule of C' that a molecule of
E and a molecule of S get transformed into by the reaction £ + S — C. The part
of a (complex) molecule of C' that a molecule of E gets transformed into will become
a free enzyme again via the reaction C — FE + P, while the part a molecule of C
that a molecule of S gets transformed into will become a molecule of product P via
C — E + P. Here and below by “part of a molecule” we mean a part of a molecular
complex rather then one of atoms comprising the specific molecule. To formally
describe such dynamics we consider {E, S, P,Cg,Cs} as the set of molecular status,
where C'r denotes we are tracking a molecule of E bound in the complex C, and Cg
denotes we are tracking a molecule of S bound in C. Note that some status correspond
to species, some other status do not. In order to avoid any notational confusion
between the potentially different sets of chemical species and molecule status, we
adopt the convention of using tildes for status. In the present example, we will denote
the set of tracked molecule status by {F, S, P,Cg,Cg}.

Based on the above example, we see that the molecules whose dynamics we want
to follow may or may not correspond to a subset of the chemical species X. To deal

This manuscript is for review purposes only.
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8 D. CAPPELLETTI AND G. REMPALA

with this general setting, we formally represent status by a set T of symbols endowed
with a function o: T — XU{0} which links every status with its corresponding species
in X. For instance, in Example 4.1 above we will choose o(S) = S and o(Cg) = C.
Note that the number of status defined in this way can be less than, equal to, or
larger than the number of species. A molecule that changes its status with time will
be referred to as a tracked molecule.

The set T needs to include the special state A to denote the potential degradation
of the tracked molecule, and we set o(A) = 0. To simplify the notation, for all
z,y € Z¢, and 7 € T \ {A} we denote by 0,(r,z) the probability that a certain
molecule of species o(7) is chosen if Yo(r) molecules are uniformly drawn out of x,(,)
molecules of o(7) available. Specifically,

Co

oL Yo g > >1
by(ra)={ (o) mem M) 2 Ve 21

0 otherwise

For completeness, we define 6,(A,z) = 0. Finally, note that in reactions such as
2A — B+ C we can imagine a molecule of A is transformed into a molecule of B,
while the other molecule of A turns into a molecule of C. If we are tracking the
fate of A molecules and the reaction 24 — B + C occurs, it is reasonable to assume
the molecule we are tracking has a 50% change of turning into a molecule of B,
and a 50% change of becoming a molecule of C. We denote these probabilities with
poa—Brc(A, B) and pea—sprco(A, C), respectively, and in general allow for different
value choices, as along as poa—prc(A4, B) + paasB+c(A,C) = 1. The definition of
tracking stochastic reaction system in the most general setting is below.

DEFINITION 4.2 (Tracking stochastic reaction system). Let G = {X,C,R} be a
reaction network. Consider a family of stochastic kinetics {)\?‘J/_w/ cy >y e R}
indexzed by V, and let XV denote the associated continuous time Markov chains.
Let T be a set of status. We define the tracking stochastic reaction system as the

continuous-time Markov chain (YV, XV') with state space TxZéO and transition rates

a((82),(7.2)) = 1y (A) DALy (@)

y—y €R
y' —y=z'—=z

and for all T #£ A

a((r2), (7)) = D7 (1= 0y (r ) Ly (7) 4 0, (7, 2Dy (7, 7)) AV (),
yﬁy’€/7im

where for all reactions y — y' € R the following holds:
o foranyT e T,7" € TU{A} we have 0 < py_(7,7") < 1;
o py_y (7,7') = 0 whenever o(7) ¢ supp(y) or o(7') ¢ supp(y’) UA;
e if o(7) € supp(y) then

Z pyﬁy’(Tv T/) =1

T/ €T :o(r’)Esupp(y’)UA

In the above definition, the usual stochastic reaction system is coupled with the
fate of a single tracked molecule: a molecule in status 7 can transform whenever
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INDIVIDUAL MOLECULES DYNAMICS 9

a reaction y — y’ occurs, with a probability given by 6, (7,7'). By definition, the
quantity 6,(7, ") denotes precisely the probability that the tracked molecule takes
part in the reaction y — 1/, assuming that the reacting molecules are uniformly chosen
among those present. If that happens, the new state of the tracked molecule is drawn
according to the probability distribution {p, ./ (7,7")}+ csupp(yyua (see Example 4.5
for a case where this distribution is non-trivial). If the tracked molecule is irreversibly
degraded, its status becomes A and cannot be further changed. In what follows, we
will sometimes identify the state space of YV, given by 7, with the canonical basis
of RI7!, similarly to how complexes are implicitly identified with vectors in R%.

The only technical requirement to have a tracking stochastic reaction system
is establishing a rule on the status changes of the tracked molecules involved in a
reaction. Mathematically, this can always be done. For instance, choose 7 = X and
let o be the identity. Consider a reaction y — ¢'. If ||ly||l1 < [|3/||1, then an injective
map from the molecules consumed to the molecules created can be defined, giving a
rule for molecular status change. If instead ||y||1 > ||¢/||1, then any molecule consumed
can be either injectively mapped to a molecule created, or mapped to the cemetery
status A. Hence, formally the requirements of Definition 4.2 can always be satisfied
for some choices of 7 and o. However, care needs to be exercised if we want status
changes to reflect physical properties of the system (see Example 4.1).

Remark 4.3. The generator of a tracking stochastic reaction system, as defined
in Definition 4.2, is given by

= Y N, @By —y) - f(A)

y—y €ER

and for 7 # A

Afra) = > (A =0,(na)\y @) (F(ra+y —y) = f(r.a)

y—y' €ER

Y e (TN, @) (/" a+y =)~ f(r0)),
y—y’€R 7/ Esupp(y’)U
for all functions f: (T) x Z‘éo - R
Ezample 4.4. Consider the SI reaction network described in (1.1), which we re-
peat here for convenience:

(4.2) S+1—21.

In this case, we are interested in describing the history of susceptible individuals who
become infected. The set of status is therefore 7" = {5, I } with o(S) = S and cr(I )=
I. Furthermore, we choose the probabilities p5+1_>21(5 I) =1 and p5+1_,21(1 I)
1. Alternatively, one can simply consider 7 = {5}7 with the understanding that
whenever a susceptible individual gets infected we consider it as irreversibly degraded,
and its state becomes A. In this case, psyr—2r(S,A) = 1.

The state of single individuals can be tracked also in the more complex model

(4.3) S+1—2I, I — S

Here, the set of status is {S, I}, with o(S) = S and J(I) = I, and the transforma-
tion probabilities are p5+1_>21(S I) =1, ps+1_>21(1 I) =1, pI_,S(I S) = 1. Here,
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10 D. CAPPELLETTI AND G. REMPALA

relevant questions on the fate of a single individual could concern, for example, the
number of infections it undergoes in a given time, or after how long the nth infection
occurs. We can even extend the model to include migrations, and obtain

(4.4) S+I—2I, I—S 0=5 0=—1

In this case, it is natural to assume ps_m(g, A) =1 and p1_>0(.7, A) = 1. Relevant
questions could involve, for example, the average number of infection a susceptible
individual undergoes before migrating.

Ezxample 4.5. Consider the following reaction network, where a protein P pro-
motes its own phosphorylation:

(4.5) 2P — P+ P*, P*— P,P—0.

Here, we may assume we are interested in observing the dynamics of a molecule
of protein P. Hence, the set of status is {P, P*} with ¢(P) = P and o(P*) =
P*. Tt is natural to assume that the two molecules of P involved in the reaction
2P — P + P* have the same probability of being phosphorylated or serving as the
reaction catalyst. Hence, pgp*)p+P*(P P) = p2P4p+p*(P P = 1/2 The other
transformation probabilities are given by pP*HP(P P) =1 and ppﬁo(P A)=1.

Example 4.6. Consider the reaction network of Example 4.1:
(4.6) EFE+S—C—F+P, P—F.

We consider the set of status {E g 15 CNZ'E, 5’5}, as described above. In this case the
function o associates every status of the molecules with the chemical species they
are part of: o(E) = E, o(S) = 8, o(P) = P, 0(Cg) = C, and o(Cg) = C. The
transformation probabilities are given by o

pe+s—c(E,Cp) =1 pcsp+s(Cp, E) =1 pcspsr(Cp E) =

pet+s—c(5,Cs) =1 pecopts(Cs,S) =1 posprpr(Cs, P) =1

pp—e(P,E)=1 pE—p(E,P)=1

Remark 4.7. The interpretation of a tracking stochastic reaction system is that

of a regular stochastic reaction system with the subsequent tranformations of a given
particle being tracked. If the initial state YV (0) of the tracked molecule is not present
in the initial XV (0), that is if X (YV(O))( ) = 0, then the initial condition of (Y, XV)
is not consistent with the interpretation of the process. The process (YV, XV) is still
well-defined and its evolution can be studied, but its interpretation is no longer valid.
In order to obtain meaningful results, we therefore tacitly assume that X;/(YV(O)) (0) >
0, even if we do not require it formally.

4.1. Representation as a regular stochastic reaction network. In this
section we show how a tracking stochastic reaction system (Y, XV) can be realized
as a regular stochastic reaction system with species set given by 7 LU X, where LI

denotes a disjoint union. In particular, the state space is Zl l X Z‘im where for
convenience we consider the first coordinates to refer to 7, and the rest to the species

of the original process X'. We denote by (T, x) a generic state in Z‘ >0 X Z . Consider
the set of reactions R UR where

75:{7+y%7'+y' cy—=y €R, 7,7 €T and py_y (1,7") > 0}

This manuscript is for review purposes only.
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379 and endow them with the following reaction rates:

380 Ay (@ 2) =D B (1= 0y (1, 2)A) ) (x)
TeT

)‘7Y+y—>r’+y/ (%a 3;‘) = 57'021 (7-7 $)py—>y' (7-7 T/)/\g‘;/—w’ (I)

a0
000
=

383 Note that the second component of the process has the same transitions as XV, with
384 exactly the same rates. Hence, we can safely denote the process associated with the
385 above stochastic reaction network by (Y, XV). Note that the quantity > %,
386 is_conserved by all possible transitions. Hence, if we consider an initial condition
387 (Y(0), X(0)) with > _+Y¥7(0) = 1, then at any time point ¢ exactly one entry of the
388  vector }N’(t) is 1, and the other entries are zero. It follows that there is a bijection
329 between the possible values of ¥ and 7, given by the function supp(Y (£)). In this
390 case, by identifying status with vectors of the canonical basis of RI7| as already done
391 in the paper for the species in X, the transition rates can be equivalently written as

392 )\Zﬁy, (Z,z) = Z Ly () (1 = 0,(r, a:)))\;gy, (x)
TeT
393 AN pysrr iy (&, 2) = Ly (B)0y (7, 2)py—y (T, 7)) Ay (2),

395 Hence, if Y Y,(0) = 1 then the transitions and the rates of (YV,XV) and

306 (YV,XV) coincide, and (Y'Y, XV) can be therefore realized as a stochastic reaction
397 network with an appropriate initial condition. In particular, we can write

(4.7
t
28 XV()=XY(0)+ Y (/ —y)Nyoy < / Ay sy (XV(s))ds)
y—y €ER 0
(4.8)
t
300 YV (1) =YV (0) + Z (7" = T)Nysr sy 47/ (/ A¥+ya7'+y'(yv(s)7XV(S))d5>
400 gty AT ER 0 |

401 where N, for r € RU R are independent unit-rate Poisson processes. Note that with
102 the above writing, all the processes in the set {(YV, XV)}VGZ21 can be defined on
403 the same probability space.

104 5. Results. In this section we state our main results and illustrate their appli-
105 cations.

406 5.1. Classical scaling for the fate of a single molecule. In this section we
107 state a law of large number for the process YV. In order to do this, we consider a

8 family of tracking stochastic reaction systems (Y'V', XV, with V varying in the integer
9 numbers greater than one. We then assume that Assumption 3.1 is satisfied for some
410 locally Lipschitz functions A,_,,/, and denote by Z the solution to (2.2). Hence, we
411 know by Theorem 3.2 that V~'XV will converge to Z path-wise with the uniform
412 convergence topology over compact intervals of time, for V' going to infinity.

413 In this section we express (Y, XV) by means of independent unit-rate Poisson
114 processes, as in (4.7) and (4.8). With the notation introduced in the previous section
115 in mind, we have the following first technical result:
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_ LemMA 5.1. Assume that Assumption 3.1 holds. Then, for any T+y — 7' +y' €
R, any w € T, and any compact set K C RL, we have

6.0 i sup [V (V) = Ay (2] < 0
where the function Aryysripy: T X R%O is defined as

Ay—y’ (2)

)\T+y~>T’+y’(wvz) = ]l{w}(T)py%y’(ﬂ T/)yo(r) 2ol

if both z,(zy and ys(;) are positive, and zero otherwise. Moreover, the function

Ary—ri4y 18 locally Lipschitz if restricted to T x R‘io.
Proof. If ys(s) = 0, then both Av"/%»y%'r”ry’eﬁ and Ay, are constantly zero, hence
(5.1) holds. If y,(s) is positive, then for all z € K we have

)‘XerAT'er’eﬁ(w? Vz]) - )‘y%y’(w,z)’ =
Ay—y (2)

v _
Oy (7, LVZJ)Ay%y’(\_VZJ) Yo(5) Z0(5)

L} (T)Py—y (7, ')

Let m = min,c i 25+, which is positive because K is a compact set contained in R‘io.
If V is large enough such that Vm > y,, then

A7‘-/+y*>7-/+y/€’i€(w’ LVZJ) - Ay%y/ (w7 Z)

/\Z‘!/—W' ([V=]) Ay—y’ (2)

V- (LVZU(T)J /V) Za(S)

]l{w} (T)py—>y’ (Ta 7-/)yO'(S)

Hence, (5.1) follows from Assumption 3.1 and

I_VZU(T)J .,
vV o(T)

1
< —.
-V

max
zeK

To conclude the proof, we only need to show that A1y -4, restricted to T x Rio is
locally Lipschitz. However, this follows from it being the product (up to multiplication
by a constant) of the two locally Lipschitz functions z — 1/25(r) and Ay_s,. 0

The main goal of this section is to prove a classical scaling limit for a single-
molecule trajectory. To this aim, define the process Y by
(5.2)

Y(t)=Y(0)+ Z (7" = T)Nrgysrityy (/0 Arpysrigy (Y(8), Z(s))ds) :

T+y—>*r’+y/€7€

Then, the following result holds, where we implicitly identify the states of YV and Y
with the canonical basis of RI7!. Note that the assumption that all the components
of the solution Z are strictly positive in the time interval [0, 7] is made, but this is
only a mild restriction to avoid unnecessary technicality, and is always verified under
mass-action kinetics as long as Z(0) € R¢, (see Remark 5.3). The proof of the result
is postponed to Appendix A, where more precise bounds are given.
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THEOREM 5.2. Assume that Assumption 3.1 holds. Furthermore, assume that
the random variables X" (0 )/V converge in probability to some z* € R>0 as 'V goes
to infinity, and let Z(0) = z*. Assume that the solution Z to (2.2) with Z(0) =
exists over the interval [0,T) and that

m= min Z;(u)>0.
i=1,2,...,d
u€(0, T]

Finally, assume that YV (0) = Y (0) for all positive integers V. Then

(5.3) lim sup P (YV( ) # Y(t)) = lim sup F [HYV( ) — Y(t)HOO] =0.
V—o0 t€[0,T] V—oo t€[0,T7]

Remark 5.3. If we consider mass-action kinetics, then the deterministic solutions
never touch the boundaries, provided that the initial condition is strictly positive [22].
In this case, the existence of m as assumed in Theorem 5.2 is then guaranteed by
z* e RY,

Remark 5.4. Theorem 5.2 implies finite dimensional distribution convergence of
YV to Y in the following sense: for all 0 < t; <ty < --- < t,, < T we have

P (s 17V (0 = (8 > 0) < ZP (VY (1) = Y(t3)loe > 0)

1<i<

and the latter tends to 0 as V tends to oo, under the conditions of Theorem 5.2.

Some simulations of the process Y are proposed in Figure 2 for the case of the
SIS model (4.3). We conclude this section with the following result, concerning the
convergence of YV to Y as processes with sample paths in D[0,7]. We note how
this result is necessary for the convergence of continuous functionals of D[0,T], as
highlighted in Section 5.2.

THEOREM 5.5. Assume that Assumption 3.1 holds. Furthermore, assume that the
random variables XV (0)/V converge weakly to a constant z* as V goes to infinity,
and let Z(0) = z*. Assume that the solution Z to (2.2) with Z(0) = z* exists over
the interval [0,T) and that

m = Lrgnelg Zs(u) > 0.
u€[0,T]

Finally, assume that YV (0) = Y (0) for all positive integers V. Then YV converges
in probability to Y as processes with sample paths in D[0,T] (where we identify T
with the elements of the canonical basis of RIT! and embed it with the metric || - ||so,
or any equivalent one).

The proof is given in Appendix A.

5.2. Applications of Theorem 5.5. The convergence of Theorem 5.5 allows
us to state convergence in probability of f(YV) to f(Y), where f: Dr[0,T] — R is
a functional that is continuous with respect to the Skorokhod J1 topology. Classical
examples are f(z) = supyep 1) [|2(t) [0, f( fo ))ds for some continuous
function ¢, or f(z) = sup,c(o,r(z(t) — z(t— )) where a:(t ) = limpq, z(h) (see for
example [11, Chapter 3]). More concretely, a functional we may want to consider is
the number of times an individual gets infected in the interval [0, 7], assuming the
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Fic. 2. The process Y in SIS model. Consider the model (4.3), and let Y be as in (5.2).
The first panel shows the concentration of infected individuals Z; according to the deterministic
solution to (2.2) with Zg(0) = 0.99 and Z;(0) = 0.01. Mass-action kinetics is assumed, with the
rate constants of S+ 1 — 2I and I — S being 1 and 0.5, respectively. According to (5.2), Zr
determines the rate at which the single-individual process Y turns from ’susceptible’ to ’infected’.
The last three panels show independent realizations of Y. The times in the xz-axes of the four panels
are aligned.

model of equation (4.3) is in place. We denote this functional by . Note that the
convergence of XV /V to its deterministic fluid limit, as stated in Theorem 3.2, does
not give any mean of inferring the distribution of ¥(Y"V). However, knowing that
(YY) converges in probability to ¢(Y), if V is large enough we can approximate the
distribution of the former by the distribution of the latter. Obtaining an estimate of
the distribution of ¢ (Y") only requires the simulation of enough independent copies of
Y, whose jump rates are deterministic and therefore do not require a simulation of
XV to be computed, as opposed to the much more expensive strategy of simulating
multiple independent trajectories of (YV, XV) via the Gillespie algorithm (which is
especially cumbersome for large values of V). The empirical distributions obtained
with he two strategies are compared in Figure 3. Similarly, we can apply our results
to a Michaelis-Menten mechanism. Consider the model

(5.4) E+S—=—C—FE+P, P—5,
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Fi1c. 3. Empirical distribution of number of infections in SIS model. Consider the model
(4.3), and let ¥ be the number of infections a randomly selected individual undergoes up to time T.
The empirical distributions of (YY) and 1 (Y) are compared, the former obtained by the simulation
of 1,000 independent copies of (YV,XV) via the Gillespie algorithm (applied to the formulation in
terms of usual stochastic reaction networks discussed in Section 4.1), and the latter obtained via the
sitmulation of 1,000 copies of Y. Here, V = 1,000 and the initial portion of infected individuals is
1% (so we are initially close to the boundary and we may expect some minor discrepancy between
XV )V and its deterministic limit Z, see also Figure 5). Mass-action kinetics is assumed, with the
rate constants of S+ I — 21 and I — S being 1 and 0.5, respectively.

where the enzyme activities counterbalances a spontaneous transformation of mole-
cules of type P into molecules of type S. To measure the activity level of the enzymes,
we may want to study for how long a randomly chosen enzyme molecule is in bound
state C' up to a given time 7. Let us call this quantity v(Y"V). The classical scal-
ing of Theorem 3.2 does not allow for inference of the distribution of v(Y'"), but
Theorem 5.5 ensures that it converges to the distribution of v(Y') as V' tends to oo.
Figure 4 compares the empirical distributions of v(Y'") and v(Y) obtained by the
simulation of 1,000 independent copies of (Y'Y, XV) and 1,000 independent copies of
Y, respectively. For this comparison we chose V = 1, 000.

5.3. Approximating the system dynamics with single-molecule trajec-
tories. Let X' C X be the set of tracked species, i.e. the set of chemical species whose
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Time spent in bound state by a single enzyme

FiG. 4. Empirical density of time tn bound state in Michaelis-Menten model. Consider
the model (5.4), and let v be the time a randomly selected molecule of enzyme is in bound state C
up to time T. The empirical distributions of v(Y'V) and v(Y) are compared, the former obtained
by the simulation of 1,000 independent copies of (YV, XV) via the Gillespie algorithm (applied to
the formulation in terms of usual stochastic reaction networks discussed in Section /.1), and the
latter obtained via the simulation of 1,000 copies of Y. Here, V.= 1,000 and Z(0) = X(0)/V =
(0.5,10,0.5,1), where the species are ordered as in E, S, C, P. Mass-action kinetics is assumed, with
the rate constants of E+ S — C, C - E+ S, C —- E+ P, and P — S being 1, 5, 1, and 0.5,
respectively.

molecules (or parts thereof) can be tracked:
X={SeX :S=o(r) forsome T € T\ {A}}.

Moreover, let m: R¢ — RI¥l be the projection of the state space onto the coordinates
relative to the species in X. The aim of this section is to approximate the dynamics
of m(X") by means of a sum of independent processes distributed as in (5.2) (po-
tentially with rescaled dynamics, as shown in the statement of Theorem 5.8). Note
that the goal of such an approximation is not to provide a faster simulation method
than those present in the literature: our goal is to break down the dynamics of sev-
eral correlated particles into a set of independent single-molecule trajectories which
could be simulated simultaneously by a highly parallelizable algorithm. We begin by
identifying each status 7 € T \ {A} with a different part of the molecules of the
species o(7): m molecules of species S € X are available at time ¢ if and only if for
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INDIVIDUAL MOLECULES DYNAMICS 17

all status 7 with o(7) = S the quantity of the tracked molecules in status 7 is m
at time ¢. Under this assumption, clearly the process X" can be expressed in terms
of the status changes of its tracked molecules, which are typically not independent
of each other. We further restrict ourselves to models that are sub-conservative with
respect to the tracked molecules. This means that while a tracked molecule can
potentially be degraded (by changing its status to A), their total mass never in-
creases. Equivalently, we assume that each time a tracked molecule is created it is by
transformation of another molecule. We assume sub-conservativeness for simplicity:
we want to consider independent single-molecule fates, whose agglomeration is still
able to approximately describe the dynamics of the whole system. If we allowed for
mass creation, we would need to introduce new molecules over time and track them.
Defining the molecule creation times over a finite interval of time independently on
each other is technically possible if the creation rate changes deterministically: it is
sufficient to first simulate a Poisson random variable counting the total number of new
molecules in the finite time interval, then consider each creation time as independent
of the others with probability density proportional to the deterministic creation rate.
However, this procedure requires the introduction of further notation and for the sake
of clarity we decided to only present the simpler case of sub-conservative models (with
respect to the status).

Assumption 5.6. Let (YV,XV) be a family of tracking stochastic reaction sys-
tems. We assume that for each reaction y — 3y’ € R and for each 7/ € T \ {A}

Z Yo(r)Py—y (T:T') = Yo7y
reT\{A}

For all S € X,7 € T\ {A} define

o N S)={r" €T :0(r)=S5} and «(S)=#c"1(S)
The sub-conservation of the model with respect to the tracked molecules is formally
stated as follows.

LEMMA 5.7. Let (YV,XV) be a family of tracking stochastic reaction systems
satisfying Assumption 5.6. Then, for all V € Z>1 and for all t € Ryq

(5.5) I (XY (@) < Y a(S)XE[F) < Y a(S)XE(0).
Sex Sex
Proof. The first inequality of (5.5) simply follows from the fact that the quantities

a(S) are greater than or equal to 1. For the second inequality, simply note that if a
reactions y — y’ € R occurs at time ¢, then

Yo alS)XE (1) = Y alS)XE(t-) =Y alS)ys — Y aS)ys

Sex Sex Sex Sex
= Z ya‘ T T Z ya(T)
eT\{A} TeT\{A}
= Z Z yo(T)py%y T, T Z Yo (r)
T eT\{A} 7,eT\{A} TeT\{A}
< Z Yo(r) — Z Yo (1) = 0
TeT\{A} TeT\{A}
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559 Note that in the third equality we used Assumption 5.6, and in the last equality we
560 used 30 e fay Py—y (T 7') < 1. Since the quantity > g% a(S)XY is not increasing
561 with the occurrence of a reaction, (5.5) is proven. d

562 The main result of this section is the following one, a more detailed version of
563 which is proven in the Appendix. In particular, in Theorem A.5 a convergence rate
564 of the order of e=CVV for a positive constant C' is proven, provided that the initial
565 conditions of XV and XV are close enough.

566 THEOREM 5.8. Assume that Assumptions 3.1 and 5.6 are satisfied, and consider
567 a family of tracking stochastic reaction systems (YV,XV). Assume that V_lXV(O)
568 converges in distribution to some z* € RY $o as V goes to infinity and E[n(X V(0)] <
569 oo for all V € Z>1. Assume that the solution Z to (2.2) with Z(0) = z* exists over

570 the interval [0,T). Let XV (0) = |Vz*| and define the process XV by

U(T) (0)

a(Y™i(t)
571 (5.6) Z Z ; _or™)
reT\{A} =1 ale (Y1)’
572 where the processes (YT’i)TET\{A},i6221 are independent and satisfy
573 YT’Z(t) =T+ Z ( )N: :—y—wr”—i—y (/O >‘T'+y—>7'”+y’(YT’Z(u)a Z(u))du> aI

T py—T Yy €R

574 for a family of independent, identically distributed unit-rate Poisson processes {Nf>i}TeT\{A}
575  Then,

iezzl,reﬁ'l

n(XV(t) XV()
v Vv

577 Note that in the definition of XV above we consider the number of independent
578  single-molecule trajectories to match the number of molecules (or parts thereof) of
579 trackable species that are in the system at time 0. A natural question is whether
580 a good approximation of the original model XV can be obtained by considering the
581 agglomeration of less independent single-molecule trajectories. However, a detailed
582 study of the error in this case is out of the scope of the present paper.

583 Ezample 5.9. Consider the SIS model of equation (4.3). We assume XY (0) =
584 0.99V and XY (0) = 0.01V, and let V = 1,000. We wish to approximate the number
585 of susceptible individuals by

. X¥)  X§(@)

586 v ~ v

587 In order to test the performance of the above approximation, we simulate 100 indepen-
588 dent copies of X" and X, and plot them against each other in Figure 5. It is perhaps
589 mot surprising to note a higher variance for the trajectories of X V' with respect of
500 those of XV: the former is the result of several single-molecule trajectories that are
591 naturally correlated with each other, specifically the rate at which a single molecule
592 changes state is stochastic and given by the current state of all the other molecules. In
593 the approximation, the dynamics of the single tracked molecules are independent and
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their rates of transitions between states are completely determined by the determin-
istic solution Z, which leads to fewer stochastic fluctuations. However, we do observe
a discrepancy between the two models only at the beginning of the trajectories, when
the number of infected individuals is rather low (only 10 individuals in the initial con-
dition) and the deterministic approximation given by Theorem 3.2 is perhaps not yet
accurate enough. As a matter of fact, Figure 6 shows that the difference in variance
is considerably reduced if the initial counts of infected individuals is increased to 100.

We are interested in bounding

Xy  x¥w)

5.7 Pl su >e ],
(5.7) ogth 14 V

for a fixed ¢ € Ryp. Assume mass-action kinetics and let x; and ko be the rate
constants of S+ I — 21 and I — S, respectively. Moreover, assume for simplicity
that XV (0) = XV (0) = VZ(0) and XX (0) + X} (0) = V. Since the total number
of individual is conserved, for all 0 < ¢t < T we have X¥ (t) + X} (t) = V. By

Simulation technique
\ == Deterministic limit
== Gillespie algorithm

=== |ndependent individuals

0.8-

0.6-

Proportion of susceptible individuals

0.4-

Time

Fic. 5. Comparison in SIS model. Comparison of 100 independent trajectories of Xg/V

and )?g/V, considering the SIS model described in (4.3). Here, XX (0) = 0.99V, XV (0) = 0.01V,
and V = 1,000. Mass-action kinetics is assumed, with the rate constants of S+ 1 — 21 and I — S
being 1 and 0.5, respectively.
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Fic. 6. Comparison in SIS model. Comparison of 100 independent trajectories of ng//V
and )?g/V, considering the SIS model described in (4.3). Here, X¥ (0) = 0.9V, XYV (0) = 0.1V,
and V =1,000. Mass-action kinetics is assumed, with the rate constants of S+ 1 — 21 and I — S
being 1 and 0.5, respectively.

608 superposition there exist two independent unit-rate Poisson processes N S4+1—2r and
609 N 15 such that for all 0 < ¢ < T and for a fixed V' we have (with a simplified notation
610 that does not take into account the initial values of the independent single individual
611  trajectories)

t |4 t
612 Nsiroor ( /0 ang(u)ZI(u)du> S N e ( /O l{g}(Y’(u))ZI(u)du>
i=1

t

t 14
613 Niss (/ "92X}/(“)du) = ZN}+I—>§+S (/ ]l{;}(YZ(u))du) :
0 =1 0

614

615 Then,
616
XY@t XY 1/t XV (u
617 *?/( ) _ ?/( ) <At + —/0 k1 XY (u) IV( ) _ Zr(u)| du
t XV X‘V t xV )Z’V
. +/ ‘L g (w)  Xg(u) Zl(u)du+/ o | 2 (v) X7 (v du,
519 0 14 14 0 14 \%4
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620 where
, 1 "Ry v "Ry 14
621 A(t) == |Nst1-01 —Xg Ww)X; (wdu | — | —=Xg (u)X{ (u)du
14 o V o V
1 ¢ ¢
622 + — |Niss </ HQXY(U)dU) 7/ ke XY (u)du
14 0 0
11~ ¢ ¢
623 + 7 Ngyi—or </ ng(u)ZI(u)du) f/ k1 XY (u)Z; (u)du
0 0
11~ ¢ ¢
624 + — |Niss </ @X}/(u)du> —/ ke XY (u)dul .
625 4 0 0
626 Using X} (t) =V — X} (t) and Z;(t) < 1 for all 0 < ¢t < T we obtain

<A®) + /Ot K1 ’XIVV(U) ~ Z;(u)

v |4

|X¥ ) XY

¢ X
629 + [ (k14 K2)
0

630

631 By taking the supremum on 0 < ¢ < T on both sides and by applying the Gronwall

632 inequality, we have

X{()  X{@
v v

X7 (W)
v

< < sup A(t) + k1T sup
0<t<T 0<t<T

— Z[(u)

633 sup > elritra) T

0<t<T

6314 For notational convenience, let v = ee~("1t%2)T Hence, (5.7) is smaller than

w - ZI(U)‘ > 2:1T> '

635 (5.8) P < sup A(t) > V) +P( sup

0<t<T 2 0<t<T

636 By noting that P(supg<,<7 A(t) > v/2) is smaller than

t

1 t
637 p( sup — ’Ns+1_>21< ’“XSV(u)X,V(u)du) — [ EXY )XY (u)du| > ”)
o<t<T V o V o V 8
1 t t
638 +P< sup — |Nr_s (/ @X}/(u)du> —/ /@X}/(u)du > V)
o<t<r V 0 0 8
11~ t t
639 +P< sup — |Nsiror (/ mXX(u)Zﬂu)du) —/ k1 XY (w) Zy (u)du| > V)
o<t<t V' 0 0 8
11~ t_ to_, y
640 +P| sup — |Ni,s ko X[ (u)du | — | kX[ (u)du| > < |,
641 o<t V 0 0 8
642 we obtain that (5.8) is smaller than
643
r1el v Kkoedl v
34 12 - — 12 - —VvV
644 exp( 5 24\/V>—|— exp( 5 24\/>)

2
k1€l v ko€l v v T (k1 —r2)—v
345 6 1+ — 1 ) _ 1—K2 %
T eXp( 2 ( +m:r) T ( +m:r) 126, T° :
)40
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by Lemma A.1 and Theorem A.2 (for the special case of the SIS model, see Exam-
ple A.3). We note that exp(h) is defined as e for all real numbers h. It follows
that (5.7) tends to 0 as V' tends to oo with the same rate as e CVV for some positive

constant C. This is always the case, and bounds for more general models are provided
by Theorem A.5.

Appendix A. Proofs and explicit bounds.

In this section we give proofs for the results stated above, together with more
precise bounds on the quantities of interest. To this aim, we first define the following
quantities: for all V € Z>; and € € Ryg let

XV (u)
V

AV,E,t = { sup

u€l0,t]

—Z<u>H SE} and PVt = P(AS, ) = 1— P(Ave).

where the superscript “c” denotes the complement. Note that, for any fixed V' and ¢,
the sequence of events Ay . ;+ is monotone in ¢, and pV’E’t is a non-decreasing function
of t attaining its maximum for the value ¢t = T.

Define the Z< -valued process X" on [0, T in the following way: for any S € X

and any ¢ € [0, 7], let
(A1) X¢¢(t) = min{max{ XY (t),VZs(t) — Ve},VZs(t) + Ve}.
Hence, by definition for all ¢t € Ry

e

- Z(t)H <e.

oo

Moreover, define the process XVe by

t
X = X0+ 5 0 =Ny [ N (@)
y—y' €R 0
for all ¢t € [0,T], where the processes N,_,, are the same as in (4.7). Note that for
any u € [0,¢] we have 14, , X"*(u) =14, X" (u) = ]IAV)“)A(V’E(U). In particular,
it follows that

XV,E XV’E
Sup & 7Z(’LL) S ]]-.Avgt Sup & 7Z(u) +]]__Ac £
0<u<t 14 0o T o<u<t VvV . Vet
XV,E
(A.2) < sup X Z(u)
0<u<t |4 .

The last inequality follows from noting that if Aj,_ , occurs and if

.
o0

then XV (u) = XV (u) = XV¢(u) for all u € [0,u*) and XV (u*) = XV (u*). More-
over, by the right continuity of XV and Z u* is in fact a minimum, which implies

XV (u)
%

ut = inf{u e0,4 : ‘ ~ Z(u)

> .

oo
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Hence
XVe(u) XV (u*)
1ue —-Z > 1 — Z(u*
A S| (u) Agen || (u®)
XV (u* .
-1, | T - 2| 2

For any ¢ € [0, 7] and any € € Ry let
Q7' ={Z(w)+h :uel0,t],heR |h]lw < e} NRL,

be the (one-dimensional) neighbourhood of the solution Z on the interval [0, ¢] with
amplitude e, intersected with the non-negative orthant. Note that for all ¢ € [0, 7] we
have XV¢(¢)/V € QY. Similarly, let

Q' ={(Z(u) + h, Z(u) + 1) : we[0,t],h,h' € R |[h]|so < &, |W ]|l < e} MR

be the two-dimensional neighbourhood of the Z restricted to [0, ¢] with amplitude e,
intersected with the non-negative orthant.

To conclude, it is convenient to introduce in this section a notation for centered
Poisson processes: given a Poisson process N, we denote by N the process defined
by N(t) = N(t) —t for all t € R>g. In order to bound p"*! from above and prove
Theorem 5.8 we need the following results concerning centered Poisson processes. For
completeness, we provide a proof as we were not able to find it in the literature, even
if small variations of Lemma A.1 are well-known and obtained as an application of
Doob’s inequality or Kolmogorov’s maximal inequality.

LEMMA A.1. Let N be a Poisson process and let T e € Rsq. Then, for all n €

Z>1
N(t)’ > a) < 6exp (;T— Eﬁ) .

P sup
te[0,nT]

Proof. For all j € Z>, and all h € R define

(A.3) E;”—U{;]}

=0

n 3

Since N is almost surely right continuous, we have that for all n € Z>; and all
T E R>0

N(t
()‘ = lim max

sup
n Jj—oo teE;T

t€[0,nT) n

v

almost surely. Since for all j € Z>; we have E?T - E;fl, by continuity of the
probability measure we have
N(t
“‘ > 5> |
n

P( sup M >5> = limP<max
te

onT] | M Jmee \reEpt
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24 D. CAPPELLETTI AND G. REMPALA

By Etemadi’s inequality we have

P(max N(t)‘>5><3maxP(

=nT =nT
te._.j n tE._.j

Mol <

n

3

Moreover, for any real 8 € (0,1) and any real ¢t € (0,nT) we have
N N N
p(IYO ey o p(NO e p( N e
n 3 n 3 n 3
nPN(t) nBe nBN(t) nBe
= (e z >€3>+P(6_ n >e3>

B 28-2
< 2exp (_n35> exp (nTn 5 e) ,

where the inequality in the third line follows from the Markov’s inequality and the
known form of the moment generating function of a Poisson random variable, which

—157 —1 nB—1 —157, —1 _nB-1
leads to E[en” 'N®] = =" Mtete™ -1 ang E[e*’lﬁ N = e”j tetle -1,
Hence, for all n € Zs1 we have that both E[e”” N®)] and E[e=™" 'N®] are less than

nB—1 _
or equal to et —1=n""Y  The inequality in the forth line derives from the Taylor

expansion of the exponential function. By choosing 8 = 1/2 we have

P([P]5 2) <2 (<24 ) e (57).

which completes the proof. ]

A.1. Estimates for p"**!. Many papers have focused on quantifying the dis-

tance between the process X" and its fluid limit Z. Among these, we list [1-3,13,
17,20] with no claim of completeness. Here we use Lemma A.1 to show the following
upper bound on p"***. While similar estimates are known in the reaction network
community, we give a formal proof of the bound we propose as we could not find it
in the literature. Before stating the result, we define the following quantities:

R= I
yg}f}gnl\y Ylloos

t
sup Z Ay (2), Ai’tzfo Aytdu

\t
z€Q] y—=y €ER

Lg’t = sup Z Ay sy (2) = Ay (Z/)|7 L?t _ /t Lg’“du
0

e,t
AO

D D P
24z’
AV Vz t
68/7” = Ssup y_w‘(/t ) - )‘yay’(z) ) 5}/7” :/ 58/’6’udu
2€00" yyer 0

Vet L%t V,2e,t
Nt (y) =e T e =0y

)
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37 where in the last definition 7 is any real number in (0,1]. Note that A5" and )" are
38 finite for any ¢ € [0, T', since the solution Z exists up to time 7" and the functions A,_,,
39 are locally Lipschitz by Assumption 3.1. The local Lipschitzianity of the functions
10 Ay_sy also implies that L5 is finite for all ¢ € Rwg and t € [0,7]. It also follows
41 from Assumption 3.1 that (5V5t tends to zero as V tends to infinity. Furthermore,
12 note that for fixed V € Zs; and € € Rsg, the quantities A5*, L5, and 68/” are
13 all non-decreasing functions of t. As a consequence, for all ¢t € [0,7],e € Rsg, and
14V € Z>1 we have

745 ASP<tAS', LOY<tLS', and 6" <t8) .

746 It follows that for all t € [0,7],¢ € Rsq, and v € (0, 1] the quantity 7""*(v) tends to
the positive quantity e~ L1~
748 theorem.

~ve as V tends to infinity. We can now state the following

749 THEOREM A.2. Foranye,t € Ryg, anyy € (0,1], and any V' € Z>1 large enough
750 such that nV"?**(y) > 0, we have
Vit —  Vi(l—y)ee P17 0 €2t €Vi2et L oy
751 pot <pHiTy O p6exp ( AT + 20,7 — Vot ()WY
2 2 3R

752 Proof. First, note that

XV X Vi2e
73 pVet =P sup (w) _ Z(u)|| >e|=P]| sup X7 _ Zw)|| >e¢

weo) |l V oo wepgll V' o0

XV,2€
754 =P | sup &—Z(u) >e.
755 u€[0,¢] v o

6 Moreover, by superposition, for all V' € Z>; and all € € R we can define a unit-rate
7 Poisson process U""?¢ coupled with XV in such a way that for all ¢ € R>q

s UV / AV (XY (u))du | = Ny ( / A XV’QE(u))du).

y—y' €R y—y’ 672

759 Hence, by using (2.2) we have

XV,ZS u XV,QE 0 R .
760 HV() 2w < 'V“ 20 7| 3 Ny ([ A wan)
0o y—y' €R

“ Aoy (X2 (w)) XV2e(w)
76 y2y — Ayt | ———— | | d
: L ()

u XV,Qe(w)
762 + /0 > (Ayﬁy, (V) - Ayﬁy,(Z(w))> dw

y—y
xXV(0 R |—v,2
763 < H() — Z(O)H + 5 U’ > / Ay sy (X V2 (w)) dw
o0 y—y €R
u XV,ZE

764 + o) +/0 Lee” % — Z(w)H dw
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766 By using (A.2), by taking the supremum over [0, ¢] on both sides we obtain

e |70
767 su — —Z(u <||——— - Z(0
OSul:;t Vv ( ) - - \%4 ( ) s

- R 77V52e Yy V,2e

768 + 1 sup |U > AV (XY (w))duw

O<ust y—=y' €ER
t v V,2e
XV
769 + 6V | L2 sup (w) Z(w du.
1 0

- 0 o<wu| V

770 S
771 By Gronwall’s inequality we get

£V2:(1) e || XV (0) H

2 osup ||t = Z(t)|| <eM ||/ - Z(0

e | S 20 < 20

R L25,t L u
773 + eV1 sup T Z / )\?‘}gy, (X2 (w))dw
0<us<t yer o
- + eLfs’t(SI/,Qs,t.
776 By noting that for all t € R>g
)\V ’ Vz
e sup Z Y=y (L J) S Ags’t—F(S(‘)/’%’t,
cat . S V
2€Y T y—oy'eER
778 we get
et XV 0
779 pVet <p (eLf V( ) _ Z(O)H >(1- 7)5)
—V,2¢e
e,t U ’ e,t £

780 + P | Reld sup v @ teli sVt S e
781 o<usvaitpay e |V
782 for any v in (0, 1]. The proof is concluded by Lemma A.1. O
783 Ezample A.3. Counsider the SIS reaction network described in (4.3). In this case,

784 in accordance with the classical mass-action choice of kinetics we have

785 Noproar () = 7 TseI and A/ g(x) = koxs

786 for some positive constants k1 and ko. Hence, Assumption 3.1 is satisfied with

Ast1-21(2) = kizszr and  Ar5(2) = kazr.

788 The corresponding solution Z exists for all non-negative times ¢, for all initial condi-
789 tions Z(0) = z*. Moreover, note that the sum of infected and susceptible individuals
790 is kept constant, hence for all t € Rso we have Zg(t) + Z;(t) = z5 + 25 = ||2*|l1. In
791 this case we can obtain the following rough estimates

792 R=2, Ay < (2" +e)ma(llz" s +e) +hal,  LG" < milll=" 11 +e) + ko,
H"ﬁ Jg/,e,t =0, 77V,e,t > 567t51(|\z*\|1+2€)+tnz'
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If we assume XV (0) = Vz*, then p¥"%:% = 0. Tt follows from Theorem A.2 with the
choice v = 1 that in this case

t V *
Pet < Goxp <2<||z*||1 w20 ea(l s+ 22) + o] — L ettt '1%_@]) |

where exp(h) is defined as e” for all real numbers h.

A.2. Proof of Theorem 5.2. First of all, we define some quantities that are
useful to give specific bounds on our approximation error. Define
Ato = max Z Aryosriay (T, Z (1)),

TET _
THy—7'+y’ €R

Li' = sup max Z Aty (T, 2) = Argymsrriy (1, 2)]
0o - )
(Z’i;i?;t <" THy—T/+y ER Iz = #lloe
Ve, .
60 et _ buli)t 13163:7)_( Z |)\7‘_/+y_>7_/+y/ (T, I_VZJ) — AT+y—)T’+y'(T7 Z)‘
zeQy THy—T 4y €R

i t t
AL = / Abdu, LS = / L5 du, 6" = / o0 du.
0 0 0

Note that Kg is finite for any ¢t € [0,7], due to the fact that Z is defined over the

whole interval [0, 7. Moreover the functions A, 4,4+, are locally Lipschitz on RZ
by Lemma 5.1, hence ngt is finite for all ¢ € [0,7]. Finally, EX’E’t is finite for all
t € [0,7] by Lemma 5.1. Note that, for fixed V and &, the quantities Eg’t and S’X,e,t
are non-decreasing functions of t. As a consequence, for all t € [0,7],e € Rsg, and

V € Z>1 we have
(A.4) AL <tAh, L' <tL5', and 6)°' <o)t

Before proving Theorem 5.2 we show the following stronger result.

THEOREM A.4. Assume that Assumption 3.1 holds. Furthermore, assume that
the random variables XV (0)/V converge in probability to a constant z* as V goes to
infinity. Assume that the solution Z to (2.2) with Z(0) = z* exists over the interval
[0,T] and that

m= mig Zs(u) > 0.
u€[0,T]

Finally, assume that YV (0) = Y (0) for all positive integers V. Then,
(A.5) PYY#Y®)=E[lY" (1) -Y(®)]]-

Moreover, for any 0 < e <m

sup B [[YV (1) = Y(Dlloo] < p¥T + GV57 +eL7)eM
t€[0,T]
Proof. First, note that
1 ifYV(t) £Y(t)

(A.6) YY) =Y ()] = {0 ifYV) =Y(t)’
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825  hence (A.5) holds. Consider the process
(A.7)

t

2 VO=YOr X Ny ([ Wy (70, X700 I
T+y—>7"+y’€7€ 0

827 Note that if 7/ # 7 then |7’ — 7| = 1. Moreover, for a unit-rate Poisson process N,

828  we have

N(t1) — N(ty) ift; >t

829 IN(t1) = N(t2)| = {N(tz) — N(t;) otherwise

830 In any case, |[N(t1) — N(t2)| is distributed as N(|t; — t2]). By equations (5.2) and
831 (A.7), using the triangular inequality, we obtain

832 E[HYV(t) — Y(t)Hoo}

t t
s <Bl Y ||T’T||OO\NT+WW ( / N oy (VY (), XV () du — / ATWT%@,’(Y(u),Z(u))du)
LT +y—7/+y €R 0 0

t

834 <F / Z

T+y—>7”+y’€ﬁ

N oy (VY (), XV (1)) = Aryysrrpy (Y (1), Z(u))‘ du

83 <T1+ Yo+ 73

837 where

s3 Y1 =E / S Wy (Y (@), XY ()~ Ariysrriy (Yv<u>,
T+y—>7’+y’67€

, ‘ oV XV’E(U) va%
839 YTo=F / > Mrtysrr by (Y (u), — >—A7+7ﬁ7/+y,(y (u), Z(u))| du
L T+y~>‘r’+y’€7’i
- A
10 Ts=E / S P 7V 0, Z00) = Ay (V (), Z ()]
841 70 rhyoryeR I

12 Since for every 7 +y — 7/ 4+ € R we have
843 )\‘T/+y_>T/+y, (w,x) = ]l{T}(w)/\Z+y_>T/+y/(T, xz) forall z e Zéo,w eT
844 Arpyosr/y (W, 2) = IL{T}(w)/\ZerHT%y,(T, z) forall z € R%O, weT,

816 we can write Ty < 67", Similarly, Ty < LS. Finally,

t
847 T3=F / Z ’]1{7}(YV (u)) - ]l{T}(Y(u))‘ /\T+y—>T’+y' (7—7 Z(u))du
0 THy—T/+y ER

848 <F / Z ‘]l{T}(YA'V(u)) — H{T}(Y(u))‘ Kgdu]
0 re7
wo = [PV A ) Bgde=2 [ B[V ) - V()] A,
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where in the last equality we used (A.5). In conclusion,

B[I7Y0) - YOlle] < GF +<Li) +2 7Y ) - )] Ky

By the Gronwall inequality we then have
B[PV (8) = Y (#)loo] < (B +eL5)e? M,

The result follows by taking the sup over ¢t € [0,7] on both sides (the quantity
on the right-hand side of the inequality is non-decreasing in t) and by noting that
Ly YV (t) =14, .YV (t) for all t € [0,T]. Hence,

YY) = Y Ol = 1YV (1) = Y (O)llaoLag,.., + 17V (1) = Y (D)oL aye s
<L, HITVO) - Y(O)llslay..r
<Lag VYV~ Y (Ol 0

We are now ready to prove Theorem 5.2

Proof of Theorem 5.2. It follows from Theorem A.4 that P (YV(t) #Y(t)) =
E[I[YV(t) = Y(t)|l]. Moreover, for any ¢ > 0 we have limy_, p"*T = 0 by
Theorem 3.2, and limy _,o 6, =7 = 0 by Lemma 5.1 and (A.4). Hence,

lim sup E[|[YY () = V(t)]s] < LT
V=00 tel0,T]

which concludes the proof by the arbitrariness of ¢ > 0 and by the fact that ES’T
(hence L5") is non-decreasing in e. 0
A.3. Proof of Theorem 5.8. Similarly to what was done in the previous sec-

tion, we define the following quantities to give an upper bound for our approximation
error. Define

a(o(r'))  ala(r))

t
=i X Ao (nzo), A= [ A

R= max |n(y =y, #= max _
y—=y'€ER THy—7'+y’ ER

o(r') a(7) H 7

T+y—>‘r’+y’€7§
t
Ag = Te%%{XA} Z ~/ )\T+y—>7"+y’ (Ta Z(u))du,
T+y—1'+y’€R
R t AV Vz
Ag’e’t :/ sup 7?4%?/“ J)du,
0 zeQ™ Yoy €ER 4
ws' =7 sup Z Artyasrrty (T52) = Ay (7, 2)]

(z2")eqs”
llz=2"l| oo <e

¢t = / (112(w) o + €)du.

THy—>T/ +y R

Note that A}, AL, and (= are finite for any ¢t € [0,7], because Z is defined
over the whole interval [0, 7] and the functions Ar 4,4, are continuous on R¢ by
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Lemma 5.1. Lemma 5.1 also implies that w®? is finite for all ¢ € [0,7] and ¢ € R~o.

Vet .
A3

Finally, is finite by Assumption 3.1. Note that, for fixed V' and ¢, the quantities

AVt . .
A" wSt and (5! are non-decreasing functions of ¢.

We now state and prove the following result, which immediately implies Theo-
rem 5.8. Note that 6" is as defined in Section A.1.

THEOREM A.5. Consider a family of tracking stochastic reaction systems (YV DeBY |
and assume that Assumptions 3.1 and 5.6 are satisfied. Let z* € RL, and XV(O)
|V2*|. Define the process XV by

X (
= Y”(t))
XV= > Z Vs
TeT\{A} =1 (t)))
where the processes (Y’T’i)fg—\{A}viez21 are independent and satisfy
=t T g ([t ) |
T’+y~>‘r”+y’€72 0

for a family of independent, identically distributed unit-rate Poisson processes {N}i}TeT\{A} €Ty reﬁ'l

For arbitrary vi,ve,v3 € Ry define
v=r¢e" (RV1 + Fuy +1/3+R5V€T+wETC5T)

Then,

T(XV(1)  XY(1)
P(é‘f& VoV

At
+ 6 exp <602A2 - V2g/‘7> +P<

where ¢ = Y g5 (S)25.
Proof. By the superposition property of Poisson processes, for all V' € Z> there
exist two unit-rate Poisson processes U} and Uy such that for all ¢ € R>q

> [ e = 5 Ny ([ A )

y—y' €R y—y’ eR

and

g(T)(O)

wl s Y Y / At yosrr (YT (), Z ()

T€T\{A} =1 oy rriyeR

)?X(T)(O)

- Y Y Y N ([ Ao 7@ 20000

TET\{A} i=1 T/+y—>‘r”+y’67€
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Note that

XV

N0
v o o) o)
=X+ S ) > (a(aw)) a(o(f’)))x

T€ET\{A} r/fy—ridy'eR =1

t
X N: f0—y—>7’”—i—y (/0 )‘T’+y—>7'”+y’ (Y(u)‘r’la Z(U))du> .

Hence, by triangular inequality,

X Ve XV XV XV 5

p [FE@) K@ =) XY@ gy

0<u<t v VoL v VoL &=
where

1 |—
T, = "= Ylloos [Nysy Ay sy (XV5 (w))d
= 3 1 Wl [T ([N i)
y—y' €R

R 77V \% Ve
< TV [ Y / AV (XY (w))duw

XY (0)

o(r’
Ta=gwp o D)) R I
== TET\{A} 7/ +y—1'+y’ er =1 >
1 |—ri i
X 2 [Ny ( /O M pyrrrr sy (V7 (w),Z(w))dw)‘

X;/(T)(O) w

r 77V %
< Vosup U, Z Z Z /0 A gyasrry (YT (W), Z(w))dw

TeT\{A} T’+y~>7”’+y/€7€ 1=1

w AV (XVE () XVe(w
T3 = sup Z H 7r(y/ . y)Hoo/ % — )\y_>y/ (V()) dw

0<ust, Ton 0

< R(SY’E’t

m XV,E w

T4 = sup Z m(y — y)/ Ay—y’ (V()> dw

0<ust ||, {oer 0

Ve

o) o) \ [* Xetry®) ,
a Z my 7 /\T’+y—>7—//+y/ (T ,Z(w))dw
T ty—T!+y ER <a(0(7— )) 04(0'(7' ))) /O Vv -
w XV,E

(") 3 o(t") M /
Z (04(0(7'”)) a(g(q—/)))/o Vv Arrgysrry (T, Z(w) ) dw

Ty—T +y €R

Ts = sup
0<u<t

XY (0)

— l O-(T”) — U(T/) h ’ [y T w w w
1% Z Z Z (a(U(T” a(o(7’))>/0 ATyt 4y (Y7 (w), Z(w))d

TET\{A} r/pyr/4yeR =1

OOI

We first focus on rewriting Y4 and Y5. To this aim, first note that by identifying
species with canonical vectors of R? as previously done in the paper, we have that for
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") = Yuss— Y e

Sex TeT\{A}

yo’(T’)U(T/) o yO'(T)U(T)
2 a(o(r")) 2 (o(7))

T'eT\{A}

«
TeT\{A}

= 70(7/) () — Yol o(T
= Z a(a 7_/)> Z ya(T)py—>y( , ) Z ( ( )) ( ),

T'eT\{A}

a(o(r
TeT\{A} TeT\{A}

where we used Assumption 5.6 in the last equality. By recalling that o(A) = 0 and
Y orie Py—y (1,7') for all y — 3 € R and 7 € T, we further obtain

Ty -y = U<T/2 Y YerPyoy (1, 7)

It follows that

I
g

TIby—T Yy €R

fer ™) s

yo(T) 7'7'
2 (") 2 v

TeT\{A} T'eT

2,2 (JMI sty ) e 7

TeET\{A}T'ET

(Gl oty e 7 (521
)

/u X(‘f/(i)(w)/\ 7! X (w) dw
0 i T'+y—1"+y ) v al

which in turn implies

T, < sup

0<u<t

<wa,t<a,t.

T'+y—1'" 4y’ eR

XVE
% / 0(7')( )
0 \%

a(t") (1)

ale(™)  alo(™) Hm -

>

XVeE(w
Ar/ gyt oy (7—/7 V)> = Aripyriity (Tl> Z(w))| dw

By summing over the values of the single-molecule trajectories, we also have

)?X(T)(O)

S Y Ay (VW) Z(w) = XY (@) Aty sy (7, Z(w)),

TET\{A}

i=1
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958  which implies

Xa(i )( w) _ X;/(T/)(w)
V \%

959 Y5 < sup Z

0<u<t ~
T'+y—=1"+y’'€R

aé’cf?ii?» - aé’i@'?» Hm / Artiyorry (7, Z(w))dw

t Ve vV R
960 g/ X () - X" (w) Agdu
0 v \%4
§ XVeu)  XV(u)| ., XVeu)  XV(u)| g,
961 =lag _, v v Agdu+ 14, , /o v v Afdu
HIXVe(w) XV
962 <Lye MYV 4 / - Abdu,
963 Vet 0 Vv 14 - 0

964 where

965 MVet :/ <||Z Moo +e+ > af ) Addu
Sex

966 is an almost surely finite random variable, non-decreasing in ¢. Hence, putting every-
967 thing together and applying the Gronwall inequality we have that almost surely

XVe@) XVt ir R —
968 sup m{ v ) _ V( ) < eAlTV sup UY Z / /\Z‘}/_w (XVE (u))du
0<t<T o 0<t<T y—y' €R 0
. XY

AT T ==V i
969 4 e 7 Sup U, Z Z Z / At gzt (Y (1), Z(w))du
0

0<t<T - y
- = TeT\{A} Tty 4y €R =1
AT
970 + CAl
971

972 Now note that if A, Ay,..., A; are random variables and ay,as,...,a; are positive
973 real numbers, then

974 (ZA >Zaz><P<HA >al> zi: (Ai > a;).

975 Hence, if v is as in the statement of the theorem and v < ¢,

976 P | sup >v | =P[ sup
0<t<T - 0<t<T

1 —V
977 < P| = sup |U /)\V
o<t<T| Z vy

m(XV(0) XV(0)
v Vv

+ R6¥»57T + wE,T(E,T + ]lA@’E)TMV{,T) .

oo

n(XV() XY(t)
v Vv

n(XVE()  XV(t)
v %

> V)
oo
AXVE(u))du || > 1
y—=y' €R
1 )?;/( ,(0)
=V T,
978 4+ P | = sup |U, Z Z Z / At ysrry (YT (), Z(w))du || > v
0<t<T
- = TET\{A} 1 +y—1'+y’ er =1

980 +p¥oT. [
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Since for all ¢t € [0, 7]

t
/ A (XY () du < VAV
0

y—=y’
and
XY (0) +
S 0Y Y [ (Y@, Z)du < Vet
TeET\{A} T/+y—>7'”+y’eﬁ i=1 0
the proof is concluded by Lemma A.1. |

Proof of Theorem 5.8. Note that by Lemma 5.7 and by the fact that a(S) > 1
for all S € X in (5.6),

n(XV(h) XV _ |«xY(h) +va<h)
\% Vv - 14 1 4 1
) -
<+ g(oc(S) (XSV(O)+X¥(0))

Under the assumption that both XV (0) and XV (0) have finite expectation and con-
verge in probability to z*, and by the equivalence of norms in finite dimension, we
conclude there exists M € R such that

n(XV(h)  XV(h)

V V

sup E
VEZZ 1

]SM.

Hence, if v is as in Theorem A.5, we have that

iV,e,t
Az _ VvV
3

] <v+4+6Me 2

n(XV(h)  XV(h)

E
V Vv

sup
0<t<T

m(XV(0) XV(0)
v Vv

cAb _uevV
+6Me™= "3 —I-MP<

> u3> + MpV’E’T.
o

The proof is concluded if we can show that for all 7' € R and any arbitrary n > 0,
we can fix vy,v0,v3 € Ry and € € (0,m) such that v < 7 for large enough values
of V. Indeed, for any fixed ¢ € (0,m),T € R the other terms on the right-hand
side of the above inequality tend to zero as V' goes to infinity. To show that v can
be made smaller than 7, simply note that v, 5, v3 can be chosen as small as desired
among the positive real numbers, 6¥ =T tends to zero as V goes to infinity for all fixed
e € (0,m) by Assumption 3.1, and w™T tends to zero as ¢ tends to zero because the
functions Ar4y—,/4 are locally Lipschitz on 7 x RZ by Lemma 5.1. |

A.4. Proof of Theorem 5.5. Note that under the assumptions of Theorem 5.5,
for all t € [0,7] YV (t) converges in probability to Y (t) by Theorem 5.2. Hence, in
order to prove Theorem 5.5, we need to show relative compactness of {YV} as a
sequence of processes with sample paths in D7[0,T], and conclude by [10, Lemma
A2.1], stated here for convenience.
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1013 THEOREM A.6 (Lemma A2.1 in [10]). Consider a sequence of stochastic processes
1014 {UY'} with sample paths in Dg[0,T] defined on the same probability space. Suppose
1015 that {UV'} is relatively compact in Dg[0,T], (in the sense of convergence in distribu-
1016 tion) and that for a dense set H C [0,00), {U" (t)} converges in probability in E for
1017 each t € H. Then {U"'} converges in probability in Dg[0,T).

1018 To prove relative compactness of {YV'}, we use [11, Corollary 7.4, Chapter 3], which
1019  we state here for convenience.

1020 THEOREM A.7 (Corollary 7.4 in Chapter 3 of [11]). Let (E,r) be complete and
1021 separable, and let {UY'} be a sequence of stochastic processes with sample paths in
1022 Dg[O,T). Then {U"'} is relatively compact if and only if the following two conditions
1023 hold:
1. For every € > 0 and rational t > 0, there exists a compact set I'c ; C E such
that
liminf P(UY (t) € T.y) > 1 —e.
V—o0 ’

2. For every e >0 and T > 0, there exists § > 0 such that
limsup P(inf max sup  r(UY(s),UY(t)) >¢) <e,

V—oo {si} 7 S,tE[si—1,8)
1024 where {s;} ranges over all time sequences of the form 0 = sg < 81 < -++ <
1025 Sp—1 < T < sy, with miny<;<n(s; — $i-1) >0 and n > 1.
In our case, the topological space 7 with the distance induced by || - ||« is discrete,

complete, and separable. It is also compact, so the first condition in the theorem above
is always satisfied. Moreover, if a jump occurs at time ¢ then ||V (t—) =YV (#)||oc = 1.
Let ¢/ with i € Z>; denote the time of the ith jump of YV, let t§ = 0, and let TV
be the time of the last jump of YV in [0, T]. Then, as a direct consequence of
the theorem above we can state that the sequence of stochastic processes {YV'} with
sample paths in D7[O, T is relatively compact if and only if for all € > 0 there exists
0 > 0 such that

. . 14 \%4
h‘r/njilopp <j={r{1‘nTV(tj -t 1)< 5) <e.

1026 Fix 6 € Ryg and for all j € Z with —1 < j < T/0 let NJV"S be the number of jumps
1027 of YV in the interval [j/6, min{j/d + 26, T}]. The N]V’5 are introduced to control the
1028 time between jumps: whenever two jumps occur at times differing for less than 9,
1029 there necessarily exists an interval [j/d, min{j/§ + 26, T}] with j > 0 containing both
1030  of them. Also, whenever the time of a jump is smaller than ¢, then NY’{S > 1. Hence,
1031 for all v € Ry with v > m,

1032 P < min (¢ =tV }) < 5> <P <NY’15 >lor max N> 2)

j=1,...,TV j=1,..,1T/8] 7
L7/3]
1033 <P (NY’{S > 1) + 3 PN/ > 2)
j=1
XV v T v
1034 <P| sup ||—(t)—Z(t)]| >v)+PN"()>1)+—-P(N"(20) >2),
1035 o<i<T || V 00 5 |

1036 where NV is a Poisson process with rate

1037 B, = sup sup max E )‘g+ya§'+y/ (S, |Vz]),
Nei vT SeT o S L 7T :
=1 z2€Qf Sty—S 4y eR
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which is finite by Lemma 5.1. Hence, by Theorem 3.2

T
lim sup P ( min (t;/ - t}/_l) < 5) <(1—e %8+ 3(1 — e 2By _95B, e 2B,

V—oo

j=1,..,TV

which tends to 0 as § tends to 0. The proof is completed.
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