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The Convex Gaussian Min–Max Theorem (CGMT) has emerged as a
prominent theoretical tool for analyzing the precise stochastic behavior of
various statistical estimators in the so-called high-dimensional proportional
regime, where the sample size and the signal dimension are of the same or-
der. However, a well-recognized limitation of the existing CGMT machinery
rests in its stringent requirement on the exact Gaussianity of the design ma-
trix, therefore rendering the obtained precise high-dimensional asymptotics,
largely a specific Gaussian theory in various important statistical models.

This paper provides a structural universality framework for a broad class
of regularized regression estimators that is particularly compatible with the
CGMT machinery. Here, universality means that if a “structure” is satisfied
by the regression estimator μ̂G for a standard Gaussian design G, then it will
also be satisfied by μ̂A for a general non-Gaussian design A with independent
entries. In particular, we show that with a good enough �∞ bound for the
regression estimator μ̂A, any “structural property” that can be detected via the
CGMT for μ̂G also holds for μ̂A under a general design A with independent
entries.

As a proof of concept, we demonstrate our new universality framework in
three key examples of regularized regression estimators: the Ridge, Lasso and
regularized robust regression estimators, where new universality properties
of risk asymptotics and/or distributions of regression estimators and other
related quantities are proved. As a major statistical implication of the Lasso
universality results, we validate inference procedures using the degrees-of-
freedom adjusted debiased Lasso under general design and error distributions.
We also provide a counterexample, showing that universality properties for
regularized regression estimators do not extend to general isotropic designs.

The proof of our universality results relies on new comparison inequalities
for the optimum of a broad class of cost functions and Gordon’s max–min (or
min–max) costs, over arbitrary structure sets subject to �∞ constraints. These
results may be of independent interest and broader applicability.

1. Introduction.

1.1. Overview. Consider the standard linear model

Y = Aμ0 + ξ,(1.1)

where μ0 ∈ R
n is the signal of interest, A ∈ R

m×n is the design matrix, ξ ∈ R
m is the error

vector and Y ∈ R
m stands for the response vector. Here and below, we reserve the notation n

for signal dimension and m for sample size. We will be interested in understanding the precise
stochastic behavior of a broad class of regularized estimators (of μ0) taking the following
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generic form:

μ̂A ∈ arg min
μ∈Rn

{
1

m

m∑
i=1

ψ0
(
(Aμ)i − Yi

) + f(μ)

}
.(1.2)

Here, ψ0 :R →R≥0 is a loss function, and f :Rn →R≥0 is a structure-promoting regularizer
for μ0.

As a canonical example of the regularized regression estimators in (1.2), the Lasso estima-
tor μ̂L

A (cf. [70]) can be realized by taking ψ0(x) = x2/2 and f(μ) = λ‖μ‖1/m with a tuning
parameter λ > 0. A notable recent line of Lasso theory attempts to characterize its exact be-
havior under certain specific settings, in an “average” sense to be specified below. This line
(i) postulates an exact distributional assumption on the design matrix, where

A is a standard Gaussian design G with i.i.d. N (0,1/m) entries(1.3)

and (ii) works in the so-called “proportional regime,” where

the sample size m is proportional to the signal dimension n.(1.4)

In particular, [54] showed that under (1.3)–(1.4), among with other conditions, with the
(Gaussian) error ξ possessing a noise level σ > 0 and a tuning parameter λ, there exist
some σ∗, λ∗ > 0 such that the distribution of the Lasso estimator μ̂L

G can be identified as
η1(μ0 + σ∗Zn;λ∗) in the following sense:1 for any 1-Lipschitz function g : Rn →R, it holds
with high probability that

g
(
μ̂L

G/
√

n
) ≈ Eg

(
η1(μ0 + σ∗Zn;λ∗)/

√
n
)
.(1.5)

Here, η1 is the soft-thresholding function (formally defined in (1.9)), and Zn
d= N (0, In) is a

standard Gaussian vector in R
n. Typically, (1.5) is most informative when the test function g

takes certain average over the n coordinates (e.g., �2 norm).
The method of proof for (1.5) in [54] is based on a two-sided version of Gordon’s Gaus-

sian min–max theorem (cf. [32]) now known as the Convex Gaussian Min–Max Theorem
(CGMT) (cf. [64, 68]); see Theorem A.3 for a formal statement. The CGMT approach is a
flexible theoretical framework that reduces a given, complicated “primal min–max optimiza-
tion problem” involving a standard Gaussian design matrix, to a much simpler “Gordon’s
min–max optimization problem” involving Gaussian vectors only. For the Lasso estimator,
the CGMT machinery executed by [12, 54] substantially improves a weaker version of (1.5)
obtained in [5],2 by providing precise nonasymptotic descriptions of (1.5) and the distribu-
tions of other quantities associated with the Lasso. These results are not only theoretically
interesting in their own rights as they also provide an important foundation for statistical
inference using the Lasso estimator in the proportional regime (1.4).

The flexible and principled nature of the CGMT method has led to systematic progress
in understanding the precise risk/distributional behavior of canonical statistical estimators
across a wide array of important statistical models; see, for example, [12, 17, 33, 35, 38,
48, 51, 57, 61, 63, 68, 69, 73, 76, 77] for some samples. The power of the CGMT method is
further demonstrated in some of the above cited works that deal with either general correlated
Gaussian designs (cf. [12, 48, 51, 57]) or the “maximal” problem aspect ratio beyond the
proportional regime (1.4); cf. [33].

1Precisely, formulation (1.5) is taken from [12]; however, the proofs in [54] also lead to (1.5) with appropriate
modifications.

2The proof of a weaker version of (1.5) in [5] is based on the so-called state evolution analysis (cf. [4]) of an
approximate message passing (AMP) algorithm for Lasso that also relies crucially on the exact Gaussianity of the
design matrix as in (1.3).
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Unfortunately, while being a powerful theoretical tool, the CGMT machinery relies on the
Gaussianity of the design in an essential way via the use of Gaussian comparison inequalities
and, therefore, precise high-dimensional asymptotics results derived from the CGMT remain
largely a specific Gaussian theory.

The main goal of this paper is to provide a general universality framework for “struc-
tural properties” of regularized regression estimators (1.2) that is compatible with the CGMT
machinery. Here, universality means that if a “structure” is satisfied by μ̂G for a standard
Gaussian design G, then it will also be satisfied by μ̂A for a general non-Gaussian design
A with independent entries. A more concrete example for the prescribed structural univer-
sality is to establish the validity of the distribution (1.5) of the Lasso estimator for general
non-Gaussian designs.

As already hinted above, a major theoretical advantage of our universality framework
lies in its compatibility with the CGMT method. Roughly speaking, we show that, with a
good enough �∞ bound for μ̂A in (1.2), any structural property that can be detected via the
CGMT for μ̂G also holds for μ̂A under a general design A with independent entries. Due
to the widespread use of the CGMT approach as mentioned above, we expect our universal-
ity framework to be of much broader applicability beyond the examples worked out in the
current paper.

1.2. Structural universality framework. In the sequel, we will work with ŵA ≡ μ̂A − μ0
instead of μ̂A for consistent presentation with the main results in Sections 2 and 3. Clearly,

ŵA ∈ arg min
w∈Rn

Hψ0,f(w,A, ξ) ≡ arg min
w∈Rn

{
1

m

m∑
i=1

ψ0
(
(Aw)i − ξi

) + f(μ0 + w)

}
.(1.6)

Now we may formulate the universality problem precisely.

QUESTION 1. Take any “structural property” Tn ⊂ R
n such that P(ŵG ∈ Tn) ≈ 1. Then

is it true that P(ŵA ∈ Tn) ≈ 1 when the design matrix A has independent entries with match-
ing first two moments as those of G?

Our main abstract universality framework for the regularized regression estimator ŵA,
Theorem 3.1, answers the above question in the affirmative in the proportional regime (1.4),
provided the following hold:

(U0) The entries of A and ξ have “enough” moments, the loss function ψ0 is “self-similar”
and the regularizer f possesses “enough” continuity.

(U1) With high probability ‖ŵA‖∞ ∨‖ŵG‖∞ ≤ Ln for some Ln > 0 that grows mildly, say,
Ln = nε for small enough ε > 0.

(U2) P(ŵG ∈ Tn) ≈ 1 holds at the level of the cost function Hψ0,f: for some nonrandom z > 0
and small ρ0 > 0, with high probability

min
w∈T c

n

Hψ0,f(w,G, ξ) ≥ z + 2ρ0 > z + ρ0 ≥ min
w∈Rn

Hψ0,f(w,G, ξ).

Here, (U0) should be viewed as regularity conditions. In particular, Theorem 3.1 is estab-
lished for the square loss case and the (possibly nondifferentiable) robust loss case, but as
will be clear below, other loss functions ψ0 whose derivatives are “similar” to itself would
also work. Furthermore, the precise number of moments needed for A and ξ depends on the
choice of the loss function ψ0, and the moduli of continuity needed for f is almost minimal.
Consequently, the essential conditions to apply the machinery of Theorem 3.1 are (U1) and
(U2):
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• (U1) requires �∞ bounds for the regression estimator under both a standard Gaussian de-
sign G and the targeted design A. Heuristically, a near constant order �∞ bound is not too
surprising when the design A is nearly isotropic. For instance, if the risk stabilizes in the
sense ‖ŵA‖ = OP(

√
n) (which must hold true if any risk characterization is desired), due

to comparable magnitudes of A’s columns, it is natural to expect ŵA to be “delocalized”
in that each coordinate fluctuates roughly on the same order, that is, |(ŵA)j | = OP(1).

To formally verify (U1), a particular useful general method we adopt in this paper is
to study perturbations of ŵA by its column and row leave-one-out versions (cf. [23, 24]).
In essence, these leave-one-out perturbations are both close enough to ŵA while creating
sufficient independence that reduces the difficult coordinatewise controls for ŵA on a near
constant order, to the much easier problem of �2 norm controls on the (almost trivial) order
O(

√
n). This leave-one-out method appears most easily implemented in the presence of

strong convexity, but otherwise requires additional case specific techniques.
• (U2) requires high probability detection of the structural property Tn for ŵG via the cost

function Hψ0,f. A particularly appealing feature of (U2) lies in its compatibility with the
CGMT approach, as one then only needs to verify for the simpler Gordon’s problem a
constant order gap (= ρ0) between its cost optimum over T c

n and the global cost optimum
(= z).

In summary, for a given structural universality problem of ŵA, once a good enough �∞ bound
is verified, the problem is almost completely reduced to the standard Gaussian design in
which the powerful CGMT can be directly applied.

1.3. Examples. As a proof of concept, we apply the aforementioned universality frame-
work to three canonical examples of regularized regression estimators (1.2) in the linear
model (1.1), namely:

(E1) the Ridge estimator,
(E2) the Lasso estimator and
(E3) regularized robust regression estimators.

In particular, we prove that the �∞ bounds required in (U1) hold for all the above three
examples (under appropriate moment conditions on A and ξ ) and, therefore, universality
holds for any structural properties Tn of these estimators that can be verified under a standard
Gaussian design in the sense of (U2).

For the Lasso estimator, our distributional universality of μ̂L
A shows that (1.5) is valid

with g(μ̂L
G/

√
n) replaced by g(μ̂L

A/
√

n) for any 1-Lipschitz function g : Rn → R. Using the
same formulation as (1.5), universality is also confirmed for the distributions of the Lasso
residual r̂L

A ≡ Y − Aμ̂L
A as a scaled convolution of ξ and an extra Gaussian noise of the

subgradient v̂L
A ≡ λ−1A�(Y − Aμ̂L

A) as a random variable taking value in the hypercube
[−1,1]n, and of the sparsity ŝL

A ≡ ‖μ̂L
A‖0/n as a discrete random variable; see Theorem 3.8

for precise statements. Similar distributional universality properties are proved for the Ridge
estimator and its residual; see Theorem 3.4 for details. Using these Lasso universality results,
we further verify asymptotic normality of the so-called degrees-of-freedom (dof) adjusted
debiased Lasso (cf. [9, 10, 12, 43, 54]) under general design and error distributions; see
Theorem 3.9 for details. This universality result validates statistical inference procedures
based on dof adjusted debiased Lasso methodologies in the proportional regime (1.4) beyond
the exclusive focus on Gaussian designs in previous works (cited above).

It is worth mentioning that using the CGMT machinery (or AMP techniques), the emer-
gence of the Gaussian component in (1.5) for μ̂L

A (or other quantities above) is crucially tied
to the Gaussianity of the design matrix. As such, an interesting conceptual consequence of
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our universality results is to retrieve—in the challenging proportional regime (1.4)—the “tra-
ditional wisdom” that the Gaussianity in μ̂L

A origins from aggregation effects of the errors
(or the design entries for some of the other quantities) rather than the specificity of design
distributions.

For robust regression estimators, our universality results in Theorems 3.10 and 3.12, al-
though proved using the general purpose universality framework, compare favorably to pre-
vious attempts by [23, 24] using problem-specific techniques. In particular, [23, 24] require
strong regularity conditions on the loss function that exclude the canonical Huber/absolute
losses, along with a strong exponential moment condition on the design. In contrast, our re-
sults hold under a wide range of nonsmooth robust loss functions (including the canonical
Huber/absolute losses), a much weaker 6 + ε moment assumption on the design matrix A,
and no moment assumption on the error ξ .

1.4. Universality of general cost optimum. The proof of our universality framework re-
lies on comparison inequalities for the optimum of the cost function w �→ Hψ0,f(w,A, ξ)

over a generic structure set Sn ⊂ R
n. In particular, we show that for any structure set

Sn ⊂ [−Ln,Ln]n with Ln ≥ 1 growing mildly,

Eg
(

min
w∈Sn

Hψ0,f(w,A, ξ)
)

≈ Eg
(

min
w∈Sn

Hψ0,f(w,B, ξ)
)

for all g ∈ C3(R),(1.7)

whenever (i) the design matrices A, B possess independent entries with matching first two
moments to the standard Gaussian design G in (1.3), (ii) the loss function ψ0 grows mildly
at ∞ and its derivatives satisfy certain “self-similarity” properties and (iii) f enjoys a certain
degree of continuity; see Theorem 2.3 for a formal statement that holds for a more general
class of cost functions.

The proof of the comparison inequality (1.7) is based on the quantitative Lindeberg’s
method (cf. [13]), coupled with an almost dimension-free third derivative bound for every
Sn with the prescribed �∞ constraint. The �∞ constraint plays a crucial role in circumvent-
ing the undesirable yet unavoidable logarithmic dependence on the “effective size” in the
minimum that scales exponentially in n, previously obtained in the high-dimensional cen-
tral limit theorem literature (see, e.g., [15] for a recent review). These techniques are further
generalized to a class of Gordon’s max–min (or min–max) cost optimum. Let Xn(u,w;A) ≡
m−1u�Aw + Qn(u,w). We show that for any pair of structure sets Su ⊂ [−Lu,Lu]m and
Sw ⊂ [−Lw,Lw]n with Lu,Lw ≥ 1 growing mildly,

Eg
(

max
u∈Su

min
w∈Sw

Xn(u,w;A)
)

≈ Eg
(

max
u∈Su

min
w∈Sw

Xn(u,w;B)
)

for all g ∈ C3(R),(1.8)

again whenever (i) the design matrices A, B possess independent entries with matching first
two moments to the standard Gaussian design G in (1.3) and (ii) Qn enjoys a certain degree
of continuity; see Theorem 2.5 and Corollary 2.6 for formal statements. In the regression ex-
amples we study here, we use the comparison inequality (1.8) to derive universality properties
beyond the regression estimator itself, but we also expect it to be of broader applicability in
view of its intimate resemblance to the “primal optimization problem” in the CGMT machin-
ery (cf. Theorem A.3).

1.5. Related literature and nonuniversality for general isotropic designs. A number of
universality results are obtained for design matrices consisting of independent entries in the
proportional regime (1.4). The work [46] obtained, among other results, asymptotic univer-
sality of box-constrained Lasso cost optimum; [56] obtained asymptotic universality for the
elastic net; [60] obtained asymptotic universality for certain special test functions applied to
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the least squares regression coefficients with strongly convex penalties, along with some re-
sults on Lasso, see Section 3.3 for a more detailed comparison. The work [23, 24] obtained
universality of precise risk asymptotics and residual distributions in the context of robust re-
gression. On related topics, universality results for various quantities of interest are obtained
in [1, 3, 59] for noiseless random linear inverse problems, and in [3, 14, 21, 22, 25, 74] for a
class of AMP algorithms. To the best of our knowledge, none of these methods are generally
compatible with the CGMT, and nor are applicable for studying universality properties of the
broad class of regularized regression estimators (1.2).

Going beyond independent components, universality results are also obtained in several
interesting models, under designs (features) whose rows have matching first two moments.
For instance, [39] obtained asymptotic universality results concerning training/generalization
errors in the random feature model, between non-Gaussian features (nonlinear transforms of
underlying Gaussian feature matrix and input vector) and “linearized” Gaussian features, thus
verifying a so-called Gaussian equivalence conjecture (cf. [28, 31, 51]). The work [58] ob-
tained further asymptotic universality results for these errors, under an “asymptotic Gaussian”
assumption on the feature vectors (see Assumption 6 therein), that apply to other significant
models including the two-layer neural tangent model. The work [27] obtained universality
for the training loss of ridge regularized generalized linear classification with random labels,
under a similar asymptotic Gaussian assumption (see Assumption 4 therein). These results
motivate the natural question.

QUESTION 2. Do the foregoing structural universality properties for regularized regres-
sion estimators (1.2) proved for entrywise independent designs, extend to isotropic designs
or more general row independent designs with matching first two moments?

In Section 3.5, we answer the above question in the negative, by showing that risk univer-
sality for the simple ordinary least squares estimator in the basic linear model (1.1) already
fails to hold under an explicitly constructed row independent isotropic design. As will be clear
therein, the failure of risk universality is intrinsically due to a well-known fact in random ma-
trix theory—the spectrum of the sample covariance matrix does not exhibit universality for
general i.i.d. samples of isotropic random vectors. Simulation results in Section 3.6 further
confirm this risk nonuniversality phenomenon for the Ridge and Lasso estimators under the
same isotropic design used in the construction of the counterexample.

Universality results of a different nature, for instance under rotational invariance assump-
tions on the design matrix, are obtained in [29] for a class of regularized least squares prob-
lems with convex penalties (depending on the universality target, strong convexity may be
required), and in [30] for a broader class of generalized linear estimation problems.

1.6. Organization. The rest of the paper is organized as follows. Section 2 presents com-
parison inequalities for general cost optimum in (1.7) and Gordon’s min–max cost optimum
in (1.8). As an application of these comparison inequalities, we establish the structural uni-
versality framework in Section 3.1. Examples on the Ridge, Lasso and regularized robust
regression estimators are detailed in Sections 3.2–3.4. The nonuniversality counterexample
is given in Section 3.5. Simulation results that confirm both universality and nonuniversal-
ity results are provided in Section 3.6. Most proofs are collected in Sections 4–7 and the
appendices in the Supplementary Material [34].

1.7. Notation. For any positive integer n, let [n] = [1 : n] denote the set {1, . . . , n}. For
a, b ∈ R, a ∨ b ≡ max{a, b} and a ∧ b ≡ min{a, b}. For a ∈ R, let a± ≡ (±a) ∨ 0. For
a > 0, let log+(a) ≡ 1 ∨ log(a). For x ∈ R

n, let ‖x‖p denote its p-norm (0 ≤ p ≤ ∞),
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and Bn;p(R) ≡ {x ∈ R
n : ‖x‖p ≤ R}. We simply write ‖x‖ ≡ ‖x‖2 and Bn(R) ≡ Bn;2(R).

For a matrix M ∈ R
m×n, let ‖M‖op denote the spectral norm of M . For a measurable map f :

R
n →R, let ‖f ‖Lip ≡ supx �=y |f (x)−f (y)|/‖x −y‖. f is called L-Lipschitz iff ‖f ‖Lip ≤ L.
We use Cx to denote a generic constant that depends only on x, whose numeric value may

change from line to line unless otherwise specified. a �x b and a �x b mean a ≤ Cxb and
a ≥ Cxb, respectively, and a �x b means a �x b and a �x b (a � b means a ≤ Cb for some
absolute constant C). For two nonnegative sequences {an} and {bn}, we write an � bn (resp.,
an � bn) if limn→∞(an/bn) = 0 (resp., limn→∞(an/bn) = ∞). We follow the convention
that 0/0 = 0. O and o (resp., OP and oP) denote the usual big and small O notation (resp., in
probability).

For a proper, closed convex function f defined on R, its Moreau envelope ef (·; τ) and
proximal operator proxf (·; τ) for any τ > 0 are defined by

ef (x; τ) ≡ min
z∈R

{
1

2τ
(x − z)2 + f (z)

}
, proxf (x; τ) ≡ arg min

z∈R

{
1

2τ
(x − z)2 + f (z)

}
.

Finally, let for p > 0, z ∈ R, λ ≥ 0,

ηp(z;λ) ≡ arg min
x∈Rn

{
1

2
‖z − x‖2 + λ · ‖x‖p

p

p

}
= prox‖·‖p

p/p(z;λ).(1.9)

We will only use p = 1,2 in this paper.

2. Universality of general cost optimum.

2.1. Basic setup and assumptions. Let A ∈ R
m×n be a m × n matrix, ψi : R → R≥0,

f :Rn →R be measurable functions, and

Hψ(w,A) ≡ 1

m

m∑
i=1

ψi

(
(Aw)i

) + f(w).(2.1)

Let H̄ψ ≡ m ·Hψ be the unnormalized version of Hψ . We will be interested in the universality
properties related to the optimum and optimizers of Hψ with respect to the law of the random
matrix A (with independent entries).

First, we formalize the precise meaning of the “proportional regime” in (1.4).

ASSUMPTION I (Proportional regime). τ ≤ m/n ≤ 1/τ holds for some τ ∈ (0,1).

Next, we state the assumptions on the loss functions {ψi}.
ASSUMPTION II (Loss function). There exist reals q� ≥ 0 (� = 0,1,2,3), constants ρ̄ ∈

(0,1], {Lψi
≥ 1 : i ∈ [m]} and two measurable functions Dψ,Mψ : (0, ρ̄) →R≥0, Mψ(ρ) ≤

1 ≤ Dψ(ρ), with the following properties:

1. ψi’s grow at mostly polynomially in the sense that for i ∈ [m],
sup
x∈R

|ψi(x)|
1 + |x|q0

≤ Lψi
.

2. Smooth approximations {ψi;ρ : R → R≥0}ρ∈(0,ρ̄) of ψi exist so that (i) ψi;ρ ∈ C3(R),
(ii) maxi∈[m]‖ψi;ρ − ψi‖∞ ≤ Mψ(ρ) and (iii) derivatives of {ψi;ρ} satisfy the following
self-bounding property:

max
�=1,2,3

max
i∈[m] sup

x∈R
|∂�ψi;ρ(x)|

1 + |ψi;ρ(x)|q�
≤ Dψ(ρ).
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The first requirement (1) says that ψi cannot grow too fast at ∞. The constants Lψi
will

be important as well; in applications to regression problems in Section 3, these constants are
typically related to the moment of the “errors.” The thrust of the second requirement (2) is
that the form of the derivatives of (smoothed versions of) ψi should be “similar” to itself. Its
statement appears however slightly involved; the purpose of this is to include nonsmooth loss
functions that occur frequently in robust regression problems.

For later purposes, we define

q ≡ max{q3, q1 + q2,3q1}, q̄ ≡ q0q + 3.(2.2)

We now give two examples of loss functions {ψi} that satisfy Assumption II above.

EXAMPLE 2.1 (Square-type loss). Let ψi(x) ≡ (x−ξi)
2s for some real ξi ∈ R and s ∈ N.

It is easy to verify Assumption II with ψi;ρ ≡ ψi , q0 = 2s, Lψi
= C(1 + ξ2s

i ), q� = (2s −
�)+/(2s) for � = 1,2,3 and Dψ(·) ≡ C, Mψ(·) ≡ 0 for some constant C > 1 depending on
s only. As no smoothing is required, the choice of ρ̄ is arbitrary. In the most common square
loss case (s = 1), q = 3/2 and q̄ = 6.

EXAMPLE 2.2 (Robust loss). Let ψi(x) ≡ ψ0(x−ξi) for some absolute continuous func-
tion ψ0 : R → R≥0 with |ψ0(0)| ∨ ess sup|ψ ′

0| ≤ L0, and real ξi ∈ R. Under this condition,
Assumption II-(1) is satisfied with q0 = 1 and Lψi

= CL0(1 + |ξi |) for some absolute con-
stant C > 1. Two concrete examples:

• (Least absolute loss) ψ0(x) = |x|, so q0 = 1, L0 = 1, Lψi
= C(1 + |ξi |).

• (Huber loss) For any η > 0, let ψ0(x;η) ≡ (x2/2)1|x|≤η +(η|x|−(η2/2))1|x|>η, so q0 = 1,
L0 = η, Lψi

= Cη(1 + |ξi |).
Consider the smooth approximation ψi;ρ(x) ≡ Eψ0(x − ξi + ρZ), where Z ∼ N (0,1)

and ρ ∈ (0,1). Lemma B.1 entails that Assumption II is satisfied with q1 = q2 = q3 = 0,
Dψ(ρ) = C ·L0/ρ

2, Mψ(ρ) = C ·L0ρ and ρ̄ = 1/(CL0) for some absolute constant C > 1.
Consequently, q = 0 and q̄ = 3.

Finally, we state the assumption on the random design matrix A.

ASSUMPTION III (Design matrix). Let A ≡ A0/
√

m, where A0 ∈ R
m×n is a random

matrix with independent entries {A0;ij } such that EA0;ij = 0, EA2
0;ij = 1 for all i ∈ [m],

j ∈ [n] and M ≡ maxi∈[m],j∈[n]E|A0;ij |q̄ < ∞ (q̄ defined in (2.2)).

Here, A0 is the standardized version of A with entrywise variance 1. The variance scaling
1/m (or equivalently 1/n under Assumption I) is quite common in the high-dimensional
asymptotics literature; see, for example, [2, 5, 10, 11, 17, 20, 24, 33, 35, 47, 48, 51, 52, 54,
55, 57, 61, 65, 68, 69, 73, 76] for an incomplete list of recent statistical papers on this topic.

2.2. Universality of the optimum. First, we establish universality of the cost optimum
minw∈Sn Hψ(w,A) with respect to A, over an arbitrary structure set Sn that is “compact” in
an �∞ sense. Its proof can be found in Section 4.2.

THEOREM 2.3. Suppose Assumptions I and II hold. Let A0,B0 ∈ R
m×n be two random

matrices with independent components, such that EA0;ij = EB0;ij = 0 and EA2
0;ij = EB2

0;ij
for all i ∈ [m], j ∈ [n]. Further assume that

M ≡ max
i∈[m],j∈[n]

(
E|A0;ij |q̄ +E|B0;ij |q̄)

< ∞.
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Let A ≡ A0/
√

m and B ≡ B0/
√

m. Then there exists some C0 = C0(τ, q,M) > 0 such that
the following hold:3 For any Sn ⊂ [−Ln,Ln]n with Ln ≥ 1, and any g ∈ C3(R), we have∣∣∣Eg

(
min
w∈Sn

Hψ(w,A)
)

−Eg
(

min
w∈Sn

Hψ(w,B)
)∣∣∣ ≤ C0 · Kg · rf(Ln).

Here, Kg ≡ 1 + max�∈[0:3]‖g(�)‖∞, and rf(Ln) is defined by

rf(Ln) ≡ inf
ρ∈(0,ρ̄)

{
Mψ(ρ)

+ D3
ψ(ρ) inf

δ∈(0,ωn)

[
Nf(Ln, δ) + avg1/3({

L
q
ψi

}) · L
q̄/3
n log2/3

+ (Ln/δ)

n1/6

]}
,

where ωn ≡ n−(q0q1+4)/2, avg({Lq
ψi

}) ≡ m−1 ∑m
i=1 L

q
ψi

and

Nf(Ln, δ) ≡ sup
∣∣f(w) − f

(
w′)∣∣

with the supremum taken over all w,w′ ∈ [−Ln,Ln]n such that ‖w − w′‖∞ ≤ δ. Conse-
quently, for any z ∈R, ε > 0,

P

(
min
w∈Sn

Hψ(w,A) > z + 3ε
)

≤ P

(
min
w∈Sn

Hψ(w,B) > z + ε
)

+ C1
(
1 ∨ ε−3)

rf(Ln).

Here, C1 > 0 is an absolute multiple of C0.

The strength of Theorem 2.3 rests in allowing arbitrary structure sets Sn ⊂ [−Ln,Ln]n,
where Ln grows slowly enough in the high-dimensional limit n → ∞.

To put this result in a broader context, Theorem 2.3 is closely related to recent devel-
opments on the high-dimensional central limit theorems (see, e.g., the review article [15]
for many references). This line of works considers universality of the maxima Sm(X) ≡
max1≤j≤p m−1/2 ∑m

i=1 Xij (or its variants), where X ≡ {Xi ∈ R
p} contains m independent

p-dimensional random vectors Xi’s. A crucial step therein is to exploit the �∞-like struc-
ture, that is, the maximum over j ∈ [p], so that the resulting Berry–Esseen bounds scale as
a multiple of (loga p/m)b, with the optimal choice a = 3, b = 1/2 (e.g., [16, 26, 50]). The
situation in Theorem 2.3 is more subtle: in the proportional regime m � n, the typical “effec-
tive dimension p” of Sn in the minimum scales as logp � n � m, so existing techniques in
the above references do not (cannot) yield meaningful bounds. Inspired by the derivative cal-
culations in [46, 59] embedded in the quantitative Lindeberg’s method (cf. [13, 49]), here we
get around this issue by providing an almost dimension-free third derivative bound along the
entire Lindeberg path, using essentially the �∞ constraint on Sn; see Section 4.2 for details.

Of course, there is no a priori reason to believe that the exponent 1/6 in the rate rf(Ln) is
optimal. In view of the recent progress in high-dimensional central limit theorems mentioned
above, we conjecture that the optimal exponent is 1/2. While theoretically interesting, we
are however not aware of practical merits of this potential improvement in the applications in
Section 3.

2.3. Universality of the optimizer. Next, we will establish universality properties for the
optimizer of the cost function w �→ Hψ(w,A), defined as any minimizer

ŵA ∈ arg min
w∈Rn

Hψ(w,A).(2.3)

Recall the standard Gaussian design G in (1.3). The following result is proved in Section 4.3.

3Here, we abbreviate “C0 depends on {q� : � ∈ [0 : 3]} in Assumption II” as “C0 depends on q ,” and simply
write “C0 = C0({q� : � ∈ [0 : 3]})′’ as “C0 = C0(q).” The same convention will be adopted in the statements of
other results.
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THEOREM 2.4. Suppose Assumptions I, II and III hold. Fix a measurable subset Sn ⊂
R

n. Suppose there exist z ∈R, ρ0 > 0, Ln ≥ 1 and εn ∈ [0,1/4) such that the following hold:

(O1) Both ‖ŵG‖∞ and ‖ŵA‖∞ grow mildly in the sense that

P
(‖ŵG‖∞ > Ln

) ∨ P
(‖ŵA‖∞ > Ln

) ≤ εn.

(O2) ŵG violates the structural property Sn in the sense that

P

(
min
w∈Rn

Hψ(w,G) ≥ z + ρ0

)
∨ P

(
min
w∈Sn

Hψ(w,G) ≤ z + 2ρ0

)
≤ εn.

Then ŵA also violates Sn with high probability:

P(ŵA ∈ Sn) ≤ 4εn + C0
(
1 ∨ ρ−3

0

)
rf(Ln).

Here, rf(Ln) is defined in Theorem 2.3, and C0 > 0 depends on τ , q , M only.

Here, Sn is regarded as the “exceptional set” into which the optimizer ŵA is unlikely to
fall. As mentioned in the Introduction, while condition (O1) typically requires application-
specific techniques, this will be verified in a unified manner via “leave-one-out” techniques
in the regression examples in Section 3. To verify condition (O2), z is usually regarded as
the “high-dimensional limit” of the global minimum minw∈Rn Hψ(w,G), while ρ0 > 0 is a
small enough constant (typically of constant order) that guarantees the cost function admits a
strict gap between the global optimum and the optimum over the exceptional set Sn; see the
discussion after Theorem 3.1 for more details in applications to regression problems.

2.4. Universality of the Gordon’s max–min (min–max) cost optimum. The techniques
in proving Theorem 2.3 can be generalized to establish universality for Gordon’s max–min
(min–max) cost optimum, defined as below. Let for u ∈ R

m, w ∈ R
n, A ∈ R

m×n and a mea-
surable function Q :Rm ×R

n →R,

X(u,w;A) ≡ u�Aw + Q(u,w).(2.4)

THEOREM 2.5. Let A,B ∈ R
m×n be two random matrices with independent entries and

matching first two moments, that is, EA�
ij = EB�

ij for all i ∈ [m], j ∈ [n], � = 1,2. There
exists a universal constant C0 > 0 such that the following hold. For any measurable subsets
Su ⊂ [−Lu,Lu]m, Sw ⊂ [−Lw,Lw]n with Lu,Lw ≥ 1, and any g ∈ C3(R), we have∣∣∣Eg

(
max
u∈Su

min
w∈Sw

X(u,w;A)
)

−Eg
(

max
u∈Su

min
w∈Sw

X(u,w;B)
)∣∣∣

≤ C0 · Kg · inf
δ∈(0,1)

{
M1Lδ + NQ(L, δ) + log2/3

+ (L/δ) · (m + n)2/3M
1/3
3 L2}

.

Here, Kg ≡ 1+max�∈[0:3]‖g(�)‖∞, L ≡ Lu +Lw , M� ≡ ∑
i∈[m],j∈[n](E|Aij |� +E|Bij |�) and

NQ(L, δ) ≡ sup
∣∣Q(u,w) − Q

(
u′,w′)∣∣

with the supremum taken over all u,u′ ∈ [−L,L]m, w,w′ ∈ [−L,L]n such that ‖u−u′‖∞ ∨
‖w − w′‖∞ ≤ δ. The conclusion continues to hold when max–min is flipped to min–max.

The proof of the above theorem can be found in Section 4.4. Due to widespread appli-
cations of the CGMT in the theoretical analysis of high-dimensional/overparametrized sta-
tistical models (as mentioned in the Introduction), we expect Theorem 2.5 to be useful in
establishing universality properties for statistical estimators in other high-dimensional prob-
lems beyond the ones considered in this paper. Pertinent to this paper, this result will also be
useful in some of the applications in Section 3 below.

To facilitate easy applications of Theorem 2.5, below we work out a particularly useful
version where the design matrices have centered entries with variance 1/m. Its proof is con-
tained in Section 4.5.
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COROLLARY 2.6. Suppose Assumption I holds. Let A0,B0 ∈ R
m×n be two random ma-

trices with independent entries, EA�
0,ij = EB�

0,ij = 1�=2 for all i ∈ [m], j ∈ [n], � = 1,2 and

M0 ≡ maxi∈[m],j∈[n](E|A0,ij |3 +E|B0,ij |3) < ∞. Let A ≡ A0/
√

m, B ≡ B0/
√

m and recall

Xn(u,w;A) = 1

m
u�Aw + Qn(u,w).

Then there exists C0 = C0(τ,M0) > 0 such that for any measurable subsets Su ⊂ [−Lu,

Lu]m, Sw ⊂ [−Lw,Lw]n with Lu,Lw ≥ 1 and any g ∈ C3(R), we have∣∣∣Eg
(

max
u∈Su

min
w∈Sw

Xn(u,w;A)
)

−Eg
(

max
u∈Su

min
w∈Sw

Xn(u,w;B)
)∣∣∣

≤ C0 · Kg · rn, with rn ≡ inf
0<δ≤n−1

{
NQn(L, δ) + L2 log2/3(L/δ)

n1/6

}
.

Here, Kg ≡ 1 + max�∈[0:3]‖g(�)‖∞ and L ≡ Lu + Lw . Consequently,

P

(
max
u∈Su

min
w∈Sw

Xn(u,w;A) > z + 3ε
)

≤ P

(
max
u∈Su

min
w∈Sw

Xn(u,w;B) > z + ε
)

+ C1
(
1 ∨ ε−3)

rn

holds for any z ∈ R and ε > 0. Here, C1 > 0 is an absolute multiple of C0. The conclusion
continues to hold both when (i) max–min is flipped to min–max and (ii) there exists some set
S ⊂ [m] × [n] such that Aij = Bij = 0 for (i, j) ∈ S.

The extension to scenario (ii) will be useful in situations where the drift function Qn

contains a certain extra variable, say, v over which the maximum is also taken. This will be
used in the proof of some applications (in particular, the distribution of Lasso subgradient) in
Section 3.

3. Applications to high-dimensional regression.

3.1. General regression setting. In the linear regression model (1.1), recall A = A0/
√

m

and we also write ξ = σξ0, where the variance of the entries of A0 and ξ0 are standardized to
be 1. Further recall that μ̂A ≡ μ0 + ŵA, where the estimator of interest μ̂A is defined in (1.2)
and ŵA is defined in (1.6).

Below we will work out Theorem 2.4 in the above regression setting for the square loss
ψ0(x) = x2/2 (Example 2.1) and the robust loss ψ0 (Example 2.2). While we do not pursue
the most general possible form here, adaptation to other loss functions is straightforward.

THEOREM 3.1. Consider the above regression setting with either (i) square loss ψ0(x) =
x2/2 or (ii) robust loss ψ0 satisfying |ψ0(0)| ∨ ess sup|ψ ′

0| ≤ L0 for some L0 > 0. Suppose
Assumption I holds, Assumption III holds with

M ≡
⎧⎪⎨⎪⎩

max
i,j

E|A0;ij |6 < ∞ square loss case;
max
i,j

E|A0;ij |3 < ∞ robust loss case,

and ξ0 has independent components that are also independent of A0. Further assume that
there exists some Kf > 1 such that

logNf(L, δ) ≤ Kf(logL + logn) − log(1/δ)/Kf ∀L ≥ 1, δ ∈ (0,1).(3.1)
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Fix a measurable subset Sn ⊂ R
n. Suppose there exist z ∈ R, ρ0 > 0, 1 ≤ Ln ≤ n and εn ∈

[0,1/4) such that (O1) in Theorem 2.4 is fulfilled under the joint probability of (A, ξ) and
(G, ξ), and (O2) fulfilled for Hψ0,f(·,G, ξ) under the joint probability of (G, ξ). Then under
the joint probability of (A, ξ),

P(ŵA ∈ Sn) ≤ 4εn + C0
(
1 ∨ ρ−3

0

)⎧⎪⎪⎨⎪⎪⎩
M

1/3
ξ

L2
n log2/3 n

n1/6 square loss case;(
Ln log2/3 n

n1/6

)1/7
robust loss case.

Here, Mξ ≡ 1 + m−1 ∑m
i=1 E|σξ0,i |3. The constant C0 > 0 depends on τ , M , Kf only in the

square loss case and depends further on L0 in the robust loss case.

The condition (3.1) on the penalty function f is imposed here to simplify the final bound,
and is easily verified as long as f has some degree of global moduli of continuity. The major
nontrivial condition is the �∞ bounds for ŵA and ŵG required in (O1). In the examples to be
detailed below, we will use the so-called “leave-one-out” method to establish the desired �∞
bounds. Formally, we study perturbation of ŵA by (i) its column leave-one-out version

ŵ
(s)
A ≡ arg min

w∈Rn:ws=0

{
1

m

m∑
i=1

ψ0
(
(Aw)i − ξi

) + f(μ0 + w)

}
, s ∈ [n]

and (ii) its row leave-one-out version

ŵ
[t]
A ≡ arg min

w∈Rn

{
1

m

∑
i∈[m],i �=t

ψ0
(
(Aw)i − ξi

) + f(μ0 + w)

}
, t ∈ [m].

Intuitively, both ŵ
(s)
A and ŵ

[t]
A should be very close to ŵA for designs A with independent

entries. We will show that indeed in many examples the orders of ‖ŵ(s)
A − ŵA‖, ‖ŵ[t]

A − ŵA‖
are almost OP(1), while the typical order of ‖ŵA‖ is OP(n1/2). The independence of ŵ

(s)
A

(resp., ŵ
[t]
A ) with respect to the sth column (resp., t th row) of A will then play a crucial role

in establishing elementwise bounds for ŵA.
The method described above is closely related to the one used in [24] under the name

“leave-one-observation/predictor out approximations” (also known as cavity method in sta-
tistical physics [53, 66, 67]); see also [44, 56] for related techniques.

Once the �∞ bound condition (O1) is verified, we then only need to study the behavior
of ŵG for the standard Gaussian design G (1.3) with i.i.d. N (0,1/m) entries, by creating
an O(1) gap between minw∈Sn Hψ0,f(w,G, ξ) over the “exceptional set” Sn and the global
optimum minw∈Rn Hψ0,f(w,G, ξ), where the choice of Sn reflects certain property of the
estimator that we try to understand. Such a goal is particularly amenable to analysis via the
CGMT, as it reduces the analysis of Hψ0,f(w,G, ξ) that involves a standard Gaussian design
matrix G to a Gordon problem that involves two Gaussian vectors only. The desired gap can
then be created by exploiting the (local) strong convexity of the Gordon problem.

PROOF OF THEOREM 3.1. By the assumed moduli of continuity in f, we may take δ =
(Lnn)−Kf−1 in the definition of rf(Ln). Now we apply Theorem 2.4 first conditionally on ξ

and then take expectation. There in the square loss case, Lψi
= C(1 + ξ2

i ), q = 3/2, q̄ = 6,
Dψ(ρ) ≡ C and Mψ(ρ) = 0, so

rf(Ln) � M
1/3
ξ · L2

n log2/3(nLn)

n1/6 .
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In the robust loss case, Lψi
= CL0(1 + |ξi |), q = 0, q̄ = 3, Dψ(ρ) ≡ CL0/ρ

2, Mψ(ρ) =
CL0ρ and ρ̄ = 1/(CL0), so

rf(Ln) �L0 inf
ρ∈(0,c′)

{
ρ + ρ−6 Ln log2/3(nLn)

n1/6

}
�L0

(
Ln log2/3(nLn)

n1/6

)1/7
.

In both displays, the term log2/3(nLn) � log2/3 n thanks to 1 ≤ Ln ≤ n. �

3.2. Example I: Ridge regression. In this section, we consider universality properties for
the Ridge estimator [37]. Formally, let the Ridge cost function be

H̄R(w,A, ξ) ≡ 1

2
‖Aw − ξ‖2 + λ

2

(‖w + μ0‖2 − ‖μ0‖2)
,(3.2)

and its normalized version HR ≡ H̄R/m. Here, the constant term −λ‖μ0‖2/2 is added to
simplify the expression of the Gordon cost function. The Ridge solution is given by μ̂R

A =
ŵR

A + μ0 with

ŵR
A ≡ arg min

w∈Rn

HR(w,A, ξ) = (
A�A + λI

)−1(
A�ξ − λμ0

)
.(3.3)

We will work with the following conditions instead of referring back to the assumptions listed
in Section 2:

(R1) τ ≤ m/n ≤ 1/τ holds for some τ ∈ (0,1), and λ > 0.
(R2) ‖μ0‖2/n ≤ M2 for some M2 > 0.
(R3) A0 = √

mA and ξ0 = ξ/σ are independent, and their entries are all independent, mean
0, variance 1 and uniformly sub-Gaussian variables.

The precise mathematical meaning of uniform sub-Gaussianity in (R3) is that

sup
n

max
i∈[m],j∈[n]

(‖A0,ij‖ψ2 + ‖ξ0,i‖ψ2

)
< ∞,

where ‖·‖ψ2 is the Orlicz-2 norm or the sub-Gaussian norm (definition see [72], Section 2.1).
The following theorem establishes the generic universality of ŵR

A with respect to the design
matrix A. All proofs in this section can be found in Section 5.

THEOREM 3.2. Suppose (R1)–(R3) hold. Fix Sn ⊂ R
n. Suppose there exist z ∈ R, ρ0 > 0

and εn ∈ [0,1/4) such that

P

(
min
w∈Rn

HR(w,G, ξ) ≥ z + ρ0

)
∨ P

(
min
w∈Sn

HR(w,G, ξ) ≤ z + 2ρ0

)
≤ εn.(3.4)

Then there exists some K = K(σ,λ, τ,M2) > 0 such that

P
(
ŵR

A ∈ Sn

) ≤ 4εn + K · (
1 ∨ ρ−3

0

)(
1 ∨ ‖μ0‖2∞

) · n−1/6 log2 n.

The sub-Gaussian moments in (R3) are assumed for simplicity; easy modifications of the
proofs allow for weaker conditions, for example, the existence of high enough moments,
at the cost of a possible worsened probability bound. We do not pursue these nonessential
refinements here for clarity of presentation and proofs.

The key to the proof of Theorem 3.2 is the following �∞ bound (and other risk bounds)
for ŵR

A, which may be of independent interest.

PROPOSITION 3.3. Assume the same conditions as in Theorem 3.2. Then the following
hold with probability at least 1 − Cn−100 with respect to the randomness of (A, ξ):
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1. (Prediction risk) ‖AŵR
A‖2 ≤ K · n.

2. (�∞ risk) ‖ŵR
A‖∞ ≤ K

√
logn + 2‖μ0‖∞.

3. (Prediction �∞ risk) ‖AŵR
A‖∞ ≤ K

√
logn.

Here, C,K > 0 depend on σ , λ, τ , M2 only.

Thanks to the closed-form formula for the Ridge estimator in (3.3), some of its properties
that can be related to the spectrum of A�A including estimation error/prediction error (in
the Euclidean norm) can be established directly via existing random matrix theory (RMT)
(cf. [18, 19, 36, 52]). Here, we will illustrate the power of Theorem 3.2 and its compatibility
with the CGMT, by establishing nonasymptotic distributional approximations of ŵR

A and its
residual given by r̂R

A ≡ Y − Aμ̂R
A. These results appear to be less amenable to direct applica-

tions of existing RMT techniques. More important, the formulation of these results suggests
natural generalizations to the Lasso case in which no closed-form formulas are available (cf.
Section 3.3).

Recall η2(·; ·) defined in (1.9). By Proposition 5.2(2), the system of equations

(
γ R∗

)2 = σ 2 + 1

m/n
·E

[
η2

(
�μ0 + γ R∗ Z; γ R∗ λ

βR∗

)
− �μ0

]2
,

βR∗ = γ R∗
[
1 − 1

m/n
·Eη′

2

(
�μ0 + γ R∗ Z; γ R∗ λ

βR∗

)]
,

(3.5)

where �μ0 ⊗ Z ≡ (n−1 ∑n
j=1 δμ0,j

) ⊗ N (0,1), admits a unique solution (βR∗ , γ R∗ ) within

compacta of [0,∞)2 provided (R1)–(R2) are satisfied. Again, one may give explicit formulae
for (βR∗ , γ R∗ ) defined using (3.5), but we stick to the above fixed-point equation formulation
for transparent comparison to the Lasso case in (3.9) below.

Now we define the ‘population version’ of ŵR
A and r̂R

A via (βR∗ , γ R∗ ) by

wR∗ ≡ η2

(
μ0 + γ R∗ Zn; γ R∗ λ

βR∗

)
− μ0, rR∗ ≡ βR∗

γ R∗
(
σ · ξ0 +

√(
γ R∗

)2 − σ 2 · Z′
m

)
,(3.6)

where Zn ∼ N (0, In) and Z′
m ∼ N (0, Im) are independent standard Gaussian vectors that

are also independent of the noise vector ξ = σξ0.

THEOREM 3.4. Assume the same conditions as in Theorem 3.2. Then there exists some
K = K(σ,λ, τ,M2) > 0 such that for all 1-Lipschitz functions g : Rn → R, h : Rm → R and
ε > 0,

P
(∣∣g(

ŵR
A/

√
n
) −Eg

(
wR∗ /

√
n
)∣∣ ≥ ε

) ∨ P
(∣∣h(̂

rR
A/

√
m

) −E
′ h

(
rR∗ /

√
m

)∣∣ ≥ ε
)

≤ K · (
1 ∨ ε−6)(

1 ∨ ‖μ0‖2∞
) · n−1/6 log2 n.

Here, E′ indicates that the expectation is taken with respect to Z′
m only.

The first claim on ŵR
A in the above theorem is proved via an application of Theorem 3.2,

by analyzing the corresponding Gaussian design problem via the CGMT. The proof for the
second claim on r̂R

A in the above theorem is more involved, and requires an application of the
universality result for Gordon’s max–min (min–max) cost in Theorem 2.5.

As a quick application of Theorem 3.4 above, we may obtain universality of the distribu-
tion of ŵR

A and r̂R
A in an average sense as follows:
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• Let g(v) ≡ n−1 ∑n
j=1 φ(

√
nvj + μ0,j ,μ0,j ) for some 1-Lipschitz function φ : R2 → R in

the first probability that we have with high probability

1

n

n∑
j=1

φ
(
μ̂R

A,j ,μ0,j

) ≈ Eφ
(
η2

(
�μ0 + γ R∗ Z;λγ R∗ /βR∗

)
,�μ0

)
.

Here, the expectation is taken over �μ0 ⊗ Z = (n−1 ∑n
j=1 δμ0,j

) ⊗N (0,1).

• Let h(ν) = m−1 ∑m
i=1 φ(

√
mνi) for some 1-Lipschitz function φ : R → R in the second

probability that we have with high (unconditional) probability

1

m

m∑
i=1

φ
(̂
rR
A,i

) ≈ Eφ

[
βR∗
γ R∗

(
σ · �ξ0 +

√(
γ R∗

)2 − σ 2 · Z)]
.

Here, the expectation is taken over �ξ0 ⊗ Z = (m−1 ∑m
i=1 δξ0,i

) ⊗N (0,1).

REMARK 3.5. We compare Theorem 3.4 to several results in the literature:

• For the distribution of ŵR
A, [60] obtained the following special version of universality for

design matrices consisting of i.i.d. entries with vanishing third/fifth moments (almost sym-
metry): for convex g0 : R → R with bounded second and third derivatives, or g0 = 1·≥x

for any x ∈ R, n−1 ∑n
j=1 g0(ŵ

R
A,j ) and n−1 ∑n

j=1 g0(ŵ
R
G,j ) converge to the same limit.

Our results are nonasymptotic allowing for arbitrary nonseparable Lipschitz test functions,
and do not require prior distributions on μ0 and vanishing third/fifth moments (almost
symmetry) of the design entries.

• For the distribution of r̂R
A, [7], Theorem 3.1, obtained stochastic representation of r̂R

G under
(correlated) Gaussian designs in a broader class of problems. The results in [7] depend on
the Gaussian design assumption crucially via repeated applications of Gaussian integration
by parts (e.g., the Stein’s identity and the second-order Stein formula in [8, 62]).

3.3. Example II: Lasso. In this section, we consider universality properties for the Lasso
estimator [70]. Formally, let the Lasso cost function be

H̄ L(w,A, ξ) ≡ 1

2
‖Aw − ξ‖2 + λ

(‖w + μ0‖1 − ‖μ0‖1
)
,(3.7)

and its normalized version H L ≡ H̄ L/m. Again, here the constant term −λ‖μ0‖1 is added to
simplify the expression of the Gordon cost function, which matches exactly to that used in
[54]. The Lasso solution is μ̂L

A ≡ ŵL
A + μ0 with

ŵL
A ≡ arg min

w∈Rn

H L(w,A, ξ).

We continue working with the conditions (R1)–(R3) in Section 3.2. The following theorem
establishes the generic universality of ŵL

A with respect to the design matrix A. All proofs in
this section can be found in Section 6.

THEOREM 3.6. Suppose (R1)–(R3) hold. Suppose further that λ ≥ K0(1 ∨ σ) for some
K0 = K0(M2, τ ) > 0. Fix Sn ⊂ R

n. Suppose there exist z ∈ R, ρ0 > 0 and εn ∈ [0,1/4) such
that

P

(
min
w∈Rn

H L(w,G, ξ) ≥ z + ρ0

)
∨ P

(
min
w∈Sn

H L(w,G, ξ) ≤ z + 2ρ0

)
≤ εn.(3.8)

Then there exists some K = K(σ,λ, τ,M2) > 0 such that

P
(
ŵR

A ∈ Sn

) ≤ 4εn + K · (
1 ∨ ρ−3

0

) · n−1/6 log2 n.

The lower bound on λ can be eliminated when m/n ≥ 1 + ε for some ε > 0 at the cost of
possibly enlarged constants K depending further on ε.
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Note that a lower bound on the tuning parameter λ is imposed only in the regime m/n < 1;
a precise value for this lower bound can be found in the statement of Lemma 6.3. Such a con-
dition renders sufficient linear-order sparsity of the regression estimator in the proportional
regime m � n, and is quite common in the literature; see, for example, [9, 10] for related
results in the Gaussian design case.

The key to the proof of Theorem 3.6 is the following �∞ bound (and other risk bounds)
for ŵL

A, which may be of independent interest.

PROPOSITION 3.7 (Lasso risk bounds). Assume the same conditions as in Theorem 3.6.
Suppose λ ≥ K0(1 ∨ σ) for some K0 = K0(M2, τ ) > 0. Then the following holds with prob-
ability at least 1 − Cn−100 with respect to the randomness of (A, ξ):

1. (Prediction risk) ‖AŵL
A‖2 ≤ K · n.

2. (�∞ risk) ‖ŵL
A‖∞ ≤ K

√
logn.

3. (Prediction �∞ risk) ‖AŵL
A‖∞ ≤ K

√
logn.

Here, C,K > 0 depend on σ , λ, τ , M2 only. The lower bound on λ can be eliminated when
m/n ≥ 1 + ε for some ε > 0 at the cost of possibly enlarged constants C, K depending
further on ε.

To the best of our knowledge, �∞ bounds for Lasso in the proportional regime m � n with-
out exact sparsity conditions on μ0 (or in the linear order sparsity regime) are available only
in the Gaussian design case, under a similar lower bound requirement on λ when m/n < 1;
see [9], Theorem 5.1, for a precise statement. The “interpolation” proof techniques used
therein are specific to the Gaussianity of the design matrix, and cannot be extended easily to
non-Gaussian design matrices. Here, we use leave-one-out methods (as mentioned after The-
orem 3.1) to establish �∞ bounds for Lasso for general design matrices in the proportional
regime.

Now we give an application of Theorem 3.6, coupled with the CGMT method and the
comparison inequalities in Theorem 2.5 or Corollary 2.6, that establishes the universality of
the distributions of:

• the error ŵL
A = μ̂L

A − μ0,
• the residual r̂L

A ≡ Y − Aμ̂L
A,

• the subgradient v̂L
A ≡ λ−1A�(Y − Aμ̂L

A), and
• the sparsity ŝL

A ≡ ‖μ̂L
A‖0/n.

Recall η1(·; ·) defined in (1.9) and �μ0 ⊗ Z ≡ (n−1 ∑n
j=1 δμ0,j

) ⊗ N (0,1). By [54], the
system of equations

(
γ L∗

)2 = σ 2 + 1

m/n
·E

[
η1

(
�μ0 + γ L∗ Z; γ L∗ λ

βL∗

)
− �μ0

]2
,

βL∗ = γ L∗
[
1 − 1

m/n
·Eη′

1

(
�μ0 + γ L∗ Z; γ L∗ λ

βL∗

)](3.9)

admits a unique solution (βL∗ , γ L∗ ) within compacta of [0,∞)2 provided (R1)–(R2) are satis-
fied. Let the “population version” of ŵL

A, r̂L
A, v̂L

A, ŝL
A be

wL∗ ≡ η1

(
μ0 + γ L∗ Zn; γ L∗ λ

βL∗

)
− μ0, rL∗ ≡ βL∗

γ L∗
(
σ · ξ0 +

√(
γ L∗

)2 − σ 2 · Z′
m

)
,(3.10)

vL∗ ≡ − βL∗
γ L∗ λ

[
η1

(
μ0 + γ L∗ Zn; γ L∗ λ

βL∗

)
− (

μ0 + γ L∗ Zn

)] = − βL∗
γ L∗ λ

(
wL∗ − γ L∗ Zn

)
,(3.11)
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sL∗ = Eη′
1

(
�μ0 + γ L∗ Z; γ L∗ λ

βL∗

)
= P

(∣∣�μ0 + γ L∗ Z
∣∣ ≥ γ L∗ λ

βL∗

)
,(3.12)

where Zn ∼ N (0, In) and Z′
m ∼ N (0, Im) are independent standard Gaussian vectors that

are also independent of the noise vector ξ . Clearly, the fixed-point equation (3.9) and the
“population” quantities wL∗, rL∗ in (3.10) for the Lasso estimator are in complete analogue to
those for the Ridge estimator defined in (3.5) and (3.6). The “population” quantities vL∗ , sL∗
are of special interest to the Lasso.

THEOREM 3.8. Assume the same conditions as in Theorem 3.6. Then there exists some
K = K(σ,λ, τ,M2) > 0 such that for all 1-Lipschitz functions g : Rn → R, h : Rm → R and
ε > 0, all the following probabilities:

• P(|g(ŵL
A/

√
n) −Eg(wL∗/

√
n)| ≥ ε),

• P(|h(̂rL
A/

√
m) −E

′ h(rL∗/
√

m)| ≥ ε),
• P(|g(v̂L

A/
√

n) −Eg(vL∗/
√

n)| ≥ ε),
• P(|̂sL

A − sL∗| ≥ ε1/2)

are bounded by K · (1 ∨ ε−6) · n−1/6 log3 n.

The proofs of the results in Theorem 3.8 are fairly involved, even given Theorem 3.6,
Proposition 3.7 and the results in [54]—one needs to pay special attention to (suitable ver-
sions of) �∞ constrained “Gordon problems” over exception sets. We also note that the result
for ŝL

A does not follow directly from ŵL
A—in fact, similar to [54], the distributional character-

ization for ŵL
A only provides a lower bound for ŝL

A, while a matching upper bound is provided
by the control of the subgradient v̂L

A.
To put Theorem 3.8 in the literature, [60] obtained universality for ŵL

A in a quite restrictive
sense under several strong conditions on the design distributions (for details see Remark 3.5).
The work [54] obtained distributional characterizations in the isotropic Gaussian design and
Gaussian error case; our results here extend those of [54] to general designs and errors.

As an immediate application of Theorem 3.8, we may use the observable quantities ‖̂rL
A‖,

‖v̂L
A‖, ŝL

A to form consistent estimators for the estimation error ‖ŵL
A‖2/n, the prediction error

‖AŵL
A‖2/m, the original noise level σ and the effective noise level γ L∗ under general designs

A and errors ξ . For instance, we may use

γ̂ L
A ≡ ‖̂rL

A‖/√m

1 − 1
m/n

ŝL
A

=
√

m‖Y − Aμ̂L
A‖

m − ‖μ̂L
A‖0

(3.13)

as a consistent estimator for γ L∗ ; see [54], Section 4.1, for precise formulae of estimators for
other quantities mentioned above.

As another important outlet of the proofs of Theorem 3.8, we consider the distribution of
the degrees-of-freedom (dof) adjusted debiased Lasso μ̂dL

A (cf. [9, 10, 42–44, 71, 75]) defined
by

μ̂dL
A ≡ μ̂L

A + A�(Y − Aμ̂L
A)

1 − ‖μ̂L
A‖0/m

,(3.14)

and the validity of the following (1 − α) confidence intervals for {μ0,j }:
CIdL

j ≡ [
μ̂dL

A,j − zα/2 · γ̂ L
A, μ̂dL

A,j + zα/2 · γ̂ L
A

]
, j ∈ [n].(3.15)

Here, zα is the normal upper α-quantile defined via P(N (0,1) > zα) = α.
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THEOREM 3.9. Assume the same conditions as in Theorem 3.6. Then there exists some
K = K(σ,λ, τ,M2) > 0 such that for any g : R2 →R and ε ∈ (0,1),

P
(∣∣E◦ g(�μ̂dL

A
,�μ0) −Eg

(
�μ0 + γ L∗ Z,�μ0

)∣∣ ≥ (‖g‖Lip ∨ ‖g‖∞
) · ε)

≤ K · ε−12 · n−1/6 log3 n.

Here, we write E
◦[·] = E[·|A,ξ ] and (�μ̂dL

A
,�μ0) = n−1 ∑n

j=1 δ(μ̂dL
A,j ,μ0,j ), �μ0 ⊗ Z =

(n−1 ∑n
j=1 δμ0,j

) ⊗N (0,1). Consequently, with the averaged empirical coverage for {CIdL
j }

defined as Ĉ dL
A ≡ n−1 ∑n

j=1 1(μ0,j ∈ CIdL
j ), for any ε ∈ (0,1),

P
(∣∣Ĉ dL

A − (1 − α)
∣∣ > ε

) ≤ K · ε−24 · n−1/6 log3 n.

Note that the above theorem does not directly follow from Theorem 3.8 due to the lack of
the joint distributional characterizations for (ŵL

A, r̂L
A). Inspired by [54], this technical issue is

overcome by establishing distributional characterizations of (ŵL
A, r̂L

A) in Wasserstein-2 dis-
tance that provide couplings to relate the joint distribution of (ŵL

A, r̂L
A); see Proposition 6.7

for details.
To put Theorem 3.9 in the literature, for the dof adjusted debiased Lasso (3.14), [43] ob-

tained an asymptotic version and [54] obtained an improved nonasymptotic version, of the
above theorem in the isotropic Gaussian design and Gaussian error case. Distributional char-
acterizations for dof adjusted debiased Lasso under general correlated Gaussian designs and
Gaussian errors are obtained in [9, 10, 12]. These works rely crucially on the Gaussianity of
the design via either the CGMT (cf. [12, 54]) or Gaussian integration by parts techniques (cf.
[9, 10]). To the best of our knowledge, Theorem 3.9 provides the first theoretical justification
for the dof adjusted debiased Lasso beyond Gaussian designs.

A limitation of the coverage guarantee for {CIdL
j } in Theorem 3.9 above is its average na-

ture. In the (general correlated) Gaussian design and Gaussian error case, [10], Theorem 3.10,
obtained stronger coverage guarantees for {CIdL

j } that hold for individual coordinates; see also
the discussion after [6], Theorem 4.1. Whether such stronger guarantees also hold for general
designs and errors remains an interesting open question.

3.4. Example III: Regularized robust regression. In this section, we consider universality
properties for robust regression estimators [40, 41]. Let the robust cost function be

H̄M(w,A, ξ) ≡
m∑

i=1

ψ0
(
(Aw)i − ξi

) + λ

2

(‖w + μ0‖2 − ‖μ0‖2)
,

and its normalized version HM ≡ H̄M/m. The robust regression solution is given by μ̂M
A =

ŵM
A + μ0 with

ŵM
A ≡ arg min

w∈Rn

H̄M(w,A, ξ).

Instead of the conditions (R1)–(R3), we work with the following alternative set of conditions:

(M1) τ ≤ m/n ≤ 1/τ holds for some τ ∈ (0,1) and λ > 0.
(M2) ψ0 : R → R is convex with weak derivative ψ ′

0 satisfying |ψ0(0)| ∨ ess sup|ψ ′
0| ≤ L0

for some L0 > 0.
(M3) A0 = √

mA and ξ0 = ξ are independent. The entries of A0 are independent, mean 0,
variance 1 with M6+δ;A ≡ maxi∈[m],j∈[n]E|A0;ij |6+δ < ∞ for some δ ∈ (0,1). The
entries of ξ0 are independent.
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Note that under the above assumption on ψ0(·), the Ridge penalty guarantees the existence
and uniqueness of ŵM

A .
The following theorem establishes the generic universality of ŵM

A with respect to the design
matrix A. All proofs in this section can be found in Section 7.

THEOREM 3.10. Suppose (M1)–(M3) hold. Fix Sn ⊂ R
n. Suppose there exist z ∈ R,

ρ0 > 0 and εn ∈ [0,1/4) such that

P

(
min
w∈Rn

HM(w,G, ξ) ≥ z + ρ0

)
∨ P

(
min
w∈Sn

HM(w,G, ξ) ≤ z + 2ρ0

)
≤ εn.(3.16)

Then there exists some K = K(λ, τ,M6+δ;A, δ,L0) > 0 such that

P
(
ŵM

A ∈ Sn

) ≤ 4εn + K
(
1 + ‖μ0‖6+δ∞ + ρ−3

0

) · n−(1∧δ)/500.

A significant feature of Theorem 3.10 above is that no a priori moment conditions on
the error vector ξ are required. This is particularly appealing from the perspective of robust
regression [40, 41].

The next proposition establishes an elementwise bound for ŵM
A that serves as the key to

the proof of Theorem 3.10.

PROPOSITION 3.11. Suppose (M1)–(M3) hold. Then for any p ≥ 2, there exists some
K = K(p) > 0 such that

max
j∈[n]E

∣∣ŵM
A,j

∣∣p ≤ K · {
(L0/λ)pMp;A + ‖μ0‖p∞

}
.

Here, Mp;A ≡ maxi∈[m],j∈[n]E|A0;ij |p .

As a quick demonstration of the power of Theorem 3.10 above, below we establish the
asymptotic risk universality for μ̂M

A with the help of essentially existing Gaussian design
results in [68] proved via the CGMT method.

THEOREM 3.12. Suppose the following hold:

1. m/n → τ0 ∈ (0,∞) and λ > 0 is fixed.
2. ψ0 satisfies (M2) and either (i) ψ0 is not differentiable at certain point, or (ii) ψ0 contains

an interval on which ψ0 is differentiable with strictly increasing derivative.
3. The entries of A0 are independent, mean 0, variance 1 with

sup
n

max
i∈[m],j∈[n]E|A0;ij |6+δ < ∞

for some δ ∈ (0,1).
4. ξ = (ξi) contains i.i.d. components with a continuous Lebesgue density.
5. μ0 contains i.i.d. components whose law �0 possesses moment of any order.

Then with Z ∼ N (0,1), the system of equations(
γ M∗

)2
/τ0 = E

[
γ M∗ Z + ξ1 − proxψ0

(
γ M∗ Z + ξ1;βM∗

)]2 + λ2(
βM∗

)2 ·E�2
0,

1 − τ−1
0 + λβM∗ = Eprox′

ψ0

(
γ M∗ Z + ξ1;βM∗

)(3.17)

admits a unique nontrivial solution (βM∗ , γ M∗ ) ∈ (0,∞)2 such that

‖μ̂M
A − μ0‖2

n
→ τ0

(
γ M∗

)2 in probability.
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In the second equation of (3.17), prox′
ψ0

(x; τ) = (d/dx)proxψ0
(x; τ) is interpreted as the

weak derivative thanks to the 1-Lipschitz property of the proximal map x �→ proxψ0
(x; τ) for

any τ > 0 (cf. Lemma B.3).
We now compare Theorem 3.12 to the risk results in [24]. The most significant advantage

of Theorem 3.12 rests in its much weaker condition on the loss function ψ0. In particular, [24]
requires strong regularity assumptions on ψ0 (e.g., ψ ′′

0 is required to be Lipschitz), which
exclude the two canonical examples in Example 2.2 in robust regression that are covered
by our theory. In addition, the 6 + δ moment assumption on the design matrix is also much
weaker in Theorem 3.12 compared to the exponential moments required in [24].

An interesting question is whether the universality results in Theorem 3.12 hold for the
unregularized case λ = 0 when τ0 > 1. The only result in this direction appears to be [23],
Section 6 (some heuristics are presented in [45]), where strong convexity of ψ0 and local
Lipschitzness of ψ ′′

0 are required; see also related results in [20] under Gaussian designs.
Under these strong assumptions on ψ0, it is possible to establish �∞ bounds for ŵM

A using
similar techniques as in Proposition 3.11 and, therefore, the risk universality in Theorem 3.12.
It however remains an open question to establish such �∞ bounds under the weak conditions
on ψ0 as in Theorem 3.12. To the best knowledge of the authors, this problem remains open
even in the Gaussian design case.

3.5. Nonuniversality for general isotropic designs. Consider the regression model (1.1)
with m/n > 1 and the ordinary least squares estimator (LSE):

μ̂LSE
A ≡ arg min

μ∈Rn

‖Y − Aμ‖2 = (
A�A

)−1
A�Y.

Suppose that the error vector satisfies ξ ∼ N (0, Im) for simplicity. Define the sample covari-
ance matrix �̂a ≡ m−1A�A = m−1 ∑m

i=1 aia
�
i ∈ R

n×n, where {ai}mi=1 are the rows of the
design matrix A. Since the squared �2 risk of μ̂LSE

A can be written as a linear spectral statistic
of �̂a , it is easy to prove risk universality of μ̂LSE

A for design matrices A with independent
entries satisfying Assumption III, by either using results in this paper or directly resorting to
random matrix theory. On the other hand, it is a well-known fact in random matrix theory
that the spectrum of �̂a does not exhibit universality for A with i.i.d. isotropic rows (see dis-
cussion below), thereby also negating the risk universality of μ̂LSE

A for this class of designs.
The following proposition provides a simple explicit counterexample.

PROPOSITION 3.13. Fix m,n ∈ N with m ≥ 2, m > n and Ln > 1. There exists some
centered random vector b0 ∈ R

n with Eb⊗2
0 = E(N (0, In))

⊗2 such that the following hold:
With B0 ∈ R

m×n denoting a random matrix whose rows are i.i.d. as b0, and B ≡ B0/
√

m, we
have n−1

E‖μ̂LSE
B − μ0‖2 ≥ Ln · n−1

E‖μ̂LSE
G − μ0‖2.

PROOF. Take Ln > 1. Let U be a discrete distribution supported on {±L−1
n ,±Sn} with

2P(U = ±L−1
n ) = 1 − 1/m and 2P(U = ±Sn) = 1/m. Here, Sn > 0 is determined by the

condition EU2 = 1; in fact, some simple calculation shows that Sn = {m(1 − L−2
n (1 −

1/m))}1/2. Now let b0 ≡ U · Z, where Z ∼ N (0, In) is independent of U . Then by con-
struction Eb⊗2

0 = E(N (0, In))
⊗2. With Ui’s and Zi’s being independent copies of U and Z,

We have

n−1
E

∥∥μ̂LSE
B − μ0

∥∥2 = n−1
E tr

((
B�B

)−1)
≥ n−1

E tr

[(
1

m

m∑
i=1

U2
i ZiZ

�
i

)−1]
1
U2

i =L−2
n ,∀i∈[m]



UNIVERSALITY IN HIGH DIMENSIONS 1819

≥
(

1 − 1

m

)m

· L2
n ·E tr

[(
1

m

m∑
i=1

ZiZ
�
i

)−1]

≥ e−2L2
n · n−1

E
∥∥μ̂LSE

G − μ0
∥∥2

,

where the last inequality used the simple fact that (1 − 1/m)m ≥ e−2 for m ≥ 2. Now the
claim follows by adjusting constants. �

While the �2 risk in the above counterexample only serves as a special case of “structure
properties” studied in previous sections, we conjecture that universality fails for a large class
of structure properties associated with regularized regression estimators, when the spectrum
of the design matrix differs significantly from that of the standard Gaussian design. Some
positive results along this conceptual line are obtained in [22], proved using a completely dif-
ferent AMP method developed in [21]. However, it remains a wildly open question to provide
an exact relation between the spectrum of the design matrix (with “generically positioned”
singular vectors), and the behavior of a general structure property of a regularized regres-
sion estimator. A good and fairly nontrivial test case in this regard would be the dof adjusted
debiased Lasso studied in Section 3.3.

3.6. Some illustrative simulation. We perform a small scale simulation here to illustrate
the (non)universality results proved in the previous subsections.

First, we examine (non)universality of risk asymptotics under different distributions of
(A, ξ). As can be seen from Figure 1, for both Ridge and Lasso estimators, universality of
risk asymptotics holds for (

√
mA,ξ) with i.i.d. entries from a t distribution with only 4.5

dof, and then gradually breaks down when the dof approaches 3.5. It seems reasonable to
conjecture that a phase transition near t (4) occurs for the risk universality for both Ridge and
Lasso estimators. On the other hand, under the setup of (nonuniversality Section 3.5) with
a simple three-point delta prior, we see a matching second moment of the design does not
guarantee universality.

FIG. 1. The black solid line marks the theoretical risk given by wL∗ and wR∗ . Simulation parameters: m = 1200,
n = 1500, μ0 ∈ R

n are i.i.d. N (0,1), (
√

mA,ξ) have i.i.d. entries following N (0,1) (red), t distribution with df
4.5 (blue), df 3.5 (purple), df 2.5 (green), with proper normalization in the latter two cases so that the variance

is 1. In the isotropic case (orange), ξ has i.i.d. N (0,1) entries and (
√

mA)i,· = ZiUi with Zi
i.i.d.∼ N (0, In) and

Ui
i.i.d.∼ 0.25δ√2 + 0.25δ−√

2 + 0.5δ0. The empirical risk curves are averaged over 50 replications.
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FIG. 2. Comparison of the empirical quantiles of the error with theoretical quantiles given by wL∗ and wR∗ .
Simulation parameters: m = 1200, n = 1500, μ0 ∈R

n are i.i.d. N (0,52), (
√

mA,ξ) have i.i.d. entries following
N (0,1) (red), t distribution with df 4.5 (green), df 3 (blue), df 2.1 (purple), with proper normalization in the latter
two cases so that the variance is 1. The empirical quantiles are averaged over 50 replications.

Next, we examine the distributional universality proved for Ridge and Lasso estimators in
Theorems 3.4 and 3.8. By the QQ plots in Figure 2, we see that such closeness holds all the
way down to the very heavy-tailed situation where (

√
mA,ξ) have i.i.d. entries following a t-

distribution with only about 3 dof. Here, the simulation setup is similar to that used in Figure 1
with the exception that the variance level of μ0 is enlarged to ensure a visible difference in
the QQ plots.
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