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The processor front end has become an increasingly important bottleneck in recent
years due to growing application code footprints, particularly in data centers. Profile-
guided optimizations performed by compilers represent a promising approach, as they
rearrange code to maximize instruction cache locality and branch prediction efficiency
along a relatively small number of hot code paths. However, these optimizations require

continuous profiling and rebuilding of applications to ensure that the code layout
matches the collected profiles. In this article, we propose Online COde Layout
OptimizationS (OCOLOS), the first online code layout optimization system for
unmodified applications written in unmanaged languages. OCOLOS allows profile-
guided optimization to be performed on a running process instead of being performed
offline and requiring the application to be relaunched. Our experiments show that

OCOLOS can accelerate MySQL by up to 41%.

s the world demands ever more from software,
Acode sizes have increased to keep up. Google,
for example, reports annual growth of 20% in
the instruction footprint of important internal work-
loads.® This code growth has created bottlenecks in
the front end of the processor pipeline, where latency-
sensitive structures cannot be easily scaled up—both
Intel and AMD today have 32-kB level 1 instruction (L1i)
caches, the same as they did a decade ago. Cramming
ever more code into a fixed-size L1i leads to a rising
number of processor front-end stalls.
To address these front-end stalls, large software
companies have turned to profile-guided optimiza-
tions® (PGOs) from the compiler community that

#Many optimizations can be driven by profiling information,
so the term “PGO" is quite broad. In this article, we use it to
refer exclusively to profile-driven code layout optimizations.

0272-1732 © 2023 |IEEE

Digital Object Identifier 10.1109/MM.2023.3274758

Date of publication 10 May 2023; date of current version
29 June 2023.

Buthoxized ieersed use limited to: University ofi Besheylvepian@awalbadedpn@stoberid@y2023 at 02:01:41 UTC fronElEERXplere. Restrictions appl¥l

reorganize code within a binary to optimize the utiliza-
tion of the limited L1i for the common-case control-
flow paths. Google's AutoFDO' and Propeller,” Meta’s
Binary Optimization and Layout Tool (BOLT),%” and
gcc's and clang's built-in PGO passes are popular
examples of this approach. While these systems have
seen successful deployment at scale, there remain
three significant challenges.

First, because PGO is an offline optimization, there
is a fundamental lag between when profiling informa-
tion is collected and when it is used to optimize the
code layout. If program inputs shift during this time,
previous profiling information is rendered irrelevant or
even harmful when it contradicts newer common-case
behavior. Maintaining profiles for each input or pro-
gram phase is prohibitive in terms of storage costs, so
profiles are merged together to capture average-case
behavior at the cost of input-specific optimization
opportunities.

Second, even if we have secured timely profiling
information, if the program code itself changes, then it
is difficult to map the profiling information onto the
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new code.' Profiling information is captured at the
machine code level, and even modest changes to the
source code can lead to significant differences in
machine code. In large software organizations, code
changes can arrive every few minutes for important
applications, creating a constant challenge when apply-
ing PGO with profiling data collected from version % to
the compilation of the latest version k. Profiling data
that cannot be mapped to ¥’ are discarded, leading to
missed optimization opportunities.

The third key challenge with offline PGO approaches
is that recording, storing, and accessing PGO profiles
adds an operational burden to code deployment.

In this article, we propose OCOLOS, a novel system
for online PGOs in unmanaged languages. OCOLOS
performs code layout optimizations at runtime on a
running process. By moving PGO from compile time to
runtime, we avoid the challenges listed previously. Pro-
file information is always up to date with the current
behavior of the program, profiling data always map per-
fectly onto the code being optimized, and there is no
profile management burden since a profile is produced
and then immediately consumed. Some managed lan-
guage runtimes (e.g., Oracle's HotSpot Java Virtual
Machine) support online code layout optimizations
and achieve similar benefits. We are not aware, how-
ever, of any system before OCOLOS that brings the
benefits of online PGO to unmanaged code written in
languages like C/C++.

To realize the benefits of PGO in the online setting,
OCOLOS builds on the BOLT®’ offline PGO system,
which takes a profile and a compiled binary as inputs
and produces a new, optimized binary as the output.
OCOLOS, instead, captures profiles during the execu-
tion of a deployed, running application, uses BOLT to
produce an optimized binary, extracts the code from
that BOLTed binary, and patches the code in the run-
ning process. To avoid corrupting the process, code
patching requires careful handling of the myriad code
pointers in registers and throughout memory. OCOLOS
takes a pragmatic approach that requires no changes
to application code, which enables support for complex
software like relational databases.

OCOLOS is different from other dynamic binary
instrumentation (DBI) frameworks, like Intel Pin,® in that
OCOLOS 1) focuses on code replacement instead of
providing application programming interfaces (APIs) for
instrumentation and 2) has a “one-time” cost model
where major work is done only during code replace-
ment, and the program runs with native performance
once the replacement is complete. Existing DBI frame-
works optimize for common code paths with code
caches, but the resulting benefits are overshadowed by
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nontrivial ongoing overheads to intercept control-flow
transfers and analyze code on cache fills. Instead, OCO-
LOS exacts a one-time cost for code replacement,
which is readily amortized, along with a small amount
of runtime instrumentation on function pointer creation
(see the “"Continuous Optimization” section).

We start with some background on state-of-the-art
PGO systems, like BOLT®” and Propeller.®

Hardware Performance Profiling

Profile collection is the first step of all PGO workflows.
Large-scale deployments generally leverage hardware
profiling support, like Intel's last branch record (LBR)*
facility, which dates back to the Pentium 4 and is widely
available. When LBR tracing is enabled, the processor
records the program counter (PC) and target of taken
branches in a ring buffer. The recording overhead via
LBR is negligible, and software can sample the buffer to
learn the branching behavior of an application. By
aggregating these samples, the approximate frequency
of the branch-taken/-not-taken paths through the code
can be reconstructed. With these branch frequencies in
hand, we can make intelligent decisions about optimiz-
ing the code layout.

Basic Block Reordering

Whenever programs contain if statements, the com-
piler must decide how to place the resulting basic
blocks into a linear order in memory.® The ideal layout
places the common-case blocks consecutively, maxi-
mizing L1i and instruction translation lookaside buffer
locality while reducing pressure on the branch predic-
tion structures.

Consider the example program in Figure 1. Assum-
ing both conditions are typically true, the shaded basic
blacks constitute the common-case execution. A naive
layout that places the blocks from each if statement
together results in two taken branches (shown by
arrows). The optimal layout, however, avoids any taken
branches and results in better performance.

BOLT

BOLT® is a postlink optimization tool built in the Low-
Level Virtual Machine (LLVM) framework, which operates
on compiled binaries. Given LBR profiling information
and a binary, BOLT decompiles the binary, performs a
series of optimizations, and then performs code genera-
tion to emit a new BOLTed binary. Of BOLT's optimiza-
tions, basic block reordering provides, by far, the biggest
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if (condl) { // A
// B
} else {
// C
}
if (cond2) { // D
// E
} else {
// F

}
/! G
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FIGURE 1. Example program that benefits from profile-guided
optimization (PGO).

speedup.® One helpful feature of BOLTed binaries is
that, if a function f grows in size after optimization (e.g.,
reordering basic blocks may cause branch offsets to
grow and require larger instructions), f will be placed in
a new text section of the binary. Other functions whose
sizes do not grow are optimized in place.

A well-known and intuitive challenge with offline profile-
based optimizations, like conventional PGO, is ensuring
that the gathered profile data are of high quality. In
experiments with MySQL, we found that, with the Sys-
bench read_only input, feeding the profiling data from
that same read_only input to BOLT (which is like testing
on the training data) results, unsurprisingly, in the big-
gest speedup compared with using any other profiling
data. However, the worst case input resulted in a 21%
slowdown compared to the best profile, showing that
using poor profiling data can exact a high price.

OCOLOS requires modification of the code pointers
at runtime to perform its optimizations. First, we distin-
guish between code pointers that refer to the starting
address of a function versus those that reference a spe-
cific instruction within a function (e.g, the target of
a conditional branch). We discuss function starting
addresses first. Functions can call each other via direct
calls, encoding the callee function's starting address
as a PC-relative offset. There may also be indirect calls
via function pointers stored in a virtual table (v-table)®
or programmer-created function pointers stored on
the stack or heap, in global variables, or in processor
registers.

PA virtual function/method table (v-table) is used to imple-
ment dynamic dispatch or virtual functions in object-
oriented languages. The table itself stores function
pointers to the methods of a class.
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Code pointers that do not refer to the start of a
function are also commonplace. Jump and conditional
branch instructions within a function reference code
locations via PC-relative offsets. Sometimes, indirect
jumps rely on compile-time constants that are used
to compute a code pointer at runtime, e.g., in the
implementation of some switch statements. Return
addresses on the stack are code pointers to functions
that are on the call stack. Each thread's PC is a pointer
to an instruction in the currently running function. A
thread may be blocked doing a system call, in which
case its PC is effectively stored in the saved context
held by the operating system. The libc setjmp/longjmp
API can be used to create programmer-managed code
pointers to essentially arbitrary code locations.

Thus, the address space of a typical process con-
tains a large number of code pointers. Tracking them
so that they can be updated if a piece of code moves is
essentially impossible for any serious program. Thus,
OCOLOS retains the original code within a process and
adds optimized code at a new location, patching up as
many code pointers as possible to steer execution
toward the optimized code in the common case.

In Figure 2, we show a high-level overview of the steps
OCOLOS performs to optimize the code of a target pro-
cess at runtime. First, we gather profiling information
from the target process via Linux's perf utility to extract
LBR samples @. Then, we invoke BOLT to build the
BOLTed binary @; pause the target process via Linux’s
ptrace AP| @; inject code @; update pointers to refer to
the injected code @; and, finally, resume the process @.
Note that steps @ and @, which consume the most
time, are done concurrently in the background while
the target process continues to run. Though opera-
tions like running BOLT are CPU intensive, they com-
pete for cycles with the target process for only a
limited time. Steps @@ are done synchronously while
the target process is paused. Steps @ and @ are largely
taken from prior work, so we focus on @@, which are
the core of OCOLOS.

(3] (4 (5]
pause inject  update
process code pointers
2]
@  build optimized )
profile binary run with
target > ™. optimized code

process

FIGURE 2. Main steps Online Code Layout Optimizations
(OCOLOS) takes to optimize a target process.



To better describe key operations within OCOLOS,
we first describe the important regions of the address
space of the target process, shown in the left part of
Figure 3(a). The code from the original binary we refer
to as C,, which here consists of three functions: ay, b,
and ¢;. A v-table contains a pointer to b. Finally, each
thread's stack is also important, as it contains the
return addresses of currently executing functions. In
Figure 3(a), ¢, is on the call stack.

OCOLOS takes as input an optimized binary, with
modified code for functions in C; or code for entirely
new functions. While OCOLOS's code replacement ulti-
mately requires a short stop-the-world period (see the
“Updating Code Pointers” section) to modify code and
update code pointers, OCOLOS performs some book-
keeping in advance. In particular, OCOLOS parses the
original binary offline to identify the locations of all
direct call instructions. OCOLOS patches these calls at
runtime, but identifying the call sites a priori abbrevi-
ates the stop-the-world period.

Adding Code

As we described in the “Challenges” section, finding
and updating all code pointers is fraught with corner
cases. This leads to the first principle guiding OCO-
LOS's design:

Principle 1: Preserve the addresses of C) instructions.

Instead of updating the code of a function in place,
OCOLOS injects a new version of the code C; into the
address space while leaving the original code intact

a0 2
Coy |bo (oFy
% 6,
b,
¢,
v-table v-table
[func pir: b, JRURS unc pir b,
stack stack

(@)
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[see Figure 3(a)l. OCOLOS then changes a subset of
code pointers within Cj to redirect execution to the C;
code. The remaining code pointers are not perturbed
and continue to point to C, code.

Updating Code Pointers
When patching code pointers to make the C; code
reachable, OCOLOS follows our second design principle:

Principle 2: Run C} code in the common case.

OCOLOS executes code from C; instead of C,
occasionally to ensure correctness. However, the more
frequently OCOLOS executes code from Cj, the more
it reduces the potential performance gains C; can pro-
vide. Therefore, we seek to make C; the common case.

Since our goal for the current version of OCOLOS is
minimizing (but not eliminating) the time spent in Cj,
OCOLOS updates as many code pointers to refer to C;
as it is worthwhile to update. Note, first of all, that hot
code gets optimized by BOLT and resides in . Direct
calls in C, will already refer to C; (e.g., ¢; calls b;) and
do not require updating.

Figure 3(a) illustrates changes OCOLOS makes. We
update function pointers in v-tables and direct calls in
Cy for functions on the call stack (like ;). Recall that
these C changes preserve instruction addresses, hon-
oring our first design principle. We found that, in prac-
tice, updating direct calls in all functions (i.e., including
those, like ay, not on the stack) does not improve per-
formance—because functions like ay are cold—though
it does slow code replacement.

2 2
bo (oF}
Co COA call: b,
bi call: b,
Ci Ci+1
D s
v-table v-table
T
stack stack
T

(b)

FIGURE 3. (a) Starting state of the address space (left) and state after code replacement (right). (b) Before (left) and after (right)

continuous optimization.
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We could additionally seek out function pointers in
registers and memory, though doing so would require
expensive always-on runtime instrumentation to track
their propagation throughout the program’s execution.
This tracking would violate OCOLOS's “fixed costs
only” cost model:

Principle 3: Code replacement can incur fixed costs but
must avoid all possible recurring costs.

Our experiments show that leaving these remaining
function pointers (which our workloads do contain)
pointing to Cy code is fine since C; code does not exe-
cute for very long before it encounters a direct call or a
virtual function call that steers execution back to C;.

Continuous Optimization

A natural use case for OCOLOS is to perform continu-
ous optimization, whereby OCOLOS can replace C;
with Cy, and C; with C;.; more generally. These subse-
quent code versions C; can be generated by periodic
reprofiling of the target process to account for pro-
gram phases, daily patterns in workload behavior like
working versus at-home hours, and so on. OCOLOS
can perform continuous optimization largely through
the same code replacement algorithm described ear-
lier, though functions on the stack and function poin-
ters require delicate handling, as will be explained.

A key challenge with continuous optimization is the
need to replace code instead of just adding new code
elsewhere in the address space. If we continuously add
code versions without removing old versions, the code
linearly grows over time, wasting dynamic random-
access memory (RAM) and hurting front-end perfor-
mance. To address this challenge, we introduce a
garbage collection mechanism for removing dead code.
We define dead code as code that can no longer be
reached via any code pointers and, hence, is safe to
remove.

Instead of waiting for code version C; to naturally
become unreachable, as in conventional garbage collec-
tion, we can proactively update code pointers to enforce
the unreachability of C;. OCOLOS patches v-tables,
direct calls from Cj, return addresses on the stack, and
threads’ PCs to refer to the incoming C;,, code instead,
as described in the “Updating Code Points” section and
illustrated in Figure 3(b).

Return Addresses

Code pointers in return addresses and in threads’ PCs
may reference C;, so OCOLOS must update these refer-
ences to point to C;.;. To update these references,
OCOLOS first crawls the stack of each thread via
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libunwind to find all return addresses. OCOLOS exami-
nes RIP for each thread via ptrace. Collectively, this
examination provides OCOLOS with the set of stack-live
functions that are currently being executed. If any stack-
live function is in C; [such as b; in Figure 3(b)], OCOLOS
must copy its code to C; ;. While there may be an opti-
mized version b;,; in C; 4, it is challenging to update the
return address to refer to b;,; because, in general, the
optimizations applied to produce b;; can have a signifi-
cant impact on the number and order of instructions
within a function.

Thus, OCOLOS makes a copy of b; in C;,1, which we
call b, to distinguish it from the more optimized ver-
sion b;1. The b; ;41 version may need to have a different
starting address than b;, so OCOLOS updates PC-relative
addressing within b;,,, to accommodate its new loca-
tion. OCOLOS must also update the return address to
refer to the appropriate instruction within b;;.,, but
OCOLOS can treat the original return address into b; as
an offset from b;'s starting address and then use this off-
setinto b; ;1 to compute the new return address.

While copying b; to b;;.; is a key part of enabling
continuous optimization, it does not improve perfor-
mance of the currently running call to b; since the code
is the same. However, subsequent calls are likely to
reach b;,; instead via other code pointers, like the
v-table in Figure 3(b).

Function Pointers

Apart from return addresses, function pointers may
also point to C;. Instead of trying to track down and
update these pointers while moving from C; to C;,,
OCOLOS enforces a simpler invariant that a program
cannot create function pointers to C; code in the first
place—rather, function pointers must always refer to
Cy. This allows function pointers to propagate freely
throughout the program without the risk that they will
be broken during code replacement.

OCOLOS enforces this invariant via a simple LLVM
compiler pass that instruments function pointer crea-
tion sites to map pointers to C; back to the correspond-
ing C; function instead. This instrumentation has low
cost: MySQL running the read_only input creates just
45 function pointers per millisecond on average.

Current Status

Having avoided function pointers to C;, OCOLOS is
able to update all other references to C; code to refer
to the incoming C;., code instead. Thus, OCOLOS can
safely overwrite C; code. While BOLT does not directly
support the reoptimization of a BOLTed binary, which
initially prevented continuous optimization from being



realized, we have recently learned about an alternative
workflow with BOLT that does allow for reoptimization.

We are in the process of updating OCOLOS to
leverage this. BOLT's strategy for offline reoptimization
is to translate profiling information from a BOLTed
binary to appear as if it were from the original non-
BOLTed binary and then reapply BOLT to the original
binary with the translated profile. To facilitate this,
BOLT creates a detailed basic-block-level translation
table.

One technical hurdle we have already overcome in
continuous optimization is translating profiling infor-
mation gathered from an OCOLOS process like that in
Figure 3(a), which is a mix of C;y and C| code, to appear
as if it contains only Cj, which is the format that BOLT
needs. We have extended BOLT to handle cases such
as when b; is moved by BOLT but OCOLOS retains by
as well, and, thus, both appear in the profile.

We run our experiments on a two-socket Intel Broad-
well Xeon E5-2620v4 server with eight cores and 16
threads per socket (16 cores and 32 threads total) run-
ning at 2.1 GHz with 128 GB of RAM. Our benchmarks
are MySQL 8.0.28, MongoDB 6.0.0, Memcached 1.6.12,
and Verilator 3.904.

Performance

Figure 4 shows the throughput improvement OCOLOS
provides across our set of benchmarks. We compare
OCOLOS to three baselines. Original is the perfor-
mance of the original binary, compiled with only static
optimizations (nothing profile guided). BOLT oracle
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input is the performance offline BOLT provides when
profiling and running the same input. Finally, BOLT
average-case input is the performance offline BOLT
achieves when aggregating profiles from all inputs and
then running on the input shown on the y-axis. We
show throughput normalized to original.

Figure 4 shows that OCOLOS uniformly improves
performance over the original binary by up to 1.41x on
MySQL read_only, 1.29% on MongoDB read_update,
1.05x on Memcached, and 2.20x on Verilator. The
results for BOLT oracle input represent an upper bound
for OCOLOS's performance since BOLT has access to
the oracle profiling data and ensures that all code
pointers refer to optimized code, not just a judicious
subset of them as with OCOLOS (see the “Updating
Code Pointers” section). However, on average, OCOLOS
is close to the BOLT oracle’s performance, with a slow-
down of just 4.6 points. Compared to offline BOLT with
an average-case profile, OCOLOS is 8.9 points faster on
average, as different inputs tend to exhibit contradic-
tory control-flow biases that cancel each other out.

MySQL Case Study

To better understand the performance impact of OCO-
LOS's code replacement mechanism, we performed an
experiment with MySQL with Sysbench'’s oltp_read_
only input reporting the client’s transaction throughput
every second, shown in Figure 5. Region 1is a warm-up
period, after which perf profiling begins collecting LBR
samples for 1 s (region 2). In region 3, perf2bolt pro-
cesses the LBR samples, and then BOLT generates the
optimized binary. This is a CPU-intensive phase, caus-
ing a reduction in throughput after the 30-s mark. In
region 4, OCOLOS performs code replacement, which

[ OocCoLos
I BOLT, oracle input
I BOLT, average-case input

2.25 4| original
2.00

1.751

normalized throughput

MySQL MySQL MySQL MySQL MySQL MySQL MySQL MySQL MySQL MySQL mongo mongo mongo mongo mongo mongo mem$ mem$ mem$ mem$ veriltr veriltr veriltr
point read select select delete update update write read insert read read95 read read95 read scan95 setl0 set50 set90 update dhrys median vvadd

select only randomrandom non index only write
points ranges index

update insert5 only update5 rmw insert5 get90 get50 getlO

FIGURE 4. Performance of OCOLOS (light blue bars) compared to Meta's Binary Optimization and Layout Tool (BOLT) using an
oracle profile of the input being run (dark blue bars), and BOLT using an average-case profiling input aggregated from all inputs

(red bars). All bars are normalized to the original non-PGO binaries (white bars).
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FIGURE 5. Throughput of MySQL read_only before, during,
and after code replacement.

entails a stop-the-world phase of 1.9 s. After that, in
region 5, MySQL's parallel execution resumes with the
optimized code in place, boosting performance by
1.41x compared to region 1.

We believe there is scope to significantly reduce
region 4 latency by replacing some inefficient scripts
with compiled code and parallelizing the code replace-
ment routines, which are all currently serial.

Despite PGO being a long-standing component of opti-
mizing compilers like gcc and clang, barriers to adopting
PGO in practice remain high. Deployment at hyperscale
in systems like Meta's BOLT’ and Google’s AutoFDQ'
and Propeller® has reignited interest in PGO research
but not fundamentally improved usability. Offline profil-
ing is still required, and the binary must be rebuilt or
rewritten based on the profile. Matching a profile to a
binary is a fragile process, and even small code changes
can cause a profile to map poorly. PGO, thus, remains a
tool used only by those who care deeply about perfor-
mance and are willing to deal with the complexity of a
PGO-enabled build and production environment.

Democratizing PGO

OCOLOS's primary long-term impact will be to democ-
ratize the use of PGO and provide its performance ben-
efits to a wide range of users automatically and by
default. When PGO can be deployed at runtime via
OCOLOS without any need for developers to adjust
their code, their build system, or their production envi-
ronment, taking advantage of PGO can become the
default option instead of an expensive detour to higher
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performance. In the following sections, we explain in
more detail how OCOLOS can bring this about.

Simpler Deployment

By profiling and optimizing the currently running pro-
cess, OCOLOS ensures that profile information can be
produced and consumed on the local machine. No per-
sistent storage or management is required. This keeps
operational complexity low, avoiding dependencies on
storage services, which must themselves be provi-
sioned for PGO to function. Adopting a technology like
OCOLOS can, thus, actually reduce overall system
complexity compared to a conventional offline PGO
system like BOLT or Propeller.

Another important consequence of OCOLOS's sim-
ple deployment is that many more software projects
can adopt PGO successfully. Smaller teams, or projects
that are important but not under active development,
struggle to justify the human cost of using offline PGO
since there are ongoing costs to recording, storing, and
retiring profiles and deploying the optimized binaries
that are produced. OCOLOS provides a one-time cost
for adoption: installing the requisite packages and then
launching the workload under OCOLOS. Everything
after that is handled automatically. While offline PGO,
with its marginally superior performance when the
input is known in advance, may remain in use for very
popular workloads that can justify the complexity,
OCOLOS can target a long tail of workloads and pro-
vide significant aggregate performance gains across a
wide user base.

Continuous Optimization

By enabling online PGO, OCOLOS paves a path for con-
tinuous optimization. Prior work? has shown that apply-
ing PGO on top of a binary already optimized by PGO
can provide significant additional performance bene-
fits. However, due to the offline nature of existing PGO,
such benefits are still outside the scope of modern
data center applications. OCOLOS is a natural frame-
work within which we can unlock the compounding
benefits of repeated PGO.

Reducing the Data Center Tax

Due to the extremely diverse nature of data center
applications, there is no small set of “hotspots” to opti-
mize with traditional hardware acceleration mecha-
nisms.® Instead, these applications share common
building blocks (the “data center tax”) in the form of
popular shared libraries. Unfortunately, existing PGO
cannot optimize these libraries due to their variance
across different applications. As OCOLOS moves PGO



from offline to online, OCOLOS brings these “data cen-
ter tax” components within the reach of PGO, allowing
the tax to be reduced in an application-specific way.

Beyond PGO

OCOLOS is a generic framework for updating the code
of a running process at a one-time cost. OCOLOS's
ability to steer most (but not necessarily all) execution
toward the updated code is well suited to specializa-
tion for vector extensions or accelerators that happen
to be available at runtime. Logging or other program
instrumentation could be selectively added to a pro-
cess to facilitate debugging in production; afterward,
the instrumentation can be completely removed to
restore native performance. Our code is open source®
to facilitate exploring these and other use cases.

We have described the design and implementation of
OCOLOS, the first online PGO system for unmanaged
code. OCOLOS provides the performance benefits of a
classic offline PGO compilation flow but applied to
a running process. By operating at runtime, OCOLOS
always profiles the most up-to-date behavior of the
program and avoids problems with mapping the profile
to a target binary that can frustrate offline PGO.
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