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ABSTRACT

Fine-tuning large pre-trained language models on downstream tasks has become
an important paradigm in NLP. However, common practice fine-tunes all of the
parameters in a pre-trained model, which becomes prohibitive when a large number
of downstream tasks are present. Therefore, many fine-tuning methods are proposed
to learn incremental updates of pre-trained weights in a parameter efficient way,
e.g., low-rank increments. These methods often evenly distribute the budget
of incremental updates across all pre-trained weight matrices, and overlook the
varying importance of different weight parameters. As a consequence, the fine-
tuning performance is suboptimal. To bridge this gap, we propose AdaLoRA,
which adaptively allocates the parameter budget among weight matrices according
to their importance score. In particular, AdaLoRA parameterizes the incremental
updates in the form of singular value decomposition. Such a novel approach
allows us to effectively prune the singular values of unimportant updates, which
is essentially to reduce their parameter budget but circumvent intensive exact
SVD computations. We conduct extensive experiments with several pre-trained
models on natural language processing, question answering, and natural language
generation to validate the effectiveness of AdaLoRA. Results demonstrate that
AdaLoRA manifests notable improvement over baselines, especially in the low
budget settings. Our code is publicly available at https://github.com/
QingruZhang/AdaLoRA.

1 INTRODUCTION

Pre-trained language models (PLMs) have manifested superior performance in various natural
language processing tasks (Devlin et al., 2019; Liu et al., 2019; He et al., 2021b; Radford et al.,
2019; Brown et al., 2020). The most common way to adapt pre-trained models to down-stream
tasks is to fine-tune all the parameters (full fine-tuning, Qiu et al. (2020); Raffel et al. (2020)).
However, pre-trained models typically incurs large memory footprint. For example, BERT model
(Devlin et al., 2019) consists up to 300 million parameters; T5 (Raffel et al., 2020) comprises up
to 11 billion parameters and GPT-3 (Brown et al., 2020) contains up to 175 billion parameters.
When building a NLP system upon these pre-trained models, we usually handle multiple tasks
that arrive simultaneously (Radford et al., 2019). Given a large number of down-stream tasks, full
fine-tuning requires that each task maintains a separated copy of large models. The resulting memory
consumption is prohibitively expensive.

To address this issue, researchers have proposed two main lines of research to reduce the fine-tuning
parameters, while maintaining or even improving the performance of PLMs. Specifically, one line
of research focuses on adding small neural modules to PLMs and fine-tune only these modules for
each task – the base model is kept frozen and shared across tasks. In this way, only a small number
of task-specific parameters are introduced and updated, greatly enhancing the practicality of large
models. For example, adapter tuning (Houlsby et al., 2019; Rebuffi et al., 2017; Pfeiffer et al., 2020;
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Figure 1: Given the total trainable parameters as 0.28M, we apply LoRA only to selected weight matrices (left)
or selected layers (right) of DeBERTaV3-base and compare the fine-tuning performance on MNLI-m. Figure 1a:
we only fine-tune a selected type of weight matrix of every transformer layer, including query/key/value
projection (Wq,Wk,Wv), output projection (Wo) in the self-attention, and two weight matrices (Wf1 ,Wf2 ) in
two-layer FFNs. In Figure 1b, we apply LoRA to every weight matrix of the selected layers.

He et al., 2022) inserts small neural modules called adapters between the layers of the base model.
Prefix tuning (Li & Liang, 2021) and prompt tuning (Lester et al., 2021) attach additional trainable
prefix tokens to the input or hidden layers of the base model. These methods have shown to achieve
comparable performance to full fine-tuning, while only updating less than 1% of the original model
parameters, significantly releasing the memory consumption.

Another line of research proposes to model the incremental update of the pre-trained weights in a
parameter-efficient way, without modifying the model architecture (Zaken et al., 2021; Guo et al.,
2020; Hu et al., 2022). Given a pre-trained weight matrix1 W (0), for example, diff pruning (Guo et al.,
2020) models its incremental update ∆ as a sparse matrix. Diff pruning initializes ∆ as the same
dimension as W (0) and then prunes ∆ element-wise based on the magnitude of the entries. As such,
diff pruning can increase the parameter efficiency substantially by adaptively retaining important
updates and pruning unimportant ones. Nonetheless, diff pruning has several limitations. First, it
relies on low-level implementation to speed up the computation of unstructured sparse matrices,
which is not well supported by existing deep learning frameworks. Therefore, we have to store ∆ as
a dense matrix during training. Second, it needs to update every entry of ∆ with their gradients and
then prune them. This results in similar computational cost as full fine-tuning (Guo et al., 2020).

To overcome these drawbacks, Hu et al. (2022) propose a method named LoRA, which parameterizes
∆ as a low-rank matrix by the product of two much smaller matrices:

W = W (0) +∆ = W (0) +BA, (1)

where W (0),∆ ∈ Rd1×d2 , A ∈ Rr×d2 and B ∈ Rd1×r with r ≪ {d1, d2}. During fine-tuning, only
A and B are updated. The rank r is chosen to be much smaller than the dimension of W (e.g., r = 8
when d1 = d2 = 1024). With less than 0.5% additional trainable parameters, the training overhead
can be reduced up to 70%, compared to full fine-tuning. However, LoRA achieves comparable or
even better performance than full fine-tuning (Hu et al., 2022). Meanwhile, the product of two samll
matrices is more friendly to implement and deploy than unstructured sparse matrices in diff pruning.

LoRA still has limitations as it prespecifies the rank r of each incremental matrix ∆ identical. This
ignores the fact that the importance of weight matrices varies significantly across modules and layers
when fine-tuning pre-trained models. To illustrate this point, we present an concrete example in
Figure 1. We compare the performance of LoRA when fine-tuning specific modules or layers with
the same number of trainable parameters. Figure 1a shows that fine-tuning feed-forward networks
(FFN) achieves better performance than self-attention modules. In addition, Figure 1b demonstrates
that weight matrices in top layers are more important than those in bottom layers.

Adding more trainable parameters to the critical weight matrices can lead to better model performance.
In contrast, adding more parameters to those less important weight matrices yields very marginal
gains or even hurt model performance. Given the parameter budget, i.e., the number of total trainable
parameters, we always prefer to allocate more parameters to those important modules. Distributing
the budget evenly to all weight matrices/layers, like LoRA and other methods (e.g., adapter and prefix
tuning), often gives suboptimal performance. To this end, a natural question is:

How can we allocate the parameter budget adaptively according to importance
of modules to improve the performance of parameter-efficient fine-tuning?

1Unless specified otherwise, we use W (0) to denote any pre-trained weight matrix.
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To answer this question, we propose a new method – AdaLoRA (Adaptive Low-Rank Adaptation),
which dynamically allocates the parameter budget among weight matrices during LoRA-alike fine-
tuning. Specifically, AdaLoRA adjusts the rank of incremental matrices to control their budget.
Critical incremental matrices are assigned with high rank such that they can capture more fine-grained
and task-specific information. Less importance ones are pruned to have lower rank to prevent
overfitting and save the computational budget. There are some methods to control the rank of matrices
in the existing literature of matrix approximation (Cai et al., 2010; Koltchinskii et al., 2011; Toh &
Yun, 2010). Most of them directly compute singular value decomposition (SVD) of a matrix and
then truncate the smallest singular values. Such an operation can manipulate the rank explicitly
and, more importantly, minimize the difference between the resulting matrix and the original matrix.
However, for fine-tuning large models, it becomes prohibitively expensive to iteratively apply SVD
for a large number of high-dimensional weight matrices. Therefore, instead of computing SVD
exactly, we parameterize ∆ as ∆ = PΛQ to mimic SVD. The diagonal matrix Λ contains singular
values while the orthogonal matrices P and Q represent left/right singular vectors of ∆. To regularize
the orthogonality of P and Q, an additional penalty is added to training loss. Such a parameterization
avoids the intensive computations of SVD. Besides, another advantage is that we only need to drop the
unimportant singular values while the singular vectors are maintained. This preserves the possibility
of future recovery and stabilizes the training. See a detailed comparison to LoRA in Section 3.

Based on our SVD parameterization, AdaLoRA dynamically adjusts the rank of ∆ = PV Q by
importance scoring. Specifically, we divide the incremental matrix PΛQ into triplets, where each
triplet Gi contains the i-th singular value and the corresponding singular vectors. To quantify the
importance of triplets, we propose a novel importance metric, which takes account of the contribution
of every entry in Gi to the model performance (Sanh et al., 2020; Liang et al., 2021; Zhang et al.,
2022). Triplets with low importance scores are granted low priority and hence the singular values are
zeroed out. Triplets with high importance are retained for fine-tuning. Moreover, we also propose
a global budget scheduler to facilitate the training. In particular, we start from an initial parameter
budget, which is slightly higher than the final budget, and then gradually reduce it until matching
the target. Such a scheduler can improve the training stability and model performance. Please see
Section 3 for a detailed description of our importance metric and budget scheduler.

We conduct extensive experiments on a wide range of tasks and models to demonstrate the effec-
tiveness of AdaLoRA. Specifically, we evaluate the performance using DeBERTaV3-base (He et al.,
2021a) on natural language understanding (GLUE, Wang et al. (2019)) and question answering
(SQuADv1, Rajpurkar et al. (2016) and SQuADv2, Rajpurkar et al. (2018)) datasets. We also apply
our methods to BART-large (Lewis et al., 2019) and evaluate the performance on natural language
generation (XSum, Narayan et al. (2018) and CNN/DailyMail, Hermann et al. (2015)) tasks. We
show AdaLoRA consistently outperforms the baseline, especially under low budget settings. For
example, with less than 0.1% trainable parameters of full fine-tuning, AdaLoRA achieves a 1.2% F1
improvement on the SQuAD2.0 dataset compared with state-of-the-art approaches.

2 BACKGROUND

Transformer-based Models. A typical transformer model consists of L stacked blocks, where each
block contains two submodules: a multi-head attention (MHA) and a fully connected FFN. Given the
input sequence X ∈ Rn×d, MHA performs the attention function in parallel h heads:

MHA (X) = Concat(head1, ..., headh)Wo, headi = Softmax
(
XWqi(XWki)

⊤/
√

dh

)
XWvi ,

where Wo ∈ Rd×d is an output projection and Wqi ,Wki
,Wvi

∈ Rd×dh are query, key and value
projections of head i. dh is typically set to d/h. The other important module is a FFN which consists
of two linear transformations with a ReLU activation in between: FFN(X) = ReLU(XWf1 +
b1)Wf2 + b2, where Wf1 ∈ Rd×dm and Wf2 ∈ Rdm×d. Finally, a residual connection is used
followed by a layer normalization (Ba et al., 2016).

Low Rank Adaptation. LoRA (Hu et al., 2022) models the incremental update of the pre-trained
weights by the product of two small matrices. For h = W (0)x, the modified forward pass is:

h = W (0)x+∆x = W (0)x+BAx, (2)

where W (0),∆ ∈ Rd1×d2 , A ∈ Rr×d2 and B ∈ Rd1×r with r ≪ {d1, d2}. A typically adopts a
random Gaussion initialization while B is initialized with zero to have ∆ = 0 at the beginning of
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training. We further denote Ai∗ as the i-th row of A, B∗i as the i-th column of B, and Gi = {Ai∗, B∗i}
as the i-th doublet. Hu et al. (2022) only apply LoRA to query and value projections (i.e, Wq and
Wv) in the MHAs. He et al. (2022) extend it to weight matrices of FFNs (i.e, Wf1 and Wf2 ), leading
to the performance improvement . Meanwhile, they propose a unified view of various efficient tuning
methods including adapter tuning, prefix tuning and LoRA.

3 ADALORA METHOD

Our method contains two important components: (i) SVD-based adaptation, which formulates
the incremental matrices in the form of singular value decomposition; (ii) Importance-aware rank
allocation, which prunes redundant singular values based on our newly-designed importance metric.

3.1 SVD-BASED ADAPTATION

As mentioned in Section 1, we propose to parameterize the incremental updates of the pre-trained
weight matrices in the form of singular value decomposition:

W = W (0) +∆ = W (0) + PΛQ, (3)

where P ∈ Rd1×r and Q ∈ Rr×d2 represent the left/right singular vectors of ∆ and the diagonal
matrix Λ ∈ Rr×r contains the singular values {λi}1≤i≤r with r ≪ min(d1, d2). We further denote
Gi = {P∗i, λi, Qi∗} as the triplet containing the i-th singular value and vectors. In practice, since
Λ is diagonal, we only need to save it as a vector in Rr. Λ is initialized with zero while P and Q
adopt a random Gaussian initialization to ensure ∆ = 0 at the beginning of training. To enforce the
orthogonality of P and Q, i.e., P⊤P = QQ⊤ = I , we utilize the following regularizer2:

R(P,Q) = ∥P⊤P − I∥2F + ∥QQ⊤ − I∥2F. (4)

In our method, Λ is iteratively pruned to adjust the rank after each gradient decent step. As mentioned
in Section 1, one can directly compute SVD for every ∆ to manipulate singular values. The
computational complexity, however, is O(min(d1, d2)d1d2). It becomes extremely expensive to
iteratively apply SVD for a large number of high-dimensional incremental matrices. In contrast, our
parameterization avoids intensive SVD computation, greatly releasing the computational overhead.

We remark that one can also apply structured pruning to LoRA to control the rank (i.e., prune BA
doublet-wise in (1)), whereas it has the following disadvantages. First, when a doublet is measured as
unimportant, we have to prune all of its elements. It makes scarcely possible to reactivate the pruned
doublets as their entries are all zeroed out and not trained. In contrast, AdaLoRA only masks out
the singular values based on (3) while the singular vectors are always maintained. It preserves the
potential of future recovery for the triplets dropped by mistake. Second, A and B of LoRA are not
orthogonal, meaning the doublets can be dependent with each other. Discarding the doublets can
incur larger variation from the original matrix than truncating the smallest singular values. Therefore,
the incremental matrices are often altered dramatically after each step of rank allocation, which
causes training instability and even hurts generalization. To demonstrate this point, we present an
ablation study in Section 4.4, which compares AdaLoRA with structured pruning for LoRA.

3.2 IMPORTANCE-AWARE RANK ALLOCATION

We apply the SVD-based adaptation (3) to every weight matrix including Wq, Wk, Wv, Wf1 and
Wf2 of each transformer layer. In order to control the budget, we iteratively prune singular values
in correspondence to their importance score during the training. For clear reference, we use k to
index the incremental matrix, i.e., ∆k = PkΛkQk for k = 1, . . . , n, where n is the number of
adapted weight matrices. We denote the i-th triplet of ∆k as Gk,i = {Pk,∗i, λk,i, Qk,i∗} and its
importance score as Sk,i. We further denote the parameter sets P = {Pk}nk=1, E = {Λk}nk=1,
Q = {Qk}nk=1 and training cost as C(P, E ,Q). With the regularization (4), the training objective
is given by L(P, E ,Q) = C(P, E ,Q) + γ

∑n
k=1 R(Pk, Qk), where γ > 0 is the regularization

coefficient. At the t-th step, we first take a stochastic gradient step to update P
(t)
k ,Λ

(t)
k and Q

(t)
k for

k = 1, . . . , n. Specifically, for Λ(t)
k

Λ̃
(t)
k = Λ

(t)
k − η∇Λk

L(P(t), E(t),Q(t)), (5)

2We present the experiments in Appendix I to verify the effectiveness of the regularization.
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where η > 0 is learning rate. Then, given importance score S
(t)
k , the singular values are pruned

following

Λ
(t+1)
k = T (Λ̃

(t)
k , S

(t)
k ), with T (Λ̃

(t)
k , S

(t)
k )ii =

{
Λ̃
(t)
k,ii S

(t)
k,i is in the top-b(t) of S(t),

0 otherwise,
(6)

where S(t) = {S(t)
k,i}1≤k≤n,1≤i≤r contains the importance score of all triplets. Here b(t) is the budget

of remaining singular values at the t-th step, which we explain more in Section 3.3. In this way, we
leave more budget to the incremental matrices of higher priority by pruning the singular values of
less important ones. In the sequel, we introduce several options to design the importance score.

Magnitude of singular values is the most straightforward way to quantify the importance of every
triplet, i.e., Sk,i = |λk,i|. In this way, only the least significant singular values are discarded. It
minimizes the deviation from the original matrix and further stabilizes the training. Many existing
methods use this criterion to control the rank of matrix (Cai et al., 2010; Koltchinskii et al., 2011;
Toh & Yun, 2010). However, we remark that such a simple metric cannot properly quantify the
contribution of parameters to model performance.

Sensitivity-based importance is another option for importance scoring, which quantifies the sensi-
tivity of parameters to the training loss (Molchanov et al., 2019; Sanh et al., 2020; Liang et al., 2021;
Zhang et al., 2022). The prior work, however, leverages the sensitivity to quantify the importance of
single entries and applies it for unstructured pruning that prunes weights element-wise. When it turns
to our case, we have to design a new metric as the triplets are discarded group-wise. Every entry’s
sensitivity ought to be considered and properly combined to quantify the overall contribution of the
triplet to model performance. Therefore, we propose a newly-designed importance metric in account
of both the singular value and vectors in triplet Gk,i:

Sk,i = s(λk,i) +
1

d1

d1∑
j=1

s(Pk,ji) +
1

d2

d2∑
j=1

s(Qk,ij), (7)

where we calculate the mean importance of Pk,∗i and Qk,i∗ such that Sk,i does not scale with the
number of parameters in Gk,i. Here s(·) is a specific importance function for single entries. We can
adopt the sensitivity for s(·), which is defined as the magnitude of the gradient-weight product:

I(wij) = |wij∇wij
L|, (8)

where wij is any trainable parameter. (8) essentially approximates the change in loss when a parameter
is zeroed out. If the removal of a parameter has a large influence, then the model is sensitive to it and
we should retain it (Molchanov et al., 2019; Liang et al., 2021; Zhang et al., 2022).

However, Zhang et al. (2022) point out that the sensitivity in (8) is not yet a reliable importance indi-
cator. Such a score is estimated on the sampled mini batch. The stochastic sampling and complicated
training dynamics incur high variability and large uncertainty for estimating the sensitivity with (8).
Therefore, Zhang et al. (2022) propose to resolve this issue by sensitivity smoothing and uncertainty
quantification:

I
(t)
(wij) =β1I

(t−1)
(wij) + (1− β1)I

(t)(wij) (9)

U
(t)
(wij) =β2U

(t−1)
(wij) + (1− β2)

∣∣∣I(t)(wij)− I
(t)
(wij)

∣∣∣, (10)

where 0 < β1, β2 < 1. I
(t)

is the smoothed sensitivity by exponential moving average and U
(t)

is
the uncertainty term quantified by the local variation between I(t) and I

(t)
. Then they define the

importance as the product between I
(t)

and U
(t)

, which can be another option for s(·):

s(t)(wij) = I
(t)
(wij) · U

(t)
(wij). (11)

We present a detailed ablation study in Section 4.4 to compare the performance of different importance
metrics. We find the proposed metric (7) based on the sensitivity variant (11) generally performs best.
We summarize the detailed algorithm in Algorithm 1 presented in Appendix A.
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3.3 GLOBAL BUDGET SCHEDULER

As mentioned in Section 1, adjusting the rank is naturally to control the parameter budget in the
context of low-rank adaptation. Hence we define the budget b(t) as the total rank of all incremental
matrices, i.e., the number of total singular values. Recall that the budget allocation is iteratively
conducted during the fine-tuning. To facilitate the training, we propose a global budget scheduler.
Specifically, we start from an initial budget b(0) that is slightly higher than the target budget b(T ) (e.g.,
1.5 times of b(T )). We set the initial rank of each incremental matrix as r = b(0)/n. We warm up
the training for ti steps, and then follow a cubic schedule to decrease the budget b(t) until it reaches
b(T ). Finally, we fix the resulting budget distribution and fine-tune the model for tf steps. The exact
equation for the budget schedule is presented in Appendix B. This allows AdaLoRA to explore the
parameter space first and then focus on the most important weights later.

4 EXPERIMENTS

We implement AdaLoRA for fine-tuning DeBERTaV3-base (He et al., 2021a) and BART-large
(Lewis et al., 2019). We evaluate the effectiveness of the proposed algorithm on natural language
understanding (GLUE, Wang et al. (2019)), question answering (SQuADv1, Rajpurkar et al. (2016)
and SQuADv2, Rajpurkar et al. (2018)), and natural language generation (XSum, Narayan et al.
(2018) and CNN/DailyMail Hermann et al. (2015)). All the gains have passed significant tests with
p < 0.05.

Implementation Details. We use PyTorch (Paszke et al., 2019) to implement all the algorithms. Our
implementation is based on the publicly available Huggingface Transformers3 (Wolf et al., 2019)
code-base. All the experiments are conducted on NVIDIA V100 GPUs.

LoRA scales ∆x by α/r where α is a constant in r. As a result, the magnitude of output can be
consistent given different r. It reduces the efforts of retuning learning rate when varying r. Typically
α is set as 16 or 32 and never tuned (Hu et al., 2022; Yang & Hu, 2020). Following LoRA, we add
the same scaling for (3) and fix α as LoRA. Besides, in Algorithm 1, we prune singular values every
∆T steps (e.g., ∆T = 100) such that the pruned triplets can still get updated within these intervals
and possibly reactivated in future iterations.

Baselines. We compare AdaLoRA with the following methods:

• Full fine-tuning is the most common approach for adaptation. During fine-tuning, the model is
initialized with pre-trained weights and biases, and all model parameters undergo gradient updates.

• Bitfit (Zaken et al., 2021) is an effective parameter-efficient fine-tuning method. The method only
fine-tunes bias vectors in the pre-trained model.

• Adapter tuning (Houlsby et al., 2019; Pfeiffer et al., 2020) inserts two-layer adapters between
transformer blocks. We compare with two types of adapter. Houlsby adapter as proposed in Houlsby
et al. (2019) is inserted between the self-attention module and the FFN module followed by a
subsequent residual connection. Recently, Pfeiffer et al. (2020) propose a more efficient design with
adapters only applied after FFN modules and LayerNorm modules (Ba et al., 2016), which we call
Pfeiffer adapter. The number of trainable parameters is determined by the number of layers, the
hidden dimension of adapters and the dimension of their inputs.

• LoRA (Hu et al., 2022) is a state-of-the-art method for parameter-efficient fine-tuning. The method
parameterizes incremental updates by two small matrices and only fine-tune them. The number of
trainable parameter is controlled by the rank r and the number of adapted weight matrices n. Hu et al.
(2022) apply LoRA to query and value projections only. In empirical, we find that applying LoRA
to all weight matrices, i.e., Wq,Wk,Wv,Wf1 and Wf2 , can further improve its performance (Please
see Appendix H). Hence, we compare with this generalized LoRA to maximize its performance. We
use publicly available implementation 4 to run all the baselines. Please refer to Hu et al. (2022) and
reference therein for details.

3https://github.com/huggingface/transformers
4https://github.com/microsoft/LoRA
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Table 1: Results with DeBERTaV3-base on GLUE development set. The best results on each dataset are shown
in bold. We report the average correlation for STS-B. Full FT, HAdapter and PAdapter represent full fine-tuning,
Houlsby adapter, and Pfeiffer adapter respectively. We report mean of 5 runs using different random seeds.

Method # Params MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B All
m/mm Acc Mcc Acc/F1 Acc Acc Acc Corr Ave.

Full FT 184M 89.90/90.12 95.63 69.19 92.40/89.80 94.03 83.75 89.46 91.60 88.09

BitFit 0.1M 89.37/89.91 94.84 66.96 88.41/84.95 92.24 78.70 87.75 91.35 86.02

HAdapter 1.22M 90.13/90.17 95.53 68.64 91.91/89.27 94.11 84.48 89.95 91.48 88.12
PAdapter 1.18M 90.33/90.39 95.61 68.77 92.04/89.40 94.29 85.20 89.46 91.54 88.24
LoRAr=8 1.33M 90.65/90.69 94.95 69.82 91.99/89.38 93.87 85.20 89.95 91.60 88.34
AdaLoRA 1.27M 90.76/90.79 96.10 71.45 92.23/89.74 94.55 88.09 90.69 91.84 89.31

HAdapter 0.61M 90.12/90.23 95.30 67.87 91.65/88.95 93.76 85.56 89.22 91.30 87.93
PAdapter 0.60M 90.15/90.28 95.53 69.48 91.62/88.86 93.98 84.12 89.22 91.52 88.04
HAdapter 0.31M 90.10/90.02 95.41 67.65 91.54/88.81 93.52 83.39 89.25 91.31 87.60
PAdapter 0.30M 89.89/90.06 94.72 69.06 91.40/88.62 93.87 84.48 89.71 91.38 87.90
LoRAr=2 0.33M 90.30/90.38 94.95 68.71 91.61/88.91 94.03 85.56 89.71 91.68 88.15
AdaLoRA 0.32M 90.66/90.70 95.80 70.04 91.78/89.16 94.49 87.36 90.44 91.63 88.86

4.1 NATURAL LANGUAGE UNDERSTANDING

Models and Datasets. We evaluate the fine-tuning performance of DeBERTaV3-base (He et al.,
2021a) using the proposed algorithm. We conduct experiments on the General Language Understand-
ing Evaluation (GLUE, Wang et al. 2019) benchmark. The benchmark includes two single-sentence
classification tasks, three similarity and paraphrase tasks and four natural language inference tasks.
Dataset details are summarized in Appendix D.

Implementation Details. DeBERTaV3-base consists of 183 millions parameters. We compare
AdaLoRA with the baselines under different budget levels, for example, given the total trainable
parameters as 0.3/0.6/1.2 million. In order to match the parameter budget, we select the hidden
dimensions of adapters from {8, 16, 32, 64}, set the rank r of LoRA as {2, 4, 8}, and choose the
final budget b(T ) of AdaLoRA from {144, 288, 576}. Then we set b(0) as 1.5 times of b(T ) for
AdaLoRA and select the regularization coefficient γ from {0.1, 0.3, 0.5}. We set the exponential
moving average parameters β1 and β2 as their default value 0.85. We select the learning rate from
{5× 10−5, 8× 10−5, 1× 10−4, 2× 10−4}. More details are presented in Appendix E.

Main results. We compare AdaLoRA with the baseline methods under different budget settings.
Table 1 shows experimental results on the GLUE development set. We see that AdaLoRA achieves
better or on par performance compared with existing approaches on all datasets under all budget
levels. For example, when the parameter budget is 0.3M, AdaLoRA achieves 87.36% accuracy on
RTE, which is 1.8% higher than the best-performing baseline. Besides, AdaLoRA with extreme
low budget can often perform better than the baselines with higher budget. For example, AdaLoRA
achieve 70.04% Mcc. score on CoLA with 0.3M fine-tuning parameters, which is higher than all
baseline methods with lager budget (e.g., 0.6M and 1.2M).

4.2 QUESTION ANSWERING

Models and Datasets. We evaluate performance of the proposed algorithm on two question answering
(QA) datasets: SQuAD v1.1 (Rajpurkar et al., 2016) and SQuADv2.0 (Rajpurkar et al., 2018), where
we use AdaLoRA to fine-tune DeBERTaV3-base. These tasks are treated as a sequence labeling
problem, where we predict the probability of each token being the start and end of the answer span.
Dataset details can be found in Appendix F.

Implementation Details. We compare AdaLoRA with the baseline methods under different parameter
budgets. That is we have the number of trainable parameters as 0.08%/0.16%/0.32%/0.65% of
total pre-trained parameters. To match the budget requirements, we select the hidden dimensions
of adapters from {4, 8, 16, 32, 64}, set the rank r of LoRA as {1, 2, 4, 8} and choose the final total
rank b(T ) of AdaLoRA from {72, 144, 288, 576}. We set the batch size as 16. We use AdamW
(Loshchilov & Hutter, 2019) as the optimizer and we set the learning rate as 1× 10−3 for AdaLoRA.
Please refer to Appendix F for more details.

Main Results. Table 2 summarizes experimental results when we fine-tune DeBERTaV3-base under
4 different budget settings: 0.08%, 0.16%, 0.32% and 0.65% of total pre-trained parameters. From the
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Table 2: Results with DeBERTaV3-base on SQuAD v1.1 and SQuADv2.0. Here # Params is the
number of trainable parameters relative to that in full fine-tuning. We report EM/F1. The best results
in each setting are shown in bold.

SQuADv1.1 SQuADv2.0

Full FT 86.0 / 92.7 85.4 / 88.4

# Params 0.08% 0.16% 0.32% 0.65% 0.08% 0.16% 0.32% 0.65%

HAdapter 84.4/91.5 85.3/92.1 86.1/92.7 86.7/92.9 83.4/86.6 84.3/87.3 84.9/87.9 85.4/88.3
PAdapter 84.4/91.7 85.9/92.5 86.2/92.8 86.6/93.0 84.2/87.2 84.5/87.6 84.9/87.8 84.5/87.5
LoRA 86.4/92.8 86.6/92.9 86.7/93.1 86.7/93.1 84.7/87.5 83.6/86.7 84.5/87.4 85.0/88.0

AdaLoRA 87.2/93.4 87.5/93.6 87.5/93.7 87.6/93.7 85.6/88.7 85.7/88.8 85.5/88.6 86.0/88.9

result, we see that AdaLoRA consistently outperforms existing approaches under all the budget levels
in term of two evaluation metrics: exact match (EM) and F1. Notice that the performance of Houlsby
adapter and Pfeiffer adapter are notably decreased when we reduce the parameter budget. In contrast,
our method shows the consistent performance under different budget levels. For example, AdaLoRA
achieves 88.7% F1 on SQuADv2.0 with the smallest budget 0.08%. It is close to its performance
under the high budget and it is also 1.2% higher than the best-performing baseline.

4.3 NATURAL LANGUAGE GENERATION

Table 3: Results with BART-large on XSum and CNN/DailyMail. Here # Params is the number of trainable
parameters relative to that in full fine-tuning. We report R-1/2/L. The best results are shown in bold.

# Params Method XSum CNN/DailyMail
100% Full FT 45.49 / 22.33 / 37.26 44.16 / 21.28 / 40.90

2.20% LoRA 43.95 / 20.72 / 35.68 45.03 / 21.84 / 42.15
AdaLoRA 44.72 / 21.46 / 36.46 45.00 / 21.89 / 42.16

1.10% LoRA 43.40 / 20.20 / 35.20 44.72 / 21.58 / 41.84
AdaLoRA 44.35 / 21.13 / 36.13 44.96 / 21.77 / 42.09

0.26% LoRA 43.18 / 19.89 / 34.92 43.95 / 20.91 / 40.98
AdaLoRA 43.55 / 20.17 / 35.20 44.39 / 21.28 / 41.50

0.13% LoRA 42.81 / 19.68 / 34.73 43.68 / 20.63 / 40.71
AdaLoRA 43.29 / 19.95 / 35.04 43.94 / 20.83 / 40.96

Models and Datasets. To provide a comparison with the state-of-the-art in natural language gener-
ation (NLG) tasks, we apply AdaLoRA to fine-tune a BART-large model (Lewis et al., 2019). We
evaluate model performance on two datasets: XSum (Narayan et al., 2018) and CNN/DailyMail
(Hermann et al., 2015).

Implementation Details. Similarly as DeBERTav3-base, we apply low-rank/SVD-based adaptation
to every weight matrix of both encoder and decoder layers. We report ROUGE 1/2/L scores (R-1/2/L,
Lin (2004)). We set the training epochs as 15. For XSum, we set the beam length as 8 and batch size
as 64. For CNN/DailyMail, we set the beam length as 4 and batch size as 32. Please see Appendix G
for the detailed configuration.

Main Results. Experimental results are summarized in Table 3, where we compare the fine-tuning
performance under four budget levels: the number of trainable parameters is 0.13%, 0.26%, 1.10% and
2.20% of total pre-trained parameters. We see that AdaLoRA achieves better or on par performance
compared with the baseline on both datasets (XSum and CNN/DailyMail) under all the budget levels.
For example, AdaLoRA achieves 21.13 R-2 score when budget level is 1.10%, compared with 19.89
for LoRA.

4.4 ANALYSIS

Different budget levels. Figure 2 illustrates experimental results of fine-tuning DeBERTaV3-base
under different budget levels. We see that on all the three datasets (MNLI-m, SQuADv2.0 and XSum),
AdaLoRA achieves consistent performance improvement under all the budget levels compared with
the baseline. The performance gain is more significant when increasing the budget for the XSum
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Figure 2: Fine-tuning performance under different budget levels. We compare AdaLoRA with the
generalized LoRA that applies to every weight matrix.

task, suggesting a high budget can help NLG tasks. Note that on the MNLI and SQuADv2.0 datasets,
the performance of AdaLoRA under low budget levels (≤ 1%) can match the results of high budget
settings. For example, AdaLoRA achieves 88.78% F1 on SQuADv2.0 when the budget is 0.16%. It
is close to the performance (88.89% F1) of the highest budget (4.65%) with a more significant gain
over the baseline.

Comparison to low-rank parameterization. As mentioned in Section 3.1, one can alternatively
prune LoRA doublet-wise to conduct the rank allocation. In this case, the doublets are zeroed
out entirely, raising the barrier to reactivate them. It can cause training instability and hurt the
generalization when some crucial doublets are pruned by mistake. In Table 4, we compare AdaLoRA
with pruning LoRA on three datasets (SST-2, RTE, and CoLA) to illustrate this point. We apply the
same importance score, budget scheduler and training setups as Section 4.1 for pruning LoRA. We
can see that AdaLoRA outperforms pruning LoRA on all the datasets under all the budget levels.
Table 4: We present two ablation studies in this table: (i) Comparison between AdaLoRA and
structured pruning on LoRA. (ii) Comparison of different importance metrics for AdaLoRA.

SST-2 RTE CoLA
# Params 0.08% 0.16% 0.65% 0.08% 0.16% 0.65% 0.08% 0.16% 0.65%

Prune LoRA 94.84 94.50 94.95 86.28 86.15 87.00 66.71 69.29 69.57

AdaLoRA 95.52 95.80 96.10 87.36 87.73 88.09 70.21 70.04 71.45
s(·) = I(·) 94.61 95.30 95.64 87.36 87.71 88.10 66.71 68.83 70.19
Si = |λi| 95.41 95.41 95.87 87.00 86.28 88.00 67.67 68.44 70.38

Variants of the importance score. Recall that in AdaLoRA, the importance score is defined by the
sensitivity and uncertainty of every entry in the triplet (7). In Table 4, we examine two variants of the
importance score: (i) changing s(·) in (7) to sensitivity-only; (ii) directly defining Si as |λi|. From
the results, we can see that the proposed importance score generally performs best. The other two
variants can degenerate the model performance up to 0.9%.

The resulting budget distribution. Figure 3 in Appendix C shows the resulting rank of each
incremental matrix of DeBERTaV3-base fine-tuned with AdaLoRA. We find that AdaLoRA always
prefers to allocating more budget to FFNs and top layers. Such behavior aligns with our empirical
conclusions presented in Figure 1 that weight matrices of FFN moduels and top layers are more
important for model performance. Hence, it validates that our proposed importance metric can guide
AdaLoRA to focus on crucial modules. Meanwhile, the rank distribution generated by AdaLoRA
is consistent across different budget levels, tasks and models. It means the number of remaining
parameters is linearly scaled with b(T ) and hence we can tune b(T ) to control the remaining parameters.

5 CONCLUSION

We propose a parameter-efficient fine-tuning method – AdaLoRA that adaptively allocates the
parameter budget according to importance scoring. In AdaLoRA, we parameterize the incremental
updates of weight matrices in the form of singular value decomposition. Then, we dynamically
allocate the parameter budget among incremental matrices by manipulating the singular values based
on a new importance measurement. Such an a pproach effectively improves the model performance
and parameter efficiency. We conduct extensive experiments on natural language processing, question
answering and natural language generation tasks. Results show that AdaLoRA outperforms existing
approaches.

9



Published as a conference paper at ICLR 2023

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances
in Neural Information Processing Systems 33: Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular value thresholding algorithm for
matrix completion. SIAM Journal on optimization, 20(4):1956–1982, 2010.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, 2019.
Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning.
arXiv preprint arXiv:2012.07463, 2020.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=0RDcd5Axok.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543,
2021a.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. In International Conference on Learning Representations, 2021b.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. Advances in neural
information processing systems, 28, 2015.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Vladimir Koltchinskii, Karim Lounici, and Alexandre B Tsybakov. Nuclear-norm penalization and
optimal rates for noisy low-rank matrix completion. The Annals of Statistics, 39(5):2302–2329,
2011.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL https:
//aclanthology.org/2021.emnlp-main.243.

10

https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243


Published as a conference paper at ICLR 2023

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461,
2019.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers),
Virtual Event, August 1-6, 2021, pp. 4582–4597. Association for Computational Linguistics,
2021. doi: 10.18653/v1/2021.acl-long.353. URL https://doi.org/10.18653/v1/2021.
acl-long.353.

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao,
and Weizhu Chen. Super tickets in pre-trained language models: From model compression to
improving generalization. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 6524–6538, Online, 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.acl-long.510.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation for
neural network pruning. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019, pp. 11264–11272. Computer Vision Foundation /
IEEE, 2019. doi: 10.1109/CVPR.2019.01152.

Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
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A THE DETAILED ALGORITHM

Algorithm 1 AdaLoRA

1: Input: Dataset D; total iterations T ; budget schedule {b(t)}Tt=0; hyperparameters η, γ, β1, β2.
2: for t = 1, . . . , T do
3: Sample a mini-batch from D and compute the gradient ∇L(P, E ,Q);
4: Compute the sensitivity I(t) in (8) for every parameter in {P, E ,Q};

5: Update I
(t)

as (9) and U
(t)

as (10) for every parameter in {P, E ,Q};
6: Compute S

(t)
k,i by (7), for k = 1, . . . , n and i = 1, . . . , r ;

7: Update P
(t+1)
k = P

(t)
k − η∇Pk

L(P, E ,Q) and Q
(t+1)
k = Q

(t)
k − η∇Qk

L(P, E ,Q);
8: Update Λ

(t+1)
k = T (Λ

(t)
k − η∇Λk

L(P, E ,Q), S
(t)
k ) given the budget b(t).

9: end for
10: Output:

B GLOBAL BUDGET SCHEDULE

As mentioned in Section 3.3, we propose a global budget scheduler to gradually decrease the budget
b(t) following a cubic schedule. The detailed equation is given as follows:

b(t) =


b(0) 0 ≤ t < ti

b(T ) +
(
b(0) − b(T )

) (
1− t−ti−tf

T−ti−tf

)3

ti ≤ t < T − tf

b(T ) o.w.

. (12)

C THE BUDGET DISTRIBUTION
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Figure 3: The resulting rank of each incremental matrix when fine-tuning DeBERTaV3-base on
MNLI with AdaLoRA. Here the x-axis is the layer and the y-axis represents different types of adapted
weight matrices.

Figure 3 shows the resulting rank of each incremenal matrix when fine-tuning DeBERTaV3-base
on MNLI with AdaLoRA. We can see that AdaLoRA allocates more parameter budget to weight
matrices of 8, 9, 10, and 11 layers, especially for Wf1 and Wv. Such behavior aligns with our
conclusions presented in Figure 1.

D GLUE DATASET STATISTICS

We present the dataset statistics of GLUE (Wang et al., 2019) in the following table.
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Table 5: Summary of the GLUE benchmark.

Corpus Task #Train #Dev #Test #Label Metrics

Single-Sentence Classification (GLUE)
CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification (GLUE)
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Text Similarity (GLUE)
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

E NATURAL LANGUAGE UNDERSTANDING

E.1 BUDGET CONFIGURATION

For each budget level, we tune the final budget b(T ) for AdaLoRA, the rank r for LoRA, the hidden
dimension d for two adapters to match the budget requirements.

Table 6: Detailed budget setup for GLUE benchmark.

# Params Houlsby Adapter (d) Pfeiffer Adapter (d) LoRA (r) AdaLoRA (b(T ))

1.2M 32 64 8 576
0.6M 16 32 4 288
0.3M 8 16 2 144

Alternatively, we can also set the final average rank r̄(T ) = b(T )/n for AdaLoRA to control the
budget, which is set as 2, 4, and 8 given the final budget as 144, 288, and 576 respectively. Then we
select the initial rank r from {4, 6, 12} for the final average rank {2, 4, 8} respectively.

E.2 TRAINING DETAILS

We tune the learning rate from {8× 10−5, 5× 10−5, 3× 10−5, 1× 10−4, 3× 10−4, 5× 10−4, 8×
10−4, 1× 10−3} and pick the best learning rate for every method. For each dataset, the batch size is
set as identical for every method.

Table 7: Hyper-parameter setup of AdaLoRA for GLUE benchmark.

Dataset learning rate batch size # epochs γ ti ∆T tf

MNLI 5× 10−4 32 7 0.1 8000 100 50000
RTE 1.2× 10−3 32 50 0.3 600 1 1800
QNLI 1.2× 10−3 32 5 0.1 2000 100 8000
MRPC 1× 10−3 32 30 0.1 600 1 1800
QQP 5× 10−4 32 5 0.1 8000 100 25000
SST-2 8× 10−4 32 24 0.1 6000 100 22000
CoLA 5× 10−4 32 25 0.5 800 10 3500
STS-B 2.2× 10−3 32 25 0.1 800 10 2000

F QUESTION ANSWERING

F.1 BUDGET CONFIGURATION

Given the budget, we control the trainable parameters for each method as the following table.
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Table 8: Detailed budget setup for question answering.

# Params Houlsby Adapter Pfeiffer Adapter LoRA AdaLoRA
d d r b(T )/r̄(T )/r

0.65% 32 64 8 576 / 8 / 12
0.32% 16 32 4 288 / 4 / 6
0.16% 8 16 2 144 / 2 / 4
0.08% 4 8 1 72 / 1 / 2

F.2 TRAINING DETAILS

We set the batch size as 16. We select the learning rate from {8 × 10−5, 5 × 10−5, 3 × 10−5, 1 ×
10−4, 3× 10−4, 5× 10−4, 8× 10−4, 1× 10−3} and pick the best-performing learning rate for every
method. The configuration of AdaLoRA is listed in the following table.

Table 9: Hyper-parameter setup of AdaLoRA for question answering tasks.

Dataset learning rate batch size # epochs γ ti ∆T tf

SQuADv1.1 1× 10−3 16 10 0.1 5000 100 25000
SQuADv2.0 1× 10−3 16 12 0.1 5000 100 50000

F.3 DATASET

The statistics of question answering datasets are summarized in Table 10.

Table 10: Statistics of the SQuAD dataset.

# Train # Validation

SQuAD v1.1 87,599 10,570
SQuAD v2.0 130,319 11,873

G NATURAL LANGUAGE GENERATION

G.1 BUDGET CONFIGURATION

Given the budget, we control the trainable parameters for each method as the following table.

Table 11: Detailed budget setup for summarization tasks.

# Params Houlsby Adapter Pfeiffer Adapter LoRA AdaLoRA
d d r b(T )/r̄(T )/r

0.65% 32 64 8 576 / 8 / 12
0.32% 16 32 4 288 / 4 / 6
0.16% 8 16 2 144 / 2 / 4
0.08% 4 8 1 72 / 1 / 2

G.2 TRAINING DETAILS

We set the batch size as 16. We select the learning rate from {8 × 10−5, 5 × 10−5, 3 × 10−5, 1 ×
10−4, 3× 10−4, 5× 10−4, 8× 10−4, 1× 10−3} and pick the best-performing learning rate for every
method. The configuration of AdaLoRA is listed in the following table.

15



Published as a conference paper at ICLR 2023

Table 12: Hyper-parameter setup of AdaLoRA for summarization tasks.

Dataset learning rate batch size # epochs γ ti ∆T tf

XSum 5× 10−4 64 25 0.1 6000 100 50000
CNN/DailyMail 5× 10−4 32 15 0.1 5000 100 85000

H ABLATION STUDY FOR LORA

As mentioned in Section 4, we find that the performance of LoRA can be further improved when
applying it to every weight matrix, compared to fine-tuning Wq and Wv only (Hu et al., 2022). This
observation aligns with the empirical results of He et al. (2022). In Table 13, we follow the same
training configuration as Section 4.1 and present an ablation study to illustrate this point.

Table 13: We compare the fine-tuning performance when apply LoRA to every weight matrix or
Wq,Wv only. The parameter budget is fixed as 0.3M. We report accuracy for QQP and MRPC,
accuracy(m) for MNLI, and average correlation for STS-B.

MNLI QQP CoLA RTE QNLI SST-2 MRPC STS-B

LoRA (Wq,Wk) 89.80 90.48 67.04 83.75 93.69 94.84 90.20 91.05
LoRA (all) 90.30 91.61 68.71 85.56 94.31 94.95 90.44 91.68

I ORTHOGONAL REGULARIZATION
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Figure 4: We plot the ∥P⊤P − I∥2F and ∥QQ⊤ − I∥2F when fine-tuning DeBERTaV3-base on SST-2.

To verify the effectiveness of (4), we plot ∥P⊤P − I∥2F and ∥QQ⊤ − I∥2F to show whether P and Q
are regularized to be orthogonal. We fine-tune a DeBERTaV3-base model on SST-2 with AdaLoRA
and follow the same training configuration as Section 4.1. We set γ as 0.1 and plot the two terms
along the training horizon. From Figure 4, we can see that two regularization terms can be optimized
to a very small value (e.g., 0.001) at the beginning of training. Therefore, both P and Q can be
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enforced to be orthogonal quickly during the initial warm-up of AdaLoRA. It ensures that the triplets
are not dependent with each other.

J THE ROLE OF TWO COMPONENTS

We remark that both two components of our method - SVD adaptation and adaptive budget allocation,
play vital roles for the performance gain. To demonstrate it, we compare AdaLoRA with the
following variants: (i) SVD-LoRA: fine-tuning only with the proposed SVD-based adaptation in (3)
and (4); (ii) LoRAregu: LoRA with orthogonal regularization (4) on A and B; (iii) AdaLoRAγ = 0:
AdaLoRA without orthogonal regularization (4). Table 14 present the results when fine-tuning
DeBERTaVe-base on SST-2 and MNLI. We can see that fine-tuning only with SVD adaptation shows
an improvement over LoRA but cannot match the performance of AdaLoRA. Meanwhile, without
SVD orthogonal regularization, the performance of AdaLoRA can degenerate. These results validate
that both components contribute to the model performance.

Table 14: We present ablation studies about SVD-based adaptation, orthogonal regularization, and
budget allocation in this table. For MNLI, we report the average score of m/mm acc.

SST-2 MNLI
# Params 0.08% 0.16% 0.32% 0.65% 0.08% 0.16% 0.32% 0.65%

LoRA 94.38 94.95 - 94.95 90.19 90.34 - 90.57
LoRAregu - 94.61 94.72 94.61 - 90.30 90.40 90.66

SVD-LoRA 95.33 95.18 95.07 95.53 90.28 90.25 90.52 90.62

AdaLoRAγ = 0 95.41 95.10 95.30 95.10 90.37 90.34 90.56 90.43
AdaLoRA 95.64 95.80 96.10 96.10 90.65 90.68 90.66 90.77

K COMPARISON OF TRAINING COST

We compare the training cost between AdaLoRA and LoRA in the following table. We use two
methods to fine-tune DeBERTaV3-base on a single NVIDIA V100 GPU. We do training only and set
hyperparameters, e.g., batch size and training epochs, the same as in Section 4.

Table 15: Comparison of practical training cost between AdaLoRA and LoRA.

Dataset # Param Method GPU Mem Time/epoch

MNLI

0.08% LoRA 11.094 GB 105 min
AdaLoRA 11.104 GB 116 min

0.16% LoRA 11.098 GB 105 min
AdaLoRA 11.110 GB 117 min

0.65% LoRA 11.128 GB 105 min
AdaLoRA 11.188 GB 117 min

SST-2

0.08% LoRA 13.138 GB 60 min
AdaLoRA 13.148 GB 71 min

0.16% LoRA 13.142 GB 61 min
AdaLoRA 13.164 GB 71 min

0.65% LoRA 13.170 GB 61 min
AdaLoRA 13.226 GB 71 min

Table 15 shows that MARVEL incurs 11% additional training time on MNLI and 16% on SQuADv2
under different budgets. The memory footprint of two methods are quite close. Such results
demonstrate that MARVEL does not incur significant training overheads. The reason behind is that
we only evaluate the importance score for small incremental matrices PΛQ. Their total number of
parameters is usually less than 1% of pre-trained weights. Therefore, it does not lead to significant
computational cost to update the importance scores of these well-structured small matrices, compared
to forward-backward pass of full model.
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