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violation in MONO3D technology due to 1.9× higher power

density resulting from footprint reduction. Similarly, for EDAP

efficiency (or, minimum EDAP), Fig. 3c shows that A3 at

1,000 MHz is the most efficient in 2D technology. However,

under a tight 70◦C constraint, A3 results in a thermal violation

in MONO3D. On the other hand, on relaxing the constraint to

80◦C, A3 executes safely. Thus, not only 2D and MONO3D

may have different optimal configurations, but varying the

thermal constraint may lead to a different optimum point

in MONO3D. Furthermore, finding optimal configurations is

often non-trivial in a vast design space due to (i) continuously

emerging state-of-the-art DNNs with competitive accuracies,

different topologies and compute/memory requirements, (ii)

limited thermal headroom in mobile systems, (iii) desired

constraints and objectives for a chip architect/designer, and

(iv) numerous possible values for the multiple control knobs

discussed above (e.g., frequency, array size, etc.). Also, a fine-

grained grid search or exhaustive search may be infeasible

and time consuming to find optimized points. Hence, it is

important to develop a temperature-aware optimization frame-

work to traverse through the design space efficiently, evaluate

performance, power, and thermal characteristics for a subset of

the design space for a DNN of interest, and converge to near-

optimal configurations for 2D or MONO3D technologies.

III. RELATED WORK

Systolic DNN accelerators. Several works have proposed

techniques for increasing efficiency of systolic arrays due to

their growing use for DNN inference. For example, Asgari et

al. propose pruning methods to reduce memory accesses and

achieve higher energy efficiency in sparse DNN inference [21],

[22]. Liu et al. combine sub-arrays of PEs into larger Tensor-

PEs to improve data re-use and achieve 2× power efficiency

in mobile systems [23]. Li et al. replace off-chip DRAM

with emerging on-chip memory technologies to achieve 2×
energy efficiency in mobile systolic arrays [9]. There exists

another body of work that focuses on DNN and hardware

co-design for higher energy efficiency [24], [25]. All these

works target 2D arrays. Kung et al. introduce tiled systolic

architecture vertically interfaced with a memory die using

TSVs for high memory bandwidth, and thus, resulting in

significant latency improvement over 2D [16]. However, the

effect of temperature on such systems has not been assessed.

Another work demonstrates a need for thermal awareness in

the design of TSV3D systolic array chiplets in a multi-chip

module for a multi-DNN workload [26].

Thermal integrity in MONO3D systems. Several works

have investigated thermal issues in MONO3D systems and

proposed appropriate remedies. For example, optimizing the

power delivery network can improve thermal conductivity and

lead to reduction in on-chip temperature [27], [28]. Iqbal et

al. propose the use of nano pillars for extracting heat from se-

lected hot spot regions [29]. Such techniques improve thermal

conductivity, which allows effective heat removal via the heat

spreader/sink. Lee et al. demonstrate MONO3D benefits over

2D for high-performance ICs when using emerging cooling

techniques [30]. In another work, Samal et al. show that

tight inter-tier vertical thermal coupling with negligible lateral

flow of heat exists in MONO3D ICs and build a non-linear

regression model for temperature estimation of the tiers [31].

None of these works target thermal integrity in mobile systems

that are area, power, and thermally constrained.

MONO3D DNN accelerators for inference. On the

MONO3D front, power and performance benefits offered by

this technology have led to an increasing interest in design-

ing DNN accelerators. Chen et al. propose an accelerator

architecture with resistive RAMs (ReRAMs), multiple layers

of carbon nanotube field-effect transistors (CNFETs) based

ADC/DAC for the ReRAMS, and CNFETs-based SRAMs.

The CNFETs based logic and memory structures result in

a higher power efficiency, in comparison to CMOS, thus

improving performance per watt in DNN inference [32]. Yu et

al. introduce an architecture with ReRAM memory tiers inter-

faced with an accelerator tier using MIVs. The high density

MIVs provide high memory bandwidth resulting in significant

energy savings in DNN inference [33]. Chang et al. investigate

partitioning choices to design a post-layout two-tier MONO3D

ASIC (with MAC units and memory blocks) for speech recog-

nition DNN models and show significant performance/power

improvements [18]. However, none of these works considers

temperature awareness, which can be a major issue especially

with multiple layer stacking. Furthermore, these works do not

find optimal architectures for DNN workloads. A recent work

proposes a variant of output stationary dataflow to utilize

the vertical dimension in MONO3D systolic arrays, where

each tier has private SRAMs [34]. A 12-tier 3D systolic

architecture is shown to have a 9.14× speed up over 2D in

high-performance systems such as servers. The 3D systolic

arrays are shown to not have major thermal issues because

high-performance systems are usually equipped with powerful

cooling solutions. The authors, however, have not modeled

temperature-dependent leakage, which can be non-negligible

due to strong inter-tier thermal coupling in MONO3D systems

[7], [35], and thus, have an impact on the thermal behavior of

the system. Also, the DNNs considered in their work may not

be high-power DNNs. We later demonstrate in this paper that

DNNs like VGG11 or Faster R-CNN are limited by thermal

headroom. Another work models different options of stacking

multiple layers of systolic array and SRAM layers to achieve

better performance than 2D systolic arrays [36]. However, they

do not have a performance model in place to measure the effect

of stacking options on frequencies or wirelengths. Nor do they

investigate SRAM partitions or determine optimal and efficient

systolic architecture for DNNs of interest. In summary, these

works do not provide a systematic method that i) effectively

explores the design space of MONO3D systems, ii) considers

thermal issues, and iii) evaluates improvements over 2D DNN

accelerators. Our proposed method enables these missing

features through circuit- and architecture-level power and

performance models that are scalable across systolic array

sizes and determines optimal MONO3D systems for given

objectives and thermal constraints.

Our prior work shows performance versus temperature

tradeoffs in systolic arrays for only one MONO3D partition:

SRAMs monolithically grown on top of systolic arrays [19].
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that is lowered after a fixed number of steps (N ) by a factor

α, with a total of numT distinct annealing temperatures. The

algorithm finally converges when Tmsa is sufficiently low to

not accept worse configurations.

2) Temperature-aware optimizer in TREAD-M3D: We

use an MSA-based optimizer to generate an optimal con-

figuration, for the user-specified optimization function, F (x)
(e.g., inference latency or power efficiency). This optimizer

takes the following user inputs as constraints: (i) bounds on

systolic array, (ii) maximum SRAM size, (iii) chip footprint

budget, (iv) latency overhead, and (v) temperature budget. The

optimizer uses MONO3D partitions, systolic array size, SRAM

organization, and clock frequencies (determined using the

performance model presented in Sec. IV-C) as control knobs

to find near-optimal architectures. As the annealing tempera-

ture decreases, the optimizer does not accept configurations

with worse F (x) and finally converges to a near-optimal

configuration by exploring a small fraction of the total design

space. MSA is also inherently scalable with increasing design

space because more starts can be launched in parallel for

design space exploration. After initial tuning of the annealing

parameters with known good results, it can be used to find

optimized configurations for various other DNNs.

C. Phase 2: MONO3D Performance Models

We design a high-performance PE using Synopsys Design

Compiler at 65 nm {794 MHz, 1.37 mW, 1028 µm2, 1.2

V} and scale it down to 22 nm {1 GHz, 0.25 mW, 121

µm2, 0.8 V} to utilize its latency, power, and area estimates

in our analyses [43]. We detail the MONO3D cross-layer

performance modeling approach below.

1) Architecture-level models: We use SCALE-Sim, a cycle-

accurate DNN simulator for systolic arrays, for architecture-

level simulations [44]. Inputs to SCALE-Sim are the DNN

topology, systolic array and SRAM sizes, dataflow, and

DRAM bandwidth. SCALE-Sim simulates a stall-free feed-

forward inference on 8-bit integer data, and outputs com-

pute cycles, DRAM cycles, average array utilization, and

DRAM/SRAM bytes transferred. We calculate the total in-

ference latency by adding compute time and DRAM time that

does not overlap with compute. We choose output stationary

(OS) dataflow for our analysis since SCALE-Sim has been

validated against an RTL model for OS [44].

For SRAM architecture-level modeling and optimization,

we use a popular SRAM simulator, CACTI-6.5 [41]. Both

bitline and wordline partitioning styles decrease the global

interconnect length within the SRAM (e.g., distance between

the predecoder and local wordline decoder of sub-arrays, or

length of select lines for MUXes) due to reduction in chip

footprint and lead to latency improvement [45]. We explicitly

consider the cost of duplicated blocks such as wordline drivers

or sense amplifiers [45] (unlike recent prior work on MONO3D

L1 caches partitioned across bitlines/wordlines [46]). For a

two-tier SRAM partition across wordlines/bitlines, we divide

the wordline/bitline capacitance of each sub-array by 2, which

reduces the access latencies since these lie on the critical path.

In wordline partition, we add drivers for each wordline in

the two tiers. Even though we have twice as many wordline

drivers, each driver now drives a smaller load as wordline

capacitance becomes half, and can potentially lead to power

savings [45]. For bitline partition, we add sense amplifiers to

both tiers for faster bitline access. However, this also increases

leakage due to the duplication. CACTI internally performs a

design space exploration to generate an energy-delay2 product

(ED2P)-optimized SRAM configuration for the desired parti-

tion. For instance, a 32KB SRAM may have dissimilar design

for the two partition styles (e.g., different number of banks

and/or block sizes). Thus, it is not straightforward to determine

which partition will be optimal for an iso-capacity SRAM

because (a) internal SRAM design may be different, (b) ED2P

is a lumped metric, and (c) thermal budget affects the power

density of the MONO3D SRAM that can be endured. Similar

observations are also cited in another 3D cache work [45]. We

ignore the area overhead due to MIVs due to their small size

[2], but add MIV’s delay (1.83 ps), dynamic energy (4.66e-7

nJ), and leakage (3.87e-5 mW) to the model [46].

TREAD-M3D first determines the minimum bandwidth

(bytes transferred per SRAM access) for each SRAM for OS,

and then generates an ED2P-optimized design (#banks, block

size) for each SRAM. E.g., for a 48×32 (rows×columns) sys-

tolic array, the bandwidths we model in CACTI for (IFMAP,

Filter, OFMAP) SRAMs are (64, 32, 32) bytes per SRAM

access, since SCALE-Sim assumes single-cycle SRAM access.

We round them off to the nearest powers of 2 due to SRAM

design constraints in CACTI. It is not straightforward to deter-

mine which MONO3D SRAM partition (bitline or wordline)

gives the lowest latency because a design optimized for ED2P

may not be necessarily optimized for latency [45].

2) Circuit-level models and optimization: TREAD-M3D

uses HSPICE and, without loss of generality, 22 nm PTM

models [47] for wirelength modeling. The interconnect delay

between the systolic array and SRAM is determined by the

Manhattan distance between them [48].

Since only the edge PEs read/write SRAMs, TREAD-M3D

first calculates the longest Manhattan distances between: (i)

left edge PEs and IFMAP SRAM, LI , (ii) top edge PEs and

Filter SRAM, LF , and (iii) bottom edge PEs and OFMAP

SRAM, LO, followed by the longest interconnect length

among them, i.e., Lmax = max(LI , LF , LO). TREAD-

M3D then runs HSPICE to determine the optimal number of

repeaters (i.e., CMOS inverter) that are inserted across Lmax

for minimum delay, DLmax [49], [50]. Note that we include

repeater insertion in HSPICE modeling to minimize delay

associated with data transfer. CACTI also internally inserts

repeaters to optimize the SRAM architecture.

3) Frequency generation: TREAD-M3D calculates the

highest possible frequency freqmax (assuming that the PEs,

SRAM access, and interconnect represent individual pipeline

stages), for the configuration, as shown in Eq. (1). It then

discretizes the frequencies between freqmax and a lower

bound in 50 MHz step size, inclusive of the bounds. We

assume 100 MHz as a safe lower bound so that all realis-

tic frequencies are considered. Finally, our optimizer selects

a discretized frequency (freqsys) with uniform probability,

calculates inference latency, and proceeds to P3. Note that
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clock frequency to 100 MHz and upper bound to the frequency

determined by TREAD-M3D. In total, there are 263k unique

configurations per DNN in DC. For DRAM, we use LPDDR2

with a frequency of 400 MHz and energy consumption of 40

pJ/bit [57], [58]. We also explore three MONO3D partitions

and use HotSpot’s default ambient temperature of 45◦C (also

a commonly accepted value [52], [59]) and grid mode with

grid length = PE length for steady state analysis. To set

performance constraints for the DNNs, we set an acceptable

loss to 10% of the inference latency for a 60 fps camera [20],

i.e., 16.7 ms. Note that the MONO3D partition choices are

shown in Fig. 5 and described in Sec. IV-A.

B. Optimizer’s accuracy and runtime analysis

We select a small subset of the design space (DT) to

tune our optimizer. DT includes all architectures between a

smaller aspect ratio range of 0.98 to 1.02, while keeping the

other configuration settings the same. In total, DT contains

28k unique configurations per DNN, inclusive of the three

MONO3D partitions. We evaluate the optimizer’s accuracy

with two DNNs: VGG11 and GoogLeNet, and for several

optimization goals (i.e., chip power, energy, EDP, and EDAP).

Note that energy, EDP, and EDAP include both on-chip and

DRAM energy. To approach the globally optimal solution in

DT, we tune our optimizer by varying Ps, num T , α, N

for the various optimization goals discussed in Sec. IV-B1.

We initiate nine starts in parallel, where each start randomly

searches in a subset of the total configurations. We achieve

high accuracy with a deviation from global optima by ≤
3.84% by exploring only 20% of DT. The optimizer rejects

worse solutions near termination, hence verifying convergence.

The optimal settings of the optimizer are: Ps = 0.5, N =

100, numT = 6, and α = .84, .87, .83, and .91 for power,

energy, EDP, and EDAP optimization, respectively. Using

these optimal settings and same design space DT, we verify

our optimizer’s accuracy at two more ambient temperatures,

i.e., 25◦C [60] and 55◦C [61], to show that it is robust and not

over-tailored to specific experimental settings. The optimizer

converges by exploring only 20% of DT. Furthermore, the

deviation from the global optima, across all the four objectives,

at 25◦C and 55◦C is only up to 4.56% and 4.64%, respectively,

thus, showing that the optimizer is versatile enough for real-

life conditions with fluctuating temperatures.

HSPICE simulations for each configuration take up to two

minutes to calculate delay and power with repeater insertion

Systolic arrays 16×16 to 256×256

Aspect ratio of 0.8 to 1.2
systolic arrays

SRAMs (8, 16, 32 ... 8192) KB

Frequency bounds 100 MHz to freqmax

in 50 MHz steps

White space allowed
(due to area mismatch 0.5%

between tiers)

Partition A

Partition choices Partition Bbitline

Partition Bwordline

TABLE II: Complete design space (DC).

optimization for the three SRAMs. SCALE-Sim and HotSpot

take 10-60 and 5-45 mins, respectively, depending on the chip

footprint and DNN. Large DNNs have a higher number of

MAC operations that lead to higher power dissipation and peak

temperatures (more active PEs), which increase temperature-

dependent leakage. Thus, these DNNs require up to 4-5

iterations to converge in HotSpot. Small DNNs require up to

2-3 iterations due to fewer MAC operations [62] and lower

chip power. Long simulation times are bottlenecks to perform

an exhaustive search in our large design space and demonstrate

the need for an optimizer. Compared to a brute force search,

we expect to see a reduction in search time by 80% because the

optimizer only traverses through 20% of the total design space.

Specifically, our design space consists of 6,175 unique systolic

array configurations between aspect ratio 0.8 to 1.2 and a total

of 263k HotSpot simulations (including various frequencies).

We perform our simulations on the Massachusetts Green High

Performance Computing Center (MGHPCC). We run each

simulation on an Intel Xeon E5-2680 v4 CPU node with 128

GB of memory. For instance, one VGG19 simulation (the

largest DNN in our work), on average, takes 30 minutes in

SCALE-Sim and 15 minutes in HotSpot. With 33 multi starts,

our optimizer takes 18 days to converge to a near optimal

solution. In contrast, exhaustive search will take 87 days if

we are running 33 searches in parallel.

C. Pareto optimal front

We now present interesting insights by running TREAD-

M3D under various temperature constraints. We use 80◦C

as a thermal constraint because it is a commonly accepted

constraint in commercial mobile devices [63], [64]. Typically,

the primary reason for having strict thermal constraints in mo-

bile applications is the leakage power. Note that we consider

temperature-dependent leakage power in this optimization

framework. In addition, considering that mobile devices can

range from mobile phones to tablets to drones etc. we also

present a Pareto optimal analysis for three thermal constraints:

70◦C (tight constraint), 80°C (commonly accepted constraint),

and 90◦C (relaxed constraint). The optimizer searches DC,

including the partition choices (Fig. 2), and outputs the Pareto

optimal frontier for a given DNN. Through this Pareto curve,

we capture interesting thermal effects on energy, inference

latency, systolic array size, and optimal MONO3D partition

choice. We initiate 33 parallel starts and increase the number

of perturbations to 250 per annealing temperature to achieve

convergence, while fixing the other annealing parameters. The

optimizer explores 20% of DC and converges near termination.

Fig. 7 shows the Pareto front obtained on running TREAD-

M3D for VGG16 for minimizing system energy at various

temperature constraints. Each column in the figure is a Pareto

front at a different temperature constraint, while the rows in

a column display the same front at iso-area, iso-frequency,

and iso-power, respectively. The x and y axes show inference

latency and system energy, respectively.

Figs. 7a, 7b, and 7c show that across all temperature

constraints, small footprints (< 2 mm2) contain few PEs

and, therefore, demand the least energy. Thus, the optimizer
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VII. DISCUSSION AND FUTURE WORK

This work aims to understand the pros and cons offered by

MONO3D technology when applied to DNN systolic arrays.

The reported results can help make an informed decision

as to where MONO3D is the right technology for such a

system. Note that the additional cost incurred by the increased

processing steps may be counterbalanced by the increased

area that a 2D system will require to achieve comparable

performance with MONO3D. For instance, to match the low

latency in MONO3D due to higher frequency resulting from

SRAM partition, 2D technology may need a larger systolic

array to reduce compute cycles. In this case, yield will also

decrease for 2D systems, thereby reducing the cost difference

between 2D and MONO3D manufacturing.

TREAD-M3D currently contains tools/models for evalu-

ating specific partition choices for systolic arrays. It is suffi-

ciently flexible if the user chooses different tools, provided the

tools can evaluate the computational and memory attributes of

DNNs executing on systolic arrays. Similarly, TREAD-M3D

can be adopted to design different accelerator architectures.

However, new performance and power models are needed to

support different DNN acceleration architectures in MONO3D

that can generate the data needed by our optimizer to converge

to near-optimal points, which we leave as future work.
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