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Consider a network where travel times on edges are i.i.d. over T rounds with unknown distributions. One 
wishes to choose departure times and routes sequentially between a given origin-destination pair across 
T rounds to minimize the expectations of: 1) number of rounds when the travel time exceeds an upper 
bound, and 2) summation over all rounds of the square of the difference between the given target and 
actual arrival times. We provide an efficient online learning algorithm for this problem.
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1. Introduction

For route planning and dispatch scheduling in ride-sharing sys-
tems, the goal is to minimize the travel time as well as the wait 
time of both the driver and the customer. This multi-objective opti-
mization problem can be challenging due to the fact that the travel 
times are stochastic with unknown probabilistic distributions.

Problem formulation: We formalize the above route planning and 
dispatch scheduling problem as follows. Let G = (V , E) be a di-
rected graph modeling the transportation network, where V =
(v1, . . . , vn+1) is the node set and E = (e1, . . . , em) is the edge set. 
The time to traverse an edge e ∈ E is a random variable Xe follow-
ing an unknown distribution on [0, 1], independent of the travel 
times over other edges. Let μe and σ 2

e denote, respectively, the un-
known expectation and unknown variance of Xe . A path P is given 
by an ordered sequence of directed edges, and the travel time over 
P is given by 

∑
e∈P Xe .

Suppose that a driver at v1 is given a target arrival time 0 for 
pickup at vn+1, and needs to select a path P and a departure time
−D , for some D > 0, to go from v1 to vn+1. The goal is to mini-
mize the second moment of the wait time subject to a minimum 
requirement on the efficiency of the route in terms of the expected 
total travel time:
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min
P,D

E

⎡⎣((∑
e∈P

Xe

)
− D

)2
⎤⎦ (1a)

s.t.
∑
e∈P

μe ≤ θ Lmin, (1b)

where Lmin is the shortest expected travel time from v1 to vn+1, 
i.e. Lmin = minP

∑
e∈P μe , and θ ≥ 1 is a given hyperparameter 

that governs the tradeoff between the two objectives of minimiz-
ing the expected travel time and minimizing the uncertainty in 
wait time and can be chosen based on the underlying application. 
Note that the objective function captures the wait time for both 
the driver (when arriving before the target time 0) and the cus-
tomer (when arriving after the target time 0). Due to the unknown 
probabilistic models, the above problem is a constrained stochastic 
optimization with an unknown objective and unknown constraint. 
Our goal is an online learning algorithm that converges to an op-
timal solution (defined by the known-model case) with optimal 
rate.

The known-model case: We now consider the case where the ex-
pectations and variances of the travel times of all links are known. 
This known-model case defines the benchmark performance that 
an online learning algorithm aims to converge to. In this case, we 
can minimize the expected penalty by letting D =∑e∈P μe , which 
then becomes 

∑
e∈P σ 2

e for a given path P . Then (1) can be re-
duced to the following constrained optimization problem known 
as the restricted shortest path problem (RSPP):

min
P

∑
σ 2

e (2a)

e∈P
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s.t.
∑
e∈P

μe ≤ θ Lmin. (2b)

Let optσ 2,μ,θ be the optimal objective value for (2). The RSPP 
is known to be NP-complete [5]. Lorenz and Raz [12] developed 
an approximation algorithm which, for a given approximation con-
stant ε > 0, finds a solution with an objective value less than 
(1 + ε)optσ 2,μ,θ with a complexity of O  

(
mn
(
log log(n + 1) + 1

ε

))
.

The online learning problem: In this work, our aim is to study 
the cases where μe , σ 2

e and Lmin are unknown, while θ and ε are 
given. At each round, a path from v1 to vn+1 and a departure time 
are selected. Meanwhile, the travel time is observed at each edge 
of the selected path. The objective is to design a policy of sequen-
tially selecting paths and departure times from v1 to vn+1 such 
that the cumulative expected penalty and the expected number of 
rounds that violate the constraint can both be minimized.

To formalize the problem, let Xe,t be the random outcome of 
the travel time on edge e in its t-th trial. Assume that the random 
variables in the set {Xe,t : t ≥ 1} are independent and identically 
distributed with unknown expectation μe and unknown variance 
σ 2

e . Define counter variables Te,t as the number of samples col-
lected on edge e after the first t rounds. Let Pt be the path se-
lected in the t-th round. Let −D∗

t be the departure time in the 
t-th round (possibly a function of the data observed so far). For 
each e ∈ Pt , the realization of Xe,Te,t is observed after Pt is tra-
versed. Then for given ε > 0 and θ ≥ 1, we define regret after T
rounds as

Reg(T ) =E

⎡⎢⎣ T∑
t=1

⎛⎝⎛⎝∑
e∈Pt

Xe,Te,t

⎞⎠− D∗
t

⎞⎠2
⎤⎥⎦

− T · (1 + ε)optσ 2,μ,θ (3)

where the second term is from the known-model case as the 
benchmark. We also define the number of cumulative constraint 
violations as

V (T ) =
T∑

t=1

1

⎧⎨⎩∑
e∈Pt

μe > θ Lmin

⎫⎬⎭ , (4)

where 1{·} is an indicator function. Note that since μe , σ 2
e and 

Lmin are unknown, it cannot be determined with certainty whether ∑
e∈Pt

μe ≤ θ Lmin is violated for each t .
The goal of our algorithm is to sequentially select paths and 

departure times based on the previously observed travel times of 
the traversed edges so that Reg(T ) and E [V (T )] can both be min-
imized.

Contributions: We propose a novel formulation of the problem as 
a constrained online learning problem. To our knowledge, this is 
the first work with theoretical guarantee addressing route planning 
and dispatch scheduling under unknown distributions with respect 
to the expected travel time and the reliability of on-time arrival. 
(See Sec. 3 for detailed contextualization of this work.)

Our algorithm is designed to address two technical challenges: 
(i) The tension between the objective of minimizing wait time 
penalty and the constraint on the route efficiency calls for a differ-
ent operating point on the exploration-exploitation tradeoff curve. 
Specifically, to obtain a solution for the RSPP problem, we will 
need the estimated shortest path length Lmin as an input param-
eter. Significant estimation errors in Lmin result in a substantial 
rise in E[V (T )]. What complicates the estimation of Lmin is that 
the shortest path is not the RSPP solution. The learning algorithm 
needs to balance the exploration and exploitation of paths un-
der both the wait-time and travel-time metrics. Our approach is 
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an integration of two types of exploration-exploitation control: an 
open-loop deterministic exploration for learning Lmin and an adap-
tive confidence-bound based exploration for solving the RSPP prob-
lem. (ii) In the unknown-model case, the departure time D cannot 
be set to 

∑
e∈P μe since it is unknown. Therefore, the stochastic 

quadratic objective function of (1) does not reduce to the linear 
objective function of (2). As a result, we cannot directly apply the 
technique in [12] to solve the RSPP problem. As far as we are 
aware, there is no algorithm capable of solving or approximating 
the problem posed by (1). To address the issue, we determine a 
suitable estimation so that the regret can be upper-bounded.

We develop a provably efficient algorithm for the sequential 
route and departure time selection, given an oracle that provides 
a (1 + ε)-approximation to the RSPP. In particular, we demonstrate 
that the regret of our algorithm achieves the optimal logarithmic 
order over time while the expected cumulative constraint viola-
tions resulting from the policy are also of the logarithmic order 
over time. The challenge in regret analysis is in deriving an upper 
bound of E(V (T )) separately from Reg(T ) by analyzing the condi-
tions under which the estimate of Lmin is of sufficient accuracy.

It is worthwhile to mention that when θ = 1, the optimal so-
lution to (2) is a path from v1 to vn+1 with the shortest expected 
travel time. The optimal regret for finding a path with the shortest 
expected travel time is upper bounded by nE[V (T )], and is lower 
bounded by �(log(T )) as shown in [6]. Thus E[V (T )] cannot be 
better than logarithmic order in terms of T in this case.

At the end of the paper, we also discuss how our framework 
can be modified to tackle other routing problems.

2. Related work

There is a long line of work on stochastic online route planning 
problems. Online shortest path routing problems are among those 
that draw a lot of attention. In this problem, a directed graph is 
given, and the travel times on edges follow certain distributions. 
The decision-maker wishes to select in each round a path between 
the origin and destination on the graph such that the travel time 
on the selected path, i.e. the sum of the travel times of its com-
ponent edges, is as small as possible. Numerous studies have been 
conducted to develop algorithms for online shortest path routing 
problems [1,4,11,16], to cite a few. In particular, Liu et al. [11]
proposed algorithms that are built on the so-called Deterministic 
Sequencing of Exploration and Exploitation (DSEE) approach [10,17]
for the problem, which divides the rounds into two interleaving 
sequences: an exploration sequence and an exploitation sequence. 
In the former, the decision maker runs the paths formed by some 
basis, called barycentric spanner [1], of the set of potential routes 
in a round-robin fashion. In the exploitation sequence, the decision 
maker runs the paths estimated as the optimal by linearly interpo-
lating the estimated quality of these basis. The approach achieves 
logarithmic regret order over time for all light-tailed cost distribu-
tions on the edges and sublinear regrets over time for heavy-tailed 
cost distributions on the edges. Our algorithm in Section 3 also in-
corporates elements of the DSEE approach.

Online shortest path routing problems fall into the class of 
combinatorial multi-armed problems (CMAB). In CMAB, a decision 
maker selects a collection of arms per round, referred to as a su-
per arm, which, when combined, gives the decision maker a cost at 
random. The cost depends on the chosen arms and the cost func-
tion that takes the chosen arms as input. Partial or full feedback 
from the selected arms can be provided per round to the decision 
maker to assist in her decision making. Regret, which is the differ-
ence between the expected total cost of the policy and that when 
the best arm is always selected, is used to gauge how well the 
policy is doing. The optimal regret that can be reached has been 
shown to be logarithmic over time [9]. In the setting of online 
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shortest path routing problems, each edge and each path between 
the provided origin-destination pair can be viewed as arms and 
super arms, respectively. Thus, the algorithms for CMAB can also 
be used to solve shortest path routing problems, which have been 
extensively studied in [2,3,18,13,14].

To our knowledge, the joint choice of arms and departure time 
to optimize the reliability of arrival on time, as well as the chal-
lenges mentioned above create obstacles that cannot be overcome 
via the approaches employed in the aforementioned research.

We found the most related work from Zhou et al. [19]. Using 
computational experiments, they studied maximizing the on-time 
arrival problem in the CMAB setting. Here we highlight the sig-
nificant differences between [19] and our work: (i) In their work, 
the candidate paths are prespecified, and there is a finite set of 
candidate departure times. In this setting, each path is an arm 
for learning, and the number of possible choices for the decision 
maker is polynomial in the input size. In contrast, in our work, the 
candidate path set’s size is exponential in the number of edges 
with infinite candidate departure time options, and each edge’s 
travel time is learnt. (ii) In [19], a linear truncated function is used 
to measure the on-time arrival reliability. The objective function 
to minimize involves the measurement of on-time arrival reliabil-
ity and the expected travel time, which are combined with penalty 
parameters. In contrast, our objective function is quadratic to mea-
sure the on-time arrival reliability with a constraint to restrict the 
expected travel time of the selected path. (iii) In [19], a variant 
of the UCB algorithm is proposed, and its efficacy is evaluated us-
ing real-time travel data in New York City without any theoretical 
analysis. In our work, we develop an algorithm combining two 
types of exploration-exploitation control with theoretical guaran-
tees.

Nikolova et al. [15] proposed a decision-theoretic framework to 
define the optimal route in the presence of uncertainty. In their 
work, the edge travel times follow known distributions, and the 
cost is a non-linear function of the total travel time and departure 
time, including the quadratic cost function utilized in this paper. 
Adoption of the quadratic cost function is motivated by the need 
to increase the reliability of a route, as it reflects the variance. 
The goal is to find the path between a given origin-destination 
pair such that a chosen cost nonlinear function is minimized. It is 
shown that in this case the problem with a quadratic cost func-
tion can be converted into the classic deterministic shortest-path 
problem. In [15], other cost functions and complexity results are 
also discussed. However, their framework assumes known distri-
butions, and there is no discussion of adding constraints to upper 
bound the expected travel time of the selected paths.

3. Our algorithm and analysis

In this section, we will present and analyze our algorithm. We 
first make a mild assumption about the graph for the rest of the 
paper.

Assumption 1. For each edge e ∈ E , there is a simple path from 
v1 to vn+1 across e, where a simple path is a path that does not 
involve repeating nodes.

Remark 3.1. Note that for each edge e, we can use the max-flow al-
gorithm with non-zero lower bounds on edge flows [8, Section 7.7]
to find whether there is a simple path across the edge in polyno-
mial time, as will be briefly discussed next. For each node v in the 
original graph G , we create two nodes a(v) and b(v) in the new 
graph G ′ , and there is an edge from a(v) to b(v). For each edge 
from vi to v j in G , we build an edge from b(vi) to a(v j) in G ′ . 
Let a(v1) be the source, and b(vn+1) be the sink. For the dupli-
cate of edge e in G ′ , we set its flow lower bounded by 1, while 
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for the other edges, we set their flows upper bounded by 1. When 
computing a flow, the max-flow algorithm must take into account 
the duplicate of edge e. Therefore, the flow generated by the algo-
rithm can be used to establish a simple path across the edge e if 
the max-flow value is 1.

3.1. Algorithm

One of the difficulties as we mentioned is that Lmin is not given. 
Thus, we choose to do part of the explorations in a DSEE manner 
[17]. We call it type-1 exploration, which will be formalized below.

Definition 3.2. Given e ∈ E , a type-1 exploration for edge e is to 
run a simple path from v1 to vn+1 across edge e selected as in 
Remark 3.1.

Let R be the set of all the simple paths from v1 to vn+1, and 
Rθ := {P ∈R :∑e∈P μe ≤ θ Lmin}. Let �θ be the optimal value for 
the following problem:

min
P∈R\Rθ

(∑
e∈P

μe

)
− θ Lmin.

Note that if this is an infeasible optimization problem, i.e. R\Rθ =
∅, its optimal value can be defined as +∞.
We are now prepared to present our algorithm, which is labeled 
as Algorithm 1.

Algorithm 1
1: For each edge e, we define the following variables:

• Te,t as the number of samples collected on edge e after the first t rounds.

• μ̂e,s =
(∑s

j=1 Xe, j

)
/s as the average of the first s realizations of Xe we have 

observed.
• σ̂ 2

e,s :=∑s
j=1(Xe, j − μ̂e,s)

2/(s −1) as the estimated variance based on the first 
s realizations of Xe we have observed.

2: For each edge e, sample two paths from v1 to vn+1 across e as in Remark 3.1. 
The departure time is set to be n.

3: Set constant ε ∈ (0, +∞) and constant � ∈ (0, �θ/4)

4: for t from 2m + 1 to T do
5: if there exists e ∈ E such that Te,t−1 < 3n2θ2 ln t

2�2 then
6: do type-1 exploration for edge e.
7: else
8: for e ∈ E do
9: μe,t ← max

{
0, μ̂e,Te,t−1 −

√
3 ln t

2Te,t−1

}
10: σ 2

e,t ← max
{

0, σ̂ 2
e,Te,t−1

−
√

5 ln t
2Te,t−1

}
11: end for
12: P̂t

min ← argminP∈R
∑

e∈P μ̂e,Te,t−1

13: U ← θ
(∑

e∈P̂min
μ̂e,Te,t−1 +

√
3 ln t

2Te,t−1

)
14: Pt ← OracleU (μ1,t , . . . , μm,t , σ 2

1,t , . . . , σ 2
m,t , ε)

15: (See Definition 3.3.)
16: Departure time is set to be D∗ =∑e∈Pt

μ̂e,Te,t−1

17: Run path Pt with departure time D∗ .
18: end if
19: end for

Definition 3.3. OracleU (μ1,t , . . . , μm,t, σ
2
1,t , . . . , σ

2
m,t , ε) finds a

path by solving the following restricted shortest path problem with 
the (1 + ε) approximation scheme from [12].

min
P∈R

∑
e∈P

σ 2
e,t (5a)

s.t.
∑
e∈P

μe,t ≤ U . (5b)

Remark 3.4. Note that our algorithm requires a lower bound on 
the parameter �θ to determine the value of �. In Section 3.5, we 
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will discuss the cases where no knowledge of the parameter is 
available. Specifically, we can increase the frequency of the type-
1 explorations by an arbitrarily small amount to achieve a regret 
arbitrarily close to the logarithmic order. The technique is similar 
to that in [11, Theorem 2].

3.2. Notations for analysis

We will use the notations from Algorithm 1 in our analysis. 
Furthermore, let

B := {P ∈ Rθ :
∑
e∈P

σ 2
e > (1 + ε)optμ,σ 2,θ }.

For simplicity, let rμ
e,t := √

3 ln t/(2Te,t−1) and

rσ
e,t :=√5 ln t/(2Te,t−1)

For the tth round, define the events

Hμ
t := {∀e ∈ E,

∣∣μ̂e,Te,t−1 − μe
∣∣≤ rμ

e,t}
Hσ

t := {∀e ∈ E,

∣∣∣σ̂ 2
e,Te,t−1

− σ 2
e

∣∣∣≤ rσ
e,t}

Bt := {Pt ∈ B}
Q t := {Do type-1 exploration at round t}

We assume that the following optimization problem has at least 
one solution.

min
P

∑
e∈P

σ 2
e − (1 + ε)optσ 2,μ,θ

s.t.
∑
e∈P

σ 2
e > (1 + ε)optσ 2,μ,θ∑

e∈P
μe ≤ θ Lmin

Note that if it does not have any solutions, it implies that ∑
e∈P σ 2

e ≤ (1 + ε)optσ 2,μ,θ holds true for any path P . In such a 
case, B = ∅ and P [Bt] = 0, then the proof would become straight-
forward.

Let �ε be the optimal value for the optimization problem men-
tioned above.

3.3. The expected number of constraint violations

In this section, we assume that �θ < +∞. Otherwise, R =Rθ , 
and there is no constraint violations.

To bound the expected number of constraint violations, we 
need the following lemma.

Lemma 3.5. Let Ut = θ
(∑

e∈P̂t
min

μ̂e,Te,t−1 + rμ
e,t

)
, and R̂θ = {P ∈R :∑

e∈P μe,Te,t−1
≤ Ut}. Assume Hμ

t and ¬Q t hold. Then we have Rθ =
R̂θ .

Proof. Since Hμ
t and ¬Q t hold, we have μe,t ≤ μe , and

θ

⎛⎜⎝ ∑
e∈P̂t

min

μ̂e,Te,t−1 + rμ
e,t

⎞⎟⎠≥ θ

⎛⎜⎝ ∑
e∈P̂t

min

μe,Te,t−1

⎞⎟⎠≥ θ · Lmin.

Thus Rθ ⊆ R̂θ . It remains to show Rθ ⊇ R̂θ .
Let Pmin be the true shortest path. Since P̂t

min is the estimated 
shortest path, then we have the following.∑
e∈P̂t

min

μ̂e,Te,t−1 ≤
∑

e∈Pmin

μ̂e,Te,t−1 ≤
∑

e∈Pmin

(
μe + rμ

e,t

)
.
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Also,

¬Q t ⇒ Te,t−1 ≥ 3n2θ2 ln t

2�2
⇒ rμ

e,t ≤ �

nθ
∀e ∈ E.

Then we have

θ
∑

e∈P̂t
min

(
μ̂e,Te,t−1 + rμ

e,t

)

≤θ

⎛⎜⎝ ∑
e∈Pmin

(
μe + rμ

e,t

)+
⎛⎜⎝ ∑

e∈P̂t
min

rμ
e,t

⎞⎟⎠
⎞⎟⎠

≤θ Lmin + θ · 2�

θ
= θ Lmin + 2� < θ Lmin + �θ

2
.

For each path P ∈R\Rθ , we have the following.∑
e∈P

μe,Te,t−1
=
∑
e∈P

(
μ̂e,Te,t−1 − rμ

e,t

)
≥
∑
e∈P

(
μe − 2rμ

e,t

)≥(∑
e∈P

μe

)
− 2�

θ

>θ Lmin + �θ − �θ

2
= θ Lmin + �θ

2

Thus for each path P ∈R\Rθ , it holds that P /∈ R̂θ . �
The following result is proved in [2] by Hoeffding’s inequality.

Lemma 3.6.

E

[
T∑

t=1

1
{¬Hμ

t

}]≤ π2m

3
. (6)

Now we are ready to bound the expected number of rounds of 
violations.

Theorem 3.7. The expected number of constraint violations is bounded 
by

m

⌈
3n2θ2 ln T

2�2

⌉
+ π2m

3
+ 2m.

Proof. By definition, at the end of the round T , the number of all 
type-1 explorations is at most m 

⌈
3n2θ2 ln t

2�2

⌉
. For those rounds that 

do not carry out type-1 explorations, Lemma 3.5 implies that there 
is no violation if Hμ

t holds. We can finish the proof by Lemma 3.6
and including the first 2m rounds of explorations. �
3.4. The regret

Next, we will bound the regret. It consists of two parts: (1) the 
regret produced by choosing wrong paths; (2) the regret generated 
by setting the wrong departure time. We begin with (1).

The following lemma is proved in [7, Lemma 5].

Lemma 3.8. For 0 < δ < 1, t ≥ 2m, and e ∈ E, we have

P

⎡⎣∣∣∣σ̂ 2
e,Te,t−1

− σ 2
e

∣∣∣≥
√

1

2Te,t−1
ln

2(t − 1)3

δ

⎤⎦≤ δ.

By letting δ = 2(t−1)3

5 ≤ 2t−2, we have

t
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Lemma 3.9. For t ≥ 2m, and e ∈ E, we have

P

[∣∣∣σ̂ 2
e,Te,t−1

− σ 2
e

∣∣∣≥√ 5 ln t

2Te,t−1

]
≤ 2t−2.

Next, we will bound the expected number of rounds choosing the 
paths in B when Hμ

t and ¬Q t hold. The proof of the following 
result was modified from [2].

Lemma 3.10. Let 	t = 5n2 ln t
2(�ε)2 . We have

E

⎡⎣ T∑
t=2m+1

1{Hμ
t ,¬Q t,Bt}

⎤⎦≤ m · 	T + mπ2

3

Proof. We can first derive the following bound.

T∑
t=2m+1

1{Hμ
t ,¬Q t,Bt}

≤
T∑

t=2m+1

1{Hμ
t ,¬Q t,Bt,∀e ∈ Pt, Te,t−1 > 	T }

+
T∑

t=2m+1

1{∃e ∈ Pt, Te,t−1 ≤ 	T }

≤
T∑

t=2m+1

1{Hμ
t ,¬Q t,Bt,∀e ∈ Pt, Te,t−1 > 	t}

+
T∑

t=2m+1

∑
e∈E

1{Te,t−1 < Te,t, Te,t−1 ≤ 	T }

≤
T∑

t=2m+1

1{Hμ
t ,¬Q t,Bt,∀e ∈ Pt, Te,t−1 > 	t} + m · 	T .

Next we assume t ≥ 2m +1. By the definition of σ 2
e,t , 
∣∣∣σ̂ 2

e,Te,t−1
−

σ 2
e

∣∣∣≤ rσ
e,t implies σ 2

e,t ≤ σ 2
e . Let rt =

√
5 ln t
2	t

. Then

Te,t−1 > 	t,∀e ∈ Pt ⇒ rt > rσ
e,t,∀e ∈ Pt (7)

Hσ
t ⇒ ∀e ∈ E,0 ≤ σ 2

e − σ 2
e,t ≤ rσ

e,t (8)

If {Hμ
t , ¬Q t , Hσ

t , Bt , ∀e ∈ Pt , Te,t−1 > 	t} holds at round t , we 
have the following derivation:∑

e∈Pt

(σ 2
e − rt) <

∑
e∈Pt

(σ 2
e − rσ

e,t) ≤
∑
e∈Pt

σ 2
e,t

≤(1 + ε)optσ 2,μ,θ
≤ (1 + ε)optσ 2,μ,θ ,

where the first inequality is due to (7), the second inequality is by 
(8), the third is by the approximation ratio of the approximation 
algorithm in [12] and Lemma 3.5, and the last one is due to (8). It 
leads to∑
e∈Pt

(σ 2
e − rt) < (1 + ε)optσ 2,μ,θ .

However, when Pt ∈ B, we have

(1 + ε)optσ 2,μ,θ ≤
⎛⎝∑

e∈P
σ 2

e

⎞⎠− �ε
t
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=
⎛⎝∑

e∈Pt

σ 2
e

⎞⎠− n

√
5 ln t

2	t
=
⎛⎝∑

e∈Pt

σ 2
e

⎞⎠− nrt

≤
∑
e∈Pt

(σ 2
e − rt) < (1 + ε)optσ 2,μ,θ ,

which leads to a contradiction.
Thus, we have P [{Hμ

t , ¬Q t , Hσ
t , Bt, ∀e ∈ Pt, Te,t−1 > 	t}] = 0, 

which implies the following due to Lemma 3.9:

P [{Hμ
t ,¬Q t,Bt,∀e ∈ Pt, Te,t−1 > 	t}]

=P
[{Hμ

t ,¬Q t, Hσ
t ,Bt ,∀e ∈ Pt, Te,t−1 > 	t}

]
+ P

[{Hμ
t ,¬Q t,¬Hσ

t ,Bt,∀e ∈ Pt, Te,t−1 > 	t}
]

≤
∑
e∈E

P

[∣∣∣σ̂ 2
e,Te,t−1

− σ 2
e

∣∣∣>√ 5 ln t

2Te,t−1

]
≤ 2mt−2.

Since 
∑∞

t=1 2mt−2 ≤ π2m
3 , we can finish the proof. �

Now we can derive a bound on the regret generated after the 
first 2m rounds.

Lemma 3.11. Let Pt be the path selected by Algorithm 1 at t-th round. 
Then we have

E

⎡⎣ T∑
t=2m+1

∑
e∈Pt

σ 2
e

⎤⎦− (T − 2m) · (1 + ε)optσ 2,μ,C

≤m

⌈
3n3θ2 ln T

2�2

⌉
+ 2π2mn

3
+ 5mn3 ln T

2(�ε)2

Proof. Since 
∑

e∈P σ 2
e ≤ n, ∀P ∈R, we have

E

⎡⎣ T∑
t=2m+1

∑
e∈Pt

σ 2
e

⎤⎦− (T − 2m) · (1 + ε)optσ 2,μ,θ

≤nE

⎡⎣ T∑
t=2m+1

(
1{¬Hμ

t } + 1{Hμ
t , Q t} +1{Hμ

t ,¬Q t,Bt}
)⎤⎦

≤m

⌈
3n3θ2 ln T

2�2

⌉
+ 2π2mn

3
+ mn · 	T

=m

⌈
3n3θ2 ln T

2�2

⌉
+ 2π2mn

3
+ 5mn3 ln T

2(�ε)2
. �

Next, we will bound the regret generated by choosing the 
wrong departure time. In particular, we prove the following bound.

Lemma 3.12. Let Pt be the path selected by Algorithm 1 at t-th round. 
Then we have

E

⎡⎢⎣ T∑
t=2m+1

⎛⎜⎝
⎛⎝∑

e∈Pt

(
Xe,t − μ̂e,Te,t−1

)⎞⎠2

−
∑
e∈Pt

σ 2
e

⎞⎟⎠
⎤⎥⎦≤ mn ln T .

Proof. Firstly, we have

E

⎡⎣∑
e∈P

σ 2
e

⎤⎦ (9)

t
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=E

⎡⎣∑
e∈P̂t

(Xe,t − μe)
2 | Pt = P̂t

⎤⎦ P (Pt = P̂t) (10)

=E

⎡⎣∑
e∈Pt

(Xe,t − μe)
2

⎤⎦ (11)

Here (10) is due to the fact that Xe,t is independent of the selec-
tion of Pt . Thus, we can rewrite the following term.

E

⎡⎢⎣
⎛⎝∑

e∈Pt

(
Xe,t − μ̂e,Te,t−1

)⎞⎠2

−
∑
e∈Pt

σ 2
e

⎤⎥⎦
=E

⎡⎣∑
e∈Pt

(
2Xe,t − μ̂e,Te,t−1 − μe

) · (μe − μ̂e,Te,t−1

)⎤⎦
=E

⎡⎣∑
e∈Pt

(
μe − μ̂e,Te,t−1

)2⎤⎦ . (12)

We can obtain (12) by the linearity of expectation and the follow-
ing.

E

⎡⎣∑
e∈Pt

Xe,t · (μe − μ̂e,Te,t−1

) | Pt = P̂t

⎤⎦ (13)

=
∑
e∈P̂t

E
[

Xe,t · (μe − μ̂e,Te,t−1

) | Pt = P̂t
]

(14)

=
∑
e∈P̂t

E
[

Xe,t
] ·E [(μe − μ̂e,Te,t−1

) | Pt = P̂t
]

(15)

=E

⎡⎣∑
e∈Pt

μe · (μe − μ̂e,Te,t−1

) | Pt = P̂t

⎤⎦ (16)

(15) is due to the fact that Xe,t is independent of μ̂e,Te,t−1 and the 
selection of Pt . Then we have

E

⎡⎢⎣ T∑
t=2m+1

⎛⎜⎝
⎛⎝∑

e∈Pt

(
Xe,t − μ̂e,Te,t−1

)⎞⎠2

−
∑
e∈Pt

σ 2
e

⎞⎟⎠
⎤⎥⎦

=
T∑

t=2m+1

E

⎡⎢⎣
⎛⎝∑

e∈Pt

(
μe − μ̂e,Te,t−1

)⎞⎠2
⎤⎥⎦

≤n
T∑

t=2m+1

E

⎡⎣∑
e∈Pt

(
μe − μ̂e,Te,t−1

)2⎤⎦
=n

T∑
t=2m+1

E

[∑
e∈E

(
μe − μ̂e,Te,t−1

)2
1{e ∈ Pt}

]

=n
∑
e∈E

E

⎡⎣ T∑
t=2m+1

(
μe − μ̂e,Te,t−1

)2
1{Te,t > Te,t−1}

⎤⎦
≤n
∑
e∈E

E

[
T −1∑

t=2m

(
μe − μ̂e,t

)2]

=n
∑
e∈E

T −1∑
t=2m

1

t
σ 2

e ≤ mn ln T .
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Here, the last inequality is due to the fact that 
∑T

t=2
1
t ≤ ∫ T

1
1
x dx =

ln T . �
Thus, we can derive the bound of the regret for Algorithm 1.

Theorem 3.13. The regret for Algorithm 1 can be bounded by

m

⌈
3n3θ2 ln T

2�2

⌉
+ 2π2mn

3
+ 5mn3 ln T

2(�ε)2
+ mn ln T + 2mn2

Proof. The last term is from the regret generated at the first 2m
rounds, and it is bounded by 2m · n2 due to Remark 3.1. Then we 
can finish the proof by combining the results of Lemma 3.11 and 
Lemma 3.12. �
3.5. The cases when � is not attainable

To determine when to do type-1 exploration, it requires a lower 
bound of �θ . When it is not available, we can increase the fre-
quency of the type-1 exploration sequence by an arbitrarily small 
amount to achieve a regret arbitrarily close to the optimal loga-
rithmic order, which is similar to that in [11, Theorem 2].

Specifically, let f (t) be any positive increasing function such 
that f (t) → ∞ as t → ∞. If there exists e ∈ E such that Te,t−1 <

n2θ2 f (t) ln t , then we do type-1 exploration at time t . This is sim-
ply because we can find a constant T0 such that f (T0) ≥ 3

2�2 . 
Thus, after a constant number of rounds, we will be able to apply 
our original analysis. Then the regret will be O (mn3θ2 f (T ) ln T ), 
and the expected number of rounds violating the constraint be-
comes O (mn2θ2 f (T ) ln T ).

4. Discussion

4.1. The cases when θ Lmin is replaced with a known constant

It can be checked that when the right-hand side of (2b), θ Lmin, 
is replaced with a known constant C , and C ≥ Lmin, we can sim-
plify Algorithm 1 by eliminating type-1 explorations to solve this 
problem. The regret and expected number of constraint violations 
are still in logarithmic order in terms of the number of rounds T . 
However, without knowing Lmin beforehand, it is unclear how to 
establish the constant C such that C ≥ Lmin. Moreover, people may 
be unaware of the scale of C in terms of Lmin.

4.2. Extensions to other routing problems

Our framework can also be adapted to routing problems in 
other scenarios. Consider the following illustrative example: given 
the network G we created in Section 1, there is a random cost ce

for crossing each edge e (on top of the travel time), which follows 
a distribution on [0, 1]. Note that the travel time and the cost can 
be dependent for each edge. The driver leaves for vn+1 from v1, 
and wishes the path to be the solution of the following optimiza-
tion problem.

min
P

∑
e∈P

E[ce] s.t.
∑
e∈P

μe ≤ θ Lmin.

Assume μe and E[ce] are unknown. Due to the linearity of expec-
tation, the edges can be dependent in this case. In each round, a 
path from v1 to vn+1 is selected, and the travel time and the cost 
are observed at each edge of the selected path. The objective is 
to design a policy of sequentially selecting paths from v1 to vn+1
such that the cumulative expected cost and the expected number 
of rounds that violate the constraint can both be minimized. To 
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measure them, we can define regret and the expected cumulative 
constraint violations similar to (3) and (4).

In this case, Algorithm 1 can be modified to solve this problem 
by eliminating the learning for departure time, and replacing the 
process of learning the variances of travel times with the expected 
costs of edges. It can be checked that the regret and expected 
number of constraint violations are still in logarithmic order in 
terms of the number of rounds T .
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