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Abstract
The present paper studies a quantitative version of the transversality theorem. More

precisely, given a continuous function f € C([0, 1]¢,R™) and a manifold W C R™ of dimen-
sion p, a sharpness result on the upper quantitative estimate of the (d+p—m)-dimensional

Hausdorff measure of the set Z{:V = {2 €0,1]*: f(z) € W}, which was achieved in [8],
will be proved in terms of power functions.
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1 Introduction

Let g : X — Y be a C! map between two smooth manifolds X of dimension d and Y of
dimension m . For any smooth submanifold W C Y of dimension p, we say that the function
g is transverse to W and write g M W if

(d9)p(TpX) + Ty (W) = Ty)(Y) forall pe g~ (W).

The transversality lemma, which is the key to studying Thom’s transversality theorem [10,
11, 12], shows that the set of transverse maps is dense [9]. In particular, for any continuous
function f : [0,1]¢ — R™ and any € > 0, there exists a C! function f. : [0,1]¢ — R™ such that

[fe=fller < ¢ and femW.
For every h € C([O, 1]¢, Rm), consider the set
zh = {w € [0,1)%: h(z) € W}. (1.1)

If A is smooth and transverse to W, then Z{}V is a (d + p — m)-dimensional smooth manifold.
Hence, its (d 4+ p —m)-dimensional Hausdorff measure is finite. In the spirit of metric entropy,



which was used in the study of compactness estimates for solution sets of hyperbolic conserva-
tion laws [1, 2, 3, 7] and Hamilton-Jacobi equations [4, 5, 6], a natural question is to perform
a quantitative analysis of the measure of Z{V. Namely, how small can one make this measure,
by an e-perturbation of f? To formulate more precisely the result, given f € C([0,1]¢, R™),
one defines

f — inf d+p—m Zh 1.2
Mirle) =, A (2k) t2)

to be the smallest (d+p—m)-Hausdorff measure of Z{}V among all functions h € C ([0, 1]4, Rm)

with [[h— f||co < e. In [8], an upper bound on the number /\/'va (¢) was recently established and
applied to provide quantitative estimates on the number of shock curves in entropy weak solu-
tions of scalar conservation laws with strictly convex fluxes. Specifically, for f € C*([0,1]¢, R™)
with Hélder norm || f||co. and € > 0 sufficiently small, there exists a constant Cyy > 0 that
depends only on W such that

m—p
(%

Ni(e) < Cw - (”f”;()) . (1.3)

The blow up rate (é)% with respect to ¢ is shown to be the best bound in terms of power
function in [8, Example 3.1] for a class of Lipscthiz functions (« = 1) in the scalar case (d =
m = 1). However, this still remains open for the multi-dimensional cases. Hence, the present
paper aims to address the sharpness of (1.3) for general continuous function f € C([0,1]¢, R™)
with d,m > 1. In particular, we achieve the following lower quantitative estimate for the class
of Hoélder continuous functions.

Theorem 1.1 Assume thatp < m < p+d and W C R™ is a C'-manifold of dimension p.
For every 0 < o < 1 and X\ > 0, there exists a Hélder continuous function f : [0,1]7 — R™
with exponent o and the Hélder norm A such that

m—p

1 «@
Ni(€) 2 Cuwa <>
w(E) > Cwan o . 94y/allogy e

for some constant Clyy,o,\) > 0 that depends only on W, «, and A.

Here the constant Clyy ) is explicitly computed in Remark 2.4. Moreover, by using the con-
cept of modulus of continuity and its inverse in Definition 2.1, a general result for continuous
functions will be proved in Theorem 2.3 of Section 2. This can be easily extended to the
case of continuous functions f : X — Y where X,Y are smooth manifolds and W C Y is a
smooth submanifold of Y. Finally, we remark that the factor 2% Vellog2¢l in Theorem 1.1 is
necessary. Indeed, we shall prove in the Proposition 2.1 that the estimate on j\/}fv(s) in (1.3)
is not actually sharp for the case « =d=m =1, p =0, and W = {0}. This leads to an open
question on the sharp estimate for /\/’{V(s)

2 A lower bound on N} (¢)

In this section, we will establish a lower quantitative estimate on the Hausdorff measure of Z‘J:V
for a constructed continuous f € C ([0,1]¢, R™) which admits a given modulus of continuity



and the set W C R™ being a C! manifold with dim(W) = p. For the sake of simplicity, we
shall assume that W consists of only one chart R™, i.e.,

(A1). There exists a C' diffeomorphism ¢ between open subsets U,V C R™ such that W C U
and p(W) =RP x {0} NV and

- super [Vo(2)|
0 < yw = 2¢ym—p- <infxe€UV¢(x)\> < 0. (2.4)

For a general C' manifold W consists of multiple charts, one can just restrict the construction
of f in a single chart of W which has a smallest constant ~y among other charts. Toward to
the main result, let us now recall some basic concepts on the modulus of continuity and its
inverse.

Definition 2.1 Given subsets U C R?* and V C R™ let h : U — V be continuous. The
minimal modulus of continuity of h is given by

wp(6) = sup |h(y) — h(z)] for all 6 € [0, diam(U)]. (2.5)

z,yeU,|z—y|<d
The inverse of the minimal modulus of continuity of h is the map s — Vp(s) is defined by
Up(s) := sup{d >0:|h(z) —h(y)| <s forall|x—y| <dz,ycU} (2.6)

for all s > 0.
It is clear that Wy (s) = oo for all s € [M},, oo[ with My, := sup, ey [h(7) —h(y)|. In particular,
if h is a constant function then ¥y (s) = oo for all s > 0. Otherwise, by the continuity of h, it

holds
U,(0) =0 and 0 < Wu(s) < diam(U) for all s €]0, Mp[.

Moreover, Wy (+) : [0,00[— [0, o] is increasing and superadditive
Up(s1+s2) > Yp(s1) + Pr(s2) for all sq,s9 > 0.
If the map 0 — wp(9) is strictly increasing in [0, diam(U)[ then ¥y, is the inverse of wy, i.e.,
Uy(s) = w, '(s) for all s € [0, Mp].
From the above observations, we define a modulus of continuity as follows:

Definition 2.2 A function  : [0,00] — [0,00] is called a modulus of continuity if it is
increasing, subadditive, and satisfies

lim () = B(0) = 0.

60—0+

We say that a continuous function f: U C R* — R™ admits 8 as a modulus of continuity if

sup  [f(x) = f(y)| < B(s)  foralls > 0. (2.7)

xzyerkﬁ*y‘SS



The main result in this paper is stated as follows:

Theorem 2.3 In addition to (Al), assume that p < m < p+ d. For every modulus of
continuity 3, there exists a continuous function f : [0,1]¢ — R™ that admits 8 as a modulus
continuity and for € > 0 sufficiently small

N{V(E) > < 16 )mp ) 2*4(mfp)-\/}logz(\l’ﬁ('ywe)ﬂ. (2.8)

Vs(ywe)
Proof. The proof is divided into three main steps:

Step 1. Consider the case W = {0} and p = 0. We claim that

(G). There exists a continuous function f: [0,1]¢ — R™ that admits B as a modulus of
continuity and for every 0 < € < ﬁ - B(27°) it holds

Ny (o) = (%(f/@) gtmy/|1og, (ws (2vine) )| (29)

with Wg being the inverse of the minimal modulus of continuity of 3.
The construction of a desired function f € C([0,1],R™) in (G). will be done as follows:

1. Let’s first divide [0, 1] into countably infinite subintervals [s;,, $,+1] with
n
s1 = 0, Sp = 224 for all n > 2.
=1

For every n > 1, we define u,, : [0,1] — R by

2
2n° —1
up(s) = Z cn(s — sy —4kly,), by = 2772
k=0

where ¢, : [0,1] — R is a sample function with supp(c,) C [0, 4¢,] such that for all s € [0, 2¢,,]
B(s) B(2ln — )

cn(s) = —ca(dly —s) = 5 X[o,en[(s) + -9 X[zn,%n](s) . (2.10)
The function f = (f1, f2,..., fm) € C([0,1], R™) is defined by
F@) = —— (r(a1),....v(zm)) forallz = (a1,...,aq) € 0,1]" (2.11)

Jm

with .
r(s) = Zun(s) for all s € [0,1].
n=1

Since the modulus of continuity of r is bounded by 3, the modulus of continuity of f is also
bounded by 8. Indeed, for every s > 0, one estimates

wi(s) = sup () = ()]

z,y€[0,1]4,|z—y|<s

N

= sup \/1% (;IT(%)—T(%)V) < B(s)-

z,y€0,1]4,|z—y|<s
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Assume that for every € > 0 satisfying

1 U1 1 lny
. <e< — .p(m .
2ﬁmﬁ(2>_e_2ﬁmﬁ(2>, (2.12)
it holds ;
. d—m ( zg mn?
N =, nf M (2fy) = 2. (2.13)

In this case, by the properties of an inverse of the minimal modulus of continuity in (2.6), we
have that

Us(2y/me) > Vg <B <€";+1>> > L”O;l — 9~(mo+1)*=(no+1)=3 > 9—(no+2)*

Thus, one has

ng > —2+ \/— logy U (2v/me)
and (2.9) follows from (2.13).

2

2. In the next two steps, we shall prove (2.13). For every n > 1 and k € {0,1,...,2" — 1},
set
ank = Sp+ (4k 4+ 1)l,, b = Sn+ (4k + 3)4y,

we shall denote by
One = [@nurbn] X oo X [anm, bny,,) forall e e {0,1,.. .,2"2 —1}™ (2.14)

Fix g € C([0,1]¢,R™) with |f — gllco < e. By the definition of Zfo}’ we have

Zloy 2 U U Zue) < {2

n>1,.€{0,1,....2n2 —1}m \z€[0,1]¢-™

with
Zo(2) = {yel, 91, Yms 215 oy Zdem) = 0}.

Assume that for every 1 <n <ng and ¢ € {0,1,..., on’® _ 1}, the set
Z,.(2) # @ forall z€[0,1]4 ™. (2.15)

In this case, we can bound the (d — m)-Hausdorff measure of Zf?o} by

i (2) = > > w U Zae) <z
n=l,e{0,1,... 202 —1}m z€[0,1]4—m
> Y Y (o) = e s g,
n=l,ef0,1,...,20" ~1}m n=1

and this yields (2.13).



2

3. To complete the proof, we need to verify (2.15). Fixn € {1,...,no}, ¢ € {0,1,...,2" —=1}"™,
and z € [0,1]97™, we consider the continuous map h* : [J,,, — R™ such that

\/ﬁ{'gn
Btz I

h*(y) = y+ for all y € [y, ,. (2.16)

Notice that [, , C [0,1]™ is a cube of size 2¢,, centered at ¢ with
" = sp+ (4 +2)0, forallie{1,2,...,m}.

Recall (2.11), (2.12), and ||f — gllco < &, for every y € [, and i € {1,2,...,m}, set s :=
Yi — Sp — 4tily € [n, 30,], we estimate

Vqﬁ‘gn
B(ln/2)
Vqﬁ'en
B(ln/2)

ln
5+
n

- 0i(y, 2) — sp — (44 + 2)0,

Vqﬁ‘en
B(ln/2)

T(Yi) — sn — (44 + 2)ly
cn(s) '

Bln/2)|

By the definition of ¢, in (2.10), both cases s € [¢y, 2¢,] and s € [20,, 3(,] are similar, we shall
bound |h(y) — ¢;"| for s € [€,,20,). In this case, we have that

|hi(y) — | =

Yi +

IN

et Y+ fily, z) — sp — (4e + 2)6y,

" (2.17)

Bln/2)
s—20, + 4, -

IN

Yi +

z L en 6(2&1 — S)
|hi(y) — | = 5 |52+ 23(0.73)
3€n Ln En 5(2&1 B 5) : .
> " ) — e < = - e < L.
If s > 5 then ‘hz (y) — ¢ } < 35 +max{2€n s,y 28(6,72) } < {,. Otherwise, if
l, <s< % then by the subadditivity of 3, we have
= - o, AT ) pE) et < ST N LV
fn 2 (g” by ) S MW et s 55t gy S

Thus, the map y — h*(y) is invariant in [, ,. Finally, by Brouwer’s fixed point theorem, h*
has a fixed point y, € [J,, ,, and (2.16) implies that y, belongs to the set Z, ,(z) in (2.15). The
proof of (G)is complete.

Step 2. For every given ro > 0, we shall prove our result for the case W = [—rg, ro]P x {0} P.
From (G), there exists a function § € C([0,1]%, R™P) such that

e g admits 8 as a modulus of continuity;

e For every 0 < e < 2\/% - B(279), it holds

0 () 7 T



The continuous function g : [0,1] — R™ defined by
g(x) = (0,g9(x)) for all z € [0,1]%,
admits 8 as a modulus of continuity. Moreover, if 0 < ¢ < min {2\/%_[) - B(279), 7“0} then for
every function h = (hq, ..., hy) € C([0, 1], R™) with ||h — g||co < &, it holds
hi(z) € [—ro,70] for all i € {1,...,p},z €[0,1]%.
Thus, we can bound the (d — m + p) Hausdorff measure of Z{}V by
i-mte (z@) = pLmop ({x € [0,1) : h(z) € [ro, ro]? X {o}m*p})
= H ({2 € (0,11 s (hpia (@), hn (@) € {0} F}) (2.19)

inf _ HI (24

b—gllco<e

v

Substituting (2.18) into (2.19), we obtain that

9 = i d—m+p ( zh : d—m+p [ zb
M) = <™ (ZW> % odhese <Z{°}> (2.20)
m— 2.20
( 16 ) r 2_4(m—p).\/‘ logy (5 (2v/m—p-<)) ‘
> \Gevm—p9

Step 3. To complete the proof, we shall establish (2.8) for a C!-smooth manifold W C R™
satisfying (A1). Without loss of generality, assume that for some ¢y > 0

Wy = [=To,70]” x {0}"77 C (W),
we consider g for rg = 7p/A2 in Step 2 with
A= ;rel(f] IVo(x)| and Ay = 21615 |Vo(x)l. (2.21)
The desired function f : [0,1] — R™ is defined by
f(z) = ¢7Lto[A-g(zx)]  forallzel0,1]. (2.22)

Indeed, f admits 3 as a modulus of continuity since for every z,y € [0,1]%, it holds
< Ml9(y) —g(@)]
inf.cp |Vo(2)]

To verify (2.8), let h € C([0,1]¢,R™) be such that ||h — f||co < . From (2.21) and (2.22), one
has that

= |g(y) — g(=)|.

1 A9 AoE
- . h— < 22— < 22¢
N [poh—g¢o flleo < N Ih = fllco < N

CO

and this implies
HEme (2h) = Htr ({o e 0,17 (po h)(@) € o(W) })

> H ({o e 0,17 (0o m)@) € [ fol” x {0177 })  (2.93)

Aa€
d—m oh 2
= H (Z) = M </\1>



Finally, recalling (2.20), we get for every h € C([0,1]¢,R™) with ||h — f||co < € that

— 1 "7yt oy e )
d—m+p h _o—4(m—p) logy (Wg(2v/m—p-A2e/A1

mir (z) (qfﬁ(z\/m*—p-m/xl)) 2 ’
and (2.4) yields (2.8). U

Notice that if B(s) = As® for some A > 0 and « €]0,1] then from (2.6), it holds

1
S

Us(s) = (X)E for all s € [0, oo].
In this case, we achieve an explicit estimate in (2.8) by a direct computation. More precisely,

we have the following remark.

Remark 2.4 Under the same setting in Theorem 2.3, if B(s) = As® for some X > 0, a € (0, 1]
then there exists a Hélder continuous function f : [0,1]7 — R™ with exponent o and Hélder
norm A such that

m—p
1 e _4(m—p) o
leV(g) 2 Clwan - (€> QT ‘1 g2(7w€/>\)‘

This particularly yields Theorem 1.1.

Finally, we remark that the factor 274m'\/‘ tog (5 (2vme) )| in Theorem 2.3 is necessary . In
other words, the estimate on /\/}fv (¢) in (1.3) is not actually sharp for the case « =d =m =1,
p=0,and W = {0}.

Proposition 2.1 Assume that d = m =1, p = 0, W = {0} and 5(s) = s for all s > 0.

Then Theorem 2.3 does not hold if the factor 9~ 4m=p)- ‘logZ(\PB(st))l in 2.8 is replaced by
any positive constant.

Proof. Arguing by contradiction, suppose that there exists a function f € C([0,1],R) and a
constant Cy € (0,1] such that f admits § as a modulus of continuity and

C
N{fo} > ?f for all € > 0 small. (2.24)

02
1. We first claim that for every 0 < e < 1—; there exists (y;)¥.; € [0,1] such that

N > L |f(yi)| >

| ™

2
C lyi—yil > Ci for all i # . (2.25)

Indeed, dividing [0, 1] into Ky = L%J subintervals [a;, a;11] of length

E_,
Cf_l

IN

for all i € {0,..., Ko — 1}, (2.26)

f
we consider a function h. € C([0, 1], R) which is defined in [a;, a;11] for every i € {0, ..., Ko—1}
as follows:



o If max |[f(z)] < © then we set
z€las,ait1] 2

£
fla;) +z — ay, aiﬁxéai—f(ai)+§,
£ £ £
he(z) = 2’ a; — f(a;) + 3 <z <ai+ flaigr) — > (2.27)
€
flaiv1) =z + a1, a1+ flaip1) — 3 S < it

It is clear that h. has at most 2 zeros on [a;, aj+1], and ||h: — f||co < ||hellco+ || fllco < €o.

e Otherwise, if max |[f(z)] > S then we divide [ai, ai+1] into K1 = [&-] subintervals
T€[a;,a;4+1] 2 f

Jo+1
[ai ) @

] of length at most . For every j € {0,..., K; — 1}, we set
he(@-a) +(1—0)-al*) = 6-f(a)+(1-6)-f(alth), 6e0,1. (2.28)
In this case, h. has at most % + 1 zeros on [a;, a;11] and

— < — < = €.
1he = flleo(aiaia)) < Of;g%—lu_yéggl_ai [fx) = f)] < Ble) = ¢
Thus, set Z = {i € {0,..., Ko — 1} : max,cjq, 0,,,] |f(2)] > €/2} and n = #Z. By (1.2) and
(2.24), we have

Cr 0 ( zh 3 3 3
— < H (Z{o}> S C*f+1 +(Eo—n)-2 <7 Ff+1 + o -2,
and (2.24) yields
2 2
e g
33—Cple — 18
For every i € Z, let z; € argmax,ciq, a,,,]|f(z)| be such that |f(z;)| > /2. From the first

2

n =

inequality of (2.26), one can pick a desired set of at least N > % points y; from the set
{zi 11 € T} which satisfies (2.25).
2. Using (2.25), we show that
C?#\ 4 2
f A I 2
N{O} (e/4) < ( 12) . forall0 <e < c; (2.29)

Divide [0,1] into K. = [%1 + 1 subintervals [bg, bx+1] with length smaller than /4, let g. :
[0,1] — R be a continuous such that for all k£ € {0,..., K. — 1}, it holds

9e(0-bp + (1= 0) -bpyr) = 0-f(br) + (1 —0)- f(bry1), 6 €[0,1].

Up to a small variation, we can assume that f(b;) # 0 for every k € {1,..., K.} so that g.
has at most one each of the intervals [bg, br11]. By the construction, one has

)

— < b — f(b < b — bl < =,
lge = fllco < Oggglf;é_lv( k1) — f(br)] < og?%%éq' k+1 Kl <

W



For every k € {0, ..., K. — 1} such that y; € [bg, bg+1] for some i € {0,..., N}, it holds for all
S [bk, bk+1] that

ge(@)| = @) =7 = 1F@)| = 1B~ = 7 > 7=l — 0] > 0.

In this case, g. has non-zero on the at least N intervals [by], bg+1. Thus, we have

2
4 Y
9

f 0 ge _ _ 4
Ny (e/4) < # (Z{O}> < K.-N < =

and this yields (2.29).

3. Finally, applying (2.25) n times, we find that

c2\" y4n
wlm) < (-5) 4

Thus, (2.24) does not holds for e replaced by 4% with n > 1 sufficiently large so that

2
12

C n
(1 — f) < Cy. This concludes the proof. L]
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