

A lower bound on the quantitative version of the transversality theorem

Andrew Murdza and Khai T. Nguyen

Department of Mathematics, North Carolina State University
e-mails: apmurdza@ncsu.edu, khai@math.ncsu.edu

December 29, 2022

Abstract

The present paper studies a quantitative version of the transversality theorem. More precisely, given a continuous function $f \in C([0, 1]^d, \mathbb{R}^m)$ and a manifold $W \subset \mathbb{R}^m$ of dimension p , a sharpness result on the upper quantitative estimate of the $(d+p-m)$ -dimensional Hausdorff measure of the set $\mathcal{Z}_W^f = \{x \in [0, 1]^d : f(x) \in W\}$, which was achieved in [8], will be proved in terms of power functions.

Keyword. Transversality lemma, quantitative estimates

AMS Mathematics Subject Classification. 46T20

1 Introduction

Let $g : X \rightarrow Y$ be a C^1 map between two smooth manifolds X of dimension d and Y of dimension m . For any smooth submanifold $W \subseteq Y$ of dimension p , we say that the function g is transverse to W and write $g \pitchfork W$ if

$$(dg)_p(T_p X) + T_{g(p)}(W) = T_{g(p)}(Y) \quad \text{for all } p \in g^{-1}(W).$$

The transversality lemma, which is the key to studying Thom's transversality theorem [10, 11, 12], shows that the set of transverse maps is dense [9]. In particular, for any continuous function $f : [0, 1]^d \rightarrow \mathbb{R}^m$ and any $\varepsilon > 0$, there exists a C^1 function $f_\varepsilon : [0, 1]^d \rightarrow \mathbb{R}^m$ such that

$$\|f_\varepsilon - f\|_{C^1} \leq \varepsilon \quad \text{and} \quad f_\varepsilon \pitchfork W.$$

For every $h \in C([0, 1]^d, \mathbb{R}^m)$, consider the set

$$\mathcal{Z}_W^h := \{x \in [0, 1]^d : h(x) \in W\}. \tag{1.1}$$

If h is smooth and transverse to W , then \mathcal{Z}_W^h is a $(d+p-m)$ -dimensional smooth manifold. Hence, its $(d+p-m)$ -dimensional Hausdorff measure is finite. In the spirit of metric entropy,

which was used in the study of compactness estimates for solution sets of hyperbolic conservation laws [1, 2, 3, 7] and Hamilton-Jacobi equations [4, 5, 6], a natural question is to perform a quantitative analysis of the measure of \mathcal{Z}_W^f . Namely, how small can one make this measure, by an ε -perturbation of f ? To formulate more precisely the result, given $f \in \mathcal{C}([0, 1]^d, \mathbb{R}^m)$, one defines

$$\mathcal{N}_W^f(\varepsilon) := \inf_{\|h-f\|_{\mathcal{C}^0} \leq \varepsilon} \mathcal{H}^{d+p-m}(\mathcal{Z}_W^h) \quad (1.2)$$

to be the smallest $(d+p-m)$ -Hausdorff measure of \mathcal{Z}_W^h among all functions $h \in \mathcal{C}([0, 1]^d, \mathbb{R}^m)$ with $\|h-f\|_{\mathcal{C}^0} \leq \varepsilon$. In [8], an upper bound on the number $\mathcal{N}_W^f(\varepsilon)$ was recently established and applied to provide quantitative estimates on the number of shock curves in entropy weak solutions of scalar conservation laws with strictly convex fluxes. Specifically, for $f \in \mathcal{C}^\alpha([0, 1]^d, \mathbb{R}^m)$ with Hölder norm $\|f\|_{\mathcal{C}^{0,\alpha}}$ and $\varepsilon > 0$ sufficiently small, there exists a constant $C_W > 0$ that depends only on W such that

$$\mathcal{N}_W^f(\varepsilon) \leq C_W \cdot \left(\frac{\|f\|_{\mathcal{C}^{0,\alpha}}}{\varepsilon} \right)^{\frac{m-p}{\alpha}}. \quad (1.3)$$

The blow up rate $(\frac{1}{\varepsilon})^{\frac{m-p}{\alpha}}$ with respect to ε is shown to be the best bound in terms of power function in [8, Example 3.1] for a class of Lipschitz functions ($\alpha = 1$) in the scalar case ($d = m = 1$). However, this still remains open for the multi-dimensional cases. Hence, the present paper aims to address the sharpness of (1.3) for general continuous function $f \in \mathcal{C}([0, 1]^d, \mathbb{R}^m)$ with $d, m \geq 1$. In particular, we achieve the following lower quantitative estimate for the class of Hölder continuous functions.

Theorem 1.1 *Assume that $p < m \leq p + d$ and $W \subset \mathbb{R}^m$ is a \mathcal{C}^1 -manifold of dimension p . For every $0 < \alpha \leq 1$ and $\lambda > 0$, there exists a Hölder continuous function $f : [0, 1]^d \rightarrow \mathbb{R}^m$ with exponent α and the Hölder norm λ such that*

$$\mathcal{N}_W^f(\varepsilon) \geq C_{[W,\alpha,\lambda]} \cdot \left(\frac{1}{\varepsilon \cdot 2^{4\sqrt{\alpha|\log_2 \varepsilon|}}} \right)^{\frac{m-p}{\alpha}}$$

for some constant $C_{[W,\alpha,\lambda]} > 0$ that depends only on W , α , and λ .

Here the constant $C_{[W,\alpha,\lambda]}$ is explicitly computed in Remark 2.4. Moreover, by using the concept of modulus of continuity and its inverse in Definition 2.1, a general result for continuous functions will be proved in Theorem 2.3 of Section 2. This can be easily extended to the case of continuous functions $f : X \rightarrow Y$ where X, Y are smooth manifolds and $W \subseteq Y$ is a smooth submanifold of Y . Finally, we remark that the factor $2^{4\sqrt{\alpha|\log_2 \varepsilon|}}$ in Theorem 1.1 is necessary. Indeed, we shall prove in the Proposition 2.1 that the estimate on $\mathcal{N}_W^f(\varepsilon)$ in (1.3) is not actually sharp for the case $\alpha = d = m = 1$, $p = 0$, and $W = \{0\}$. This leads to an open question on the sharp estimate for $\mathcal{N}_W^f(\varepsilon)$.

2 A lower bound on $\mathcal{N}_W^f(\varepsilon)$

In this section, we will establish a lower quantitative estimate on the Hausdorff measure of \mathcal{Z}_W^f for a constructed continuous $f \in \mathcal{C}([0, 1]^d, \mathbb{R}^m)$ which admits a given modulus of continuity

and the set $W \subseteq \mathbb{R}^m$ being a \mathcal{C}^1 manifold with $\dim(W) = p$. For the sake of simplicity, we shall assume that W consists of only one chart \mathbb{R}^m , i.e.,

(A1). *There exists a \mathcal{C}^1 diffeomorphism ϕ between open subsets $U, V \subset \mathbb{R}^m$ such that $W \subset U$ and $\phi(W) = \mathbb{R}^p \times \{0\} \cap V$ and*

$$0 < \gamma_W \doteq 2\sqrt{m-p} \cdot \left(\frac{\sup_{x \in U} |\nabla \phi(x)|}{\inf_{x \in U} |\nabla \phi(x)|} \right) < \infty. \quad (2.4)$$

For a general \mathcal{C}^1 manifold W consists of multiple charts, one can just restrict the construction of f in a single chart of W which has a smallest constant γ_W among other charts. Toward to the main result, let us now recall some basic concepts on the modulus of continuity and its inverse.

Definition 2.1 *Given subsets $U \subseteq \mathbb{R}^d$ and $V \subseteq \mathbb{R}^m$, let $h : U \rightarrow V$ be continuous. The minimal modulus of continuity of h is given by*

$$\omega_h(\delta) = \sup_{x,y \in U, |x-y| \leq \delta} |h(y) - h(x)| \quad \text{for all } \delta \in [0, \text{diam}(U)]. \quad (2.5)$$

The inverse of the minimal modulus of continuity of h is the map $s \rightarrow \Psi_h(s)$ is defined by

$$\Psi_h(s) := \sup \{ \delta \geq 0 : |h(x) - h(y)| \leq s \text{ for all } |x - y| \leq \delta, x, y \in U \} \quad (2.6)$$

for all $s \geq 0$.

It is clear that $\Psi_h(s) = \infty$ for all $s \in [M_h, \infty[$ with $M_h := \sup_{x,y \in U} |h(x) - h(y)|$. In particular, if h is a constant function then $\Psi_h(s) = \infty$ for all $s \geq 0$. Otherwise, by the continuity of h , it holds

$$\Psi_h(0) = 0 \quad \text{and} \quad 0 < \Psi_h(s) \leq \text{diam}(U) \quad \text{for all } s \in]0, M_h[.$$

Moreover, $\Psi_h(\cdot) : [0, \infty[\rightarrow [0, \infty[$ is increasing and superadditive

$$\Psi_h(s_1 + s_2) \geq \Psi_h(s_1) + \Psi_h(s_2) \quad \text{for all } s_1, s_2 \geq 0.$$

If the map $\delta \rightarrow \omega_h(\delta)$ is strictly increasing in $[0, \text{diam}(U)[$ then Ψ_h is the inverse of ω_h , i.e.,

$$\Psi_h(s) = \omega_h^{-1}(s) \quad \text{for all } s \in [0, M_h[.$$

From the above observations, we define a modulus of continuity as follows:

Definition 2.2 *A function $\beta : [0, \infty] \rightarrow [0, \infty]$ is called a modulus of continuity if it is increasing, subadditive, and satisfies*

$$\lim_{\delta \rightarrow 0+} \beta(\delta) = \beta(0) = 0.$$

We say that a continuous function $f : U \subset \mathbb{R}^d \rightarrow \mathbb{R}^m$ admits β as a modulus of continuity if

$$\sup_{x,y \in U, |x-y| \leq s} |f(x) - f(y)| \leq \beta(s) \quad \text{for all } s \geq 0. \quad (2.7)$$

The main result in this paper is stated as follows:

Theorem 2.3 *In addition to (A1), assume that $p < m \leq p + d$. For every modulus of continuity β , there exists a continuous function $f : [0, 1]^d \rightarrow \mathbb{R}^m$ that admits β as a modulus of continuity and for $\varepsilon > 0$ sufficiently small*

$$\mathcal{N}_W^f(\varepsilon) \geq \left(\frac{16}{\Psi_\beta(\gamma_W \varepsilon)} \right)^{m-p} \cdot 2^{-4(m-p) \cdot \sqrt{\log_2(\Psi_\beta(\gamma_W \varepsilon))}}. \quad (2.8)$$

Proof. The proof is divided into three main steps:

Step 1. Consider the case $W = \{0\}$ and $p = 0$. We claim that

(G). *There exists a continuous function $\tilde{f} : [0, 1]^d \rightarrow \mathbb{R}^m$ that admits β as a modulus of continuity and for every $0 < \varepsilon < \frac{1}{2\sqrt{m}} \cdot \beta(2^{-5})$ it holds*

$$\mathcal{N}_{\{0\}}^{\tilde{f}}(\varepsilon) \geq \left(\frac{16}{\Psi_\beta(2\sqrt{m\varepsilon})} \right)^m \cdot 2^{-4m \cdot \sqrt{\log_2(\Psi_\beta(2\sqrt{m\varepsilon}))}} \quad (2.9)$$

with Ψ_β being the inverse of the minimal modulus of continuity of β .

The construction of a desired function $\tilde{f} \in \mathcal{C}([0, 1], \mathbb{R}^m)$ in **(G)**. will be done as follows:

1. Let's first divide $[0, 1]$ into countably infinite subintervals $[s_n, s_{n+1}]$ with

$$s_1 = 0, \quad s_n = \sum_{\ell=1}^n 2^{-\ell} \quad \text{for all } n \geq 2.$$

For every $n \geq 1$, we define $u_n : [0, 1] \rightarrow \mathbb{R}$ by

$$u_n(s) = \sum_{k=0}^{2^{n^2}-1} c_n(s - s_n - 4k\ell_n), \quad \ell_n = 2^{-n^2-n-2},$$

where $c_n : [0, 1] \rightarrow \mathbb{R}$ is a sample function with $\text{supp}(c_n) \subseteq [0, 4\ell_n]$ such that for all $s \in [0, 2\ell_n]$

$$c_n(s) = -c_n(4\ell_n - s) = \frac{\beta(s)}{2} \cdot \chi_{[0, \ell_n]}(s) + \frac{\beta(2\ell_n - s)}{2} \cdot \chi_{[\ell_n, 2\ell_n]}(s). \quad (2.10)$$

The function $\tilde{f} = (\tilde{f}_1, \tilde{f}_2, \dots, \tilde{f}_m) \in \mathcal{C}([0, 1], \mathbb{R}^m)$ is defined by

$$\tilde{f}(x) = \frac{1}{\sqrt{m}} \cdot (r(x_1), \dots, r(x_m)) \quad \text{for all } x = (x_1, \dots, x_d) \in [0, 1]^d \quad (2.11)$$

with

$$r(s) \doteq \sum_{n=1}^{\infty} u_n(s) \quad \text{for all } s \in [0, 1].$$

Since the modulus of continuity of r is bounded by β , the modulus of continuity of \tilde{f} is also bounded by β . Indeed, for every $s \geq 0$, one estimates

$$\begin{aligned} \omega_{\tilde{f}}(s) &= \sup_{x, y \in [0, 1]^d, |x-y| \leq s} |\tilde{f}(x) - \tilde{f}(y)| \\ &= \sup_{x, y \in [0, 1]^d, |x-y| \leq s} \frac{1}{\sqrt{m}} \cdot \left(\sum_{i=1}^m |r(x_i) - r(y_i)|^2 \right)^{\frac{1}{2}} \leq \beta(s). \end{aligned}$$

Assume that for every $\varepsilon > 0$ satisfying

$$\frac{1}{2\sqrt{m}} \cdot \beta\left(\frac{\ell_{n_0+1}}{2}\right) \leq \varepsilon \leq \frac{1}{2\sqrt{m}} \cdot \beta\left(\frac{\ell_{n_0}}{2}\right), \quad (2.12)$$

it holds

$$\mathcal{N}_{\{0\}}^{\tilde{f}}(\varepsilon) = \inf_{\|g-f\|_{\mathcal{C}^0} \leq \varepsilon} \mathcal{H}^{d-m}(\mathcal{Z}_{\{0\}}^g) \geq 2^{mn_0^2}. \quad (2.13)$$

In this case, by the properties of an inverse of the minimal modulus of continuity in (2.6), we have that

$$\Psi_\beta(2\sqrt{m}\varepsilon) \geq \Psi_\beta\left(\beta\left(\frac{\ell_{n_0+1}}{2}\right)\right) \geq \frac{\ell_{n_0+1}}{2} = 2^{-(n_0+1)^2-(n_0+1)-3} \geq 2^{-(n_0+2)^2}.$$

Thus, one has

$$n_0 \geq -2 + \sqrt{-\log_2 \Psi_\beta(2\sqrt{m}\varepsilon)}$$

and (2.9) follows from (2.13).

2. In the next two steps, we shall prove (2.13). For every $n \geq 1$ and $k \in \{0, 1, \dots, 2^{n^2} - 1\}$, set

$$a_{n,k} = s_n + (4k+1)\ell_n, \quad b_{n,k} = s_n + (4k+3)\ell_n,$$

we shall denote by

$$\square_{n,\iota} = [a_{n,\iota_1}, b_{n,\iota_1}] \times \dots \times [a_{n,\iota_m}, b_{n,\iota_m}] \quad \text{for all } \iota \in \{0, 1, \dots, 2^{n^2} - 1\}^m. \quad (2.14)$$

Fix $g \in \mathcal{C}([0, 1]^d, \mathbb{R}^m)$ with $\|\tilde{f} - g\|_{\mathcal{C}^0} \leq \varepsilon$. By the definition of $\mathcal{Z}_{\{0\}}^g$, we have

$$\mathcal{Z}_{\{0\}}^g \supseteq \bigcup_{n \geq 1, \iota \in \{0, 1, \dots, 2^{n^2} - 1\}^m} \left(\bigcup_{z \in [0, 1]^{d-m}} \mathcal{Z}_{n,\iota}(z) \times \{z\} \right)$$

with

$$\mathcal{Z}_{n,\iota}(z) = \{y \in \square_{n,\iota} : g(y_1, \dots, y_m, z_1, \dots, z_{d-m}) = 0\}.$$

Assume that for every $1 \leq n \leq n_0$ and $\iota \in \{0, 1, \dots, 2^{n^2} - 1\}^m$, the set

$$\mathcal{Z}_{n,\iota}(z) \neq \emptyset \quad \text{for all } z \in [0, 1]^{d-m}. \quad (2.15)$$

In this case, we can bound the $(d-m)$ -Hausdorff measure of $\mathcal{Z}_{\{0\}}^g$ by

$$\begin{aligned} \mathcal{H}^{d-m}(\mathcal{Z}_{\{0\}}^g) &\geq \sum_{n=1}^{\infty} \sum_{\iota \in \{0, 1, \dots, 2^{n^2} - 1\}^m} \mathcal{H}^{d-m}\left(\bigcup_{z \in [0, 1]^{d-m}} \mathcal{Z}_{n,\iota}(z) \times \{z\}\right) \\ &\geq \sum_{n=1}^{n_0} \sum_{\iota \in \{0, 1, \dots, 2^{n^2} - 1\}^m} \mathcal{H}^{d-m}([0, 1]^{d-m}) = \sum_{n=1}^{n_0} 2^{mn^2} \geq 2^{mn_0^2}, \end{aligned}$$

and this yields (2.13).

3. To complete the proof, we need to verify (2.15). Fix $n \in \{1, \dots, n_0\}$, $\iota \in \{0, 1, \dots, 2^{n^2-1}\}^m$, and $z \in [0, 1]^{d-m}$, we consider the continuous map $h^z : \square_{n,\iota} \rightarrow \mathbb{R}^m$ such that

$$h^z(y) = y + \frac{\sqrt{m} \cdot \ell_n}{\beta(\ell_n/2)} \cdot g(y, z) \quad \text{for all } y \in \square_{n,\iota}. \quad (2.16)$$

Notice that $\square_{n,\iota} \subseteq [0, 1]^m$ is a cube of size $2\ell_n$ centered at $c^{\iota,n}$ with

$$c_i^{\iota,n} = s_n + (4\iota_i + 2)\ell_n \quad \text{for all } i \in \{1, 2, \dots, m\}.$$

Recall (2.11), (2.12), and $\|\tilde{f} - g\|_{C^0} \leq \varepsilon$, for every $y \in \square_{n,\iota}$ and $i \in \{1, 2, \dots, m\}$, set $s := y_i - s_n - 4\iota_i\ell_n \in [\ell_n, 3\ell_n]$, we estimate

$$\begin{aligned} |h_i^z(y) - c_i^{\iota,n}| &= \left| y_i + \frac{\sqrt{m} \cdot \ell_n}{\beta(\ell_n/2)} \cdot g_i(y, z) - s_n - (4\iota_i + 2)\ell_n \right| \\ &\leq \frac{\sqrt{m} \cdot \ell_n}{\beta(\ell_n/2)} \cdot \varepsilon + \left| y_i + \frac{\sqrt{m} \cdot \ell_n}{\beta(\ell_n/2)} \cdot f_i(y, z) - s_n - (4\iota_i + 2)\ell_n \right| \\ &\leq \frac{\ell_n}{2} + \left| y_i + \frac{\ell_n}{\beta(\ell_n/2)} r(y_i) - s_n - (4\iota_i + 2)\ell_n \right| \\ &= \frac{\ell_n}{2} + \left| s - 2\ell_n + \ell_n \cdot \frac{c_n(s)}{\beta(\ell_n/2)} \right|. \end{aligned} \quad (2.17)$$

By the definition of c_n in (2.10), both cases $s \in [\ell_n, 2\ell_n]$ and $s \in [2\ell_n, 3\ell_n]$ are similar, we shall bound $|h_i^z(y) - c_i^{\iota,n}|$ for $s \in [\ell_n, 2\ell_n]$. In this case, we have that

$$|h_i^z(y) - c_i^{\iota,n}| = \frac{\ell_n}{2} + \left| s - 2\ell_n + \ell_n \cdot \frac{\beta(2\ell_n - s)}{2\beta(\ell_n/2)} \right|$$

If $s \geq \frac{3\ell_n}{2}$ then $|h_i^z(y) - c_i^{\iota,n}| \leq \frac{\ell_n}{2} + \max \left\{ 2\ell_n - s, \ell_n \cdot \frac{\beta(2\ell_n - s)}{2\beta(\ell_n/2)} \right\} \leq \ell_n$. Otherwise, if $\ell_n \leq s < \frac{3\ell_n}{2}$ then by the subadditivity of β , we have

$$-\ell_n = -\frac{\ell_n}{2} - \left(\ell_n - \ell_n \cdot \frac{\beta(\ell_n/2)}{2\beta(\ell_n/2)} \right) \leq h_i^z(y) - c_i^{\iota,n} \leq \frac{\ell_n}{2} - \frac{\ell_n}{2} + \ell_n \cdot \frac{\beta(\ell_n)}{2\beta(\ell_n/2)} \leq \ell_n.$$

Thus, the map $y \mapsto h^z(y)$ is invariant in $\square_{n,\iota}$. Finally, by Brouwer's fixed point theorem, h^z has a fixed point $y_z \in \square_{n,\iota}$, and (2.16) implies that y_z belongs to the set $\mathcal{Z}_{n,\iota}(z)$ in (2.15). The proof of **(G)** is complete.

Step 2. For every given $r_0 > 0$, we shall prove our result for the case $W = [-r_0, r_0]^p \times \{0\}^{m-p}$. From **(G)**, there exists a function $\tilde{g} \in \mathcal{C}([0, 1]^d, \mathbb{R}^{m-p})$ such that

- \tilde{g} admits β as a modulus of continuity;
- For every $0 < \varepsilon < \frac{1}{2\sqrt{m-p}} \cdot \beta(2^{-5})$, it holds

$$\mathcal{N}_{\{0\}}^g(\varepsilon) \geq \left(\frac{16}{\Psi_\beta(2\sqrt{m-p} \cdot \varepsilon)} \right)^{m-p} \cdot 2^{-4(m-p) \cdot \sqrt{\log_2(\Psi_\beta(2\sqrt{m-p} \cdot \varepsilon))}}. \quad (2.18)$$

The continuous function $g : [0, 1]^d \rightarrow \mathbb{R}^m$ defined by

$$g(x) = (0, \tilde{g}(x)) \quad \text{for all } x \in [0, 1]^d,$$

admits β as a modulus of continuity. Moreover, if $0 < \varepsilon \leq \min \left\{ \frac{1}{2\sqrt{m-p}} \cdot \beta(2^{-5}), r_0 \right\}$ then for every function $h = (h_1, \dots, h_m) \in \mathcal{C}([0, 1]^d, \mathbb{R}^m)$ with $\|h - g\|_{\mathcal{C}^0} \leq \varepsilon$, it holds

$$h_i(x) \in [-r_0, r_0] \quad \text{for all } i \in \{1, \dots, p\}, x \in [0, 1]^d.$$

Thus, we can bound the $(d - m + p)$ Hausdorff measure of \mathcal{Z}_W^h by

$$\begin{aligned} \mathcal{H}^{d-m+p}(\mathcal{Z}_W^h) &= \mathcal{H}^{d-m+p}\left(\left\{x \in [0, 1]^d : h(x) \in [-r_0, r_0]^p \times \{0\}^{m-p}\right\}\right) \\ &= \mathcal{H}^{d-m+p}\left(\left\{x \in [0, 1]^d : (h_{p+1}(x), \dots, h_m(x)) \in \{0\}^{m-p}\right\}\right) \\ &\geq \inf_{\|b - \tilde{g}\|_{\mathcal{C}^0} \leq \varepsilon} \mathcal{H}^{d-m+p}(\mathcal{Z}_{\{0\}}^b). \end{aligned} \quad (2.19)$$

Substituting (2.18) into (2.19), we obtain that

$$\begin{aligned} \mathcal{N}_W^g(\varepsilon) &= \inf_{\|h - g\|_{\mathcal{C}^0} \leq \varepsilon} \mathcal{H}^{d-m+p}(\mathcal{Z}_W^h) \geq \inf_{\|b - \tilde{g}\|_{\mathcal{C}^0} \leq \varepsilon} \mathcal{H}^{d-m+p}(\mathcal{Z}_{\{0\}}^b) \\ &\geq \left(\frac{16}{\Psi_\beta(2\sqrt{m-p} \cdot \varepsilon)} \right)^{m-p} \cdot 2^{-4(m-p)} \cdot \sqrt{\log_2(\Psi_\beta(2\sqrt{m-p} \cdot \varepsilon))}. \end{aligned} \quad (2.20)$$

Step 3. To complete the proof, we shall establish (2.8) for a \mathcal{C}^1 -smooth manifold $W \subset \mathbb{R}^m$ satisfying **(A1)**. Without loss of generality, assume that for some $r_0 > 0$

$$W_{r_0} \doteq [-\tilde{r}_0, \tilde{r}_0]^p \times \{0\}^{m-p} \subseteq \phi(W),$$

we consider g for $r_0 = \tilde{r}_0/\lambda_2$ in Step 2 with

$$\lambda_1 \doteq \inf_{x \in U} |\nabla \phi(x)| \quad \text{and} \quad \lambda_2 \doteq \sup_{x \in U} |\nabla \phi(x)|. \quad (2.21)$$

The desired function $f : [0, 1]^d \rightarrow \mathbb{R}^m$ is defined by

$$f(x) = \phi^{-1} \circ [\lambda_1 \cdot g(x)] \quad \text{for all } x \in [0, 1]. \quad (2.22)$$

Indeed, f admits β as a modulus of continuity since for every $x, y \in [0, 1]^d$, it holds

$$|f(y) - f(x)| \leq \frac{\lambda_1 \cdot |g(y) - g(x)|}{\inf_{z \in U} |\nabla \phi(z)|} = |g(y) - g(x)|.$$

To verify (2.8), let $h \in \mathcal{C}([0, 1]^d, \mathbb{R}^m)$ be such that $\|h - f\|_{\mathcal{C}^0} \leq \varepsilon$. From (2.21) and (2.22), one has that

$$\left\| \frac{\phi \circ h}{\lambda_1} - g \right\|_{\mathcal{C}^0} = \frac{1}{\lambda_1} \cdot \|\phi \circ h - \phi \circ f\|_{\mathcal{C}^0} \leq \frac{\lambda_2}{\lambda_1} \cdot \|h - f\|_{\mathcal{C}^0} \leq \frac{\lambda_2 \varepsilon}{\lambda_1},$$

and this implies

$$\begin{aligned} \mathcal{H}^{d-m+p}(\mathcal{Z}_W^h) &= \mathcal{H}^{d-m+p}\left(\left\{x \in [0, 1]^d : (\phi \circ h)(x) \in \phi(W)\right\}\right) \\ &\geq \mathcal{H}^{d-m+p}\left(\left\{x \in [0, 1]^d : (\phi \circ h)(x) \in [-\tilde{r}_0, \tilde{r}_0]^p \times \{0\}^{m-p}\right\}\right) \\ &= \mathcal{H}^{d-m+p}(\mathcal{Z}_{W_{r_0}}^{\phi \circ h}) \geq \mathcal{N}_{W_{r_0}}^g\left(\frac{\lambda_2 \varepsilon}{\lambda_1}\right). \end{aligned} \quad (2.23)$$

Finally, recalling (2.20), we get for every $h \in \mathcal{C}([0, 1]^d, \mathbb{R}^m)$ with $\|h - f\|_{\mathcal{C}^0} \leq \varepsilon$ that

$$\mathcal{H}^{d-m+p} \left(\mathcal{Z}_W^h \right) \geq \left(\frac{16}{\Psi_\beta(2\sqrt{m-p} \cdot \lambda_2 \varepsilon / \lambda_1)} \right)^{m-p} \cdot 2^{-4(m-p) \cdot \sqrt{\log_2(\Psi_\beta(2\sqrt{m-p} \cdot \lambda_2 \varepsilon / \lambda_1))}},$$

and (2.4) yields (2.8). \square

Notice that if $\beta(s) = \lambda s^\alpha$ for some $\lambda > 0$ and $\alpha \in]0, 1]$ then from (2.6), it holds

$$\Psi_\beta(s) = \left(\frac{s}{\lambda} \right)^\frac{1}{\alpha} \quad \text{for all } s \in [0, \infty[.$$

In this case, we achieve an explicit estimate in (2.8) by a direct computation. More precisely, we have the following remark.

Remark 2.4 *Under the same setting in Theorem 2.3, if $\beta(s) = \lambda s^\alpha$ for some $\lambda > 0$, $\alpha \in (0, 1]$ then there exists a Hölder continuous function $f : [0, 1]^d \rightarrow \mathbb{R}^m$ with exponent α and Hölder norm λ such that*

$$\mathcal{N}_W^f(\varepsilon) \geq C_{[W, \alpha, \lambda]} \cdot \left(\frac{1}{\varepsilon} \right)^{\frac{m-p}{\alpha}} \cdot 2^{-\frac{4(m-p)}{\alpha^{1/2}} \cdot \sqrt{\log_2(\gamma_W \varepsilon / \lambda)}}.$$

This particularly yields Theorem 1.1.

Finally, we remark that the factor $2^{-4m \cdot \sqrt{\log_2(\Psi_\beta(2\sqrt{m}\varepsilon))}}$ in Theorem 2.3 is necessary. In other words, the estimate on $\mathcal{N}_W^f(\varepsilon)$ in (1.3) is not actually sharp for the case $\alpha = d = m = 1$, $p = 0$, and $W = \{0\}$.

Proposition 2.1 *Assume that $d = m = 1$, $p = 0$, $W = \{0\}$ and $\beta(s) = s$ for all $s \geq 0$. Then Theorem 2.3 does not hold if the factor $2^{-4(m-p) \cdot \sqrt{\log_2(\Psi_\beta(\gamma_W \varepsilon))}}$ in 2.8 is replaced by any positive constant.*

Proof. Arguing by contradiction, suppose that there exists a function $f \in \mathcal{C}([0, 1], \mathbb{R})$ and a constant $C_f \in (0, 1]$ such that f admits β as a modulus of continuity and

$$\mathcal{N}_{\{0\}}^f \geq \frac{C_f}{\varepsilon} \quad \text{for all } \varepsilon > 0 \text{ small.} \quad (2.24)$$

1. We first claim that for every $0 < \varepsilon \leq \frac{C_f^2}{12}$ there exists $(y_i)_{i=1}^N \in [0, 1]$ such that

$$N \geq \frac{C_f^2}{36\varepsilon}, \quad |f(y_i)| \geq \frac{\varepsilon}{2}, \quad |y_i - y_j| \geq \frac{2\varepsilon}{C_f} \quad \text{for all } i \neq j. \quad (2.25)$$

Indeed, dividing $[0, 1]$ into $K_0 = \lfloor \frac{C_f}{3\varepsilon} \rfloor$ subintervals $[a_i, a_{i+1}]$ of length

$$\frac{2\varepsilon}{C_f} \leq \ell_i \leq \frac{3\varepsilon}{C_f} \quad \text{for all } i \in \{0, \dots, K_0 - 1\}, \quad (2.26)$$

we consider a function $h_\varepsilon \in \mathcal{C}([0, 1], \mathbb{R})$ which is defined in $[a_i, a_{i+1}]$ for every $i \in \{0, \dots, K_0 - 1\}$ as follows:

- If $\max_{x \in [a_i, a_{i+1}]} |f(x)| \leq \frac{\varepsilon}{2}$ then we set

$$h_\varepsilon(x) = \begin{cases} f(a_i) + x - a_i, & a_i \leq x \leq a_i - f(a_i) + \frac{\varepsilon}{2}, \\ \frac{\varepsilon}{2}, & a_i - f(a_i) + \frac{\varepsilon}{2} \leq x \leq a_{i+1} + f(a_{i+1}) - \frac{\varepsilon}{2}, \\ f(a_{i+1}) - x + a_{i+1}, & a_{i+1} + f(a_{i+1}) - \frac{\varepsilon}{2} \leq x \leq a_{i+1}. \end{cases} \quad (2.27)$$

It is clear that h_ε has at most 2 zeros on $[a_i, a_{i+1}]$, and $\|h_\varepsilon - f\|_{C^0} \leq \|h_\varepsilon\|_{C^0} + \|f\|_{C^0} \leq \varepsilon_0$.

- Otherwise, if $\max_{x \in [a_i, a_{i+1}]} |f(x)| > \frac{\varepsilon}{2}$ then we divide $[a_i, a_{i+1}]$ into $K_1 = \lceil \frac{3}{C_f} \rceil$ subintervals $[a_i^j, a_i^{j+1}]$ of length at most ε . For every $j \in \{0, \dots, K_1 - 1\}$, we set

$$h_\varepsilon(\theta \cdot a_i^j + (1 - \theta) \cdot a_i^{j+1}) = \theta \cdot f(a_i^j) + (1 - \theta) \cdot f(a_i^{j+1}), \quad \theta \in [0, 1]. \quad (2.28)$$

In this case, h_ε has at most $\frac{3}{C} + 1$ zeros on $[a_i, a_{i+1}]$ and

$$\|h_\varepsilon - f\|_{C^0([a_i, a_{i+1}])} \leq \max_{0 \leq j \leq K_1 - 1} \sup_{|x-y| \leq a_i^{j+1} - a_i^j} |f(x) - f(y)| \leq \beta(\varepsilon) = \varepsilon.$$

Thus, set $\mathcal{I} = \{i \in \{0, \dots, K_0 - 1\} : \max_{x \in [a_i, a_{i+1}]} |f(x)| > \varepsilon/2\}$ and $\eta = \#\mathcal{I}$. By (1.2) and (2.24), we have

$$\frac{C_f}{\varepsilon} \leq \mathcal{H}^0(\mathcal{Z}_{\{0\}}^{h_\varepsilon}) \leq \eta \cdot \left(\frac{3}{C_f} + 1 \right) + (K_0 - \eta) \cdot 2 \leq \eta \cdot \left(\frac{3}{C_f} + 1 \right) + \left(\frac{3}{C_f} - \eta \right) \cdot 2,$$

and (2.24) yields

$$\eta \geq \frac{C_f^2 - 6\varepsilon}{3(3 - C_f)\varepsilon} \geq \frac{C_f^2}{18\varepsilon}.$$

For every $i \in \mathcal{I}$, let $z_i \in \operatorname{argmax}_{x \in [a_i, a_{i+1}]} |f(x)|$ be such that $|f(z_i)| \geq \varepsilon/2$. From the first inequality of (2.26), one can pick a desired set of at least $N \geq \frac{C_f^2}{36\varepsilon}$ points y_i from the set $\{z_i : i \in \mathcal{I}\}$ which satisfies (2.25).

2. Using (2.25), we show that

$$\mathcal{N}_{\{0\}}^f(\varepsilon/4) \leq \left(1 - \frac{C_f^2}{12}\right) \cdot \frac{4}{\varepsilon} \quad \text{for all } 0 \leq \varepsilon \leq \frac{2\varepsilon}{C_f} \quad (2.29)$$

Divide $[0, 1]$ into $K_\varepsilon = \lceil \frac{4}{\varepsilon} \rceil + 1$ subintervals $[b_k, b_{k+1}]$ with length smaller than $\varepsilon/4$, let $g_\varepsilon : [0, 1] \rightarrow \mathbb{R}$ be a continuous such that for all $k \in \{0, \dots, K_\varepsilon - 1\}$, it holds

$$g_\varepsilon(\theta \cdot b_k + (1 - \theta) \cdot b_{k+1}) = \theta \cdot f(b_k) + (1 - \theta) \cdot f(b_{k+1}), \quad \theta \in [0, 1].$$

Up to a small variation, we can assume that $f(b_k) \neq 0$ for every $k \in \{1, \dots, K_\varepsilon\}$ so that g_ε has at most one each of the intervals $[b_k, b_{k+1}]$. By the construction, one has

$$\|g_\varepsilon - f\|_{C^0} \leq \max_{0 \leq k \leq K_\varepsilon - 1} |f(b_{k+1}) - f(b_k)| \leq \max_{0 \leq k \leq K_\varepsilon - 1} |b_{k+1} - b_k| \leq \frac{\varepsilon}{4}.$$

For every $k \in \{0, \dots, K_\varepsilon - 1\}$ such that $y_i \in [b_k, b_{k+1}]$ for some $i \in \{0, \dots, N\}$, it holds for all $x \in [b_k, b_{k+1}]$ that

$$|g_\varepsilon(x)| \geq |f(x)| - \frac{\varepsilon}{4} \geq |f(y_i)| - |\beta(|x - y_i|)| - \frac{\varepsilon}{4} > \frac{\varepsilon}{4} - |b_{k+1} - b_k| > 0.$$

In this case, g_ε has non-zero on at least N intervals $[b_k, b_{k+1}]$. Thus, we have

$$\mathcal{N}_{\{0\}}^f(\varepsilon/4) \leq \mathcal{H}^0(\mathcal{Z}_{\{0\}}^{g_\varepsilon}) \leq K_\varepsilon - N \leq \frac{4}{\varepsilon} + 1 - \frac{C_f^2}{36\varepsilon}$$

and this yields (2.29).

3. Finally, applying (2.25) n times, we find that

$$\mathcal{N}_{\{0\}}^f\left(\frac{\varepsilon}{4^n}\right) \leq \left(1 - \frac{C_f^2}{12}\right)^n \cdot \frac{4^n}{\varepsilon}.$$

Thus, (2.24) does not hold for ε replaced by $\frac{\varepsilon}{4^n}$ with $n \geq 1$ sufficiently large so that $\left(1 - \frac{C_f^2}{12}\right)^n < C_f$. This concludes the proof. \square

Acknowledgments. This research by K. T. Nguyen was partially supported by National Science Foundation grant DMS-2154201.

References

- [1] F. Ancona, O. Glass, and K. T. Nguyen, Lower compactness estimates for scalar balance laws, *Comm. Pure Appl. Math.*, 65(9), 1303–1329, 2012.
- [2] F. Ancona, O. Glass, and K. T. Nguyen, On compactness estimates for hyperbolic systems of conservation laws, *Ann. Inst. H. Poincaré Anal. Non Linéaire*, 32(6), 1229–1257, 2015.
- [3] F. Ancona, O. Glass, and K. T. Nguyen, On Kolmogorov entropy compactness estimates for scalar conservation laws without uniform convexity, *SIAM J. Math. Anal.*, 51 (4), 3020–3051, 2019.
- [4] F. Ancona, P. Cannarsa, and K. T. Nguyen: Quantitative compactness for Hamilton Jacobi Equations, *Archive for Rational Mechanics and Analysis* 219 (2016), no. 2, 793–828
- [5] F. Ancona, P. Cannarsa, and K. T. Nguyen: The compactness estimates for Hamilton Jacobi Equations depending on space, *Bulletin of the Institute of Mathematics, Academia Sinica* 11 (2016), 63–113
- [6] S. Bianchini, P. Dutta, and K. T. Nguyen: Metric entropy for Hamilton-Jacobi equation with uniformly directional convex Hamiltonian, *SIAM Journal on Mathematical Analysis* 54 (2022), 5551–5575.

- [7] R. Capuani, P. Dutta Prerona, and K. T. Nguyen, Metric entropy for functions of bounded total generalized variation, *SIAM J. Math. Anal.* 53 (1), 1168 – 1190, 2021.
- [8] A. Murdza and K.T. Nguyen, A quantitative version of the transversality theorem, Communications in Mathematical Sciences, to appear.
- [9] J.M. Bloom, The local structure of maps of manifolds. B.A. thesis, Harvard 2004. (Link: <https://www.math.harvard.edu/media/ThesisXFinal.pdf>)
- [10] René Thom, Quelques propriétés globales des variétés différentiables, *Commentarii Mathematici Helvetici* **28** (1954), no. 1, 17-86.
- [11] R. M. Hardt and T Rivière, Connecting rational homotopy type singularities, *Acta Math.* **200** (2008), 15-83.
- [12] S. Li, A note on generic transversality of Euclidean submanifolds, *Manuscripta Math.* **162** (2020), 213-219.