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ABSTRACT

Graph anomaly detection aims to identify the atypical substruc-
tures and has attracted an increasing amount of research attention
due to its profound impacts in a variety of application domains,
including social network analysis, security, finance, and many more.
The lack of prior knowledge of the ground-truth anomaly has been
a major obstacle in acquiring fine-grained annotations (e.g., anoma-
lous nodes), therefore, a plethora of existing methods have been
developed either with a limited number of node-level supervision
or in an unsupervised manner. Nonetheless, annotations for coarse-
grained graph elements (e.g., a suspicious group of nodes), which
often require marginal human effort in terms of time and exper-
tise, are comparatively easier to obtain. Therefore, it is appealing
to investigate anomaly detection in a weakly-supervised setting
and to establish the intrinsic relationship between annotations at
different levels of granularity. In this paper, we tackle the chal-
lenging problem of weakly-supervised graph anomaly detection
with coarse-grained supervision by (1) proposing a novel architec-
ture of graph neural network with attention mechanism named
Wedge that can identify the critical node-level anomaly given a
few labels of anomalous subgraphs, and (2) designing a novel ob-
jective with contrastive loss that facilitates node representation
learning by enforcing distinctive representations between normal
and abnormal graph elements. Through extensive evaluations on
real-world datasets, we corroborate the efficacy of our proposed
method, improving AUC-ROC by up to 16.48% compared to the
best competitor.
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1 INTRODUCTION

Graph-structured data is ubiquitous in various real-world scenarios,
including item co-purchase graphs [52] in e-commerce, social net-
works [62] on social media platforms, and molecular graphs [60]
in drug design. To harness the rich information encoded in graph-
structured data, a variety of graph analytical tasks have been studied
in recent years, such as node classification [25, 57], graph classifica-
tion [54, 70], network alignment [58, 72] andmanymore [16, 17, 59].
Among others, graph anomaly detection has received much atten-
tion due to its profound impacts in different applications such as
fraud detection [14] and social spam detection [39]. Essentially, this
task aims to detect the instances that significantly deviate from the
majority of instances.

Obtaining a large amount of annotated data often requires labori-
ous labeling costs and intensive domain knowledge [10, 11, 31, 71].
Therefore, many efforts have been made either with limited node-
level supervision or in an unsupervised fashion. Though great
success has been made, existing methods still suffer from the lack
of fine-grained supervision signals and could fail to perform accu-
rate detection. Compared with node-level labels, subgraph-level
supervision requires much less effort to obtain in many applications.
For example, in financial fraud detection, it is relatively easier to
determine the presence of suspicious money laundering activities
within a group of users; nonetheless, accurately identifying the
actual fraudulent users is notably much more difficult due to their
complicated disguise [36, 64]. In disaster management, it is hard, if
not impossible, to pinpoint the epicenter (node-level anomaly) in
the immediate aftermath of a natural disaster (e.g., hurricane); on
the other hand, we can often roughly locate the impacted communi-
ties (subgraph-level anomaly) to support rapid rescue [4, 7]. During
the criminal investigation, law-enforcement often first identifies
a group of suspects/persons of interest (subgraph-level anomaly),
before capturing the master criminal mind (node-level anomaly).
We ask: how can we improve the node-level anomaly detection under
such a weakly supervised setting where coarse-grained group labels
are available?

However, it is a highly non-trivial task to leverage such coarse-
grained weak supervision signals [12] for node-level graph anom-
aly detection, mainly due to the following reasons. First, under the
weakly-supervised setting, the graph anomaly detector can only
access coarse-grained labels for subgraphs that contains a group
of nodes, while our objective is to detect node-level anomalies, i.e.,
abnormal nodes. Though previous works [2, 48, 74] in multiple
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instance learning (MIL) have been proposed to solve similar prob-
lems, those methods either fail to capture the data heterogeneity in
graphs or only focus on group or bag-level prediction. Thus directly
applying existing MIL methods to our problem would inevitably
result in sub-optimal results or even become infeasible. Second,
though coarse-grained labels are relatively easier to be accessed,
such weak supervision signals are often noisy and may hamper the
model performance if we directly take them as ground-truth labels
without appropriate treatments [30]. Therefore, how to mitigate
the detrimental effects of noisy-labeled data and learn expressive
node representations to further distinguish abnormal nodes from
normal ones is another challenge to be solved.

To address the aforementioned challenges, in this paper, we pro-
pose a novel architecture, namely Wedge, for detecting node-level
graph anomalies withweak supervision of coarse-grained subgraph-
level labels. The key innovation of Wedge lies in that we effectively
establish quantitative relationship between nodes and subgraphs in
terms of both their representations and the predicted abnormalities.
To be specific,Wedge first incorporates a GNN-based node-level
abnormality predictor to learn the representation and estimate the
anomaly score for each node. Then,Wedge leverages a subgrah ab-
normality predictor equipped with attentionmechanism to quantify
the importance of each node in the subgraph, and to compute the
subgraph-level representations and anomaly scores via a weighted
aggregation. To guide the model training, we adopt a deviation
loss [38] defined on subgraph anomaly scores, which enforces a
momentous deviation between the anomaly scores of abnormal
subgraphs/nodes and that of normal subgraphs/nodes. To further
enhance the representation learning of subgraphs/nodes, we pro-
pose a contrastive objective for maximizing the closeness between
subgraphs with similar abnormality in the embedding space. The
seamlessly integrated Wedge framework empowers the represen-
tation learning directly optimized for node-level graph anomaly
detection, which in turn significantly mitigates the limitations of
high cost in obtaining fine-grained annotations. We summarize the
main contributions of this paper as follows:
• Problem: We formally define the problem of weakly-supervised
graph anomaly detection. The key idea is to extract critical knowl-
edge regarding node abnormality from subgraphs with coarse-
grained labels.

• Algorithms: we propose a novel framework Wedge, which
consists of a GNN-based architecture equipped with attention
mechanism, and objectives directly optimized for graph anomaly
detection with weak supervision.

• Experiments: we conduct extensive evaluations on real-world
datasets to demonstrate the superiority of the proposed Wedge,
which outperforms the best competitor by up to 16.48% in terms
of AUC-ROC.

2 PROBLEM DEFINITION

In this section, we formally define the problem ofweakly-supervised
graph anomaly detection, after the notations are introduced.
2.1 Notations

Throughout the paper, we use bold uppercase letters for matrices
(e.g., A), bold lowercase letters for vectors (e.g., h), calligraphy
letters for sets (e.g., V) and lowercase letters for scalars (e.g., 𝑘). In
this work, we focus on a node-attributed graph, i.e., G = (V, E,X),

whereV is the set of nodes, i.e., {𝑣1, 𝑣2, . . . , 𝑣𝑛}, E represents the set
of edges, i.e., {𝑒1, 𝑒2, . . . , 𝑒𝑚}. We use X = [xT1 , x

T
2 , · · · , x

T
𝑛 ] ∈ R𝑛×𝑑

to denote the node attributes matrix, where x𝑖 is the attribute vector
for node 𝑣𝑖 . Alternatively, we represent the attributed graph as G =

(A,X), where A = {0, 1}𝑛×𝑛 is the adjacency matrix representing
the graph topology. To be specific, A𝑖, 𝑗 = 1 implies that there is an
edge between node 𝑣𝑖 and node 𝑣 𝑗 , otherwise, A𝑖, 𝑗 = 0.
2.2 Problem Definition

In weakly supervised graph anomaly detection, we are only pro-
vided with the labels for the entire subgraph. Considering that an
abnormal subgraph may contain both normal and abnormal nodes,
the coarse-grained subgraph labels are not precise to be directly
applied to infer node-level abnormality.

Multiple instance learning (MIL), which deals with training data
organized in sets (bags) where bag-level supervision is provided,
is similar to the problem of weakly supervised graph anomaly
detection. Nonetheless, our problem is different from the classic
MIL in the following two aspects, including (1) compared to the
i.i.d. data assumption, graph anomaly detection aims to capture
the structural correlation between nodes, and (2) we aim to infer
node-level anomalies, which is more challenging than standard
bag-level prediction. let us first briefly review the background of
multiple instance learning (MIL) [74].

In MIL, a bag is defined as a group of individual training instances
where the label of each instance is unknown. One bag is labeled as
positive if this bag contains at least one positive instance and nega-
tive otherwise. Given a bag of 𝑏 instances, i.e., B = {𝑥1, 𝑥2, . . . , 𝑥𝑏 },
MIL aims to predict the bag-level label as follows [22],

𝑦B = 𝑓 (𝑔(𝑥1), 𝑔(𝑥2), . . . , 𝑔(𝑥𝑏 )) (1)
where 𝑔(·) is an instance-level transformation to predict instance
labels or to produce feature representations, and 𝑓 (·) functions as
an aggregator to produce the final bag-level prediction according
to the node-level outcome from 𝑔(·).

In our setting, a subgraph is considered as a bag and the node-
level (i.e., instance-level) labels are unknown. We assume to have a
set of 𝑘 subgraphs (bags) that are labeled as anomalous, i.e., B𝑎 =

{S1,S2, . . . ,S𝑘 }. The set of nodes in B𝑎 is denoted asV𝑙 and the
set of remaining unlabeled nodes is represented asV𝑢 . Note that
V = {V𝑙 ,V𝑢 } and in our problem |V𝑙 | ≪ |V𝑢 | since only a
limited number of labeled subgraphs are given. For each subgraph
(e.g., S𝑖 ), it contains multiple nodes from the graph G, i.e., S𝑖 =

{𝑣 (𝑖 )1 , 𝑣
(𝑖 )
2 , . . . , 𝑣

(𝑖 )
𝑏𝑖

} where 𝑏𝑖 is the size of subgraph S𝑖 . A positive
label (i.e., 𝑌 = 1) is associated with a subgraph if there exists at
least one anomalous node in this subgraph, and 𝑌 = 0 otherwise.
Formally, we have the following definition of abnormal subgraph.

Definition 1. Abnormal Subgraph. Given an attributed graph G =

(V, E,X), a connected subgraph S of graph G is defined as abnormal
if it contains at least one anomalous node.

Generally speaking, the goal of weakly-supervised graph anom-
aly detection is to maximally improve the accuracy of detecting
node-level anomalies on the graph by effectively leveraging the lim-
ited knowledge of coarse-grained annotations for anomalous sub-
graphs. Following the convention of graph anomaly detection [1],
we formulate the problem of weakly-supervised graph anomaly
detection as a ranking problem, and give the formal definition as:
Problem 1. Weakly-supervised Graph Anomaly Detection
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Given: a node-attributed graph G = (A,X) which contains a set of
𝑘 labeled anomalous subgraphs (i.e., S1,S2, . . . ,S𝑘 ).

Find: a model for node-level anomaly detection, which is capable of
leveraging the knowledge of coarse-grained ground-truth (i.e.,
S1,S2, . . . ,S𝑘 ), to detect the abnormal nodes in the graph G.
Ideally, detected anomalies should have higher ranking scores
than that of the normal nodes.

3 PROPOSED APPROACH

In this section, we present the details of the proposed framework,
Wedge, for weakly-supervised graph anomaly detection. The key
innovation of Wedge lies in that we precisely quantify the intrinsic
relationship between nodes and subgraphs from the perspectives
of both abnormalities and embeddings. To be specific, in terms of
abnormality, we propose an end-to-end framework, which incorpo-
rates graph neural networks (GNNs) and attention mechanism, to
facilitate the node-level anomaly detection on graph with limited,
coarse-grained labeled subgraphs. Additionally, we adopt an ob-
jective integrating subgraph-level supervision and self-supervised
contrastive loss, being able to establish the quantitative correlation
between nodes and subgraphs in terms of their embeddings. We
illustrate the overview of the proposed framework in Figure 1.
3.1 Framework for Weakly-supervised Graph

Anomaly Detection

In weakly-supervised anomaly detection, we aim to leverage the
coarse-grained subgraph-level labels to enable the fine-grained
node-level anomaly detection, and each anomalous node/subgraph
is anticipated to be assigned a large score representing its high level
of abnormality. To achieve this, we propose a multiple instance
learning framework, named Wedge, that includes the following
key components: (1) a node abnormality predictor as the node-level
extractor (i.e., 𝑔(·) in Eq. (1)), and (2) a novel subgraph abnormality
predictor as the aggregation function (i.e., 𝑓 (·) in Eq. (1)). Essen-
tially, the node abnormality predictor is composed of a graph encoder
for learning the node representations, concatenated with a score
estimator module for computing the anomaly score for each node.
Afterwards, the obtained node representations and anomaly scores
will be forwarded to the subgraph abnormality predictor for esti-
mating the overall anomaly scores of the subgraphs. We detail the
proposed approach as follows.
Node Abnormality Predictor 𝑔(·). In order to evaluate the level
of abnormality for each node, we propose the node abnormality
predictor module to assign an anomaly score for each node from
the graph G. This module is composed of two sub-components,
including (1) a graph encoder, and (2) a score estimator.
(1) Graph Encoder. Informative node representations serve as the
cornerstone for node anomaly detection. To construct a high-quality
graph encoder module, specifically, we exploit GNNs to map each
node to a low-dimensional latent space. GNNs define a general
architecture of neural network on graph-structured data. This ar-
chitecture can capture the local graph structure as well as features
of nodes following the neighborhood message-passing mechanism.
The intermediate node representations can be obtained as follows:

h𝑙𝑖 = 𝜎
(
h𝑙−1𝑖 + Aggregate𝑙 ({h𝑙−1𝑗 |∀𝑗 ∈ N𝑖 ∪ {𝑣𝑖 }})

)
(2)

where h𝑙
𝑖
is the intermediate representation of node 𝑣𝑖 at the 𝑙-th

layer, N𝑖 is the set of one-hop neighboring nodes of node 𝑣𝑖 . Par-
ticularly, Aggregate𝑙 (·) is a function that integrates information

from the neighboring nodes including 𝑣𝑖 itself. 𝜎 (·) denotes the
nonlinear activation (e.g., ReLU).

The final node representations can be obtained by applying
the information aggregation procedure in an iterative manner. We
use Z = [zT1 , z

T
2 , . . . , z

T
𝑛 ] ∈ R𝑛×𝑑𝑔 to denote the learned represen-

tations for all the nodes from the GNNs. It is worth noting that
the graph encoder is compatible with arbitrary GNN-based archi-
tecture [23, 25, 49, 53], and here we apply Graph Convolutional
Networks (GCNs) [25] in our implementation.

Then, the graph encoder transforms the obtained node represen-
tations (i.e., z1, . . . , z𝑛) from GNNs to another latent space through a
nonlinear activation. Concretely, the transformation can be achieved
by a one-layered feed-forward neural network as follows:

Q = 𝜎 (ZW𝑒1 ), (3)
where Q ∈ R𝑛×𝑑𝑒 is the final representation matrix of all nodes,
W𝑒1 is the learnable weight matrix, and 𝜎 (·) represents the nonlin-
ear ReLU activation. In practice, we observe that such non-linear
transformation can improve the detection performance compared to
directly utilizing the representations from the GNNs. For simplicity,
we denote the graph encoder as 𝑔𝜃𝑔 .
(2) Score Estimator. The score estimator computes a real-valued
anomaly score for each node based on the final representations (i.e.,
Q) as follows: c = Qw𝑒2 , (4)
where c ∈ R𝑛×1 represents the anomaly score vector and w𝑒2 ∈
R𝑑𝑒×1 is the learnable weight vector. The bias terms are omitted.
We use a parameterized function 𝑔𝜃𝑒 (·) to denote the score esti-
mator hence the node abnormality predictor can be represented by
𝑔𝜃𝑛 (A,X) = 𝑔𝜃𝑒 (𝑔𝜃𝑔 (A,X)).
Subgraph Abnormality Predictor 𝑓 (·). The subgraph abnor-
mality is evaluated from the following two intuitive perspectives,
including (1) each node in the subgraph reveals a level of abnor-
mality, ranging from extremely low (i.e., normal) to extremely high
(i.e., highly anomalous), which can be estimated by the node ab-
normality predictor, and (2) nodes indicate different degrees of im-
portance to the overall abnormality of the subgraph. Hence, the
overall subgraph-level abnormality is considered as an aggregation
of node abnormalities, weighted by the corresponding node impor-
tance. Therefore, our proposed subgraph abnormality predictor aims
to (1) differentiate the critical nodes by accurately evaluating the
importance of nodes, and (2) estimate the overall subgraph abnor-
mality based on the resulting importance. In essence, the subgraph
abnormality predictor consists of two key modules: (1) a significance
evaluator based on attention mechanism for allocating importance
to nodes inside a subgraph, and (2) an aggregator for computing the
anomaly score of the subgraph and updating the subgraph represen-
tation according to the resulting attention weights. We represent
the subgraph abnormality predictor as a parameterized function
𝑓𝜃𝑠 (·). The detailed description is as follows.
(1) Significance Evaluator. Recall that in weakly-supervised graph
anomaly detection, we have a set of labeled anomalous subgraphs,
i.e., B = {S1,S2, . . . ,S𝑘 }. For each subgraph S𝑖 ∈ B, the goal of
the significance evaluator is to estimate the contribution of each
individual node to the overall subgraph abnormality. Specifically,
we first compute the attention vector (i.e., p𝑗 ) for node 𝑣 (𝑖 )𝑗

through
an one-layered feed-forward network,

p𝑗 = tanh (W𝑝q𝑗 + b𝑝 ) (5)
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Figure 1: The illustration of the proposed Wedge framework for weakly-supervised graph anomaly detection. Wedge is

trained for node-level graph anomaly detection with coarse-grained subgraph-level supervision. The key is to establish the

intrinsic correspondence between nodes and subgraphs w.r.t. abnormality and embeddings. Best viewed in color.

where q𝑗 is the representation of node 𝑣 (𝑖 )
𝑗

obtained from the node
abnormality predictor, W𝑝 and b𝑝 are the parameter matrix and
the bias vector, respectively. tanh(·) represents the element-wise
hyperbolic tangent function.

It is then straightforward to calculate the attention weight for
node 𝑣 (𝑖 )

𝑗
as:

𝑎 𝑗 =
exp(pT

𝑗
w𝑎)∑

𝑣
(𝑖 )
𝑚 ∈S𝑖

exp(pT𝑚w𝑎)
(6)

where Eq. (6) defines the normalized similarity between the atten-
tion vector p𝑗 and the learnable vector w𝑎 . Intuitively, vector w𝑎

is crucial in attention mechanism and is able to recognize critical
anomaly nodes. We denote the significance evaluator as 𝑓𝜃𝑖 (·).
(2) Aggregator. Having obtained the normalized weights for each
node in the subgraph, we can proceed to compute anomaly score for
each subgraph as the weighted sum of node-level anomaly scores,

𝐶𝑖 =
∑︁

𝑣
(𝑖 )
𝑗

∈S𝑖

𝑎 𝑗𝑐 𝑗 , (7)

where 𝑐 𝑗 is the anomaly score of node 𝑣 (𝑖 )
𝑗

from the node abnormal-
ity predictor.

Similarly, we can obtain the representation of the subgraph S𝑖
as follows:

s𝑖 =
∑︁

𝑣
(𝑖 )
𝑗

∈S𝑖

𝑎 𝑗q𝑗 . (8)

We denote the aggregator as 𝑓𝑎 (·) hence the subgraph abnormal-
ity predictor can be represented by 𝑓𝜃𝑠 (·) = 𝑓𝑎 (𝑓𝜃𝑖 (·)), which, in
essence, transforms the node-level representations/scores to the
subgraph-level counterparts. The entire Wedge model can be con-
cretely represented as 𝑓𝜃 (A,X) = 𝑓𝜃𝑠 (𝑔𝜃𝑛 (A,X)) and directly maps
the input graph to subgraph representations/anomaly scores, there-
fore can be trained in an end-to-end fashion.
3.2 Training

The objective of our proposedWedge framework is to discriminate
normal and abnormal nodes/subgraphs based on the computed

anomaly scores from the node/subgraph abnormality predictor. To
navigate the model training with limited subgraph-level supervi-
sion, inspired by [38], we propose a subgraph-level deviation loss
to enforce the model to allocate significantly larger anomaly scores
to true anomalous nodes/subgraphs whose patterns deviate from
the normal ones to a great extent. Considering that we are pro-
vided with very limited supervision signals, we further design a
contrastive loss to enhance the representation learning. The key
idea of the contrastive loss is to maximize (1) the similarity between
anomalous subgraph representations, and (2) the disparity between
normal and abnormal subgraphs. The details of learning objectives
are as follows.
Subgraph-level Deviation Loss for Graph Anomaly Detection.

For a subgraph S𝑖 , the deviation is defined as the distance between
the anomaly score (i.e., 𝐶𝑖 ) and the reference score in the format
of standard score: dev(S𝑖 ) = 𝐶𝑖−𝜇𝑟

𝜎𝑟
, where reference score, i.e., 𝜇𝑟 ,

is the mean value of 𝑟 anomaly scores sampled from a Gaussian
distribution (i.e., {𝑠1, . . . , 𝑠𝑟 } ∼ N (𝜇, 𝜎2)) [27, 38] and 𝜎𝑟 is the cor-
responding standard deviation. The objective function for deviation
loss is derived as follows:

Ldev = (1 − 𝑌𝑖 ) · |dev(S𝑖 ) | + 𝑌𝑖 ·max(0,𝑚 − dev(S𝑖 )), (9)
where 𝑌𝑖 is the ground-truth label of the subgraph S𝑖 .𝑚 is a con-
fidence margin which defines a radius within the deviation. In
practice, we choose𝑚 to be a large value (e.g.,𝑚 = 5) to ensure it
is larger than the deviation.

Through minimizing Eq. (9), the abnormality predictor will en-
force a large positive deviation between the anomaly score of an
anomalous subgraph and the reference score 𝜇𝑟 , while confining the
anomaly scores of normal subgraphs around 𝜇𝑟 . Since the subgraph-
level representations and anomaly scores are directly influenced by
the node-level counterparts, the deviation loss can further improves
the representation learning of nodes for anomaly detection.
Contrastive Self-supervision. In general, self-supervised con-
trastive learning aims to empower the representation learning
by maximizing the agreement between similar instances in each
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instance pair while capturing the negative correlation between
mismatching patterns [5]. In weakly-supervised graph anomaly
detection, we are only provided with limited number of labeled
anomalous subgraphs. To address this challenge, we propose a con-
trastive loss to further refine the representations learned from the
node/subgraph abnormality predictor, through which the embed-
dings of nodes and subgraphs can be quantitatively correlated. The
intuition is as follows, by contrasting two anomalous subgraphs,
the corresponding similarity is expected to be larger than that when
comparing two subgraphs in two categories.

Specifically, we randomly sample 𝑘 subgraphs with the similar
size from the remaining network and treat them as normal sub-
graphs. Note that we also use the sampled subgraphs as the negative
instances to compute the deviation loss in Eq. (9). It is also worth
mentioning that since the sampled subgraphs may contain both
normal nodes and unlabeled abnormal nodes, hence contamination
is introduced to the training set. The experimental results demon-
strate that our proposed framework consistently performs well with
this simple sampling strategy and is robust to various levels of con-
tamination. We present the robustness analysis on contamination
level in Sec. 4.4.

For each training epoch 𝑖 , we select 𝑁 labeled anomalous sub-
graphs and 𝑁 sampled subgraphs without replacement, forming a
batch of size 2𝑁 . We denote the training batch as B𝑖 = B (𝑖 )

𝑎 ∪B (𝑖 )
𝑛

where B (𝑖 )
𝑎 and B (𝑖 )

𝑛 represent the selected labeled subgraphs and
sampled subgraphs at the 𝑖-th epoch, respectively. We define the
positive pair as a combination any two different subgraphs from
B (𝑖 )
𝑎 . A negative pair is composed of one subgraph from B (𝑖 )

𝑎 and
the other one from B (𝑖 )

𝑛 . To compute the loss for a positive pair of
subgraphs (S𝑖 ,S𝑗 ), we have,

𝑙S𝑖 ,S𝑗
= − log

exp(sim(s𝑖 , s𝑗 )/𝜏)∑
S𝑘 ∈B𝑛∪{S𝑗 } exp(sim(s𝑖 , s𝑘 )/𝜏)

, (10)

where s𝑖 is the representation of S𝑖 and sim(·, ·) represents the
cosine similarity between two vectors, and 𝜏 > 0 is a temperature
parameter. Eq. (10)

We then obtain the final contrastive loss by computing 𝑙 over all
positive pairs:

Lcontra =
1

𝑁 (𝑁 − 1)
∑︁

S𝑖 ,S𝑗 ∈B𝑎

[
𝑙S𝑖 ,S𝑗

+ 𝑙S𝑗 ,S𝑖

]
. (11)

Through minimizing Eq. (11), the model is able to enforce (1)
the closeness between the representations of anomalous subgraphs,
and (2) the disparity between the abnormal and normal subgraphs
in the embedding space.

The deviation loss in Eq. (9) and the contrastive loss in Eq. (11) are
mutually complementary to each other in the following way. From
the perspective of subgraph representations, the contrastive loss
empowers the learning by contrasting every pair of subgraphs in the
same training batch, which enables the inter-subgraph correlation
to be captured. In the mean while, the deviation loss determines
the detection outcome (i.e., anomaly scores) for evaluation and
enforces a significantly higher score being assigned to an abnormal
node/subgraph based on the learned representations.

Therefore, we combine the two objectives as follows:
L = Ldev + 𝜆 · Lcontra, (12)

where 𝜆 is a regularization parameter. It is worth mentioning that if
the node-level supervision is also available, our proposedWedge frame-
work can readily ingest such fine-grained supervision, which makes
Wedge applicable to a wider range of scenarios.

We summarize the full algorithm in Algorithm 1.

Algorithm 1 The learning algorithm of Wedge
Input: (1) input network G = (A,X); (2) a set of 𝑘 labeled sub-

graphs B𝑎 = {S1, . . . ,S𝑘 }; (3) training epochs 𝐸, batch size 2𝑁 ,
hyper-parameters 𝜏 and 𝜆.

Output: Anomaly scores of nodes in V𝑢 .
1: Initialize model parameters;
2: Construct B𝑛 by sampling 𝑘 subgraphs from V𝑢 ;
3: while 𝑒 < 𝐸 do

4: Randomly sample 𝑁 subgraphs from B𝑎 and 𝑁 from B𝑛 to
comprise the batch 𝐵𝑒 ;

5: Compute node-level representations and anomaly scores
using Eq. (3) and (4), respectively;

6: Compute subgraph-level representations and anomaly
scores using Eq. (8) and (7), respectively;

7: Compute the loss in Eq. (12);
8: Back-propagate the loss and update model parameters;
9: end while

10: Compute the anomaly scores for nodes in V𝑢 ;

4 EXPERIMENTS

In this section, we conduct the empirical evaluations to demonstrate
the effectiveness of the proposed framework and we aim to answer
the following research questions:
• RQ1. How effective is the proposedWedge framework in detect-
ing node-level anomalies with coarse-grained subgraph labels?

• RQ2. How does each component of the proposed Wedge frame-
work (i.e., attention mechanism, contrastive loss) contribute to
the detection performance?

• RQ3. How robust is Wedge to different levels of contamination
and how sensitive is Wedge to the model parameters?

4.1 Experimental Setup

Evaluation Datasets.We use four real-world datasets, including
Yelp, Amazon, PubMed and Reddit, which are publicly available
and have been widely adopted in previous research [19, 25, 39,
42]. Table 1 summarizes the statistics of each dataset. The detailed
description is as follows.
• Yelp [39] is collected from Yelp.com and contains reviews for
restaurants located in New York City. The reviewers are classified
into two classes, abnormal (reviewers with only filtered reviews)
and normal (reviewers with no filtered reviews) according to the
Yelp anti-fraud filtering algorithm. We select a subset of total
reviews and construct the network as follows: nodes represent
reviewers and there is a link between two reviewers if they have
commented on the same restaurant. We apply the bag-of-words
model [65] on the textual contents to obtain the node attributes.

• Amazon [34] contains the product review information from
Amazon under the category of office products. Following [63],
reviewers with more than 80% helpful votes are labeled as normal
and abnormal otherwise. We construct the review graph by con-
necting the reviewers that have commented on the same product
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and extract bag-of-words features from review content [65] as
the node attributes.

• PubMed [42] is a citation network where nodes represent medi-
cal articles related to diabetes and edges are citations relations.
Node attribute is represented by a TF/IDF weighted word vector
from a dictionary which consists of 500 unique words.

• Reddit [19] is collected from reddit.com, an online discussion
forum, where nodes represent threads and an edge exists between
two threads if they are commented by the same user. The node
attributes are constructed using the averaged word embedding
vectors of the threads. We extract a subset of nodes from the
original large network for the experiments.

Table 1: Statistics of datasets. 𝑟1 denotes the ratio of the num-

ber of anomalies to the total number of nodes.

Datasets Yelp Amazon PubMed Reddit
# nodes 12, 671 14, 732 19, 717 22, 914
# edges 274, 842 201, 179 44, 326 135, 310
# features 8, 000 8, 000 500 602
# anomalies 765 705 1, 223 1, 306
𝑟1 6.04% 4.79% 6.20% 5.70%

Different from the Yelp and Amazon datasets, PubMed and Reddit
do not contain ground-truth anomalies. Therefore, we employ two
anomaly injection approaches [9, 44] to generate a combination
of structural anomalies and contextual anomalies by modifying
the graph topology and node attributes, respectively. To obtain
structural anomalies, we adopt the method used by [9] to generate
a set of cliques because a clique is often considered as a typical
abnormal graph pattern where a group of nodes are much more
closely connected to each other [43]. Concretely, to construct a
clique, we randomly select 𝑐 nodes (i.e., clique size) in the graph
and then make these nodes fully linked to each other. By repeating
this process 𝐾 times (i.e., 𝐾 cliques), we can obtain 𝐾 × 𝑐 structural
anomalies. In our experiment, we choose the clique size 𝑐 to be 15.
Additionally, we build contextual anomalies following the method
proposed by [44]. To be specific, we first randomly select a node 𝑣𝑖
and then sample another 50 nodes from the graph. Among the 50
nodes, we choose the node 𝑣 𝑗 whose attributes (i.e., x𝑗 ) have the
largest Euclidean distance from x𝑖 . Then, we replace the attributes
of node 𝑣𝑖 with x𝑗 . Notably, the injected structural and contextual
anomalies have the same quantity and the total number of injected
anomalies is approximately 6% of the graph size.

Having obtained the ground-truth or injected node-level anom-
alies, we can now proceed to generate the labeled anomalous sub-
graphs (i.e., B𝑎). We first randomly select 𝑘 abnormal nodes from
the graph as center nodes. Then we adopt random walk with restart
(RWR) [47] to obtain a local subgraph. The length of random walk
and the restart probability are set as 10 and 0.5, respectively, and the
average size of the obtained subgraphs is around 8.67. Afterwards,
the set of unlabeled subgraphs (i.e., B𝑛) is constructed by applying
RWR to the nodes sampled from the unlabeled set of nodes (i.e.,
V𝑢 ). Particularly, for Yelp and Amazon datasets, in addition to the
RWR-based strategy for constructing subgraphs, we also consider
a subgraph to be a group of reviewers/customers (i.e., nodes) that
post reviews on the same product/restaurant. We evaluate the per-
formance of all supervised comparison methods on the two types
of labeled subgraphs for Yelp and Amazon datasets. To denote the

variants of subgraph type, we use "R" for RWR-generated subgraphs
and "P" for subgraphs of connected reviewers on the same product.
Comparison Methods. We compare our proposed Wedge frame-
work with the following two groups of anomaly detection meth-
ods, including (1) feature-based: LOF [3], Autoencoder [68], Deep-
SAD [40] and MI-Net [22] where only the node attributes are used,
and (2) graph-based: Radar [29], DOMINANT [8], SemiGNN [50],
GDN [13], CARE-GNN [14], MI-GNN [48], CoLA [32], SL-GAD [67],
and BWGNN [45] where both graph topological information and
node attributes are considered. Note that for supervised methods
designed for node-level labels, we consider all nodes in the labeled
subgraphs as ground-truth anomalies. Details of the comparison
methods are as follows.
• LOF [3] is a feature-based unsupervised approach which detects
outliers based on the deviation of local density.

• Autoencoder [68] is a feature-based unsupervised deep autoen-
coder model which introduces an anomaly regularizing penalty
based on L1 or L2 norms.

• DeepSAD [40] is a neural network-based approach for general
semi-supervised anomaly detection. We use the node attributes
as the input features in the experiment.

• MI-Net [22] is a deep multiple instance learning approach that
incorporates attention mechanism for classification task. We use
the node attributes as the training samples in our experiment.

• Radar [29] is an unsupervised method for anomaly detection on
attributed network by characterizing the residuals of attribute
and its consistency with network structure.

• DOMINANT [8] is a GCN-based autoencoder approach which
computes anomaly scores according to the reconstruction errors
from the perspectives of network structure and node attributes.

• SemiGNN [50] is a semi-supervised GNN model, which lever-
ages the hierarchical attention mechanism to better correlate
different neighbors and different views.

• GDN [13] is a recent GNN-based few-shot learning approach
for node-level anomaly detection by enforcing large scores on
anomalies with divergent behaviors.

• CARE-GNN [14] is a GNN-based anomaly detection model,
which leverages reinforcement learning for selecting informative
neighboring nodes according to a label-aware similarity measure.

• MIL-GNN [48] is a GNN-based multiple instance learning frame-
work for graph classification. In the experiment, we consider each
subgraph in the training set as an individual graph.

• CoLA [32] is a self-supervised GNN-based anomaly detection
framework, which propose to sample effective instance pairs to
capture the graph anomaly in a contrastive manner.

• SL-GAD [67] is an unsupervised graph anomaly approach which
computes the anomaly scores from generative attribute recon-
struction and multi-view contrastive learning modules.

• BWGNN [45] is a supervised method which proposes the spec-
tral localized band-pass filters in GNN architectures tailored for
graph anomaly detection.

Evaluation Metrics. To comprehensively evaluate the perfor-
mance of different anomaly detection methods, in this work, we use
metrics that are widely adopted by previous studies, including (1)
AUC-ROC, (2) AUC-PR, and (3) Precision@K, detailed as follows.
• AUC-ROC is widely used in previous anomaly detection re-
search [8, 29]. Specifically, Area under curve (AUC) depicts the
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Table 2: Performance comparison results w.r.t. AUC-ROC and AUC-PR on four datasets.

Yelp Amazon PubMed Reddit
Methods Subgraph AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR

LOF R 0.351 ± 0.004 0.053 ± 0.003 0.467 ± 0.008 0.064 ± 0.003 0.542 ± 0.003 0.182 ± 0.007 0.497 ± 0.004 0.073 ± 0.002
Autoencoder R 0.385 ± 0.009 0.042 ± 0.006 0.525 ± 0.012 0.103 ± 0.008 0.553 ± 0.010 0.242 ± 0.004 0.684 ± 0.006 0.341 ± 0.004
DeepSAD R 0.471 ± 0.002 0.066 ± 0.007 0.458 ± 0.015 0.058 ± 0.007 0.511 ± 0.007 0.121 ± 0.004 0.518 ± 0.009 0.071 ± 0.005

MI-Net R
P

0.569 ± 0.011
0.601 ± 0.008

0.081 ± 0.006
0.075 ± 0.007

0.587 ± 0.005
0.571 ± 0.013

0.093 ± 0.013
0.087 ± 0.009

0.624 ± 0.010
–

0.261 ± 0.011
–

0.694 ± 0.009
–

0.294 ± 0.013
–

Radar R 0.392 ± 0.005 0.041 ± 0.002 0.487 ± 0.009 0.069 ± 0.005 0.596 ± 0.007 0.211 ± 0.008 0.684 ± 0.003 0.251 ± 0.005
DOMINANT R 0.575 ± 0.012 0.115 ± 0.006 0.652 ± 0.010 0.154 ± 0.002 0.641 ± 0.008 0.333 ± 0.010 0.710 ± 0.014 0.327 ± 0.007

SemiGNN R
P

0.452 ± 0.008
0.467 ± 0.010

0.042 ± 0.005
0.041 ± 0.003

0.589 ± 0.014
0.601 ± 0.007

0.105 ± 0.008
0.131 ± 0.011

0.502 ± 0.011
–

0.067 ± 0.008
–

0.542 ± 0.007
–

0.115 ± 0.006
–

GDN R
P

0.613 ± 0.018
0.621 ± 0.011

0.138 ± 0.012
0.140 ± 0.008

0.684 ± 0.013
0.679 ± 0.008

0.199 ± 0.016
0.211 ± 0.015

0.698 ± 0.014
–

0.372 ± 0.009
–

0.725 ± 0.021
–

0.324 ± 0.014
–

CARE-GNN R
P

0.618 ± 0.017
0.631 ± 0.014

0.119 ± 0.013
0.121 ± 0.008

0.635 ± 0.011
0.661 ± 0.017

0.192 ± 0.012
0.198 ± 0.011

0.652 ± 0.011
–

0.356 ± 0.021
–

0.692 ± 0.010
–

0.319 ± 0.015
–

MIL-GNN R
P

0.535 ± 0.012
0.595 ± 0.021

0.069 ± 0.013
0.082 ± 0.008

0.498 ± 0.013
0.514 ± 0.014

0.056 ± 0.004
0.064 ± 0.009

0.591 ± 0.011
–

0.314 ± 0.015
–

0.634 ± 0.008
–

0.232 ± 0.016
–

CoLA R 0.613 ± 0.011 0.132 ± 0.007 0.651 ± 0.011 0.163 ± 0.013 0.632 ± 0.021 0.298 ± 0.013 0.668 ± 0.018 0.264 ± 0.011
SL-GAD R 0.627 ± 0.015 0.145 ± 0.007 0.682 ± 0.014 0.159 ± 0.012 0.663 ± 0.021 0.337 ± 0.011 0.705 ± 0.017 0.335 ± 0.011

BWGNN R
P

0.587 ± 0.012
0.607 ± 0.019

0.135 ± 0.014
0.124 ± 0.07

0.709 ± 0.017
0.679 ± 0.015

0.208 ± 0.015
0.217 ± 0.013

0.627 ± 0.025
–

0.311 ± 0.015
–

0.715 ± 0.018
–

0.317 ± 0.016
–

Wedge (ours) R
P

0.721 ± 0.021
0.735 ± 0.014

0.181 ± 0.016
0.169 ± 0.012

0.779 ± 0.016
0.753 ± 0.017

0.331 ± 0.011
0.318 ± 0.018

0.762 ± 0.013
–

0.412 ± 0.014
–

0.806 ± 0.025
–

0.401 ± 0.019
–

50 100 150 200 250 300 350 400
K

6

12

18

24

Pr
ec

isi
on

 (%
)

WEDGE

Yelp

50 100 150 200 250 300 350 400
K

10

20

30

40

Pr
ec

isi
on

 (%
)

WEDGE

Amazon

50 100 150 200 250 300 350 400
K

15

30

45

60

Pr
ec

isi
on

 (%
)

WEDGE

PubMed

50 100 150 200 250 300 350 400
K

12

24

36

48

Pr
ec

isi
on

 (%
)

WEDGE

Reddit
WEDGE CARE-GNN GDN SemiGNN DOMINANT Radar DeepSAD Autoencoder LOF MI-Net MIL-GNN CoLA SL-GAD BWGNN

Figure 2: Performance comparison results w.r.t. Precision@K on four datasets. (Best viewed in color.)

probability that a randomly selected abnormal instance receives
a higher score than a randomly chosen normal object.

• AUC-PR is the area under the curve of precision against recall
at different thresholds, and it evaluates the performance on the
positive class (i.e., abnormal objects).

• Precision@K is defined as the proportion of true anomalies in
the top-ranked𝐾 objects. Specifically, we sort the anomaly scores
from a detection algorithm in descending order.

Implementation Details. For pre-processing, we generate 𝑘 = 50
anomalous subgraphs using the aforementioned strategy to obtain
B𝑎 . For the proposedWedge framework, the graph encoder is a two-
layer Graph Convolution Network (GCN) [25] with 512 dimension,
followed by one hidden layer of size 256, as shown in Eq. (3). For
the subgraph abnormality predictor, we choose the dimension of
the attention vector (i.e., p in Eq. (5)) to be 128. The confidence
margin (i.e.,𝑚 in Eq. (9)) is set as 5 and the reference score (i.e., 𝜇𝑟 )
is computed as the mean of 5, 000 scores that are sampled from a
Gaussian distribution, i.e., N(0, 1). We set the temperature 𝜏 = 0.1
in Eq. (10), and the regularization parameter 𝜆 = 0.4 in Eq. (12).

For training, we sample 𝑘 = 50 subgraphs to construct B𝑛 and
train the model with 1, 000 epochs. For each epoch, we randomly

select 𝑁 = 8 subgraphs from B𝑎 and B𝑛 , respectively, resulting in
the batch size of 16. We use the Adam optimizer [24] with learning
rate 0.01. The nodes are split into 40% for training, 20% for validation,
and 40% for testing. For all comparison methods, we select the
hyper-parameters with the best performance on the validation set
and report the results on the test data. We report the average results
after 10 runs of the training algorithm.

4.2 Effectiveness Results (RQ1)

We first evaluate the performance of the proposed framework
Wedge and the baseline methods in node-level anomaly detec-
tion. We present the evaluation results w.r.t. (1) AUC-ROC/AUC-PR
in Table 2, and (2) Precision@K in Figure 2. Note that in Table 2, for
supervised methods (i.e., MI-Net, Semi-GNN, GDN, CARE-GNN,
MIL-GNN, BWGNN and Wedge), we report the results for two
types of subgraph-level labels on Yelp and Amazon datasets as intro-
duced in Sec. 4.1, denoted by "R" and "P", respectively. We highlight
the best performing method (i.e.,Wedge) in bold and underline the
best comparison method, respectively. We have the following ob-
servations. First, in terms of AUC-ROC and AUC-PR, the proposed
Wedge outperforms all the comparison methods by a significant
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Table 3: Performance of Wedge w.r.t. AUC-ROC and AUC-PR at different levels of weak-supervision.

Yelp Amazon PubMed Reddit
Length AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR

5 0.738 ± 0.015 0.184 ± 0.018 0.785 ± 0.014 0.345 ± 0.018 0.775 ± 0.013 0.425 ± 0.010 0.811 ± 0.016 0.413 ± 0.015
10 0.721 ± 0.021 0.181 ± 0.016 0.779 ± 0.021 0.331 ± 0.011 0.762 ± 0.013 0.412 ± 0.014 0.806 ± 0.025 0.401 ± 0.019
15 0.717 ± 0.013 0.172 ± 0.008 0.752 ± 0.017 0.317 ± 0.015 0.748 ± 0.013 0.405 ± 0.011 0.798 ± 0.015 0.389 ± 0.007
20 0.695 ± 0.009 0.161 ± 0.011 0.747 ± 0.018 0.302 ± 0.014 0.740 ± 0.011 0.391 ± 0.012 0.785 ± 0.018 0.372 ± 0.014

margin. In addition, from the results w.r.t. Precision@K,Wedge also
achieves better performance in assigning higher anomaly scores
to true anomalous nodes than other methods. Second, neither un-
supervised methods (e.g., DOMINANT, Radar) or semi-supervised
methods (e.g., DeepSAD, SemiGNN) deliver satisfactory results. The
possible explanations are (1) unsupervised methods are incapable
of leveraging the supervised knowledge of labeled anomalies; (2)
for semi-supervised methods, DeepSAD cannot handle the topolog-
ical information and SemiGNN requires a relatively large number
of multi-view data with labels, which diminish the effectiveness
of these methods. Third, existing supervised methods (e.g., GDN,
BWGNN, CARE-GNN) can extract limited knowledge from the
coarse-grained labels and hence have marginal improvement.

To corroborate the effectiveness of Wedge in aweakly-supervised
setting, we conduct experiments to evaluate the performance of
Wedge under different levels of weak-supervision. To be specific,
we adopt the labeled subgraphs of various sizes by modifying the
length of random walks in constructing subgraphs. We set the
length of random walks 𝑙 to be 5, 10, 15 and 20, respectively. Table 3
summarizes the results w.r.t. AUC-ROC/AUC-PR of Wedge un-
der different levels of weak supervision. We can observe that, in
general, the model performance gradually decreases as the labeled
subgraphs become larger in size. A possible explanation is that
a larger anomalous subgraph may consist of more normal nodes,
which has a negative impact on the quality of subgraph-level label
(i.e., the supervision becomes even weaker). By comparing the re-
sults in Table 2 and Table 3, we can see that the proposedWedge is
still able to considerably outperform baselines, which demonstrate
the effectiveness of Wedge under significantly weak supervision.
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Figure 3: (a) Precision@200 of Wedge and the variants; (b)

AUR-ROC of Wedge and the variants.

4.3 Ablation Study (RQ2)

In this section, we conduct an ablation study to inspect the contribu-
tion of each key component in Wedge. We consider the following
three variants of Wedge, including (1) Wedge-a that excludes the
attention mechanism and utilizes the average pooling to compute
the subgraph-level score/representation, (2) Wedge-c that removes
the contrastive objective during training, and (3) Wedge-p that
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Figure 4: (a) Robustness study w.r.t. AUC-ROC with different

contamination levels; (b) Sensitivity analysis w.r.t. AUC-PR

with different batch size.

excludes both components. The results of performance w.r.t. Preci-
sion@200 and AUC-ROC are summarized in Figure 3a and Figure 3b,
respectively. We have the following observations: (1) by compar-
ing Wedge-c and Wedge-a with Wedge-p, the attention-based
method and the contrastive objective can separately improve the
node anomaly detection by a remarkable margin. For example, the
attention mechanism (i.e.,Wedge-c) can achieve 30% improvement
in terms of Precision@200 on PubMed dataset over Wedge-p. A
possible reason is that the attention-based method can accurately
extract the critical nodes inside an anomalous subgraph; and (2)
the proposed Wedge further benefits from the combination of the
two components and consistently outperforms the variants. For
instance, on Yelp dataset,Wedge is 3.8% and 5.8% better in terms
of AUR-ROC than Wedge-c and Wedge-a, respectively, which ver-
ifies the effectiveness of the key components in extracting critial
knowledge and learning informative representations.

4.4 Robustness and Sensitivity Analysis (RQ3)

Moreover, we analyze the robustness and sensitivity of the proposed
Wedge framework. As mentioned in Sec. 3.1, in sampling subgraphs
from the unlabeled node set V𝑢 , we treat all nodes in the sampled
subgraph as normal, which could introduce contamination in the
resulting set of subgraphs (i.e., B𝑛). To investigate how robust
our proposedWedge is w.r.t. different levels of contamination 𝑟𝑐
(i.e., the proportion of anomalies in the unlabeled node set V𝑢 ),
we evaluate the performance of Wedge, CARE-GNN, GDN and
SemiGNN, and present the results w.r.t. AUC-ROC in Figure 4a.
We can see thatWedge is consistently robust to various levels of
contamination and significantly outperforms other baselines.

The batch size 𝑁 is an important hyper-parameter in contrastive
learning [5]. We perform a sensitivity analysis by adjusting the
batch size, and the sensitivity results are summarized in Figure 4b.
We can observe that (1) in general, Wedge benefits from larger
batch size and can achieve a better performance in terms of AUC-
PR, which can be attributed to that more negative instances are
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included in a larger batch; and (2) the proposed Wedge can still
achieve a comparably good performance with a small training batch.
For example, on Reddit dataset, AUC-PR only drops 0.036 in AUC-
PR if we change the batch size from 𝑁 = 20 to 𝑁 = 4.

5 RELATED WORK

In this section, we review the related work in terms of (1) graph
anomaly detection, (2) multiple instance learning, and (3) con-
trastive learning.
5.1 Graph Anomaly Detection

Graph anomaly detection approaches are specifically designed for
graph structured data in the following two categories, (1) plain
graphs with only topological information, and (2) attributed net-
work with rich feature information of nodes/edges. For plain graphs,
since the graph topology is the only available information, methods
in this category aim to exploit the graph topological knowledge to
identify anomalies [1]. In recent years, attributed networks have
been widely adopted to model a variety of complex systems due to
their strong capability for handling data heterogeneity [15, 51, 69].
Therefore, anomaly detection on attributed networks has drawn
increasing research attention from the community [35, 41]. Among
the proposed methods, ConOut [41] identifies the local context for
each node and performs anomaly ranking within the local context.
More recently, with the development of graph representation learn-
ing using neural networks, researchers propose to leverage graph
neural networks (GNNs) for anomaly detection. DOMINANT [8]
achieves remarkable performance over other shallow methods by
building a deep autoencoder architecture with the graph convolu-
tional networks. Semi-GNN [50] is a semi-supervised graph neural
model which adopts hierarchical attention to model the multi-view
graph for fraud detection. CARE-GNN [14] is a GNN-based fraud
detector which improves the feature aggregation process by finding
the optimal neighboring nodes. GAS [28] is a GCN-based large-
scale anti-spam method for detecting spam advertisements. Zhao
et al. propose an objective function to train GNNs for anomaly-
detectable node representations [66]. In this work, we focus on
detecting node anomalies with subgraph labels.

5.2 Multiple Instance Learning

Multiple instance learning (MIL) is one form of weakly-supervised
learning where instances are organized in sets (bags) with which
the coarse-grained labels are associated. In general, MIL research
focuses on designing effective aggregation function to extract crit-
ical information from bags to infer unobserved bags [33] or in-
stances [26]. For example, Xu et al. propose an averaging method
to combine instance predictions using a logistic regression clas-
sifier [55]. Zhou et al. propose to use graph kernels to aggregate
predictions by exploits the relations between instances [73]. More
recently, aggregation function paramerized by deep neural net-
works has shown its superiority over shallow methods [18]. For
instance, Ilse et al. propose an attention-based aggregation operator
parameterized by neural networks which estimates the contribution
of each instance to the bag prediction [22]. Tu et al. utilize GNNs to
capture the correlation between nodes in order to generate graph
prediction [48]. From the perspective of applications, MIL has been
widely investigated, ranging from tumor image segmentation [56],
object localization [6] to sentiment classification [2]. Different from

the aforementioned MIL methods, our approach aims to capture
the correlation between node and subgraph anomaly by exploiting
the rich information from the attributed network.
5.3 Constrastive Learning

In recent years, contrastive learning has become a predominant
topic in the field of self-supervised learning and it is extensively
investigated in a variety of domains [5, 61]. The key idea of con-
trastive learning is enforcing the closeness between positive in-
stances in the embedding space while segregating the samples in
different categories. For instance, SimCLR aims to improve visual
representation learning through contrasting images from various
augmentation [5]. Tian et al. [46] study the contrastive learning in
a multiview setting where they target at maximizing the mutual
information between different views for capturing the scene seman-
tics. CPC [37] is a universal unsupervised learning method which
adopts a probabilistic contrastive loss to apprehend the most critical
information for prediction. MoCo [21] leverages the idea of con-
trastive loss to construct large and consistent dynamic dictionary
of instance-representation pairs, which improves the performance
of various downstream tasks. More recently, contrastive learning is
well-exploited to further enhance representation learning on graph
structured data [20, 61, 75]. For example, Zhu et al. propose an unsu-
pervised approach for graph learning by maximizing the agreement
between the node embeddings in two graph views obtained by cor-
ruption [75]. Our work is related to contrastive learning in the way
that we aim to improve the node representation learning for graph
anomaly detection by contrasting subgraphs with different levels
of abnormality.

6 CONCLUSION

In this paper, we study the challenging problem ofweakly-supervised
graph anomaly detection.We propose a novel graph neural network-
based architecture,Wedge, where the key innovation is to precisely
quantify the intrinsic relationship between nodes and subgraph in
terms of abnormalities and embeddings. The proposedWedge is
able to enforce the large deviation from anomalous and normal
nodes through extracting the critical nodes fromweakly-supervised
subgraph-level knowledge. To further improve the node represen-
tation learning, we design a contrastive objective, which aims to
maximize the similarity between abnormal subgraphs and the dis-
parity between subgraphs of different categories in the embedding
space. We demonstrate the preeminence of Wedge in node-level
anomaly detection through extensive experimental evaluation.
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