
Geometric Matrix Completion via Sylvester Multi-Graph Neural
Network

Boxin Du
boxin@amazon.com

Amazon
New York, USA

Changhe Yuan
ychanghe@amazon.com

Amazon
New York, USA

Fei Wang
feiww@amazon.com

Amazon
San Francisco, USA

Hanghang Tong
htong@illinois.edu

University of Illinois at Urbana Champaign
Urbana, Illinois, USA

ABSTRACT

Despite the success of the Sylvester equation empowered meth-
ods on various graph mining applications, such as semi-supervised
label learning and network alignment, there also exists several lim-
itations. The Sylvester equation’s inability of modeling non-linear
relations and the inflexibility of tuning towards different tasks re-
strict its performance. In this paper, we propose an end-to-end
neural framework, SyMGNN which consists of a multi-network
neural aggregation module and a prior multi-network association
incorporation learning module. The proposed framework inherits
the key ideas of the Sylvester equation, and meanwhile generalizes
it to overcome aforementioned limitations. Empirical evaluations
on real-world datasets show that the instantiations of SyMGNN
overall outperform the baselines in geometric matrix completion
task, and its low-rank instantiation could further reduce the mem-
ory consumption by 16.98% on average.

CCS CONCEPTS

•Mathematics of computing→ Graph algorithms; • Informa-

tion systems → Social recommendation; Recommender systems.

KEYWORDS

matrix completion; Sylvester equation; Graph Neural Networks

ACM Reference Format:

Boxin Du, Changhe Yuan, Fei Wang, and Hanghang Tong. 2023. Geometric
Matrix Completion via Sylvester Multi-Graph Neural Network. In Proceed-

ings of the 32nd ACM International Conference on Information and Knowledge

Management (CIKM ’23), October 21–25, 2023, Birmingham, United Kingdom.

ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3583780.3615170

1 INTRODUCTION

The Sylvester equation plays a central role for various applications
in applied mathematics [10] [18], systems and control theory [2],
machine learning [1] and graph mining [12]. Particularly in graph

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0124-5/23/10.
https://doi.org/10.1145/3583780.3615170

mining, the Sylvester equation has shown its applicability in nu-
merous multi-network mining tasks, such as network alignment
[23], social recommendation [6], and semi-supervised learning [4].

Despite its succinct mathematical formulation, elegant theoret-
ical properties, and numerous efficient solvers, there are several
limitations when Sylvester equation is applied on multi-network
mining. First, the real-world network data contains various hetero-
geneous features. However, it is non-trivial to directly incorporate
these features of the networks into the classic Sylvester equation
formulation. Second, in the task of multi-network association, the
classic Sylvester equation essentially calculates a linear transfor-
mation from the observed prior multi-network association matrix.
However, the non-linear relation between the prior knowledge and
the final solution can not be captured by the classic Sylvester equa-
tion. Third, the Sylvester equation solver is often independent from
the downstream task learning in many graph mining problems, and
thus the solution of the Sylvester equation has to be further adapted
towards different multi-network mining tasks. For example, in net-
work alignment, the solution of multi-network node association is
first calculated. Then, either soft or hard alignment method is con-
ducted as an extra post-processing step, such as greedy match [23].
The equation can not be trained or tuned end-to-end as modern
neural networks, and consequently the performance of the down-
stream tasks might be suboptimal. A natural question is: How can

we get the best of both the traditional Sylvester equation formulation

and the neural network models?

In this paper, we propose a SylvesterMulti-GraphNeural Network
framework (SyMGNN) in order to generalize the traditional linear
Sylvester equation towards an end-to-end neural network model.
Specifically, we focus on geometric matrix completion task, and
elucidate two instantiations for the SyMGNN framework. Our pro-
posed approach bears three distinctive advantages compared with
both the Sylvester equation and the existing neural models targeted
on geometric matrix completion. First, the proposed framework is a
general form. It is able to incorporate network features, and flexible
to be instantiated towards different downstream tasks. Second, the
instantiations of the proposed framework could be trained end-to-
end, which directly adapt the solution generation module to the
downstream prediction module. Third, for geometric matrix com-
pletion, two instantiations are provided based on explicitly learning
multi-network association, and learning low-rank representations

3860

https://doi.org/10.1145/3583780.3615170
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3583780.3615170
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583780.3615170&domain=pdf&date_stamp=2023-10-21

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Boxin Du, Changhe Yuan, Fei Wang, and Hanghang Tong

for different input networks, respectively. The low-rank instantia-
tion approach further reduces the model’s space complexity.
Related Works. Generally, multi-network mining techniques can
be categorized into traditional numerical approaches and recent
neural techniques. For numerical methods, GT-COPR by Li et al.
[13] aims at inferring multi-relations among the entities across
multiple networks by a tensor-based optimization method. After
that, Li et al. [12] propose an optimization method and a low-rank
tensor-based label propagation algorithm for multi-relation infer-
ence. Later, a cross-network multi-relation association learning
method is proposed in CGRL [14]. The traditional Sylvester equa-
tion is widely adopted in solving network alignment [5, 24, 27],
cross-network similarity learning [6, 9, 11], subgraph matching
[8, 15], social recommendation [17], and adversarial attack [25, 26].

2 PROBLEM DEFINITION

Before giving the definition of GNN-based neural Sylvester equation
in Section 3, we first provide some preliminaries on the traditional
Sylvester equation and the Graph Neural Networks, followed by a
formal definition of the geometric matrix completion.
A - Sylvester Equation for Multi-network Mining. Given two
networks represented as G1 = {A1, F1}, G2 = {A2, F2}, and an
anchormulti-network associationmatrixH, which denotes the prior
knowledge of the multi-network node associations. The Sylvester
equation for multi-network mining is defined as follows [7]:

X = 𝛼Ã2XÃT
1 + (1 − 𝛼)H (1)

where Ã1 and Ã2 are the symmetrically normalized adjacencymatri-
ces of the input networks. TheX represents the cross-network node
association scores which the equation aims to calculate. The scalar
𝛼 ∈ (0, 1) is aimed at weighting the multi-network association ag-
gregation term (i.e. Ã2XÃT

1), and the prior knowledge term (H). Due
to the normalization of A1 and A2, the corresponding linear system
of Eq. (1) contains a positive semi-definite coefficient matrix, which
guarantees the existence of unique solution for Eq. (1). Solving Eq.
(1) is often time-consuming. A straightforward iterative method to
solve Eq. (1) is the fixed point iteration. More efficient method is
proposed in [7] with linear time and space complexity.

The formulation of this equation for multi-network mining en-
joys several distinctive advantages. Firstly, theoretically the exis-
tence and uniqueness of the solution X can be guaranteed. Further-
more, there exists various efficient solvers for the solution. Secondly,
the solution X can be seen as a fixed point of the equation, and can
be obtained by iteratively evaluating Eq. (1). Compared to existing
neural models, which might contain a number of hidden layers,
there is no need to save the hidden states/representations.

However, despite the advantages and effectiveness in various
tasks, generally there are also several limitations. Firstly, the nu-
merical features of the nodes can not be effectively utilized for
calculating X. Secondly, the X can be seen as a linear transforma-
tion from the prior knowledge matrix H. However, the potential
non-linear relationship between them can not be captured by this
formulation. Thirdly, the equation is not learnable and not tunable
towards a given supervised downstream task.
B - Graph Neural Networks. The Graph Neural Networks (GNN)
are powerful deep learning models for network data. The basic idea
of GNN model is to learn node representations via learnable aggre-
gation, in which the node features are accumulated and transformed

Figure 1: The overall illustration of two instantiations for

SyMGNN. (a): the base model, and (b): the low-rank model.

from the neighborhood features. Given a networkG = (A, F), where
A ∈ R𝑛×𝑛 is the adjacency matrix of G, and F ∈ R𝑛×𝑑 is the feature
matrix with 𝑑 being the dimension of features, representative GNN
aggregation at the 𝑡-th layer can be written as follows.

X(𝑡+1) = 𝜙 (ÃX(𝑡)W + Ω(𝑡)F) (2)
where Ã is the normalized adjacency matrix with added self-loops.
W is a learnable parameter matrix for the aggregated features.
C - Problem Definition. The geometric matrix completion needs
to handle two networks which reflect the topological relations
between the nodes of two entity sets.

Problem 1. Geometric Matrix Completion

Given: Two networks with node features G1 = {A1, F1}, G2 =

{A2, F2}, and the partially observed multi-network association H of

the nodes in G1 and G2;
Output: The unobserved entries in H.

3 PROPOSED MODEL

3.1 SyMGNN Framework

The goal of the proposed SyMGNN framework is to leverage the
advantages of the traditional Sylvester equation, and in the mean-
while overcoming its limitations. First, if we observe the Sylvester
equation in Eq. (1) from an iterative perspective, we can see that
the first term on the right side aggregate the multi-network node
association X linearly for the updated X. The second term incor-
porates the prior multi-network association message H into the
updated X. Second, similar to the ideas of the traditional Sylvester
equation, we identify the two key modules of the SyMGNN: (1) the
multi-network aggregation learning module; and (2) the prior multi-
network association incorporation learning module. The general
framework can be represented in Eq. (3).

X = 𝜙 (𝛼 · 𝑎W (F1, F2, Ã1, Ã2) + (1 − 𝛼) · 𝑏Θ (F1, F2,H)) (3)
where 𝑎W () and 𝑏Θ () are two neural modules with parameters
W and Θ, and weighting scalar 𝛼 ∈ [0, 1]. 𝜙 () is a non-linear
activation function. X is the multi-network association output of
the SyMGNN framework, and it can be further fed into a neural
network for adapting towards a downstream task in an end-to-end
fashion. As we can see, this framework is a neural generalization
originated from the Sylvester equation in Eq. (1). When the neural
modules 𝑎W and 𝑏Θ are linear aggregation functions, the Eq. (3)
degenerates to the classic Sylvester equation Eq. (1). Numerous
instantiations exist for different downstream tasks. Next, we will
discuss how to instantiate Eq. (3) for geometric matrix completion.

3861

Geometric Matrix Completion via Sylvester Multi-Graph Neural Network CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

3.2 Base Model

In order to instantiate𝑎W (F1, F2,A1,A2), we design two parallel lay-
ers which adopt the Convolutional Graph Embedding (CGE) aggre-
gation layer and the attention-based aggregation layer respectively
[19]. The motivation here is to learn the 2-d hidden representations
for the multi-network association solution. In order to achieve this,
we design two types of 2-d convolutional non-linear aggregation
module, namely the adjacency matrix-based GCE neural aggrega-
tion, and the attention-based neural aggregation. To be specific,
given G1 = {A1, F1},G2 = {A2, F2} with 𝑛1, 𝑛2 nodes respectively,
we first apply the learnable parameters of self-connections on A1
and A2 to obtain the updated adjacency matrices. The goal is to
adopt the learnable weight of the self-connections from CGE for
improving the expressiveness of the model:

Â1 = diag(𝝈1) + (I − diag(𝝈1))Ã1 (4a)
Â2 = diag(𝝈2) + (I − diag(𝝈2))Ã2 (4b)

where 𝝈1 and 𝝈2 are learnable weights for self-connections of the
first network and the second network respectively. Before applying
the multi-network aggregation layers, the node features of G1 and
G2 are fed into an MLP layer for obtaining the hidden features
U1 = MLP1 (F1) and U2 = MLP2 (F2). In the CGE-based multi-
network aggregation, the output of the 𝑙-th level aggregation is:

X(𝑙)
1 =

𝑙∑︁
𝑖=1

𝜙 (Â𝑖1U1W
(𝑐)
𝑖

UT
2 (Â

𝑖
2)

T) (5)

W(𝑐)
1 , · · · ,W(𝑐)

𝑙
are parameter matrices and 𝜙 () is an activation

function. In practice,W(𝑐)
𝑖
, 𝑖 = 1, 2, ..., 𝑙 is implemented asW(𝑐)

𝑖
=

W′
𝑖
(W′

𝑖
)T, as a metric learning approach for the generalization of

Mahalanobis distance [21], in order to capture the feature correla-
tion between nodes from two different networks. In attention-based
multi-network aggregation, the output is represented as:

X2 = 𝜙 (B1U1W(𝑎)UT
2B

T
2) (6)

where W(𝑎) is the parameter matrix, B1 and B2 are attention score
matrices for G1 and G2 respectively. For instance, the attention
score of node (𝑖, 𝑗) ∈ G1 is calculated as:

B1 (𝑖, 𝑗) =
exp(< u𝑖 , u𝑗 >)∑𝑛1
𝑘=1 exp(< u𝑖 , u𝑘 >)

(7)

In order to instantiate 𝑏Θ (F1, F2,H)), similar to the first term
𝑎W (F1, F2, Ã1, Ã2), we can also adopt two types of parallel aggre-
gation layers. The first one is the direct neural aggregation from
prior multi-network association, and the second one is via atten-
tion schema. However, since the entries of the prior multi-network
association matrix H is often real values or multi-class categorical
rates, it is unreasonable to directly use H for cross-network fea-
ture aggregation. Thus the prior multi-network association-based
multi-network aggregation is only adopted whenH contains binary
associations. The two types of multi-network aggregation modules
are shown as follows.

X3 = 𝜙 (U1HUT
2), X4 = 𝜙 (U1CUT

2) (8)
where the cross-network attention score matrix C is calculated as
C(𝑖, 𝑗) = exp(<u𝑖 ,u𝑗>)∑𝑛2

𝑘=1 exp(<u𝑖 ,u𝑘>)
for 𝑖 ∈ G1, 𝑗 ∈ G2.

Putting everything together, as shown in Figure 1, the intermedi-
ate multi-network association matrices X1,X2,X3,X4 consist of the
hidden representation tensor X ∈ R𝑛1×𝑛2×4 for the multi-network

association solution. We apply a fully connected layer on X for
obtaining the final multi-network association X = bmm(X,W)
where W ∈ R𝑛1×4×1 is the parameter tensor, and bmm() is the
batch matrix multiplication operation.
3.3 Low-rank Model

The idea of low-rank model is to generate the embeddings for nodes
of G1 and G2 respectively, instead of conducting bi-linear neural
aggregation. Similar to the base model, we consider both the di-
rect neural aggregation from the original network topology, and
the neural aggregation from the within network attentions. First,
given two networks G1 = {A1, F1},G2 = {A2, F2} with 𝑛1, 𝑛2 nodes
respectively, the node features are fed into an MLP layer for obtain-
ing the hidden features U(ℎ)

1 = MLP(𝑙)1 (F1) and U(ℎ)
2 = MLP(𝑙)2 (F2).

U(ℎ)
1 ,U(ℎ)

2 are then fed into two parallel CGE-based and attention-
based neural modules for generating the hidden representations
of the node features for two networks separately. We take U(ℎ)

1 as
an example, and the process for U(ℎ)

2 is similar. The updated node
hidden representations after an 𝑙-layer CGE module is:

U(𝑙+1)
1 = 𝜙 ((diag(𝝈) + (I − diag(𝝈))Ã)U(𝑙)

1 W(𝑙)) (9)
where U(0)

1 = U(ℎ)
1 , Θ(𝑙) is the parameters for the 𝑙-th layer, and

𝜙 () is an activation function. After 𝐿 layers, we obtain U(𝐿)
1 . The up-

dated node hidden representations after the attention-based neural
aggregation module is:

U(𝑎𝑡𝑡)
1 = 𝜙 (B1U(ℎ)

1 W(𝑎𝑡𝑡)) (10)
where the attention score matrix B1 can be calculated via Eq. (7).
𝑏Θ (F1, F2,H) is also instantiated for G1 and G2 separately. Here, we
can adopt a similar prior multi-network association-based neural
aggregation when the prior H denotes binary or multi-class rela-
tions. For H with entries of 𝐾 classes, we apply 𝐾 neural networks,
in which each neural network aggregates one class of nodes.

V(𝑝)
𝑖

= 𝜙 (H𝑖U(ℎ)
1 Θ(𝑝)

𝑖
), U(𝑐)

1 = 𝜙 (CU(ℎ)
1 Θ(𝑐)) (11)

where H𝑖 is the prior multi-network association which only con-
tains the entries of the 𝑖-th class.Θ(𝑝)

𝑖
andΘ(𝑐) are learnable param-

eters. The V(𝑝)
𝑖

for all classes are then concatenated and fed into an
MLP for the node representation U(𝑝)

1 = MLP([V(𝑝)
1 | | · · · | |V(𝑝)

𝐾
]).

The cross-network attention matrix C is calculated by the same
method as in Eq. (8). Putting everything together, we now have four
representation matrices for each network: U(𝐿)

1 ,U(𝑎𝑡𝑡)
1 ,U(𝑝)

1 ,U(𝑐)
1 .

We can adopt another fully connected layer to obtain a final repre-
sentation U11. The predicted multi-network association between
two nodes is calculated by the dot product of the row vectors of
the resulting representation matrices U1 and U2.
3.4 Training

For matrix completion, we adopt the Mean Squared Error (MSE)
loss for both instantiations:

L1 = | |H −M ⊙ X| |2𝐹 , L2 = | |H −M ⊙ (U1UT
2) | |

2
𝐹 (12)

where the M matrix is a mask of 0, 1, with 1 indicating the position
of the observed prior multi-network associations. For the low-rank
instantiation, the dot product of the node representations are used
as the final solutions. For the regularization of themodel parameters,

1We find that by simply adding them with the original node hidden representations,
we can already achieve superior performance.

3862

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Boxin Du, Changhe Yuan, Fei Wang, and Hanghang Tong

we adopt the weight decay method with 0.01 as decay factor as we
find that it shows slightly better performance over 𝐿2 regularization.
3.5 Complexity Analysis

For notation simplicity, assume that the two input networks con-
tain 𝑛 nodes and𝑚 edges. Suppose the feature dimension is 𝑑 , the
number of observed rating is𝑚′ and the dimension of node repre-
sentations is 𝑟 < 𝑑 . For the base model, the major computation lies
in the within-network and cross-network attention calculation as
well as the aggregation. From Eq. (7), the within-network attention
aggregation costs𝑂 (𝑛2𝑑). From Eq. (8), the cross-network attention
aggregation costs𝑂 (𝑛2𝑑). The overall time complexity for the base
model is 𝑂 (#𝑖𝑡𝑒𝑟 · (𝑛2𝑑)), where #𝑖𝑡𝑒𝑟 is the total number of itera-
tions. The space complexity is 𝑂 (𝑛2) because of the main storage
of attention score matrices. Similarly, for the low-rank model, if
we do not apply the within-network and cross-network attention-
based neural aggregation, the time and space complexity would be
reduced to𝑂 (𝐿(𝑚𝑑+𝑛𝑑2)+𝑚′𝑑), and𝑂 (𝑚+𝑛(𝑑2+𝑟2)) respectively.
4 EXPERIMENTS

A - Datasets and Pre-processing.We use five widely used bench-
mark datasets for evaluation, namely Douban, Flixster, YahooMusic,
ML-100K, and ML-1M. For the benchmark datasets, Flixster has
both user-user and item-item interaction networks. Douban only
contains a user-user interaction network and YahooMusic only
contains an item-item interaction network. For these two datasets,
we use the identity matrix as the adjacency matrix for the missing
networks. For ML-100K, ML-1M, we construct their user-user and
item-item interaction networks by adopting a k-nearest neighbors
search via their features, and k is treated as a hyperparameter in
our model. All the datasets include multi-class categorical ratings.
B - Baseline Methods.We use five baselines in our comparison,
including the traditional Sylvester equation Sylv. [18], and recent
neural network-based andGNN-basedmethods: IGMC [22], GC-MC
[3], PinSage [20], and sRGCNN [16].
C - Experimental and Hyperparameter Settings. For the effec-
tiveness comparison, we tune the hyperparameters of the model
based on the best performance on the validation set. We use 2-layer
GCE and attention aggregation in both instantiations on all datasets
except for ML-100K and ML-1M. On these two datasets, the base
model uses 3-layer GCE and attention aggregation. For the k-NN
method used for generating social networks and item-item interac-
tion networks on ML-100K and ML-1M datasets, we use 𝑘 = 10 for
the low-rank model and 𝑘 = 12 for the base model. Further studies
of the sensitivity of 𝑘 will be discussed in the ablation study. The
metric is the widely adopted rooted mean squared error (RMSE).
4.1 Effectiveness Results

The comparison results are shown in Table 1. The results are re-
ported based on the average of five runs. The best performances
are shown in bold fonts and the second best performances are
shown with underlines. As we can see, the traditional Sylvester
equation can not achieve competitive results compared to other
neural network/GNN-based baseline methods, which is consistent
with our discussion in Section 2. The Sylvester equation can not
effectively incorporate node features, and also can not capture non-
linear relations between the observed multi-network association
and the solution. Among all the neural network-based methods, the
proposed framework with low-rank instantiation outperforms the

rest of the baselines on Douban, Flixster, YahooMusic, ML-100K, and
ML-1M datasets. Flixster (U) represents the dataset with only the
usage of user-user interaction network. The performance of the pro-
posed method slightly drops, and it shows the importance of both
interaction networks of users and items in our model. Particularly,
on YahooMusic dataset, the proposed method achieves 7.65% im-
provement over the best baseline. Among all baselines, GC-MC has
close performance compared with our methods. GC-MC contains
the graph encoder and the bi-linear decoder architecture which
has similar effects as our proposed GNN-based neural aggregation
model. This is consistent with our intuition of the effectiveness of
the cross-network feature aggregation.
Table 1: RMSE comparison for geometric matrix completion.

Method Douban Flixster Flixster (U) Yahoo ML-100K ML-1M
Sylv. 1.220 1.244 1.276 29.403 1.403 1.323
IGMC 0.729 0.895 0.895 19.292 0.922 0.857
GC-MC 0.734 0.917 0.941 20.501 0.905 0.854
PinSage 0.739 0.954 0.951 22.954 0.942 0.906
sRGCNN 0.801 0.926 1.179 22.415 0.931 0.865
Ours (base) 0.762 0.911 0.934 19.277 0.915 0.851
Ours (LR) 0.725 0.891 0.916 17.815 0.899 0.843

4.2 Ablation Study

The ablation study results are shown in Table 2. The ‘Base model
(G)’ and ‘Base model (A)’ represent the model with only GCE-based
neural aggregation, and the model with only attention-based neural
aggregation. The low-rank model uses the same abbreviation. The
values inside the parentheses denote the maximum allocated GPU
memory in one epoch, in which we use the same batch size (i.e.
50) for comparison. As we can see, firstly the proposed model out-
performs all variants with both base and low-rank instantiations.
Secondly, the model without the attention neural aggregation over-
all consumes the least GPU memory during training. On average,
with only 1.24% performance drop, the models without attention
neural aggregation show 16.98% less memory consumption. Fur-
thermore, comparing with other baselines’ performance in Table 1,
the variant low-rank model in Table 2 still outperforms all baselines.
Table 2: Ablation study on ML-100K and ML-1M dataset.

Method ML-100K ML-1M
Base model 0.915 (160Mb) 0.851 (2,371Mb)

Base model (G) 0.932 (141Mb) 0.862 (2,099Mb)
Base model (A) 0.924 (148Mb) 0.861 (2,209Mb)

Low-rank 0.899 (136Mb) 0.843 (1,983Mb)
Low-rank (G) 0.902 (110Mb) 0.857 (1,476Mb)
Low-rank (A) 0.920 (116Mb) 0.853 (1,641Mb)

5 CONCLUSION

In this paper, we propose SyMGNN, a flexible neural framework for
generalizing the traditional Sylvester equation towards an end-to-
end neural model for multi-network mining. We further propose
two specific instantiations of the SyMGNN framework for geomet-
ric matrix completion task. The experimental results show that the
proposed models overall outperform baselines on all existing bench-
mark datasets. Furthermore, the proposed low-rank instantiation
could reduce the memory consumption by 16.98% on average.
6 ACKNOWLEDGEMENT

This work is partially supported by DARPA (HR001121C0165), DHS
(17STQAC00001-07-00), NIFA (2020-67021-32799), NSF (1947135,
2134079, 1939725, 2316233, and 2324770), andARO (W911NF2110088).

3863

Geometric Matrix Completion via Sylvester Multi-Graph Neural Network CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

REFERENCES

[1] Amrudin Agovic, Arindam Banerjee, and Snigdhansu Chatterjee. 2011. Proba-
bilistic matrix addition. In ICML.

[2] Peter Benner. 2004. Factorized solution Of Sylvester equations with applications
in Control. sign (H) 1 (2004), 2.

[3] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph convolu-
tional matrix completion. arXiv preprint arXiv:1706.02263 (2017).

[4] Gang Chen, Yangqiu Song, Fei Wang, and Changshui Zhang. 2008. Semi-
supervised multi-label learning by solving a sylvester equation. In Proceedings of

the 2008 SIAM International Conference on Data Mining. SIAM, 410–419.
[5] Xiaokai Chu, Xinxin Fan, Di Yao, Zhihua Zhu, Jianhui Huang, and Jingping Bi.

2019. Cross-network embedding for multi-network alignment. In The world wide

web conference. 273–284.
[6] Boxin Du, Lihui Liu, and Hanghang Tong. 2021. Sylvester Tensor Equation for

Multi-Way Association. In Proceedings of the 27th ACM SIGKDD Conference on

Knowledge Discovery & Data Mining. 311–321.
[7] Boxin Du and Hanghang Tong. 2018. Fasten: Fast sylvester equation solver for

graph mining. In Proceedings of the 24th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining. 1339–1347.
[8] Boxin Du, Si Zhang, Nan Cao, and Hanghang Tong. 2017. First: Fast interactive at-

tributed subgraph matching. In Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. 1447–1456.
[9] Boxin Du, Si Zhang, Yuchen Yan, and Hanghang Tong. 2021. New frontiers of

multi-network mining: Recent developments and future trend. In Proceedings

of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
4038–4039.

[10] Gene Golub, Stephen Nash, and Charles Van Loan. 1979. A Hessenberg-Schur
method for the problem AX+ XB= C. IEEE Trans. Automat. Control 24, 6 (1979),
909–913.

[11] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. 2019.
Graph matching networks for learning the similarity of graph structured objects.
In International Conference on Machine Learning. PMLR, 3835–3845.

[12] Zhuliu Li, Raphael Petegrosso, Shaden Smith, David Sterling, George Karypis,
and Rui Kuang. 2021. Scalable Label Propagation for Multi-relational Learning
on the Tensor Product of Graphs. IEEE Transactions on Knowledge and Data

Engineering (2021).
[13] Zhuliu Li, Wei Zhang, R Stephanie Huang, and Rui Kuang. 2019. Learning a Low-

Rank Tensor of Pharmacogenomic Multi-relations from Biomedical Networks. In

2019 IEEE International Conference on Data Mining (ICDM). IEEE, 409–418.
[14] Hanxiao Liu and Yiming Yang. 2016. Cross-graph learning of multi-relational

associations. In International Conference on Machine Learning. PMLR, 2235–2243.
[15] Lihui Liu, BoxinDu, Hanghang Tong, et al. 2019. G-finder: Approximate attributed

subgraph matching. In 2019 IEEE international conference on big data (big data).
IEEE, 513–522.

[16] Federico Monti, Michael M Bronstein, and Xavier Bresson. 2017. Geometric
matrix completion with recurrent multi-graph neural networks. arXiv preprint
arXiv:1704.06803 (2017).

[17] Jiliang Tang, Xia Hu, and Huan Liu. 2013. Social recommendation: a review.
Social Network Analysis and Mining 3, 4 (2013), 1113–1133.

[18] Eugene L Wachspress. 1988. Iterative solution of the Lyapunov matrix equation.
Applied Mathematics Letters 1, 1 (1988), 87–90.

[19] Kai-Lang Yao, Wu-Jun Li, Jianbo Yang, and Xinyan Lu. 2018. Convolutional
geometric matrix completion. arXiv preprint arXiv:1803.00754 (2018).

[20] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. 974–983.
[21] Tomoki Yoshida, Ichiro Takeuchi, and Masayuki Karasuyama. 2021. Distance

metric learning for graph structured data. Machine Learning (2021), 1–47.
[22] Muhan Zhang and Yixin Chen. 2019. Inductive matrix completion based on graph

neural networks. arXiv preprint arXiv:1904.12058 (2019).
[23] Si Zhang and Hanghang Tong. 2016. Final: Fast attributed network alignment.

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 1345–1354.
[24] Si Zhang and Hanghang Tong. 2018. Attributed network alignment: Problem def-

initions and fast solutions. IEEE Transactions on Knowledge and Data Engineering

31, 9 (2018), 1680–1692.
[25] Qinghai Zhou, Liangyue Li, Nan Cao, Lei Ying, and Hanghang Tong. 2019. AD-

MIRING: Adversarial multi-networkmining. In 2019 IEEE International Conference
on Data Mining (ICDM). IEEE, 1522–1527.

[26] Qinghai Zhou, Liangyue Li, Nan Cao, Lei Ying, and Hanghang Tong. 2021. Adver-
sarial Attacks on Multi-Network Mining: Problem Definition and Fast Solutions.
IEEE Transactions on Knowledge and Data Engineering (2021).

[27] Qinghai Zhou, Liangyue Li, Xintao Wu, Nan Cao, Lei Ying, and Hanghang Tong.
2021. Attent: Active attributed network alignment. In Proceedings of the Web

Conference 2021. 3896–3906.

3864

	Abstract
	1 Introduction
	2 Problem Definition
	3 Proposed Model
	3.1 SyMGNN Framework
	3.2 Base Model
	3.3 Low-rank Model
	3.4 Training
	3.5 Complexity Analysis

	4 Experiments
	4.1 Effectiveness Results
	4.2 Ablation Study

	5 Conclusion
	6 Acknowledgement
	References

