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Abstract—Racket is a functional programming language that

is used to teach CS1 at many high schools and colleges. Recent

research results have shown that mutation analysis can be an

effective substitute for manual grading of student test cases.

In order to evaluate its efficacy in our college’s introductory

programming courses, we created a prototype mutation analysis

tool for Racket. We describe the design and features of the

tool and perform a feasibility study using two assignments

from an intro CS course where student test suite thoroughness

was evaluated by hand by human graders. In our results,

we find a moderate correlation between mutation score and

hand-grading test suite quality score and conduct a qualitative

analysis to identify situations where mutation score and hand-

grading score do not correlate. We find that, compared to hand-

grading, mutation analysis may require more stringent adherence

to the interface specified in an assignment as well as more

precisely specified assignments. On the other hand, inter-reviewer

reliability is a known challenge of hand-grading, and we observe

several instances where hand-graders may have assigned the

wrong score. Given the relatively cheap cost to providing mu-

tation analysis feedback to students (compared to hand-grading

feedback), mutation analysis still provides the opportunity to

provide faster, more frequent, feedback to learners, enabling

them to improve their testing practices further. Future work will

study the effectiveness of various mutation operators in Racket

and perform larger-scale evaluations.

Index Terms—Racket, mutation testing, mutation analysis,

mutation analysis tool

I. INTRODUCTION

Racket is a mostly-functional programming language that is
a modern dialect of Lisp and a descendant of Scheme. Its
simplicity, teaching-language packs, and expression-focused
syntax contribute to Racket’s use in computer science educa-
tion at several prestigious undergraduate programs, including
our own. The curriculum, based on the text How to De-
sign Programs integrates education on software testing [1].
DrRacket, the IDE that accompanies the language, shows
line coverage using color-coded highlights and supports many
different methods of unit testing. Automated grading scripts
check the functional correctness of student code, and DrRacket
provides code coverage metrics of student test cases on their
own implementation, but code coverage has known limitations.
To date, there is no more-robust, automated approach for
grading the quality of student test cases in Racket.
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Recent research results have shown that mutation analysis
is an effective substitute for manual grading of student test
cases [2]. In this approach, programming assignments require
students to implement a standardized interface along with tests
for their interface. In order to grade the students’ test cases,
the grading server performs mutation analysis on an instructor-
written solution, identifying how many mutants are detected
by each student’s test suite.

Popular, existing mutation analysis tools include PIT and
Jumble for Java; Stryker for JavaScript, C#, and Scala; Mull
for C++. These tools share the well-researched premise of how
the most effective test suites for detecting trivial faults, such
as flipped numerical comparisons, also best detect higher-level
faults. MuCheck implements common mutation operators for
Haskell [3], [4]. However, we are unaware of any other off-the-
shelf mutation analysis tools for other functional languages or
for Racket. Functional languages present many opportunities
for new mutation operators, and determining the ideal set of
mutation operators to use is an interesting research challenge.

To fill this gap, we present MACKET , a mutation anal-
ysis tool for Racket. We perform a preliminary evaluation
of MACKET using a set of programming assignments and
student test cases from a course at our institution. During
that semester, each student test suite was manually graded
by a teaching assistant. We compare the mutation scores of
each test suite with their manual grading scores in an effort to
determine whether our mutation operators and the tool could
be used as a substitute for hand grading in future semesters.
We seek to answer the following research question:

1) RQ: Is mutation analysis a good substitute for manual
grading of test suite quality in Racket?

II. A TOOL FOR MUTATION ANALYSIS IN RACKET

MACKET is a mutation analysis tool designed to support
mutation analysis for Racket programs and more generally the
use of mutation analysis in pedagogical contexts. We describe
a few key aspects of its design, including a list of mutation
operators we implemented.

A. Design and Tool Usage
MACKET uses a multi-phase process in which mutants can

be generated before they are executed. Using this model,
instructors can generate the mutants, determine which mutants
should be used for grading, and then specify which mutants to
include or exclude during the mutant execution phase. Prior to



the mutant execution phase, MACKET supports checking for
and filtering out test cases that contain false positives (i.e.,
tests that fail when run against a correct implementation).
This allows students to receive partial credit and feedback
on the rest of their test cases, and distinguishes it from other
mutation tools that require all tests to pass on the (not mutated)
system under test. The interface for the mutant execution
phase is language-agnostic, allowing for future extension to
other languages. In theory, a user could generate mutants with
another tool and run them using MACKET . MACKET produces
JSON- and HTML-formatted results using the same schema
and display frontend used by Stryker Mutator [5].

B. Mutation Operators
In selecting which mutation operators to implement, we

draw from the mutation analysis literature and state-of-the-
practice mutation analysis tools for imperative languages such
as PIT [6] and Stryker [7]. Since functional languages such
as Racket do not have certain control-flow structures (such as
loops) common to imperative languages (relying instead on
programming techniques such as recursion and higher-order
functions), our first step was to determine which imperative
mutation operators have a meaningful equivalent in Racket.
For example, some mutation operators, such as replacing
arithmetic operators, have a clear mapping from an imperative
language to Racket. Others operators, such as statement dele-
tion, do not have an immediately obvious mapping because
Racket is an expression-based language that does not have
statements. We selected a subset of standard mutation opera-
tors for imperative languages that have a clear mapping from
their imperative to functional versions. We also implemented
two operators specific to Racket and/or functional languages
in general.
Operators Based on Standard Imperative Operators:

• ArithmeticMutator: switching between +, -, *, / opera-
tors

• LogicalMutator: switching between AND and OR

• IfMutator: changing the predicate of if to True and
False

• CondMutator: changing the predicate(s) of the condi-
tional to True and False

• WrapWithNotMutator: inverting any boolean return by
wrapping with the not operator

• FlipNumSignMutator: flipping the sign of numeric literals
• ArithmeticDeletionMutator: deleting parts of arithmetic

operations and replacing with the arithmetic parts (ex.
(+ a b) ! a)

• NumberComparisonMutator: switching between <, <=,
==, >=, > comparisons

• FlipBooleansMutator: changing True to False and vice
versa

• NumLiteralsMutator: replacing numeric literals with 0,
-1, 1, value+1, value-1

• EmptyStringMutator: replacing strings with empty strings
• BoolParamsToBool: replacing the parameters of AND, OR,
NOT with True and False

Functional- or Racket-specific Operators:
• BoolFuncToBoolMutator: A mutator that contains a list

of known boolean-return methods in the language such as
andmap, ormap, and comparison methods and replaces
them with True or False. It also finds calls to methods
whose names end in ?, which is a Racket convention
for bool-returning methods, and replaces those calls with
True or False.

• EmptyListMutator: Replacing lists with empty lists. We
note that Le et al. [3] implemented this operator for
Haskell.

Non-applicable Imperative Operators Due to the available
language features of Racket, the following is a list of non-
applicable mutator operators that we did not implement:

• Stryker: Block Statement, Optional chaining, Regex [7]
• PIT: Void Method Calls, Null returns, Constructor Calls,

Remove Increments [6]
a) Other Unused Operators: We wrote one homework-

specific mutator that swapped calls to similar methods (e.g.,
fold-left & fold-right); however, that assignment did
not end up being graded for test suite quality. Future work
might consider evaluating such mutators in the context of
student test cases.

III. EVALUATION METHODOLOGY

Our goal in this study is to examine the feasibility of
evaluating test suite quality in intro CS assignments writ-
ten in Racket using mutation analysis compared to human
hand-grading. We collected mutation scores and hand-graded
test suite quality scores from two programming assignments
and examined the correlation between these scores. We also
manually inspected the test suites and conducted a qualitative
analysis on any outliers. We describe the datasets we collected
in more detail below.

A. Datasets
We collected data from two assignments from one semester

of an intro CS course. In order to address our research
questions, we required the following information:

1) Student test suites, which were graded by hand and
assigned a discrete score reflecting the thoroughness of
the test suite. The graders were graduate-level teaching
assistants who were responsible for writing the hand-
grading rubrics with the oversight of the course instruc-
tor.

2) Mutation scores for those test suites, computed using
MACKET

3) Mutation scores for the instructor-written test suites,
which were also used to evaluate student implementation
correctness.

We selected programming assignments where student test
suite quality was graded by hand and where the abstractions
being tested were well-specified. That is, student test suites
should behave correctly when run against other implemen-
tations. We examined a total of 56 assignment submissions



across two programming assignments. We collected only one
submission per student for each assignment. Here we briefly
summarize each assignment and their grading rubrics:

List abstractions. Students were required to implement 5
list-processing functions, e.g., interleave, intersection, earliest,
and write test cases for those functions. We collected 29
submissions. Test cases were graded on a discrete scale of
(0, 1, 1.5, 2), with 0 meaning “No tests present,” 1 meaning
“Incomplete coverage,” 1.5 meaning “Missing edge cases,” and
2 meaning “Tests correct.”

Self-Referential Data. Students were required to implement
two basic binary-tree traversal functions and write test cases
for those functions. We collected 27 submissions. Test cases
were graded on a discrete scale of (0, 1, 2), with 0 meaning
“No tests present,” 1 meaning “Incomplete coverage,” and 2
meaning “Tests correct.”

We ran MACKET on all the student test suites we collected,
generating mutants from the instructor-written solution, and
collected mutation scores for each test suite. When collecting
mutation scores for student test suites, we first discarded
individual test cases that displayed false positives when run
against a correct instructor implementation. We note that hand-
graders may not have performed such a step, as they did not
run the student test suites. We discarded mutants applied to
parts of the instructor solution that students were not required
to test. We also discarded mutants that were exact source code
duplicates of each other. We then looked for a correlation
between hand-graded test quality scores and mutation scores.
We also conducted a qualitative analysis of submissions with
high hand-graded scores but low mutation scores and vice-
versa, looking for instances where the hand-grading rubric
was applied incorrectly or where additional mutation operators
may be required in order to compute a more accurate mutation
score.

IV. RESULTS

We conduct an analysis of the data we collected from these
two programming assignments.

A. Assignment 2: List Abstractions

In Figure 1, we see a moderate correlation between muta-
tion score and hand-graded test suite quality score (Pearson
r=0.51). MACKET generated a total of 164 mutants, and we
discarded 28 that were exact duplicates and 82 that were
applied to parts of the instructor implementation that students
were not required to test. The instructor-written test suite
achieved a mutation score of 79.63%, but we were able to
increase that score to 94.44% by adding additional test cases.
The lower instructor test suite mutation score appears to be
caused by there being no test cases for one of the methods
students were required to implement.

We observe several instances where a student test suite’s
hand-graded test suite quality score does not align with that
test suite’s mutation score. For example, we see five (lower
dots at hand grade 10) student test suites that achieved the

|

Fig. 1. Plot of mutation score versus hand score for Assignment 2. We
see a moderate correlation (Pearson r=0.51). The maximum hand-grading
score possible was 10 points (two for each of the five methods) and the
maximum possible mutation score was 94.4 due to equivalent mutants. After
manual analysis, most of the visual outliers can be explained by either a
decreased mutation score due to discarded tests (from under-specification of
the assignment) or to an inaccurate hand score (from inconsistencies between
hand graders).

maximum possible hand-grading score despite having muta-
tion scores as low as 81.48%. We also see a (bottom dot at
7) student test suite with a hand-grading score of 7/10 despite
having a low mutation score of 55.55%. Furthermore, we see
two (dots left of 7) student test suites with hand-grading scores
less than 7 despite having mutation scores of at least 75%. We
note further that among student test suites with a hand-grading
score of 7, we see a wide range of mutation scores, as low as
55.55% and as high as 92.59%.

|

Fig. 2. Plot of mutation score versus hand score for Assignment 2 after
updating hand scores to correct for inconsistent applications of the hand-
grading rubric. We see a strong correlation (Pearson r=0.73). The maximum
hand-grading score possible was 10 points (two for each of the five methods)
and the maximum possible mutation score was 94.4 due to equivalent mutants
(out of 54 mutants total after filtering).

We conducted a manual qualitative analysis of every student
test suite and adjusted hand-grading scores to correct inconsis-
tent applications of the rubric. Figure 2 contains the updated
results. After adjusting the hand-grading scores, we see the
correlation between mutation score and hand-graded test suite
quality score increase to r=0.73.

a) Qualitative Analysis: We manually inspected every
student test suite for this assignment to identify why some
hand-grading and mutation scores did not correlate. We found



seven test suites that contained at least one test case that we
discarded due to the presence of false positives when run
against a correct instructor implementation. However, all of
these false positives were due to under-specification of the
function being tested, and hence did not receive any penalty
for this in the manual grading. For example, 7 of these test
suites expected the powerlist function to return elements
in reverse order from what the instructor suite implemented
(the order of returned list elements was not specified in
the assignment description). The eighth test suite expected
that earliest function’s arguments should be placed in a
different order (while the assignment description implies the
order of arguments, it does not precisely specify it). In all of
these cases, the hand-graders appear to have allowed for these
variations in cases where the behavior is under-specified.

We also identified two test suites where hand-graders may
have assigned too high a score and five where hand-graders
may have assigned too low a score. We determined this
by manually examining the test suite code and identifying
situations where similar test suites received different scores.
In each of these cases, we determined what the correct score
should be and updated those scores in our dataset before
recomputing the correlation.

b) Assignment 3: Binary Tree Traversal: The correlation
between mutation score and hand-graded test suite quality
score for this assignment is undefined. In Figure 3 we see
that all student test suites received the same hand-graded test
suite quality score. We see a mutation score of 100% for all
student test suites except for one, which has a mutation score
of 0%. In the one instance where a student test suite did not
detect any mutants, this was because the student’s tests passed
arguments to the method being tested in reverse order, which
caused those tests to display false positives and be discarded
by our tool. The hand-graders appear to have allowed for this
variation, despite the order of parameters being well-specified
in the assignment instructions. MACKET generated a total of
136 mutants, and we discarded 8 that were exact duplicates and
121 that were applied to parts of the instructor implementation
that students were not required to test. Interestingly, we found
that the instructor test suite failed to detect one mutant that
all but one of the student test suites detected. This mutant
replaced a call to plus with one of its operands in the base
case of one of the tree traversal methods.

V. DISCUSSION

We discuss the implications of our results for software
testing researchers, software testing educators, and mutation
analysis tool builders. We also reflect on the threats to the
validity of our conclusions and the efforts that we took to
mitigate those threats.

A. Implications for Researchers
The results of our study suggest that evaluating test suite

quality using mutation analysis is feasible in intro CS courses
using Racket. Future work can examine the efficacy of muta-
tion analysis on a wider range of programming assignments

Fig. 3. Plot of mutation score versus hand score for Assignment 3. We see
an undefined correlation between hand-graded test suite quality score and
mutation score because all the student test suites received the same hand-
grading score. The two methods were graded together with a maximum hand
score of 2, and the maximum possible mutation score was 100% (out of
7 mutants total after filtering). The single point with a mutation score of
0% and a hand score of 2 is explained by the student violating assignment
specifications, resulting in all their test being thrown out due to false positives
by our tool.

and explore potential new mutation operators for Racket. We
note the importance of making sure assignments are well-
specified when conducting mutation analysis on student test
suites. Many of the mutation score outliers we observed
were caused by students testing an implementation that was
allowed by the assignment specification but different from the
instructor’s implementation.

B. Implications for Educators

Our study reveals certain trade-offs between mutation analy-
sis and hand-grading of student test suite quality. While human
hand-graders are able to be more flexible in their grading,
they may be less consistent in their application of the grading
rubric. We observed several instances where hand graders
appear to have applied the grading rubric inconsistently. For
example, deductions were applied to most students who didn’t
have sufficient tests for the method earliest; however, one
student who didn’t have any explicit tests received almost full
credit. We note that the correlation between mutation score and
hand-graded code quality score increased significantly after
correcting for inconsistent application of the hand-grading
rubric. It may be possible to improve human grader accuracy
by providing them with the mutation analysis results, and
future work may explore this question. Mutation analysis
produces more consistent results in this regard but requires
that the interfaces being tested be well-specified. On the
other hand, mutation analysis can also check test suites for
correctness as well as quality, which may be harder for human
graders to do by hand. We note that precise assignment
specifications are likely more desirable as class size increases.
Mutation analysis can also potentially be used to provide
frequent, actionable feedback to students on the quality of their
test suites.

We also observe that mutation analysis can be useful to
instructors when examining the quality of their own test suite.



Knowing which mutants are undetected, instructors can make
an informed decision on whether to strengthen their test suite
or exclude certain behaviors from grading. For example, we
discussed the single mutant undetected by the instructor test
suite for Assignment 3 with the instructor, who agreed that
the mutant is a case that students should be expected to write
tests to detect, although it sparked an interesting discussion of
whether it would be coupled with other mutants. Future work
should investigate coupling effects in the context of testing
education.

C. Implications for Tool Builders

We believe that supporting phase separation and including
a more fine-grained false positive check are useful features
for pedagogical applications of mutation analysis. The default
behavior of traditional mutation analysis tools (e.g. PIT [8]
or Stryker [5]) is to require all tests to pass on the system
under test before mutation is performed. However, by filtering
out tests with false positives rather than aborting if any false
positives are present, students can be given feedback on
the thoroughness of their remaining correct tests as well as
feedback on which tests contain false positives. Additionally,
being able to generate mutants ahead of time makes it possible
to filter out equivalent and trivially detectable mutants and
run student tests against only the remaining mutants. Other
advanced mutation analysis tools, such as MuCPP [9] also
pre-generate mutants, but this technique is largely unsupported
by state-of-the-practice Pitest [8], Stryker [5] and mull [10].
Future work might specifically examine different use cases
for pre-generating and filtering mutants before attempting to
execute them.

D. Threats to validity

a) Construct: Are we asking the right questions?: Our
research questions are based on established research questions
from the mutation analysis literature. We posed our research
question before we examined our dataset. These questions
were prompted by our experience evaluating student test
suite quality by hand and evidence that students benefit from
receiving frequent, actionable feedback.

b) Internal: Do our methods and datasets affect the
accuracy of our results?: Our research question requires
assignments where student test suites were graded by hand
for thoroughness and where the assignment specification was
precise enough to support mutation analysis. Because of this,
we were only able to include two assignments, and both of
these assignments had portions where we could not conduct
mutation analysis.

There could be bugs in MACKET and the other scripts
we wrote. We carefully examined the output of each step
in our analysis and investigated discrepancies. By manually
inspecting the source code of all of the student test suites, we
were able to distinguish between bugs in our tools, hand-grader
errors, and assignments being under-specified. We corrected
all of the bugs we found in our tools before finalizing the
data-sets.

c) External: Would our results generalize?: Our evalu-
ation uses two programming assignments, and they may not
be representative of programming assignments in Racket used
in other intro CS courses. We are careful to avoid claiming
that our results will generalize, and share them as a work-
in-progress. Future work will conduct a similar analysis on
additional Racket programming assignments.

VI. RELATED WORK

Most existing mutation analysis tools support imperative
languages such as Java [8], JavaScript/TypeScript [5], C# [5],
and C++ [10]. While Lazarek’s “Mutate” library provides
an API for defining mutation operators in Racket, we are
not aware of any “out-of-the-box” mutation analysis tools
for Racket other than MACKET . Le et al. [3] have studied
mutation analysis in functional programming languages such
as Haskell, and there are also several mutation analysis tools
for CoQ [11], [12].

Le et al. describe three functional mutation operators in
particular: reordering pattern matching, which the assignments
we analyzed did not use; mutation of lists, of which we im-
plemented the “list identity” portion; and type-aware function
replacement, which we only implemented heuristically for
bool-returning functions, as Racket is dynamically typed.

There is a growing body of work on the effectiveness of
mutation analysis for evaluating student test suite quality. Jia
and Harman present a survey on mutation analysis [13], which
Just et al. [14] show is correlated with real-fault detection, even
after controlling for coverage. Other work examines the extent
to which mutants are coupled to real faults in student-written
code or manually-seeded faults written by an instructor [2],
[15]. Code Defenders [16] is an interesting example of how
teaching software testing can be enhanced with gamification,
and perhaps there is future work that could explore the use of
mutation analysis tools in such a context. The effectiveness of
mutation analysis depends on the kinds of mutants generated,
and there are several ways to improve the mutant generation
process [17], [18]. Our study suggests that many traditional
mutation operators for imperative languages can be effectively
adapted and used in functional languages and also implements
one mutation operator specific to functional languages and one
operator specific to Racket.

VII. CONCLUSION

Mutation analysis can be an effective approach for providing
automated feedback to students about the quality of their of
their test cases. We implemented MACKET , a tool for mutation
analysis of code written in Racket, a functional language
that is used in introductory programming courses at several
universities including our own. Our pilot study examined the
question of whether MACKET is a good substitute for manual
grading of test suites written in Racket. These preliminary
results were quite positive, demonstrating a moderate cor-
relation between mutation score and hand-grading score on
one of the two assignments. Our qualitative analysis of the



submissions revealed several interesting implications for edu-
cators interested in providing automated feedback on students’
test case quality. Our ongoing work with MACKET includes
evaluating additional mutation operators and deploying the
tool to larger classes to gain more feedback. We have released
MACKET under an open-source license, and we look forward
to collaborating with colleagues at other institutions on its
evaluation [19]. Future work may examine related questions
such as examining the productivity of the mutation operators
we implemented and designing mutation operators based on
real student faults found in student submissions.
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