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Abstract— Package managers such as NPM have become
essential for software development. The NPM repository hosts
over 2 million packages and serves over 43 billion downloads
every week. Unfortunately, the NPM dependency solver has
several shortcomings. 1) NPM is greedy and often fails to
install the newest versions of dependencies; 2) NPM’s algorithm
leads to duplicated dependencies and bloated code, which is
particularly bad for web applications that need to minimize code
size; 3) NPM’s vulnerability fixing algorithm is also greedy, and
can even introduce new vulnerabilities; and 4) NPM’s ability
to duplicate dependencies can break stateful frameworks and
requires a lot of care to workaround. Although existing tools try
to address these problems they are either brittle, rely on post hoc
changes to the dependency tree, do not guarantee optimality, or
are not composable.

We present PACSOLVE, a unifying framework and imple-
mentation for dependency solving which allows for customiz-
able constraints and optimization goals. We use PACSOLVE to
build MAXNPM, a complete, drop-in replacement for NPM,
which empowers developers to combine multiple objectives when
installing dependencies. We evaluate MAXNPM with a large
sample of packages from the NPM ecosystem and show that it
can: 1) reduce more vulnerabilities in dependencies than NPM’s
auditing tool in 33% of cases; 2) chooses newer dependencies
than NPM in 14% of cases; and 3) chooses fewer dependencies
than NPM in 21% of cases. All our code and data is open and
available.

Index  Terms—package-management, Max-SMT,
Rosette, dependency-management, JavaScript

NPM,

I. INTRODUCTION

Package managers such as NPM (the de facto package
manager for JavaScript) have become essential for software
development. For example, the NPM repository hosts over two
million packages and serves over 43 billion downloads weekly.
The core of a package manager is its dependency solver, and
NPM’s solver tries to quickly find dependencies that are recent
and satisfy all version constraints. Unfortunately, NPM uses
a greedy algorithm that can duplicate dependencies and can
even fail to find the most recent versions of dependencies.

This work is partially supported by the National Science Foundation grants
CCF-2102288, CCF-2100037 and CNS-2100015.

cassano.f@northeastern.edu

Arjun Guha Jonathan Bell
Northeastern University Northeastern University
Boston, USA Boston, USA

a.guha@northeastern.edu  j.bell@northeastern.edu
Todd Gamblin
Lawrence Livermore National Laboratory
Livermore, USA
tgamblin @llnl.gov

Moreover, the users of NPM may have other goals that NPM
does not serve. 1) Web developers care about minimizing code
size to reduce page load times. “Bundlers” such as Webpack
alter the packages selected by NPM to eliminate duplicates
(Section II-B). 2) Many developers want to avoid vulnerable
dependencies and several tools detect and update vulnerable
dependencies, including NPM’s built-in “audit” command [1].
However, the audit command is also greedy and its fixes can
introduce more severe vulnerabilities (Section II-A). 3) Finally,
there are semantic reasons why many packages, such as
frameworks with internal state, should never have multiple
versions installed simultaneously. However, NPM’s approach
to solving this, known as “peer dependencies” is brittle and
causes confusion (Section II-C).

The problem with these approaches is that they are ad hoc
attempts to customize and workaround NPM’s solver. Bundlers
and audit tools modify solved dependencies after NPM pro-
duces its solution. Peer dependencies effectively disable the
solver in certain cases and rely on the developer to select
unsolved dependencies at the package root. In general, NPM
cannot produce a “one-size-fits-all” solution that satisfies the
variety of goals that developers have. Moreover, any tool that
modifies the solver’s solution after solving risks introducing
other problems and may not compose with other tools.

Our key insight is that all these problems can be framed
as instances of a more general problem: optimal dependency
solving, where the choices of optimization objectives and
constraints determine which goals are prioritized. Due to the
wide-ranging goals in the NPM ecosystem, this paper argues
that NPM should allow developers to customize and combine
several objectives. For example, a developer should be able
to specify policies such as “dependencies must not have any
critical vulnerabilities”, “packages should not be duplicated”,
and combine these with the basic objective of “select the latest
package versions that satisfy all constraints.” To make this
possible and evaluate its effectiveness, we present MAXNPM:
a complete, drop-in replacement for NPM, which empowers
developers to combine multiple objectives.



The heart of MAXNPM is a generalized model of de-
pendency solvers that we call PACSOLVE. PACSOLVE has a
high-level DSL for specifying the syntax and semantics of
package versions, version constraints, optimization objectives,
and more. Under the hood, PACSOLVE uses a solver-aided
language to produce a problem for a Max-SMT solver, which
ensures that its solution is optimal, unlike NPM’s greedy
approach. Although we apply PACSOLVE to build a package
manager for NPM, we believe that the generality of PAC-
SOLVE will make it possible to build customizable dependency
solvers for other package ecosystems as well.

We use MAXNPM to conduct an empirical evaluation
with a large dataset of widely-used packages from the NPM
repository. Our evaluation shows that MAXNPM outperforms
NPM in several ways:

1) chooses newer dependencies compared to using NPM for
14% of packages with at least one dependency.

2) shrinks the footprint of 21% of packages with at least
one dependency.

3) reduces the number or severity of security vulnerabilities
in 33% of packages with at least one dependency.

Overall, MAXNPM takes just 2.6s longer than NPM on
average, though encounters some outliers which solve signifi-
cantly more slowly with MAXNPM, which is reflected in the
standard deviation of the slowdown (13.7s).

This paper makes the following contributions:

1) PACSOLVE: an executable semantics for dependency
solvers, which are the key component of package man-
agers. PACSOLVE is parameterized along several key
axes, which allows for customization of constraints and
optimization objectives.

2) MAXNPM: a drop-in replacement for NPM that allows
the user to solve dependencies with several objectives,
including maximizing secure dependencies, decreasing
code size, and maximizing up-to-date dependencies.
MAXNPM is implemented by instantiating PACSOLVE
to use NPM’s notions of versions and version constraints.

II. BACKGROUND

NPM is the most widely used package manager for
JavaScript. (Alternatives such as Yarn are compatible with
NPM configurations.) NPM is co-designed with Node, which
is a popular JavaScript runtime for desktop and server appli-
cations. However, NPM is also widely used to manage web
applications’ dependencies, using “bundlers” like Webpack to
build programs for the browser.

An NPM configuration (the package. json file) lists
package dependencies with version constraints. NPM has
a rich syntax for version constraints that MAXNPM fully
supports. However, a typical configuration specifies version
ranges or exact versions of each dependency.

An unusual feature of NPM is that it may select mul-
tiple versions of the same package. To illustrate, consider
the following real-world example that involves the packages
debug and ms (calendar utilities). Suppose a project depends

on the latest version of ms (version 2.1.3) and debug.
Unfortunately, debug depends on an older version of ms
(version 2.1.2). In this situation, NPM selects both versions
of ms: the root of the project get the latest version, and
debug gets the older version, thus satisfying both constraints
independently instead of failing to unify the two constraints.
Some package managers handle this situation differently: PIP
would report that no solution exists, while Maven and NuGet
would install only the newer version of ms and let debug
load a different version than what it asked for.

Unfortunately, NPM’s behavior is not always desirable, and
can lead to increased code size and subtle runtime bugs.
Moreover, NPM does not guarantee that packages are only
duplicated when strictly necessary.

Another problem is that what it means to be a newer
package is not well-defined across package managers. Suppose
package A has versions 1.0.0 and 2.0.0, and then its
author publishes a security numbered 1.0.1. What happens
if a program depends on A with no constraints? Surprisingly,
NPM will choose 1.0.1 because it was uploaded last, while
some other package managers (such as PIP and Cargo) would
select 2.0 .0. Without specific knowledge of the situation, it
is unclear which choice is better.

A. Avoiding Vulnerable Dependencies

NPM’s built-in tool npm audit checks for vulnerable
dependencies by querying the GitHub Advisory Database. The
tool can also fix vulnerabilities by upgrading dependencies
without violating version constraints.! However, the tool has
several shortcomings. 1) Each run only tries to fix a single
vulnerability. 2) It only upgrades vulnerable dependencies,
even if a vulnerability-free downgrade is available that re-
spects version constraints. 3) It does not prioritize fixes by
vulnerability scores (CVSS), even though they are available in
the GitHub Advisory Database. 4) It does not make severity-
based compromises. For example, a fix may introduce new
vulnerabilities that are more severe than the original.

B. Minimizing Code Bloat

A “bundler”, such as Webpack, Browserify, or Parcel,
is a tool that works in concert with NPM to manage the
dependencies of front-end web applications. The primary task
of a bundler is to package all dependencies to be loaded over
the web, instead of the local filesystem. However, bundlers
do more, including work to minimize page load times. A
simple way to minimize page load times is to reduce code size.
Unfortunately, NPM’s willingness to duplicate packages can
lead to increased code size [2]. Contemporary bundlers employ
a variety of techniques from minification to unifying individual
files with identical contents. However, these techniques are
not always sound and have been known to break widely-used
front-end frameworks [3], [4].

IThe -~ force flag breaks constraints and potentially breaks the program.
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C. Managing Stateful Dependencies

NPM’s ability to select several versions of the same de-
pendency is also unhelpful when using certain stateful frame-
works. For example, React is a popular web framework that
relies on internal global state to schedule view updates. If
a program depends on two packages that transitively depend
on two different versions of React, it is likely to encounter
runtime errors or silent failures. The only way to avoid this
problem is if all package authors are careful to mark their de-
pendency on React as a peer dependency: a dependency that is
installed by some other package in a project. However, there is
no easy way to determine that all third-party dependencies use
peer dependencies correctly. It can also be hard to determine
before hand that a package will never be used as a dependency
and thus should not use peer dependencies.

ITII. MAXNPM

The goal of MAXNPM is to help developers address the
broad range of problems described above. MAXNPM serves
as a drop-in replacement for the default nom install com-
mand. The user can run npm install —--maxnpm to use
MAXNPM’s customizable dependency solver instead. There
are two broad ways to customize MAXNPM. First, MAXNPM
allows the user to specify a prioritized list of objectives with
the ——minimize flag. Out of the box, MAXNPM supports
the following objectives (defined precisely in Figure 3):

e min_oldness: minimizes the number and severity of
installed old versions;

e min_num_deps: minimizes the number of installed
dependencies;

e min_duplicates: minimizes the number of co-
installed different versions of the same package; and

e min_cve: minimizes the number and severity of known
vulnerabilities.

Second, MAXNPM allows the user to customize how multiple
package versions are handled with the ——consistency flag:

o npm: the default behavior of NPM, which allows several
versions of a package to co-exist in a single project; and

e no—-dups: require every package to have only one ver-
sion installed.

With some work, the user can even define new objectives and
consistency criteria.

For example, a developer building a front-end web applica-
tion may want to reduce code size and select recent package
versions. They could use MAXNPM as follows:

npm install --maxnpm --consistency no-dups
--minimize min_oldness,min_num_deps

This command avoids duplicating dependencies, and mini-
mizes oldness and the number of dependencies in that order.
This is a more principled approach to reducing code size
than the ad hoc de-duplication techniques used by bundlers.
Moreover, we show that this command is frequently successful
at reducing code size (Section IV-A3).

Package Metadata

& ::= String Package Names
% is a set Version Numbers
€ is a set Version Constraints
Du=P%XE Dependencies
N C 2xV Package repository (finite set)
N = N'U {root} The root node of the solve
deps N Any Dependencies per node

M = (N, deps)
Solution Graph

Package metadata

Nr C N Package versions in solution
Dr € Ngr — Ny Solved dependencies
G :=(Ngr, DRg) Solution graphs

Dependency Solver Specification

sat % — V — Bool Constraint satisfaction semantics
consistent VYV -V — Bool Version consistency versions
minGoal g — R™ Objective functions

Fig. 1: The PACSOLVE Model of Dependency Solving

As a second example, consider a developer building a web
application backend, where they are very concerned about
security vulnerabilities. They could use MAXNPM as follows:

npm install --maxnpm --minimize min_cve,min_oldness

This command subsumes npm audit fix and we show
that it is substantially more effective (Section IV-Al).

MAXNPM is built on PACSOLVE, which is a DSL for de-
scribing dependency solvers. This section presents PACSOLVE
with an emphasis on how we use it to build MAXNPM.
Section VI discusses the potential applicability of PACSOLVE
to building solvers for other languages.

A. Describing a Dependency Solver with PACSOLVE

PACSOLVE is a solver-aided language built with Rosette,
a solver-aided programming language that interfaces with the
Z3 theorem prover [5]. The input to PACSOLVE is a set of
available packages with their dependencies. The output is a
solution graph where nodes are specific versions of a package
and edges represent dependencies. (Section III-B formally
describes the semantics and relationship between available
packages and solution graphs.) Without loss of generality, we
assume there is a distinguished root package (root).

To build a dependency solver with PACSOLVE, we have to
define:

1) The abstract syntax of package versions ()/) and version
constraints (%), which tends to vary subtly between
dependency solvers;

2) The constraint satisfaction predicate that determines if a
given version satisfies a constraint (sat);

3) The version consistency predicate that consumes two
package versions and determines if those two versions
of the same package may be co-installed (consistent);
and

4) The objective function that determines the cost of a
solution graph (minGoal).



V= (zy=z) Version numbers
C=(=zy=2) Exact

| * Any

| (<=2 y2) At most

| >=zy2) At least

| Nzy=2) Semver compatible with

| (and %1 62) Conjunction

| (or €1 %2)  Disjunction

(a) Example of V and ¥, allowing conjunction, disjunction, and range
operators on semver-style versions.

1 (define (sat c v)
(match “(,v ,c)

2

3 CGx Ly ,2) (= ,x 0,y ,2)) #true]

4 (G #truel

5 L (Gx Ly L2zl (<= ,x ,y ,22)) (<= z1 z2)]
6 CGxoyt ,zT) (<= ,x ,y2 ,22)) (< yl y2)]
7 [(GxT Ly, z1) (<= ,x2 ,y2 ,z2)) (< x1 x2)]
8 (@0 ,z1) (" 0 0 ,z2)) (= z1 z2)]
9 Lo,y z1) (" 0o,y ,hz2)) (>= z1 z2)]
10 (o ,y1 ,z1) (C 0 ,y2 ,z2)) #falsel

1 CGx oL,y Lz CoLx Ly ,22) (= z1 z2)]
12 CGx oLyl L,z (C,x ,y2 ,22))  yl y2)]
13 ["(- (and ,c1 ,c2))

14 (and (sat c1 v) (sat c2 v))]

15 ["( - (or ,c1 ,c2))

16 (or (sat c1 v) (sat c2 v))]

17 [(GxT Lyt z1) (o= ,x2 ,y2 ,z2))

18 (sat " (,x2 ,y2 ,z2) “(<= ,x1 ,y1 ,z1))]

19 [ #falsel))

21 (define (consistent v1 v2)
2 #true)

(b) A constraint satisfaction predicate and a version consis-
tency predicate for V and € defined in Figure 2a.

Fig. 2: The syntax of versions and constraints, and the con-
straint satisfaction predicate and consistency predicate for a
fragment of NPM.

PACSOLVE produces a solution that is optimal and consis-
tent with all constraints. A solution graph may optionally have
cycles, which some package managers allow (including NPM).

A Fragment of NPM: Figure 2a shows an example of
versions and constraints for a fragment of NPM. (MAXNPM
supports the full syntax and takes care of parsing NPM’s
concrete syntax to the parenthesized syntax that Rosette and
PACSOLVE require.) Given this syntax of versions and con-
straints, Figure 2b shows constraint satisfaction and version
consistency predicates. The sat function receives as input
a version constraint and a version (from the syntax of Fig-
ure 2a) and returns a boolean by performing a match case
analysis. Interesting subtleties include lines 8—12 handling the
matching semantics of caret constraints ("1.2.3) including
their different behavior for versions with leading zeros, and
lines 13-16 performing structural recursion on the constraints.
The consistent function receives two versions and must
determine if they can be co-installed. This simple consistency
predicate is the constant true function, which implements
NPM’s standard policy of always allowing co-installations.

Figure 3 defines three examples of objective functions that
consume a solution graph and produce a cost. PACSOLVE

minimizes cost, so a trivial objective is to minimize the
total number of packages, completely ignoring package age
and other factors (Figure 3a). An alternative objective is
to minimize the co-installation of multiple versions of the
same package (Figure 3b). The function counts the number
of versions of each package, and assigns a cost to every
package that has more than one version. Our final example is
an interpretation of the common goal that package managers
have of trying to choose newer versions of dependencies
(Figure 3c). The function gives each node an oldness score
between 0 (newest) and 1 (oldest), with the scores evenly
divided across all versions of a package in the solution.
There are two subtleties with this definition. 1) We perform
minimization, since maximization would encourage the solver
to find large solutions that inflate newness. 2) We take the
sum rather than the mean, since taking the mean would also
encourage the solver to add extra packages that deflate oldness.

Other metrics are possible as well, such as our implemen-
tation of an aggregated score of dependency vulnerabilities
(Section IV-A1), or the total download size [6]. With a library
of optimization objective functions defined, PACSOLVE then
allows for easy composition of objective functions either by
multiple prioritized objectives, or by weighted linear combi-
nations of objectives.

B. The Semantics of PACSOLVE

This section formally describes the semantics of PACSOLVE.
The package metadata (top of Figure 1) is described by 1) a set
of package name and version pairs (N), and 2) a map (deps)
from these pairs to a list of dependencies. Each dependency
specifies a package name and version constraint (%).

The solution graph is a directed graph where the nodes
are package-version pairs, and each node has an ordered list
of edges. The order of edges corresponds to the order of
dependencies in the package metadata.

The semantics of PACSOLVE is a relation (S) between
the package metadata, the dependency solver specification,
and the solution graph. The relation holds when a solution
graph is valid with respect to the package metadata and the
dependency solver specification. The relation holds if and only
if the following six conditions are satisfied. First, the solution
graph must include the root:

root € Ny (D

Second, the solution graph must be connected, to ensure it
does not have extraneous packages:

(Ng, Dp) is connected 2)

Third, for all packages in the solution graph, every edge must
correspond to a constraint in the package metadata:

Vn.n € Np = |Dg(n)| = |deps(n)] 3)

Fourth, for every edge in the solution graph that points to
package p with version v, the corresponding constraint in the



1 (define (minGoal-num-deps g)
2 (length (graph-nodes g)))

(a) Minimize the total number of installed dependencies.

1 (define (minGoal-duplicates g)

2 ; we count how many times

3 ; each package name occurs

4 (define package-counts (foldl

5 (lambda (n counts)

6 (define p (node-package n))

7 (hash-set counts p

8 (add1 (hash-ref counts p 0))))
9 (make-immutable-hash)

10 (graph-nodes g)))

11

12 ; then assign a cost of 1

13 ; for each duplicate

4 (apply +

15 (map

16 (lambda (c) (max @ (subl c)))
17 (hash-values package-counts))))

(b) Minimize the total number of co-installed versions of the same package.

1 (define (minGoal-oldness g)
> (apply +

3 (map

4 (lambda (n)

5 (get-oldness

6 (node-package n)

7 (node-version n)))

8 (graph-nodes g))))

9

10 (define (get-oldness p v)

1 ; The get-sorted-versions retrieves

12 ; a list of all versions of p
13 (define all-vs
14 (get-sorted-versions p))

15 (if (= (length all-vs) 1)
0

17 (/ (index-of all-vs v)
18 (sub1l (length all-vs)))))

(c) Minimize the amount of “oldness” present in the solution graph.
Each resolved dependency contributes an oldness proportional to its
rank among the total ordering of versions of that package

Fig. 3: Three different examples of PACSOLVE minimization objectives

package metadata must refer to package p with constraint c,
where v satisfies c:
Vn.n € Np —
Vi.0 <1i < |Dgr(n)| =
Elpa v, C. (p7 U) = DR(n)[Z]
A(p, c) = deps(n)[i] A sat(c,v)

“4)

The criteria so far are adequate for many dependency
solvers, but permits solutions that may be unacceptable. For
example, without further constraints, a solution graph may
have several versions of the same package. Thus the fifth
condition ensures that if there are versions of a package in
the solution graph, then the two versions are consistent, as
judged by the dependency solver specification:

Vp,v,v". (p,v), (p,v') € Np = consistent(v,v’) (5)

NPM allows arbitrary versions to be co-installed (so
consistent is the constant true function), PIP only allows
exactly one version of a package to be installed at a time (so
consistent requires v = v’), and Cargo only allows semver-
incompatible versions to be co-installed.

A final distinction between dependency solvers is whether
or not they allow cyclic dependencies. NPM and PIP allow
cycles, but others, such as Cargo, do not. Thus the sixth
condition, which is optional, uses the dependency solver
specification to determine whether or not cycles are permitted:

(Ng, DR) is acyclic (6)

These five or six conditions determine whether or not a
solution graph is correct with respect to the semantics of a
particular dependency solver.

C. Synthesizing Solution Graphs with PACSOLVE

Dependency solving with possible conflicts is NP-
complete [7]. Some package managers use polynomial-time

algorithms by giving up on various properties, such as disre-
garding conflicts (NPM) and eschewing completeness (NPM
and PIP’s old solver [8]). Since the PACSOLVE model includes
a generalized notion of conflicts (consistent), we leverage
Max-SMT solvers to implement PACSOLVE effectively.

We implement PACSOLVE in Rosette, which is a solver-
aided language that facilitates building verification and syn-
thesis tools for DSLs. In the PACSOLVE DSL, the program
is a solution graph. We implement a function that consumes
1) package metadata, 2) a dependency solver specification
(Figure 1) and 3) a solution graph, and then asserts that the
solution graph is correct. With a little effort, we can replace
the input solution graph with a solution graph sketch. This
allows us to use Rosette to perform angelic execution [9]
to synthesize a solution graph that satisfies the correctness
criteria. This section describes the synthesis procedure in more
detail, starting with how we build a sketch.

a) Sketching solution graphs: Before invoking the
Rosette solver, we build a sketch of a solution graph that has
a node for every version of every package that is reachable
from the set of root dependencies. Every node in a sketch has
the following fields: 1) a concrete name and version for the
package that it represents; 2) a symbolic boolean included that
indicates whether or not the node is included in the solution
graph; 3) a symbolic natural number depth which we use to
enforce acyclic solutions when desired; 4) a vector of concrete
dependency package names; 5) a vector of concrete version
constraints for each dependency; and 6) a vector of symbolic
resolved versions for each dependency.

Figure 4 illustrates an example solution graph sketch cor-
responding to a dependency solving problem involving two
packages (debug, ms), where ms is a dependency of both
debug and the root, while debug is depended on by only
the root. The combination of concrete dependency names and



Fig. 4: A sample solution graph sketch

symbolic dependency versions can be seen as representing
symbolic edges in two parts: a concrete part which does not
need to be solved for (solid arrows), and a symbolic part which
requires solving (dashed arrows). This representation shrinks
the solution space of graphs as outgoing edges can only point
to nodes with the correct package name.

b) Graph Sketch Solving: We define three assertion func-
tions that check correctness criteria of a solution graph:

1) check—dependencies asserts that if a node is in-
cluded, then all the dependencies of the node are included
and satisfy the associated version constraints as judged by
the constraint interpretation function (sat). We run this
assertion function on all nodes, and additionally assert
that the root node is included.

2) globally-consistent? asserts that the consistency
function (consistent) holds on all pairs of nodes with the
same package name.

3) acyclic? asserts that the depth of a node is strictly
less than the depth of all its dependencies. If an acyclic
solution is desired, we run this assertion function on all
nodes, and assert that the root node has depth zero.

We then ask Rosette to find a concrete solution graph that
satisfies the above constraints while minimizing the objective
function (minGoal). As a final step, we traverse the con-
cretized solution graph sketch from the root node, and install
on-disk those nodes that are marked included.

IV. EVALUATION

We evaluate MAXNPM in several scenarios, determining
whether its support for flexible optimization objectives can
provide tangible benefits to developers as compared to NPM.
We gather two large datasets of popular packages, and also
investigate if MAXNPM is sufficiently reliable and performant
to use as a drop-in replacement for NPM. In this section we
use MAXNPM to answer each of our research questions:

RQ1: Can MAXNPM find better solutions than NPM when
given different optimization objectives?

RQ2: Do MAXNPM’s solutions pass existing test suites?

RQ3: Does MAXNPM successfully solve packages that NPM
solves?

RQ4: Does using MAXNPM substantially increase solving
time?

We build two datasets of NPM packages. Top1000 is a set of
the latest versions of the top 1,000 most-downloaded packages
as of August 2021. Including their dependencies, there are
1,147 packages in this set. Unsurprisingly, these packages are
maintained and have few known vulnerabilities. Therefore, to
evaluate vulnerability mitigation, we build the Vuln715 dataset
of 715 packages with high CVSS scores as follows: 1) we filter
the Topl1000 to only include packages with available GitHub
repositories; 2) we extract every revision of package. json;
3) for each revision, we calculate the aggregate CVSS score
of their direct dependencies, as determined by the GitHub
Advisory Database; and 4) we select the highest scoring
revision of each package.

MAXNPM is built on NPM 7.20.1. PACSOLVE uses Racket
8.2, Rosette commit 1d042d1, and Z3 commit 05ec77c.
We configure NPM to not run post-install scripts and not install
optional dependencies. We run our performance benchmarks
on Linux, with a 16-Core AMD EPYC 7282 CPU with 64
GB RAM. We warm the NPM local package cache before
measuring running times.

A. RQI: Can MAXNPM find better solutions than NPM when
given different optimization objectives?

1) Can MAXNPM help avoid vulnerable dependencies?:
We configure MAXNPM to minimize the aggregate CVSS
scores of all dependencies,2 and compare with the built-in
npm audit fix tool (Section II-A). We use the Vuln715
packages for this comparison. Both tools run successfully on
472 packages: the failures occur because these are typically
older versions that do not successfully install.

The histogram in Figure 5a reports the difference in aggre-
gate CVSS score between npm audit fix and MAXNPM.
A higher score indicates that a package has fewer vulnera-
bilities with MAXNPM. MAXNPM produces fewer vulnera-
bilities on 235 packages (33%). There is one package where
MAXNPM produces a lower score; we are investigating this as
a possible bug. The mean CVSS improvement by MAXNPM
is 14.75 CVSS points (a “maximum severity” vulnerability
is 10 points), or by 30.51%. The improvement is statistically
significant (p < 2.2 x 10716) using a paired Wilcoxon signed
rank test, with a medium Cohen’s d effect size of d = 0.46.
Thus, we find that MAXNPM is substantially more effective
than npm audit fix at removing vulnerable dependencies.

An example project where MAXNPM eliminates vulnera-
bilities is the babel compiler (34 million weekly downloads).
Commit 5009114b8 is in Vuln715, and MAXNPM elim-
inates all vulnerabilities; whereas npm audit fix leaves
several with an aggregate CVSS score of 59.4.

2) Can MAXNPM find newer packages than NPM?:
MAXNPM ought to be able to find newer packages than
NPM’s greedy algorithm. We define the oldness of a depen-
dency on a package version (old(p,v)) as a function that

2The min_cve, min_oldness flags.
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then oldness (red ECDF), or b) minimize oldness then depen-
dencies (blue ECDF). MAXNPM can reduce dependencies in
about 21% of packages.
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(b) MAXNPM is configured to minimize oldness and the
number of dependencies (in that order). Each point represents a
package, and those below the line have newer dependencies, by
the metric in Section IV-A2. Overall, MAXNPM finds newer
versions for dependencies.
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(d) An ECDF of the ratio of disk space of packages solved using
MAXNPM (configured to minimize number of dependencies,
then oldness) vs NPM. MAXNPM can reduce space required.

Fig. 5: Comparing NPM’s to MAXNPM’s solution quality. These plots ignore failures in both solvers and have MAXNPM

configured to use NPM-style consistency and allow cycles.

assigns the newest version the value 0, the oldest version the
value 1, and other versions on a linear scale in between. We
define the mean oldness of project as the mean oldness of all
dependencies in a project,including transitive dependencies.
Note that this metric is not identical to the minimization
objective of MAXNPM, which calculates the sum and ignores
duplicates. The metric is more natural to interpret, whereas the
objective function avoids pathological solutions.

Figure 5b shows a point for every package in the Topl000,
with mean oldness using NPM and MAXNPM as its
and y coordinates. Points on y = =z are packages whose
dependencies are just as old with both NPM and MAXNPM.

14% of packages excluding those with zero dependencies
are better with MAXNPM, while 5% are worse. On average
oldness improved by 2.62%. The improvement is statistically
significant (p = 4.27 x 107%) using a paired Wilcoxon signed
rank test, with a small Cohen’s d effect size of d = 0.024.
Thus MAXNPM produces newer dependencies on average.

An example of successful oldness minimization is the
class-utils package (15 million weekly downloads).
MAXNPM chooses a slightly older version of a direct de-
pendency, which allows it to chose much newer versions of
transitive dependencies.

One might wonder why MAXNPM does worse in 5% of



cases, since MAXNPM should be optimal. Manual investiga-
tion of these cases shows that some packages make use of
features which we have not implemented in MAXNPM, such
as URLs to tarballs rather named dependencies. MAXNPM
is unable to explore that region of the search space. Imple-
menting these features would take some engineering effort,
but wouldn’t require changes to the model.

3) Can MAXNPM reduce code bloat?: Instead of using ad
hoc and potentially unsound techniques to reduce code bloat,
we can configure MAXNPM to minimize the total number
of dependencies. On the Topl000 packages, we configure
MAXNPM in two ways: 1) prioritize fewer dependencies
over lower oldness; and 2) prioritize lower oldness over fewer
dependencies. Figure 5c plots an ECDF (empirical cumulative
distribution function) plot where the x-axis shows the shrink-
age in dependencies compared to NPM, and the y-axis shows
the cumulative percentage of packages with that amount of
shrinkage. The plot excludes packages with zero dependencies,
and x = 1 indicates no shrinkage (when MAXNPM produces
just as many dependencies as NPM).

Both configurations produce fewer dependencies than NPM,
but prioritizing fewer dependencies is the most effective (the
red line). For about 21% of packages, MAXNPM is able to
reduce the number of dependencies, with an average reduction
in the number of packages of 4.37%. The improvement is
statistically significant (p < 2.2 x 107!®) using a paired
Wilcoxon signed rank test, with a moderate Cohen’s d effect
size of d = 0.20. For the same set of packages, the total
disk space required shrinks significantly (Figure 5d). With
MAXNPM, a quarter of the packages require 82% of their
original disk space. Even when we prioritize lowering oldness,
MAXNPM still produces fewer dependencies (the blue line).

An example of dependency size minimization is the
assert package (13 million weekly downloads). For 3 di-
rect dependencies, MAXNPM chooses slightly older revisions
(with the same major and minor version). But this eliminates
33 of 43 transitive dependencies.

We have observed that in a few cases NPM exhibits a bug in
which it installs additional dependencies that are not defined in
the set of production dependencies of the package, nor in the
set defined by transitive dependencies. > However, MAXNPM
does not exhibit this bug. We will work on reporting this
bug, but we believe this an example of the advantage of
PACSOLVE’s declarative style of building package managers.

4) Can MAXNPM address duplicated packages?: NPM
happily allows a program to load several versions of the same
package, which can lead to subtle bugs (Section II-C). To
address this problem, a developer can configure MAXNPM to
disallow duplicates. In this configuration, 19 packages (1.9%)
in Top1000 produce unsatisfiable constraints, which indicates
that they require several versions of some package (Table I).

For example, terser@5.9.0 is a widely used JavaScript
parser that that directly depends on source-map@0.7.x

3@babel/plugin-proposal-export-namespace—fromis an ex-
ample.
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Fig. 6: Results of running tests after solving dependencies with
NPM and MAXNPM. In total only 5% of packages have a
failing test with MAXNPM but not with NPM.

and source-map-support@0.5.y. However, the lat-
ter depends on source-mapQ0.6.z, thus the build
must include both versions of source-map. The ideal
fix would update source-map-support to support
source-map@0.7.x.

B. RQ2: Do MAXNPM'’s solutions pass existing test suites?

Although a package should pass its test suite with any set
of dependencies that satisfy all constraints, in practice tests
may fail with alternate solutions due to under-constrained
dependencies. We identified test suites for 735 of the Top1000
packages. A test suite succeeds only if all tests pass. All test
suites succeed with both MAXNPM and NPM on 77% of
packages, and fail for both on 17%. There are 38 packages
where MAXNPM fails but NPM passes, and 7 packages where
NPM fails and MAXNPM succeeds (Figure 6).

Test failures occurring slightly more often with MAXNPM’s
solutions are likely due to the fact that many of these packages
have already been solved and tested with NPM, so even if their
dependencies are underconstrained, at present NPM produces
working solutions. Manual investigation suggests that the 7
packages that fail with NPM but succeed with MAXNPM are
likely due to flaky tests and missing development dependencies
while the 38 packages that fail with MAXNPM but succeed
with NPM are due to those reasons in addition to under-
constrained dependencies.

Finally, to verify that packages which pass their tests with
MAXNPM are not doing so vacuously due to no or few tests,
in Table II we report statistics of the number of executed tests
for packages in the group that pass with NPM and MAXNPM,
and in the group that pass with NPM and fail with MAXNPM.
A two-sided Mann-Whitney U test indicates that there is no
statistically significant difference between the two populations
(p = 0.49).

C. RQ3: Does MAXNPM successfully solve packages that
NPM solves?

The rightmost three columns of Table I show the number
of failures resolving dependencies on the Topl000 for NPM,
along with each configuration of MAXNPM that we evaluated.



Minimization Objectives

Failures

Solver Consistency ~ Allow cycles?  Primary Secondary Successes  Unsat  Timeout  Other
NPM 953 0 0 47
MAXNPM  npm Yes Oldness # of Dependencies 972 0 27 1
MAXNPM  npm Yes # of Dependencies  Oldness 972 0 27 1
MAXNPM  npm Yes Oldness Duplicate Packages 973 0 26 1
MAXNPM  no-dups Yes Oldness # of Dependencies 926 19 54 1
MAXNPM  npm No Oldness # of Dependencies 972 0 27 1
MAXNPM  no-dups No Oldness # of Dependencies 926 19 54 1

TABLE I: Failures that occur when running NPM and different configurations of MAXNPM on the Topl000 dataset.

Statistic NPM Pass & NPM Pass &

MAXNPM Pass MAXNPM Fail
Mean 489.36 58.90
STD 4699.01 266.87
Minimum 0.00 0.00
25th Perc. 0.00 1.50
50th Perc. 7.00 4.00
75th Perc. 39.00 10.50
Maximum 81582.00 1493.00

TABLE 1I: Statistics of the number of executed tests per
package in the top left and top right groups of Figure 6.

On the Topl000 packages, NPM itself fails on 47 packages.
Many of these failures occur due to broken, optional peer-
dependencies that MAXNPM does not needlessly solve.* We
run MAXNPM in several configurations, and get 26—28
failures when duplicate versions are permitted. Some failures
occur across all configurations, e.g., one package requires
macOS. Most of our other failures are timeouts: we terminate
Z3 after 10 minutes. When duplicates are not permitted, we
do get more failures due to unsatisfiable constraints, but these
are expected (Section IV-A4). Some users may prefer to have
MAXNPM fail when it cannot find a solution rather than
falling back to an unconstrained solution, as the latter may
lead to subtle and hard-to-debug issues at runtime due to
e.g. conflicting global variables in multiple versions of the
same package. When we permit duplicates like NPM, we find
that MAXNPM successfully builds more packages than NPM
itself, providing strong evidence that MAXNPM can reliably
be used as a drop-in replacement for NPM.

D. RQ4: Does using MAXNPM substantially increase solving
time?

On the Topl000 packages, we calculate how much ad-
ditional time MAXNPM takes to solve dependencies over
NPM. We observe that the minimum slowdown is —2.3s
(when MAXNPM is faster than NPM), the Ist quartile is
0.8s, the median is 1.6s, the mean is 2.6s, the 3rd quartile
is 2.2s, the max is 329s, and the standard deviation of the
slowdown is 13.7s. These absolute slowdowns are on top of
the baseline of NPM, which takes 1.52s on average, and 1.34s
at the median. We exclude timeouts from this analysis, we
report those in Table I. As evidenced by the maximum and

4They are not necessary to build, but NPM attempts to solve for them even
with the ——omit-peer flag.
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Fig. 7. ECDF of the additional time taken by MAXNPM
to solve and install packages compared to NPM, ignoring
timeouts and failures, with outliers (> 20s) excluded. The
outliers take up to 329s extra seconds, but the mean and
median slowdowns are only 2.6s and 1.6s, respectively. In
this experiment MAXNPM was configured with NPM-style
consistency, allowing cycles, and minimizing oldness first and
then number of dependencies.

standard deviation, there are a few outliers where MAXNPM
takes substantially longer. We also perform a paired Wilcoxon
signed rank test and find that the slowdown is statistically
significant (p < 2.2 x 10716), with a moderate Cohen’s d
effect size of d = 0.27. Figure 7 shows an ECDF of the
absolute slowdown, but with outliers (> 20s) removed. We
conclude that while MAXNPM does increase solving time,
the increase is modest in the majority of cases, but there
are a few outliers. This performance characteristic mirrors
that of other SAT-solver based package managers, including
production ones such as Conda [10].

Excluding outliers, a significant portion of the overhead is
serializing data between JavaScript (MAXNPM) and Racket
(PACSOLVE), which could be improved by building the solver
in JavaScript or using a more efficient serialization protocol.
As for the outliers, one could implement a tool that first tries
MAXNPM but reverts to greedy solving after a timeout, at the
expense of optimality.



V. RELATED WORK

Van der Hoek et al. first discussed the idea of “software
release management” [11] for large numbers of independent
packages in 1997, and the first package managers for Linux
distributions emerged at around the same time [12], [13]. The
version selection problem was first shown to be NP-complete
and encoded as a SAT and Constraint Programming (CP)
problem by Di Cosmo et al. [7], [14] in 2005. This early
work led to the Mancoosi project, which developed the idea
of a modular package manager with customizable solvers [15],
[16]. This work centers around the Common Upgradeability
Description Format (CUDF), an input format for front-end
package managers to communicate with back-end solvers.

CUDF facilitated the development of solver implemen-
tations using Mixed-Integer Linear Programming, Boolean
Optimization, and Answer Set Programming [17], [18], [19],
and many modern Linux distributions have adopted CUDF-
like approaches [20]. OPIUM [6] examined the use of ILP
with weights to minimize the number of bytes downloaded or
the total number of packages installed.

While package managers have their roots in Linux dis-
tributions, they have evolved considerably since the early
days. Modern language ecosystems have evolved their own
package managers [21], [22], [23], [24], with solver require-
ments distinct from those of a traditional Linux distribution.
Distribution package managers typically manage only a single,
global installation of each package, while language package
managers are geared more towards programmers and allow
multiple installations of the same software package.

For the most part, language ecosystems have avoided using
complete solvers. As we have found in our implementation,
solvers are complex and interfacing with them effectively is
more challenging compared to implementing a greedy algo-
rithm. Even on the Linux distribution side, so-called functional
Linux distributions [25], [26] eschew solving altogether, opting
instead to focus on reproducible configurations maintained by
humans. Most programmers do not know how to use solvers
effectively, and fast, high-quality solver implementations do
not exist for new and especially interpreted languages. More-
over, package managers are now fundamental to software
ecosystems, and most language communities prefer to write
and maintain their core tooling in their own language.

Despite this, developers are starting to realize the need
for completeness and well defined dependency resolution
semantics [20]. The Python community, plagued by incon-
sistencies in resolutions done by PIP has recently switched
to a new resolver with a proper solver [8]. Dart now uses
a custom CDCL SAT solver called PubGrub [24], and
Rust’s Cargo [23] package manager is moving towards this
approach [27]. However, these solvers use ad hoc techniques
baked into the implementations to produce desirable solutions,
such as exploring package versions sorted by version number.
These are not guaranteed to be optimal, and it is unclear how to
add or modify objectives to these types of solvers. In contrast,
PACSOLVE makes two new innovations: PACSOLVE allows for

a declarative specification of multiple prioritized optimization
objectives, and PACSOLVE changes the problem representation
from prior works’ boolean-variable-per-dependency represen-
tation based on SAT solving to PACSOLVE’s symbolic graph
representation (Section III-C) based on SMT constraints.

Solvers themselves are becoming more accessible through
tools like Rosette [5], which makes features of the Z3 [28]
SMT solver accessible within regular Racket [29] code, and
which we leverage to implement PACSOLVE. Spack [30]
makes complex constraints available in a Python DSL, and im-
plements their semantics using Answer Set Programming [31],
[32]. APT is moving towards using Z3 to implement more
sophisticated dependency semantics [33].

The goal of our work is to further separate concerns away
from package manager developers. PACSOLVE focuses on
consistency criteria and formalizes the guarantees that can
be offered by package solvers. NPM [21]’s tree-based solver
avoids the use of an NP-complete solver by allowing multiple,
potentially inconsistent versions of the same package in a tree.
Tools like Yarn [34], NPM’s audit tool [1], Dependabot [35],
Snyk [36] and others [37], [38], [39], [40] attempt to answer
various needs of developers by using ad hoc techniques
separate from the solving phase, such as deduplication via
hoisting [41] (Yarn), or post hoc updating of dependencies
(NPM'’s audit tool). However, these tools run the risk of
both correctness bugs and non-optimality in their custom
algorithms. PACSOLVE provides the best of all these worlds. It
combines the flexibility of multi-version resolution algorithms
with the guarantees of complete package solvers and being
able to reason about multiple optimization objectives that each
speak to a need of developers, while guaranteeing a minimal
dependency graph.

VI. DISCUSSION
A. NPM

By modeling NPM in PACSOLVE and comparing their
real-life behavior, we gained valuable insight into NPM’s
behavior. As already explored in Section IV, NPM is non-
optimal, and it is challenging to see how it could be optimal
without implementing a full solver based approach such as
MAXNPM. However, NPM does have some lower-hanging
fruit that is easier to achieve and would benefit users. First,
NPM is not in fact complete, in that there are situations
where a satisfying solution exists, but NPM fails to find
it. Most commonly, a version of a package depends on a
dependency which does not exist, and NPM immediately
bails out rather than backtracking. This could be implemented
with simple backtracking without harming the performance
of solves which currently succeed. In addition, Section II-A
identifies several shortcoming of the npm audit fix tool
at the time of our testing. We would suggest incorporating
severity of vulnerabilities into the update logic, so that the
tool can decide trade-offs between different vulnerabilities.
The tool is also unable to downgrade dependencies to remove
vulnerabilities, which would be a useful option to have, even
if not enabled by default.
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(define (cargo-consistent v1 v2)
(match "~ (,v1 ,v2)

[T(@ 0 ,z1) (0 0 ,z2)) #true]
Lo,y ,z1) (0 ,y ,z2)) (= 21 z2)]
[T ,y1 ,z1) (0 ,y2 ,z2)) #true]

[C((x ,y1 ,z1) (x ,y2 ,z2)) (and (= y1 y2) (= z1 z2))]
[_ #truel))

Fig. 8: A consistency function for Cargo.

NPM also contains some subtle behavior regarding release
tags. NPM version numbers may include release tags, such
as 1.2.3-alphal, which MAXNPM fully supports. In
particular, a prerelease version can only satisfy a constraint
if a sub-term of the constraint with the same semver version
also has a prerelease. For example, consider the following
constraint (spaces indicate a conjunction):

>1.2.3-alpha.3 <1.5.2-alpha.8

It may be obvious that versions 1.2.3-alpha.7 and
1.5.2-alpha.6 do satisfy the constraint. However, ver-
sion 1.3.4 also satisfies the constraint, while version
1.3.4-alpha.7 does not satisfy the constraint. A key
feature of PACSOLVE which enabled us to easily implement
this feature is that the datatype of version numbers (V) is not
fixed to be e.g. a 3-tuple of integers, but can be customized,
which we leverage to correctly implement NPM’s release tags.

B. Future Work: Cargo, Maven and NuGet

Cargo has a notion of feature flags which enable conditional
compilation. To model this, versions may have the form
(z,y, 2, F), where F is a set of selected features. To then build
a Cargo-compatible dependency solver, we would need to
1) define a constraint satisfaction predicate that ensures that the
selected features are a superset of the requested feature, and
2) an objective function that ensures that the minimal number
of required features are enabled. In addition, Cargo has a more
complex consistency function which allows two versions to be
co-installed if they are not semver-compatible. That is easily
implemented in PACSOLVE as shown in Figure 8.

Maven and NuGet resolve all dependencies to exactly one
version for each package. However, when conflicts arise,
instead of backtracking to an older version, they ignore all but
the closest package constraint to the root. This is arguably un-
sound, but it is possible to model this behavior in PACSOLVE
by treating constraints as soft constraints that are weighted by
their distance from the root.

C. Threats to Validity

a) External Validity: The projects that we used in our
evaluation may not be representative of the entire ecosys-
tem of NPM packages. We select the 1,000 most popular
projects, and report performance as a distribution over this
entire dataset, including a discussion of outliers. Given the
number of projects that we used in our evaluation and their
popularity, we believe that MAXNPM is quite likely to be
helpful for improving package management in real-world

scenarios. We describe PACSOLVE as a unifying framework
for implementing dependency solvers, however we only use
PACSOLVE to implement MAXNPM. Future work should
empirically validate PACSOLVE’s efficacy in other ecosystems.

b) Internal Validity: MAXNPM, PACSOLVE, and the
tools that we build upon may have bugs that impact our results.
To verify that differences between NPM and MAXNPM are
not due to bugs in MAXNPM, we carefully analyzed the cases
where MAXNPM and NPM diverged in their solution, and we
walkthrough some example cases in Section IV. Additionally,
we have carefully written a suite of unit tests for PACSOLVE.

c) Construct Validity: We evaluate MAXNPM’s relative
performance to NPM when optimizing for several different
objective criteria. However, it is possible that these criteria are
not meaningful to developers. For example, when comparing
MAXNPM and npm audit fix inreducing vulnerabilities,
we use the aggregate vulnerability scores (CVSS) to rank
the tools. However, in practice, these scores may not directly
capture the true severity of a vulnerable dependency in the
context of a particular application. MAXNPM does however
allow for potential customization of constraints to fit the devel-
oper’s needs. Future work should involve user studies, observ-
ing the direct impact of PACSOLVE-based solvers (including
MAXNPM, and implementations for other ecosystems) on
developers.

VII. CONCLUSION

We present PACSOLVE, a semantics of dependency solving
that we use to highlight the essential features and variation
within the package manager design space. We use PACSOLVE
to implement MAXNPM, a drop-in replacement for NPM
that allows the user to customize dependency solving with
a variety of global objectives and consistency criteria. Using
MAXNPM, developers can optimize dependency resolution
to achieve goals that NPM is unable to, such as: reduce the
presence of vulnerabilities, resolve newer packages and reduce
bloat. We evaluate MAXNPM on the top 1,000 packages in
the NPM ecosystem, finding that our prototype introduces
a median overhead of less than two seconds. We find that
MAXNPM produces solutions with fewer dependencies and
newer dependencies for many packages. For future work, we
hope to use PACSOLVE to build new dependency solvers for
other package managers as well.

VIII. DATA AVAILABILITY

Our artifact is available under a CC-BY-4.0 license [42]
and consists of 1) the implementations of PACSOLVE and
MAXNPM, 2) the Topl000 and Vuln715 datasets, and
3) scripts to reproduce our results. All of our code is also
available on GitHub [43], and MAXNPM can be easily
installed with npm install -g maxnpm.
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