
Software Engineering Education for the Next Generation:
SEENG 2023 Workshop Report

Stephan Krusche
Technical University of Munich

krusche@tum.de

Jonathan Bell
Northeastern University
j.bell@northeastern.edu

Bastian Tenbergen
SUNY Oswego

bastian.tanbergen@oswego.edu

ABSTRACT
The 5th International Workshop on Software Engineering Education for
the Next Generation was held on May 16, 2023 in Melbourne, Australia.
The workshop was part of the 45th International Conference on Software
Engineering. It specifically supported the general theme of “Educating
the Next Generation of Software Engineers”. Building on its
predecessors, the workshop used a highly interactive format, structured
around eight short paper presentations to generate discussion topics, an
activity to select the most interesting topics, and structured breakout
sessions. This enabled the participants to discuss the most interesting
topics in detail. Participants presented the results of the breakout sessions
using mind maps.

1. INTRODUCTION

Following the previous editions of the workshop, our goal in this 5th
edition was to continue to bring together key stakeholders that shape the
future education for aspiring software engineers. We wanted to discuss
the unique needs and challenges of software engineering education for
the next generation, including educators and representatives of STEM1
education.

We solicited papers addressing a variety of related topics:2 software
engineering education for new and emerging technologies; novel
approaches to designing software engineering curricula; skills and
continuing education for software engineering educators; classroom
formats that cater to diverse learning styles; teaching approaches that
leverage technology-enhanced education in software engineering
courses; balancing teaching of soft and hard skills; rigor and practicality
in software engineering education; experience in educating students in
software engineering programs.

The eclectic international committee, comprising 22 members from both
the academic and industrial realms of software engineering, hailed from
eight different countries. They conducted a tough selection process, in
which at least three reviewers reviewed each submission. They accepted
eight out of the 14 submitted papers, demonstrating a selective
acceptance rate of approximately 57 %. These accepted papers
encompass a broad range of topics, including project-based courses,
teaching design by contract, software testing methodologies, student
feedback mechanisms, assessment practices, and more.

The driving force behind this 5th edition was the aspiration to nurture and
expand a community passionate about and committed to educating future
generations. A group of 23 individuals participated in the workshop,
congregating onsite to exchange ideas, wisdom, and experiences, provide

1 STEM stands for science, technology, engineering and mathematics and refers
to any subjects that fall under these four disciplines.

2 The workshop website with the call for paper can be found online at the following
link: https://conf.researchr.org/home/icse-2023/seeng-2023

and receive guidance on teaching techniques, and seek potential
partnerships for fresh initiatives in software engineering education.

2. AGENDA

We based the workshop agenda on the structure and practices proposed
in designing interactive workshops for software engineering educators
[PED19]. With most participants attending locally and only a few
attending remotely, we offered a hybrid framework, including the use of
an online collaborative whiteboard platform called Miro.3

The workshop began with a brief introduction of all participants. This
was followed by a series of short presentations of accepted papers to
remind everyone of the problems identified and how others had solved
them. Short clarification questions initiated first discussions directly after
the presentation. To identify common interests, participants recorded
interesting findings from the presentations on virtual sticky notes in Miro.

Based on the insights gathered during the presentations, we performed an
affinity mapping activity to identify and select discussion topics. The
topics that emerged as of most interest to the participants were:

1. Grading and Assessment
2. ChatGPT and Large Language Models
3. Teaching Practices for Engagement and Critical Thinking

We closed the workshop with a retrospective and identification of future
action items. In the evening, participants discussed their opinions in the
workshop dinner.

3. PAPERS

Eight papers were accepted for publication and invited for presentation
at the workshop. These included two full-length 8-page papers and six
shorthand position papers, each four pages in length. The workshop was
held in person in Melbourne, Australia and online on May 16, 2023. The
accepted papers were presented in brief sessions. The majority of session
time was dedicated to discussion, questions, answers, and developing
new ideas together.

Topics were pleasantly diverse, varying in their level of technicality as
well as applicability in terms of SE courses. A key aspect of SE education
is teaching students quality. This takes many forms, e.g., code quality
[BW23], aesthetics [MF23], product quality and user-centeredness
[Pé23], but also process quality. For the latter, Ma and Lopes [HM23]
propose a code repository tool that automatically reads students’ commit
messages and suggests methods of improving them, specifically about
“what” was changed in the commit and “why” that change took place.

3 Miro is a digital whiteboard that makes it easy to collaborate with others:
https://miro.com

DOI: 10.1145/3617946.3617959
https://doi.org/10.1145/3617946.3617959

ACM SIGSOFT Software Engineering Newsletter Page 66 October 2023 Volume 48 Number 4

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3617946.3617959&domain=pdf&date_stamp=2023-10-17

Their results show a clear positive impact on perceived informativeness,
clarity, and level of detail.

Since the advent of user stories in software engineering, usability and
user-centered design are concerns no longer relegated for specialists, but
are at the forefront of every technical stakeholder in a SE team. To enable
students to write high-quality user stories, Cécile Péraire [Pé23] proposes
a template containing four Cs: Context, Card, Conversation, and
Confirmation. This template helps students specify the rationale as well
as success criteria for a user story just as much as additional information
background that goes with the feature expressed therein. Experimentation
revealed a strongly positive impact on students’ ability to write effective
user stories that meet stakeholder needs while at the same time fostering
innovative solutions.

A generically relevant issue impacting software quality is investigated by
Fedorova et al. in [MF23]. The authors maintain that aesthetics must play
a major role in SE education to the point of making it a specific curricular
learning outcome. In their position paper, the authors make a strong
argument for aesthetics being a key aspect of the perceived quality of a
software product and supply striking evidence from a student survey in
support of this argument. However, not only the external appeal of
software must be beautiful, a considerable number of respondents
attribute aesthetic appeal as a vital property of internal quality as well. In
other words: beautiful code may beget beautiful software.

Quality, of course, also depends to a large degree on correctness. While
correctness is easy to ascertain, learning how to achieve it can be very
challenging. To this end, Wanjiru et al. propose the notion of a generic
model to classify code into correctness levels [BW23] and apply it to
teaching students SQL. The key benefit of such an approach lies in
automatically differentiating student solutions to assignments that are not
quite perfect with regard to the kind of errors. By doing so, generically
applicable feedback patterns can be applied, thereby systematically
leading students to improve their queries and achieving higher levels of
correctness while feasibly reducing instructor effort.

Yet, quality is not merely limited to the outcomes of SE, but also expands
to how we teach SE. One successful way to do this is to employ
gamification. In [SHBB23], Speth et al. suggest a novel web-based
platform that implements gamification in SE education called Gamify-
IT. The particular benefit of such a platform is to remove the pedagogical
triviality of gamification which occurs when the instructor merely uses
“levels” and “scores” instead of assignments and grades. Rather than
planting a game-theme on a SE course, Gamify-IT allows students to
immerse themselves into roleplay, playing out software engineering tasks
in a virtual world using mini-games.

Other than gamification and aesthetics [MF23], another relatively novel
aspect instructors and students struggle with is the emergence of human-
like artificially intelligent agents like ChatGPT. Products like this may
offer new challenges in teaching, and learning software engineering and
cannot be ignored. Therefore, Neumann et al. [MN23] review grey
literature to leverage possible advantages and avenues to integrate AI-
based instruction into SE education to the benefit of both the students
(e.g., get feedback quickly and amply), and the instructor (e.g., be
supported with partial scoring of results).

The way we teach SE also largely impacts the quality of the products we
can expect future graduates to produce. Because of this, Ardic and
Zaidman make a strong case for integrating testing skills not just into
dedicated courses or letting aspiring professionals self-teach. In their
research paper [BA23], the authors investigate curricula of 100 highly
ranked universities and conducted a survey among practitioners into
where their knowledge of testing and quality assurance comes from.
Their results indicate that the earlier testing skills are included in a

students’ SE education, the stronger their skills to ensure high-quality
software products.

Another set of real-world considerations is proposed by Morrison and
Slankas in [PM23]. In their paper, the authors report on experiences from
project-based programming and software engineering instruction as a
core aspects of a novel, non-consecutive Master’s program aimed at
students with non-IT backgrounds (i.e., finance or economics). The
authors offer lessons learned based on results from offering such
instruction to small and large classes to over 100 students.

The workshop concluded with a collaborative session, where the
participants jointly created a mind map of topics that represent the needs
and requirements future software engineers need to address in the coming
decade.

4. DISCUSSIONS

Based on the presentations of these papers, we held a short mind-mapping
session as part of the session summaries to identify the main themes of
the papers presented. Participants divided themselves into working
groups to further discuss the selected topics, one group per topic.

For each theme, participants were asked to define a “big hairy audacious
goal,” that is, a very ambitious goal toward which future generations of
educators should work. Group participants created a mind map to
consider what success looks like and how to achieve the goal. Finally,
each group presented their mind map to the other workshop participants.

4.1 Grading and Assessment

The goal of the first breakout group was to consider how to structure
grading and assessment in software engineering classes so as to help each
student achieve their maximum potential. Assessment is critical to
understand learners’ progress, and to help identify gaps in knowledge
transfer. Particularly in the context of project-based software engineering
courses, designing effective assessments can be challenging. Figure 1
shows the results of the discussion in a mind map.

Much of the discussion focused on how to design assessments that help
students receive fast, reliable feedback. Instructors might rely on
different feedback mechanisms, considering self-assessment and peer-
assessment as effective techniques that are complementary to more
traditional means like TA/instructor grading and automated grading.
However the assessment is performed, participants agreed that there
should be a far greater prioritization on feedback over grading. One
approach for grading that was discussed for improving learning outcomes
focuses on putting feedback as the most important aspect, rather than the
precise numeric grade. Rubrics that sort student submissions into coarse
buckets (e.g. check, check plus, check minus) can reduce the time spent
assigning points and research has shown that this approach increases
student motivation and produces higher-quality work.

The discussion also considered what systemic barriers to improving
assessments in software engineering courses. Two key themes were
identified: 1) instructors do not have sufficient resources to provide
learners with fast, frequent and detailed feedback, and 2) institutions can
be slow to change and impose external barriers. As an example of an
institutional barrier: some participants noted that their institutions require
that students’ grades be ranked in a total order with no ties. At such an
institution, it would be impossible to implement a coarse-bucket grading
scheme, as no ties are permitted.

4.2 ChatGPT and Large Language Models

The discussions revolved around the application of large language
models, such as ChatGPT, in software engineering education.

ACM SIGSOFT Software Engineering Newsletter Page 67 October 2023 Volume 48 Number 4

Observations showed a considerable number of students intensively
utilizing, and at times over-relying on, artificial intelligence. However, it
became apparent that there was a disparity in students’ access to and
proficiency with these technologies. Figure 2 shows the results of the
discussion in a mind map.

The participants actively suggested that educators should incorporate
generative AI into their curriculums as an educational tool and advocate
for its responsible usage. They unanimously agreed that effectively
utilizing AI tools represents a significant part of the future of
programming and software engineering education. This necessitates a
comprehensive debate about the skills and competencies students will
need in the future.

Key discussions emphasized the importance of educating students on AI
tool utilization and fostering their ability to critically analyze the quality
of content generated by AI platforms such as ChatGPT. The group
proposed that students must use AI as a productivity-enhancing tool and
not merely rely on it.

Concurrently, the group recognized that students should retain their
ability to critically assess the quality of AI outputs. They further
recommended encouraging students to incorporate AI-provided solutions
into larger frameworks, rather than treating them as independent
solutions. The workshop concluded with a mutual understanding of AI’s
evolving role in education and a dedication to developing strategies that
responsibly and effectively empower students to leverage its potential.

4.3 Engagement and Critical Thinking

The discussion centered on the theme of “Learningverse”, which
advocates for an education system that is primarily powered by the
inherent drive of learners. It emphasized the creation of an environment
that fosters self-directed learning, thereby encouraging personal curiosity
and genuine interest in students. Another significant part of the

discussion focused on reshaping the traditional dynamic between
students and teachers. The participants shared the consensus that
educators should act as “coaches” rather than authority figures, fostering
an atmosphere of collaboration and shared intellectual exploration.
Figure 3 shows the results of the discussion in a mind map.

A crucial facet of the discourse was the role of community in the learning
process. Techniques were explored to encourage student engagement
within a communal setting, highlighting the benefits of peer-to-peer
learning and collaborative problem-solving. This dialogue transitioned
smoothly into the concept of “lean learning”, which champions broad,
interdisciplinary learning. The importance of nurturing intellectual
curiosity beyond academic confines was stressed, bringing to light the
potential of learning in a wide array of fields.

Appreciation for open-ended questions was another topic that garnered
significant attention. Participants underscored the need to teach students
to value ambiguity and complexity in intellectual discourse. This would,
in turn, encourage students to see the journey of exploration as a learning
opportunity in itself. Additionally, the group also tackled the paradigm
shift from numeric grading to curated portfolios in student assessment.
They were unanimous in their belief that portfolios provided a more
holistic representation of a student’s abilities, interests, and growth,
thereby empowering them to better chart their future paths.

The final parts of the workshop revolved around rethinking physical
learning environments and content delivery methods. Suggestions were
made to modify learning spaces to encourage collaboration, creativity,
and independent thinking. Likewise, participants shared various
approaches to delivering educational content to cater to diverse learning
styles. Techniques such as integrating technology, employing
experiential learning methods, and adopting multi-modal instruction
were among the strategies discussed. The workshop concluded with a
rich exchange of ideas and experiences, shedding light on the evolving
dynamics of modern education.

Figure 1. Mind map for discussion on Assessment and Grading.

Figure 2. Mind map for discussion on ChatGPT and Large Language Models.

ACM SIGSOFT Software Engineering Newsletter Page 68 October 2023 Volume 48 Number 4

4.4 Workshop Retrospective

The last activity of the workshop was a retrospective in which the
participants inserted their opinion on sticky notes in Miro. They provided
suggestions for the questions “What went well during the workshop?”,
“What went wrong and could be improved?” and “What should be the
next steps?”.

Positive feedback included the interactive format, interesting discussions,
and praise for the engaged participants. Diverse talks, great idea
generation, topic selection and informative presentations were helpful.
The use of mind maps in Miro was viewed positively. It was good to meet
again in person after many online meetings during the pandemic.

Suggestions for improvement included a desire for more time for
discussion, a discussion that the hybrid setup was tricky and a proposal
for using flip charts for note taking.

As for next steps, participants suggested starting collaborative projects
and writing blog posts to advertise their work. Authors should begin to
evaluate their ideas related to ChatGPT and have a special workshop on
the design of the future software engineering syllabus.

5. CONCLUSIONS

The feedback was consistently positive. Participants appreciated the
interactive workshop format, the use of the Miro collaboration tool, the
short presentations, and the opportunity to discuss with other participants
in an online workshop. The main suggestion for improvement involved
the use of onsite microphones for all participants, as remote participants
sometimes had difficulty hearing what was being said on-site. Action
items identified included using the workshop blog to present the results
of the breakout sessions and to summarize and promote the contributions.

The 6th International Workshop on Software Engineering Education for
the Next Generation will be part of the ICSE 20244 conference in Lisbon,
Portugal. Krusche, Tenbergen, and Bell will organize the successor
workshop keeping an interactive format with a strong focus on
discussions.

Acknowledgments. We want to thank all program committee members for their
work and selection of high-quality papers. We would also like to thank all
participants for attending the 5th edition of ICSE’s software engineering education
workshop. The workshop was a success thanks to your enthusiasm, active
participation, insights, and experiences.

4 https://conf.researchr.org/home/icse-2024/

REFERENCES

[BA23] A. Zaidman B. Ardic. Hey teachers, teach those kids some

software testing. In Proceedings of the 5th Workshop on Software
Engineering Education for the Next Generation, 2023.

[BW23] D. Hiemstra B. Wanjiru, P. van Bommel. Towards a generic

model for classifying software into correctness levels and its
application to SQL. In Proceedings of the 5th Workshop on
Software Engineering Education for the Next Generation, 2023.

[HM23] C. Lopes H. Ma. Improving the quality of commit messages in

students’ projects. In Proceedings of the 5th Workshop on Software
Engineering Education for the Next Generation, 2023.

[MF23] M. Mazmanian M. Fedorova, P. Dourish. Not just a matter of

style: Does aesthetics have a place in software engineering
curriculum? In Proceedings of the 5th Workshop on Software
Engineering Education for the Next Generation, 2023.

[MN23] E. Schön M. Neumann, M. Rauschenberger. “We need to talk

about ChatGPT”: The future of AI and higher education. In
Proceedings of the 5th Workshop on Software Engineering
Education for the Next Generation, 2023.

[PED19] Cécile Péraire, Hakan Erdogmus, and Dora Dzvonyar.

Designing interactive workshops for software engineering
educators. In International Workshop on Frontiers in Software
Engineering Education, pages 217–231. Springer, 2019.

[PM23] J. Slankas P. Morrison. “Work in the morning instead of

midnight” and other lessons learned in fintech 512. In Proceedings
of the 5th Workshop on Software Engineering Education for the
Next Generation, 2023.

[Pé23] Cécile Péraire. Learning to write user stories with the 4c model:

Context, card, conversation, and confirmation. In Proceedings of
the 5th Workshop on Software Engineering Education for the Next
Generation, 2023.

[SHBBB23] S. Speth, L. Hofmeister, U. Breitenbücher, and S. Becker.

Gamify-it a web-based gaming platform for software engineering
education. In Proceedings of the 5th Workshop on Software
Engineering Education for the Next Generation, 202

Figure 3. Mind map for discussion on engagement and critical thinking.

ACM SIGSOFT Software Engineering Newsletter Page 69 October 2023 Volume 48 Number 4

