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Many conventional stream network metrics are poorly suited to non-perennial streams, which can vary sub-
stantially in space and time. To address this issue, we considered non-perennial stream networks as directed
acyclic graphs (DAGs). DAG metrics allow: 1) summarization of important non-perennial stream characteristics
(e.g., complexity, connectedness, and nestedness) from both local (individual segment) and global stream
network perspectives, and 2) tracking of these features as networks expand and contract. We review a large
number of graph theoretic metrics, and introduce a new R package, streamDAG that codifies approaches we feel
are most useful. The streanDAG package contains procedures for handling water presence data, and functions for
both local and global analyses of both unweighted and weighted stream DAGs. We demonstrate streamDAG using

two North American non-perennial streams: Murphy Creek, a simple drainage system in the Owyhee Mountains
of southwestern Idaho, and Konza Prairie, a relatively complex network in central Kansas.
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1. Introduction

Non-perennial streams currently encompass more than half of the
global river network (Messager et al., 2021), and are receiving increased
attention from researchers and resource managers due to their
increasing spatial and temporal prevalence (Zipper et al., 2021), and
their strong effects on water quantity and quality (Datry et al., 2014). By
definition, non-perennial stream networks will vary in their spatial
extent, complexity, and hydrologic connectedness over time. Thus,
metrics for describing non-perennial streams must be amenable to
spatiotemporal dynamics while providing consistent summaries of net-
works and network components. These efforts, however, are hampered
by the lack of a consensus concerning the meaning of important
descriptive terms, including hydrological connectivity (Freeman et al.,
2007; Ali and Roy, 2009; Bracken et al., 2013), and a general research
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and monitoring focus on perennial over non-perennial streams (Krab-
benhoft et al., 2022). For example, many existing measures of hydro-
logical connectivity are spatially explicit but time invariant because of a
reliance on topography, slope, and drainage area. Examples include
lumped parameter basin models (Beven and Kirkby, 1979), the field
index of connectivity (Borselli et al., 2008), Hillslope-Riparian Stream
connectivity (HRS, Jencso et al., 2009), the network index (Lane et al.,
2009), and the Topographic Wetness Index (TWI, Sgrensen et al., 2006).
Several other common approaches, including Integral Connectivity
Scale Length (ICSL, Western et al., 2001) and its variants (e.g., subsur-
face and outlet ICSL, Ali and Roy, 2010) and autocorrelation-based
summaries (Knudby and Carrera, 2005; Ali and Roy, 2010), allow
tracking of stream network connectivity over time, but do not quantify
the relative importance of particular stream locations to whole-network
functionality.

As a potential alternative, one can consider stream networks from the
perspective of graph theory. This approach appears particularly useful
for representing non-perennial streams because it provides straightfor-
ward, standard graphical and numerical tools for the tracking of a non-
perennial stream network as its sections dry and potentially disappear.
That is, graph theoretic representations of non-perennial stream net-
works can vary over time. Additionally, graph theoretic methods allow a
broad array of global network level summaries as well as consideration of
the importance of local individual stream locations to the functioning of
the overall hydrologic networks.

Graph theory has been previously proposed as an important tool for
describing general geological processes (Phillips et al., 2015), quanti-
fying human impacts on the connectivity of marine and freshwater
systems (Saunders et al., 2015), and studying the spatiotemporal con-
nectivity of habitat mosaics in landscape ecology (Urban and Keitt,
2001), amphibian pond networks (Fortuna et al., 2006), and ephemeral
wetlands (Bertassello et al., 2021). Several recent papers have applied
graph theory perspectives specifically to stream networks. These include
the use of graph betweenness centrality to identify “critical” stream
network nodes (Sarker et al., 2019), the modelling of stream flow fluc-
tuations using directed visibility graphs in time series analyses (Ser-
inaldi and Kilsby, 2016), consideration of subsurface hydrologic
connectivity using a graph-theoretic framework (Zuecco et al., 2019),
conflating graph-theoretic and percolation theory perspectives to mea-
sure connectivity (Larsen et al., 2012), physics-guided graph models of
stream connectivity (Jia et al., 2021), the use of nested subgraphs for
measuring aquatic organism dispersal among stream reaches (Baldan
et al., 2022), probabilistic models for organismal connectivity based on
undirected graphs (Garbin et al., 2019), directed acyclic graph stream-
flow models with neural networks (Liu et al., 2022), and flow persis-
tence models in non-perennial stream networks (Botter and Durighetto,
2020).

As a response to this growing interest, we present a formal consid-
eration of non-perennial stream systems in the context of graph theory
as a guide for future researchers, and introduce a new software package
for the graph-theoretic analysis of non-perennial streams. We accom-
plish this over seven subsequent sections (Sections 2-8). In Section 2 we
define important graph theoretic terms and demonstrate the appropri-
ateness of directed acyclic graph representations of non-perennial
stream networks. In Section 3 we introduce the streanDAG R package,
and compare it to existing software. In Sections 4 and 5 we review a
large number of graph theoretic approaches for unweighted and
weighted directed acyclic graphs, respectively. Importantly, sections 4
and 5 contain tables that identify generally applicable metrics, recognize
methods that may be particularly useful, and provide example code for
streanDAG functions to obtain metric results. In Section 6 we use
streanDAG functions to describe and compare two non-perennial
streams with putatively distinct network characteristics. In Sections 7
and 8, we briefly discuss and summarize our work.
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Fig. 1. A series of DAGs representing a drying stream network over time. Nodes
are lettered and arcs are indicated with arrows indicating flow direction. The
stream dries from (a) all arcs (segments) present, to (b) five arcs absent, to (c)
ten arcs absent. Numbers in (a) are hypothetical probabilities of surface water
presence which could serve as arc weights in weighted graph analyses.

2. Non-perennial streams as DAGs
2.1. Definitions and terminology

A directed graph (digraph) is an ordered pair D = (N,A), where Nis a
set of nodes and A is a set of arcs that link the nodes. The order of a
digraph, also called the nodal cardinality, is the number of digraph nodes,
and is denoted as n = |N|, whereas the size of a digraph is the number of
arcs. The size of a digraph, also called the arc cardinality, is denoted m =
|A]. An arc from node u to node v is denoted uv. This specification de-
fines node u as the tail of UV and v as the head of Tv'. In a digraph we can
distinguish the indegree and outdegree of a node as the number of arcs
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with that node as head and the number of arcs with that node as tail. The
degree of a node is the sum of its indegree and outdegree.

Streams networks can be represented as digraphs, with streams
segments constituting arcs, bounded by nodes occurring at hydrologi-
cally meaningful locations, such as sensor sites, network confluences,
splits, sources, and sinks (Sarhad et al., 2014; Jin et al., 2019). Because
they are strongly driven by hydrological potentials resulting from fixed
elevational gradients, graphs that are most appropriate for describing
passive stream network characteristics such as transport and discharge,
will be both directed (with an orientation from sources to sink) and
acyclic, meaning the graph will contain no directed cycles (Fig. 1). A
directed graph cycle occurs when a directed path starts and ends at the
same node.

The directed acyclic graph (DAG) in Fig. 1a represents a fully-wetted
non-perennial stream network with 18 arcs (stream segments) and 18
nodes (stream point locations separating segments). Specifically, N =
{a,b,c,d,e,f,g h,ijklmnop,qr},andA = {E’,ﬁ,&a’,?,?,ﬁﬁ,?j’,
ik, jm , km, In, mi, 10, 0p’, fp, Pq s qF}. The graph is acyclic because
water can only flow downhill (in the direction of arc arrows). We also
note that all nodes have outdegree = 1 except for the sink node (out-
degree = 0), node i, where a split (island) occurs (as allowed in acyclic
digraphs), and that all nodes except those at sources and junctions have
indegree = 1. As is typical for stream networks, all confluence nodes in
Fig. 1a have indegree = 2.

A digraph is strongly connected if every node is reachable from every
other node. A digraph is weakly connected if every node is reachable after
replacing all oriented arcs with bidirectional links between adjacent
nodes. In a disconnected digraph, there will exist at least two nodes that
cannot be connected, even with bidirectional links. In a digraph repre-
senting nonperennial stream flow, there will be no bidirectional links.
Thus, these stream DAGs will never be strongly connected, and will
transition from weakly connected (Fig. 1a), to disconnected (Fig. 1b and

o).

2.2. The adjacency matrix

Graphs can be represented with an n x n adjacency matrix, A, whose
entries, A;, indicate that an arc exists from node i to j, with A; = 1, or
that there is no arc from i to j, with A; = 0. The adjacency matrix can be
used to describe many network characteristics. For instance, by applying
the definition of matrix multiplication, the i,j entry in A* will give the
number of paths in the graph from node i to node j of length k. As an
example, computation of A® for the adjacency matrix from the stream
network in Fig. la reveals two paths of length eight, both starting at
node g and ending at the sink node, r. The paths are: (g,i,j,m,n,0,p,q,r),
and (g,i,k,m,n,o0,p,q,r). Other, more complex, matrix representations of
graphs include the distance matrix, and the graph Laplacian and its
variants (see Newman, 2018).

2.3. Weighted graphs

Nuance and realism can be enhanced in stream DAGs by adding in-
formation to nodes and/or arcs in the form of weights. Weighting in-
formation particularly relevant to non-perennial stream DAGs includes
flow rates, instream lengths, probabilities of aquatic organism dispersal,
water quality components including nutrients or sediment (i.e., loading;
Maidment, 1996), upstream drainage area, and/or probabilities of sur-
face and subsurface water presence. Weights can be assessed alongside
the strictly topological relationships of nodes and arcs when describing
DAGs. For instance, in Fig. 1a, the junction nodes e and p both have

. = — —
indegree = 2 and outdegree = 1. However, for the arcs cé, de , ef and fp,
op, Pq we have the segment surface water probabilities: 0.2, 0.3, 0.2,

and 0.5, 0.2, 0.7, respectively (Fig. 1a). Viewing these numbers as arc
weights, we can sum the lengths of bounding arcs to obtain a weighted
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nodal measure called strength (Barrat et al., 2004). Node e has strength
0.7, and node p has strength 1.6, potentially emphasizing the impor-
tance of node p over node e.

2.4. Local versus global perspectives

Both unweighted and weighted graph-theoretic approaches for
describing stream DAGs can be separated into local measures that
describe the characteristics of individual nodes or arcs, and global
measures that summarize the characteristics of an entire digraph
network. Sections 4 and 5, which address unweighted and weighted
measures respectively, are each split into subsections to address these
distinct perspectives.

2.5. Additional considerations

While extensive, we acknowledge that our treatment of DAGs here is
intentionally simplistic and does not include all possible approaches. For
example, we do not consider the vast array of methods associated with
the detection of network community structures (e.g., spectral cluster
analysis; Newman, 2006). Thorough mathematical considerations of
digraphs and graphical networks are given in Bang-Jensen and Gutin
(2008) and Newman (2018), respectively.

3. The streanDAG package

This paper serves as a formal introduction to the streamDAG R
package (Aho et al., 2022), which allows visualization and analysis of
non-perennial stream networks from a DAG perspective. The streanDAG
package facilitates codification and modification of stream networks
using non-perennial stream node or arc presence/absence data, and
implementation of a wide variety of metrics appropriate for
non-perennial stream DAGs including local and global measures for both
unweighted and weighted graphs. The streanDAG package utilizes the
programming framework of the expansive graph theory package igraph
(Csardi and Nepusz, 2006) which can be run within R (R Core Team,
2022), Python, and Mathematica language environments (Igraph,
2022). The streamDAG package is currently maintained by the first
author of this manuscript. Along with conventional graph theoretic
approaches, the package contains functions not available elsewhere,
including visibility algorithms (Luque et al., 2009), and Bayesian models
for the probability of stream surface water presence in stream segments.
Posterior distributions for this probability allow Bayesian extensions to
Bernoulli stream length (Botter and Durighetto, 2020), and communi-
cation distance (see Aho et al., 2023), which are weighted DAG metrics
available in streamDAG.

3.1. Package installation and loading

Following installation of the R devtools package, for instance, by
typing: install.packages ("devtools")at the R command line,
the streamDAG package can be installed for Windows, MacOS, and
Linux/Unix-alike platforms from its GitHub repository using:

library (devtools)

install_github ("moondogl969/streamDAG")

And subsequently loaded, using simply:

library (streamDAG)

Installation and loading of the streanDAG package will result in
automatic installation and loading of the R igraph package, respectively.
The streamDAG package will be formally released to the Comprehensive
R Archive Network (CRAN) following publication of this manuscript.

3.2. Comparisons of the streamDAG package to existing R DAG software

Aside from igraph, a number of R packages have been previously
developed for DAG-like applications. For example, the package dagitty
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Table 1
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Local (generally nodal) unweighted graph metrics appropriate for stream DAGs. While all metrics listed are potentially useful for the analysis of non-perennial streams,
recommended metrics (those we have found to be particularly useful) are denoted “X” in column one.

Metric, M

Details

M applied to node p in
Fig. laandc, i.e.,
M(pa) and M(p)."

Type of summary

streamDAG code”
G = igraph graph object

Number of nodes that can reach i th node

Number of nodes reachable from the ith
node
Number of paths ending at the ith node

Number of paths beginning at the ith node

Size of the upstream network ending at
(draining into) the ith node

Alpha centrality of ith node (Katz 1953;
Bonacich and Lloyd,2001).

PageRank centrality of ith node (Brin and
Page, 1998)

Nodal betweenness centrality of ith node (
Freeman, 1977)

Arc betweenness of the kth arc (Girvan and
Newman, 2002)

Improved closeness centrality of ith node (
Beauchamp, 1965)

Visibility of the ith node to and from other
nodes

Strahler stream order (Strahler, 1957) or
Shreve stream order (Shreve,1966) of the ith
node or kth arc.

Descriptive statistics of upstream shortest
in-path lengths to the ith node
(recommended) or downstream out-path
lengths from the ith node; e.g., mean (%),
variance (s?), skew (g1), and kurtosis (g2).

Average in-efficiency (recommended) and
out-efficiency of the ith node (Latora and
Marchiori, 2001).

Descriptive statistics for indegree of nodes in
upstream in-paths (recommended) or
downstream out-path lengths for the ith

Largest for sink

Largest for sources

Largest for sink

Largest for sources

Largest for sink

See Eq. (1), and Newman (2018).
See details in Newman (2018).

Number of paths passing through the
ith node. See Eq. (2). May not accord
with user conceptions of centrality.
The number of paths that pass through
the kth arc. May not accord with user
conceptions of centrality.

See Eq. 3

See Luque et al. (2009). May be
difficult to calculate or conceptualize
in disconnected graphs.

See description in Section 4.1.4.

In-path statistics will be undefined if
the size of the upstream network is 0,
i.e., source or disconnected nodes.
Stream path maxima equal nodal
eccentricities.

Average of reciprocal distances.

In-path statistics will be undefined if
the size of the upstream network is 0,
i.e., source or disconnected nodes.

M(p,) =15 Nodal connectivity local.summary (G, "n.
M(p.) = nodes")

M(pa) = Nodal connectivity local.summary (G, "n.
M@p.) = nodes", "out")

M(p.) =17 Nodal connectivity local.summary (G, "n.

Nodal connectivity

Nodal centrality

paths")

local.summary (G, "n.
paths", "out")
local.summary (G, "size.
intact.in")

node; e.g., mean (%), variance (s2), skew
(€1), and kurtosis (g5).

M(p,) =18 Nodal centrality local.summary (G, "alpha.
M) = cent")
M(p,) =0.15 Nodal centrality local.summary (G, "page.
M(p.) = 0.64 rank")
M(ps) =30 M(p.) =2  Nodal betweenness local.summary
(G, "betweenness")
M(o‘p’ﬂ) 30 Arc betweenness local.summary (G, "arc.
M(O_p'C) -2 betweenness")
M(ps) =101.2 Nodal centrality, local.summary (G, "imp.
M(p.) =17.0 connectivity closeness")
M(p.) =4 Nodal importance multi.path.visibility (G,
M(p.) =0 source = "source.nodes",
sink = "sink.node")
Strahler: Node or arc stream.order (G,
M(pq) =3 nestedness "strahler", sink = "sink.
Mp:) =1 node")
Shreve: stream.order (G, "shreve",
M(pq) =4 sink = "sink.node")
Mp:) =1
M(p,): Nodal complexity, local.summary (G,
X =3.27 connectivity, and "path.len.summary")
s2 =1.92 topological nuance
M(p.):
x=1
2 =0
M(ps) =0.35 Nodal connectivity local.summary (G, "avg.
M(p;) = 0.059 efficiency")
M(pq): Nodal complexity, local.summary (G, "path.
x =1.87 connectivity, and deg.summary")
s2 =0.65 topological nuance
M(p.):
x=0
2 =0

@ As recommended, default in-path lengths were used for examples of path length summaries (row 13) and indegree was used for degree summaries (e.g., row 15).
b For R code: G = igraph graph object. “sink.node" = a text string naming the sink node in G, " source .nodes" = a character vector naming the source node(s) in
G. Most listed metrics can be obtained (for all nodes) simultaneously by typing: local.summary (G, "all").

(Textor et al., 2016), its graphics extension ggdag (Barrett 2023), and
dagR (Breitling et al., 2021) have been built primarily for the analysis
and plotting of causal diagram structures of variables, including struc-
tural equation models (Wright 1934). This usage, however, falls outside
of the scope of conventional graph theoretic considerations (e.g.,
Bang-Jensen and Gutin, 2008; Newman, 2018) and thus is distinct from
the functionality of streamDAG. The R packages shinyDAG (Creed and
Gerke 2018), DiagrammeR (Iannone 2022) and visNetwork (Almende
et al., 2022) have been built solely for the purpose of creating network
diagrams, and not for the quantitative analysis of DAGs.

3.3. General comparisons of streamDAG to existing stream network
software

The goal of quantifying stream network characteristics, including
network connectivity, has driven the publication of numerous computer
algorithms and software packages. These include, but are not limited to

the R packages rtop (Skoien et al., 2012), SSN (Ver Hoef et al., 2014),
riverconn (Baldan et al., 2022), riverdist (Tyers, 2017), and streamDepletr
(Zipper, 2020), the r.stream module (Jasiewicz and Metz, 2011) for the
GRASS open source Geographic Information System (GIS) platform
(GRASS Development Team, 2022), the Arc Hydro toolkit (Maidment
2002) for the commercial ArcGIS® platform, the River Tool Network
Toolkit (RivTool; Duarte et al., 2019), and the geostatistical connectivity
algorithm of Pardo-Iglizquiza and Dowd (2003), originally written in
FORTRAN, and later codified in MATLAB (Trigg et al., 2013). The
streamDAG package can be distinguished from these efforts in at least
two ways.

First, streamDAG algorithms codify graph theoretic metrics relevant
to non-perennial streams and classic surficial hydrological measures that
can be viewed in a DAG context. In contrast, the riverconn package
considers existing organismal dispersal connectivity metrics, with the
potential for bidirectional (non-DAG) links between adjacent nodes, and
with nodes as reaches and arcs as barriers or connections or splits, rather
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Table 2

Environmental Modelling and Software 167 (2023) 105775

Global metrics appropriate for stream DAGs. While all listed metrics are potentially useful for the analysis of non-perennial streams, recommended metrics (those likely

to be particularly useful) are denoted “X” in column one.

Metric, M

Definition, details

M applied to graphs
in Fig. laand ¢, i.e.,
M(G,) and M(G)."

Type of summary

streamDAG code”
G = igraph graph object

Graph diameter, generally = height of the sink
= in-eccentricity of the sink.
Graph order

Size

Number of source nodes and/or distinct stream
reaches connected to sink

Number of paths to sink

Global Strahler number (Strahler, 1957) or
global Shreve stream number (Shreve, 1966)

Descriptive statistics of shortest upstream in-
path lengths for the sink node (recommended),
or entire network, and/or shortest downstream
out-path lengths for the entire network; e.g.,
mean (X), variance (s?), skew (g;), and kurtosis
(g2)-

Descriptive statistics for the global indegree
(recommended) or outdegree distribution e.g.,
mean (X), variance (s?), skew (g1), and kurtosis

(&2).

Global efficiency (Ek et al., 2015)

Harary index (Plavsic et al., 1993)

Directed first and second Zagreb index (Gutman
et al., 1975)

Directed atom-bond connectivity (Estrada et al.,
1998)
Assortativity index (Newman, 2002)

(Ga)
The length of the longest (non-infinite) M(G,) =8 DAG complexity global.summary (G,
path. M(G,) =3 "diameter")
No. of nodes = n. M(G,) =18 DAG complexity global.summary (G,
M(G.) =18 "graph.order")
No. of arcs = m, i.e., the number of wetted M(G,) =18 DAG complexity global.summary (G,
stream segments. M(G.) =8 "size")
See Section 2.1 M(G,) =4 DAG complexity global.summary (G,
M(G.) =1 "n.sources", sink =
"sink.node")
See Section 2.1 M(G,) =19 DAG complexity/ global.summary (G,
M(G.) =3 connectivity "n.paths.sink", sink
= "sink.node")
Strahler or Shreve stream order of the sink Strahler: DAG complexity global.summary (G,
node. M(Gy) =3 and nestedness "strahler.num", sink
M(G:) =1 = "sink.node")
Shreve: global.summary (G,
M(Gy) =4 "shreve.num", sink =
M(G:) =1 "sink.node")
For descriptions of statistical estimators, see ~ M(Gq): DAG complexity, global.summary (G,
Aho (2014) x =4.82 connectivity, "sink.path.len.
' 2 =328 topological nuance summary", sink =
M(G.): "sink.node")
X =2
2 =1
One can consider the viability of DAG M(G,): DAG complexity, global.summary (G,
theoretical degree distributions including x=1 topological nuance "deg.summary")
random (Erdds and Rényi, 1959), chaotic ( s2 =0.44
Lacasa and Toral, 2010), or scale-free (Li M(G,.):
et al., 2005). x =044
2 =0.25
The mean of all pairwise nodal efficiencies, = M(Gq) = 0.13 DAG connectivity global.summary (G,
see Eq. (4). M(G:) =0.03 "global.efficiency")
See Eq. 5 M(Gq) =19.3 DAG connectivity global.summary (G,
M(G.) =5.3 "harary")
See Section 4.2.3. Will increase with both 1st Zagreb. DAG complexity global.summary (G,
path length and branching complexity. M(G,) =23 "fst.zagreb")
M(G.) =14 global.summary (G,
2nd 7agreb "scd.zagreb")

See Section 4.2.3. Will only increase with
increasing branching complexity.

The correlation of the in- or outdegree of arc
bounding nodes. The index will be
undefined in simple path networks. The
r(+,+) and r(+, —) bases are unlikely to be
useful in stream networks.

M(G,) = 3.54 DAG complexity global.summary (G,
M(G,) = "ABC")

r(+, —) DAG assortativity global.summary (G,
M(G,) = - 0.3 "assort.in.out")
M(G:) =0 global.summary (G,
r(—, +): "assort.in.in")
M(G,) = 0.17

M(G,;) = NaN

# As recommended, default in-path lengths were used for examples of path length summaries (row 7), and indegree was used for degree summaries (row 8).
b For R code: G = igraph graph object, “sink.node" = a text string naming the sink node in G. All listed metrics can be obtained simultaneously by typing:

global.summary (G, "all", sink = "sink.node") .

than arcs as stream segments. The RivTool toolkit generally focuses on
the physical and topographic relationships between rivers and their
surrounding basins based on GIS data, not stream networks as graph-
theoretic entities. This characteristic also distinguishes streamDAG
from the R package riverdist, which calculates instream distances using
GIS shapefiles, and the GIS toolkits Arc Hydro and r.stream, although
limited functional overlap occurs, including algorithms for stream order.
The SSN package is not concerned with graph theory or hydrologic
metrics, but with the development and application of stream-
appropriate spatial covariance structures, including those of Cressie
et al. (2006) and Ver Hoef et al. (2006), to allow the extension of spatial
statistical models to streams. The SSN framework has been expanded by
other authors to include, among other applications, Bayesian general-
ized linear models (the SSNbayes R package; Santos-Fernandez et al.,
2022). The package rtop (Skgien et al., 2012) uses covariance ap-
proaches other than those in SSN (see Skgien et al., 2006) for the same

purpose: to produce stream network spatial models. The focus of
streamDAG on surface flow networks is also very different from stream-
Depletr, which estimates potential pumping impacts on streamflow
based on inferred stream-aquifer connections (Zipper, 2020).

Second, streamDAG maintains a focus on non-perennial streams with
functions capable of incorporating water presence/absence data at
nodes and arcs. In contrast, riverconn connectivity metrics stress the
importance of physical barriers to streamflow, particularly anthropo-
genic dams, which are unlikely to occur in non-perennial streams. The
non-perennial focus of streamDAG is also distinct from the grid-reliant
geostatistical connectivity algorithm (Pardo-Iglizquiza and Dowd,
2003), which lends itself to analysis of remotely sensed floodplain im-
ages based on continuous grids (Trigg et al., 2013; Karim et al., 2015;
Chen et al., 2020).
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4. Unweighted measures for non-perennial stream DAGs

This section concerns unweighted streanDAG measures, i.e., metrics
that do not require or use ancillary arc or node weighting information.
Metrics under consideration include those appropriate for local stream
DAG perspectives (Section 2.1; Table 1), and those appropriate for
global analyses of stream networks (Section 2.2; Table 2).

4.1. Local measures

Local DAG measures summarize particular locations in a graph, e.g.,
individual nodes, arcs, and subgraph regions. These approaches
encompass a broad suite of potentially relevant characteristics for
stream networks including the importance of a location to network
function and integrity, and local connectedness, complexity, and
network nestedness.

4.1.1. Centrality

Possibly the most common and widespread measures of local
network importance are those that consider nodal centrality. Many
metrics of nodal centrality have been proposed, reflecting myriad per-
spectives on graph centrality (Bonacich, 1987). These include degree
centrality (i.e., the nodal degree), eigenvector centrality (Bonacich 1972,
1987), authority centrality (Kleinberg, 1999), closeness centrality, infor-
mation centrality (Brandes and Fleischer, 2005), and random walk
betweenness (Newman, 2005), among others (Borgatti, 2005). See Bor-
gatti and Everett (2006) for a mathematical classification of centrality
indices, Schoch and Brandis (2016) for unifying perspectives on these
measures, and Boldi and Vigna (2014) for a suite of centrality axioms.

Unfortunately, many conventional centrality approaches will be
uninformative, incalculable, or otherwise problematic when applied to
stream networks. For instance, in a stream DAG, degree centrality may be
largely invariant because all nodes in simple paths will have the same
degree centrality (because indegree = outdegree = 1), and, while nodes
at confluences joining two arcs may be common (indegree = 2), splits
may be rare. Eigenvector centrality, the corresponding entry in the prin-
cipal eigenvector of the graph adjacency matrix, extends degree cen-
trality by accounting for a node’s connection to nodes that are
themselves important (Newman, 2018). However, because the adja-
cency matrix of a directed graph will be asymmetric, it will have distinct
left- and right-hand eigenvectors. In analyses of stream DAGs, one might
use the right-hand principal eigenvector because centrality measures of
a node will then be based on upstream input nodes (Newman, 2018).
However, other problems arise, including the fact that source nodes,
which must have indegree zero, will drive all downstream nodes to have
an eigenvector centrality of zero (Newman 2018, pg. 162).

One solution to this problem is alpha or Katz centrality (Katz, 1953;
Bonacich and Lloyd 2001) which, following Newman (2018), is defined
for all nodes simultaneously by

x=(1I-ad)"'1, @

where [ is the n x n identity matrix, 1 = (1,1, ...,1) with n entries,
and « is a user-defined constant that allows weighting all nodes with a
small but nonzero amount of initial centrality. Many researchers define
a to be slightly less than the reciprocal of the primary eigenvalue
because such a number: 1) allows the computational convergence of Eq
1, and 2) results in an outcome similar to eigenvector centrality. The
streamDAG package utilizes the existing alpha centrality algorithm from
igraph, which uses @ = 1 by default. The PageRank metric (Brin and Page,
1998), is similar to alpha centrality, but ensures that the centrality of a
node is proportional to the centrality of the neighbors of the node
divided by their outdegree (Newman, 2018). Newman (2018, pg. 165)
describes methods for terms with outdegree zero. In stream DAGs, nodes
with larger alpha-centrality and PageRank outcomes can be viewed as
having greater influence and importance in the stream network.
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Nodal betweenness centrality (Freeman, 1977) measures how often a
node lies between other nodes. The nodal betweenness centrality of the
ith node has the form:

B= ZZ— @)

where i, is the number of shortest paths from node u to node v that
pass-through node i, and n,, is the total number of shortest paths from u
to v, which is at most one if there are no splits. In the case that n,, =
0 (and hence ni, = 0), the ratio is assumed to be 0. Thus, unlike other
centrality measures, nodal betweenness centrality does not necessarily
quantify how well-connected a node is, but measures of how often a
node falls between other nodes. Because of its unique conceptualization
of centrality, betweenness centrality may provide assessments of nodal
centrality in non-perennial streams distinct from other measures,
although this perspective may not accord with conventional conceptions
of hydrological connectivity and importance (cf. Terui et al., 2021). In
stream DAGs, nodal betweenness centrality will be highest at conflu-
ences or splits, and at locations near the middle of reaches, and lowest
for source and sink nodes, which will have a betweenness centrality of
zero. Betweenness centrality of arcs can also be calculated. Specifically,
arc betweenness centrality is the number of shortest paths that pass
through an arc (Girvan and Newman, 2002).

Closeness centrality (Bavelas, 1950) measures the mean shortest path
distance from a node to all other nodes. This metric is also poorly suited
to non-perennial stream networks because a DAG will not be strongly
connected and may be disconnected (Fig. 1), causing many conceptual
internodal distances to be infinite. To account for this, several modifi-
cations to closeness centrality have been proposed, including Lin’s index
(Lin 1976) and improved closeness centrality (Beauchamp, 1965).
Improved closeness centrality, also called harmonic centrality (Rochat,
2009), and valued centrality (Dekker, 2005), is based on the reciprocals
of nodal shortest path distances from the i th node to all other nodes, 1/
6ij where j #1i =1,2,...,n— 1. Specifically, the improved closeness cen-
trality for the i th node is:

1
C=(mn-1)> — 3)

i7 Ot

where, for disconnected nodes, the reciprocal of an infinite distance is
taken to be zero. In a stream DAG, a node will have high improved
closeness centrality if it has many adjacent neighboring nodes, and few
disconnected internodal relationships which will not contribute to the
summation in Eq. (3).

Boldi and Vigna (2014) evaluated the characteristics of 11 centrality
indices, including degree centrality, alpha-centrality, betweenness cen-
trality, Lin’s centrality, and improved closeness centrality with respect
to three well-reasoned axioms of centrality. Improved closeness cen-
trality was the only index that met the requirements of all three axioms.
Based on this assessment, and our own analyses of artificial and
authentic stream DAGs, we recommend the use of improved closeness
centrality over other local centrality measures for describing local
importance of nodes to overall network function in non-perennial
streams.

4.1.2. Summaries of paths and distances

The connectivity and importance of a stream node can be considered
by summarizing the distribution of its path lengths using conventional
descriptive statistics. Path lengths include the lengths of paths that end
at a particular node (in-path lengths) and path lengths that begin at a
particular node (out-path lengths). Thus, no in-paths will exist for source
nodes and no out-paths will exist for sink nodes. In the summarization of
stream DAGs, in-paths are likely to be of greater interest (and serve as
the default for relevant streamDAG functions) rather than out-paths. This
is because the former allows consideration of the capacity of a node to be
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an intermediate or final repository of upstream information (Newman
2018, pg. 162). For stream DAGs, it is reasonable to ignore nonexistent
upstream and disconnected paths (see discussion in Newman 2018, pg.
133).

The most common statistical summary of nodal path lengths is mean
path length (Albert and Barabasi, 2002). The connection of the ith node to
distant nodes will increase the ith node’s mean path length, emphasizing
its increased importance to the network. Additional node-level topo-
logical nuances may be revealed by other statistical measures, such as
the heterogeneity of path lengths (e.g., the variance) and the symmetry
and peakedness of path length distributions (e.g., the skew and kurtosis)
of a node. In these summaries, streanDAG calculates population vari-
ances. That is, for the ith node, s2 = n! Z}‘Zl (x; — %)%, where x; is the jth
path length for the ith node and X is the ith node path length population
mean. This approach is valid because the number of possible path
lengths for the ith node, n, is finite and defines the population size under
consideration (Aho 2014). Ignoring impossible (disconnected and up-
stream) paths allows computation of the eccentricity of a DAG node, that
is, the longest path distance between that node and all other nodes. The
maximum DAG in-path length to the ith node is the in-eccentricity of the
ith node (often called height), and the maximum DAG out-path length
from the ith node is the out-eccentricity of the ith node.

The reciprocal of the distance between nodes i and j defines their
efficiency (Latora and Marchiori, 2001). Reflecting the constraints of
improved closeness centrality, efficiencies based on infinite distances
are generally taken to be zero. In DAGs, in-efficiencies (based on in-paths)
will be distinct from out-efficiencies (based on out-paths), allowing cal-
culations of average in-and out-efficiency for individual nodes. The
former is the default for relevant streanDAG functions. Note that the
overall mean efficiency of the ith node (based on both in-efficiencies and
out-efficiencies) will be the improved closeness centrality of the ith node
(Eq (3)), times n(nﬂl) . As with improved closeness centrality, high mean
efficiencies will occur for stream nodes with many close neighbors and
few disconnected associations.

4.1.3. Visibility

Visibility graphs (Lacasa et al., 2008; Luque et al., 2009; Lacasa and
Toral, 2010) allow summaries of nodal importance based on the visibility
of nodes to other nodes within a sequential series. Specifically, nodes i
and j will be visible to each other if, when node data are plotted as
vertical bars (with bar heights designating nodal data outcomes), and
bars are placed along the abscissa based on some ordering of nodes in
the stream network, the tops of bars for nodes i and j can be connected
with a straight line, uninterrupted by other bars (see Lacasa et al., 2008;
Luque et al., 2009).

In a stream DAG, a node will always be visible from the node directly
upstream (and vice versa), regardless of data outcomes, and nodes with
larger data outcomes will be able to “see” more nodes and be “more
visible” to other nodes than those with smaller outcomes. One potential
source of nodal data for visibility graphs is the indegree or outdegree of
the nodes themselves. Under this approach, high degree nodes, located
at stream junctions or splits, and housed between long, simple paths,
will have high visibility and will block visibility of downstream nodes
from upstream nodes, and vice versa. The ordering of nodes is vitally
important to the calculation of visibility. Visibility functions in stream-
DAG order nodes by identifying all paths from each source node to the
sink and summing the all internodal node distances in each path. These
sums are then sorted decreasingly. Visibility constitutes a unique and
potentially useful method for quantifying nodal importance in stream
networks. However, straightforward methods for implementation in
disconnected streams are unclear and remain under development in
streamDAG.

4.1.4. Stream nestedness and hierarchy
Several topological measures of branching complexity specific to
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stream networks have been proposed under the name stream order, not to
be confused with graph order (the number of graph nodes). Strahler
stream order (Strahler, 1957) is a “top down” system in which first order
stream sections (and their associated nodes and arcs) occur at the
outermost tributaries. A stream section resulting from the merging of
tributaries of the same order will have a Strahler order one unit greater
than the order of the tributaries. That is, a stream section downstream of
a confluence of two first-order tributaries will be second-order. A stream
section resulting from the merging of tributaries of different order will
have the Strahler stream order of the tributary with the larger Strahler
number. Under Shreve stream order (Shreve, 1966), a stream section
resulting from the merging of tributaries will always have an order that
is the sum of the order of those tributaries.

Some considerations are necessary when using nodal stream order in
disconnected stream DAGs. One approach is to calculate stream order
only for nodes in the subgraph containing the sink. This is the method
used by the function stream.order () in streamDAG (Table 1). As an
alternative, one could define separate subgraphs for each disconnected
portion of the network and calculate nodal stream order summaries for
each subgraph.

4.2. Global measures

Global DAG measures allow consideration of a stream network in its
entirety. Statistical summaries (e.g., mean, median, variance) of local
metrics, including degree and path lengths provide one global approach.
For instance, the mean of all path lengths in a graph is a frequently used
global metric. Other global path length summaries include graph diam-
eter (the maximum eccentricity across all nodes) and the graph radius
(the minimum eccentricity across all nodes).

4.2.1. Global stream order

While rarely applied for this purpose, stream order can be used to
track changes in a stream’s network structure by only considering
network components with surface water presence, rather than the entire
channel network (Godsey and Kirchner, 2014). The global Strahler
stream or global Shreve stream order is the corresponding stream order
of the sink node, which will be the maximum nodal stream order of the
network (or the sink sub-network in disconnected stream DAGS).
Extending our suggestions for local DAG measures of nestedness in
Section 4.1.4, we recommend the use of stream order to describe and
track the global hierarchical structure of non-perennial streams
(Table 2).

4.2.2. Global efficiency

Global metrics that use sums of path distances, including the Wiener
index (Wiener, 1947) and the hyper-Wiener index (Randi¢, 1993), are
problematic for non-perennial stream DAGs, because as noted above,
distances between disconnected nodes (and distances from downstream
to upstream nodes) will be infinitely large. Several metrics, including
global efficiency (Ek et al., 2015), the Harary index (Plavsic et al., 1993),
and Balaban’s J-index (Balaban, 1982), address this problem by
considering scaled sums of nodal reciprocal distances, i.e., the nodal
efficiencies. The global efficiency of a digraph D is simply the mean of all
pairwise nodal efficiencies:

1
E(D):m Z €ij, (4)

1<i<j<n

where the efficiency between nodes i and j, for all i # j, is defined as
e;; = 1/6;;, where §;; is the distance from node i to node j in D. Global
efficiency is closely related to the Harary index:

Ho) =1 3 ey =""" V) )

Reflecting our recommendation of inverse distance metrics for local
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summaries (e.g., improved closeness centrality), we recommend the
Harary index and global efficiency as measures of global connectivity in
non-perennial stream DAGs (Table 2).

4.2.3. I(D) metrics

A large number of global DAG metrics relevant to non-perennial
streams share the same formulaic basis. Specifically, for an arc v €
A, denote the outdegree of u as df, and the indegree of v as d,, . Now, let
I(D) represent a general topopological index for a digraph, D, that de-
pends on d} and d,:

I(D):%Za)(d;,d;). (6)

UVeA

Four basic configurations of the function w in Eq (6) can be consid-
ered (Deng et al., 2022) where x is d} ord, and yis d; or d,.

1. If w(x,y) = (xy)?, then I(D) is the directed Randi¢ index for D if a = —
% (Randic, 1975), the directed second Zagreb index if @ = 1 (Gutman
et al., 1975), and the directed modified second Zagreb index if a = — 1
(Anthony and Marr, 2021).

2. If w(x,y) = (x+Y¥)“, then I(D) is the directed sum-connectivity index
for D if a = —% (Zhou and Trinajsti¢, 2009; Zhong, 2012), and the
directed first Zagreb index if @ = 1 (Gutman et al., 1975). Further, if
o(x,y) = 2(x+y)', then I(D) is the directed harmonic index of D
(Favaron et al., 1993).

3. Ifw(xy) = ”)’&’2, then I(D) is the directed atom bond connectivity of
D (Estrada et al., 1998).

4. If o(x,y) = VY then I (D) is the directed geometric-arithmetic index

3 (c+y)
for D (Vukicevi¢ and Furtula, 2009).

In Supplemental Materials S3 we provide reasons why only the x =
d;, y = d, variant (as given in Eq. (6)) should be used for describing
stream networks, and provide more thorough description of I(D) met-
rics, including graphical comparisons of the performance of the metrics,
and a mention of multiplicative forms of Eq. (6).

For the common case in stream networks of a digraph with no splits,
a straightforward computation of I(D) metrics is possible when using the
recommended d;', d; variant. Under this framework, metrics that follow
o(x,y) = (xy)’, including the directed Randi¢ index, will equal %Z?:’ll kg,
for a digraph with order n, where k; denotes d, for the ith arc w’, and
methods that follow w(x,y) = (x+y)%, including the directed sum-
connectivity index, will equal } ;‘:’11(1 + k;)“. Therefore, if a < 0, all
(xy)® metrics (including the directed Randi¢, and directed modified
second Zagreb indices) and all (x +y)”* metrics (including the directed
sum-connectivity) will decrease with increased branching complexity
(increasing numbers of arcs at joins) given fixed graph order.
Conversely, if @ > 0 these index families will increase with increased
branching complexity. It is also possible to verify that for fixed graph
order, the directed geometric-arithmetic index decreases with
increasing numbers of arcs at a join and that this trend is reversed for the
atom bond connectivity. For an unbranched path on n nodes the values
in configurations 1 and 4 specialize to "3! and the value in configuration
2 is (n — 1)2*71. Clearly, the directed atom bond connectivity numer-
ator, \/x+y — 2, will equal zero when arcs are part of an unbranched
path, causing the index summation to remain unchanged unless a join or
split occurs.

Based on this summary. and content in Supplemental Materials S3,
we recommend application of I(D) metrics using the df, d, basis and o >
0 under configurations 1 and 2 to describe global connectivity and
complexity in non-perennial stream DAGs (Table 2). Metrics using this
framework, including the directed first and second Zagreb indices will
increase with both increasing path length and increasing branch
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complexity in accordance with existing conceptions of hydrologic
complexity (Terui et al., 2021). Nonetheless, because these metrics
(along with many other DAG indices described here) can be made
arbitrarily large with the addition of user-defined nodes in paths, they
should only be used for tracking global changes in a single network with
node locations fixed over time, or for comparing multiple networks with
identical node designation criteria (see Section 7.3.1). We recommend
the use of atom bond connectivity to track branching complexity, in-
dependent of path lengths (Table 2).

4.2.4. Assortativity

Graph assortativity quantifies the prevalence of network arcs with
similar increasing or decreasing nodal indegree and outdgree patterns in
their bounding nodes. For example, a strongly nested stream network
with a high frequency of confluence nodes will have high assortativity
because arcs will often have upstream bounding nodes with outdegree 1
and downstream bounding nodes with indegree 2.

The definitive measure of graph assortativity is the assortativity co-
efficient, which is Pearson’s correlation of the degree of pairs of arc
bounding nodes (Newman, 2002). Let wv; € A define nodes and direc-
tionality of theith arc,i =1,2,3,...,m. Now, lety,z € { —, + } index the
degree type: — = in, + = out, and let (u}, v}), represent the y- and
7-degree of the ith arc. Then, the general form of the assortativity co-
efficient is:

3] — ) (o7~ 7)
rt)=m (@]

srsT

where @' and V" are the arithmetic means of the u! sand v/ s, i.e., W =
m~1 Y " u/, and s and s are the population standard deviations of the

. , P —7\2 . . .
u/ sand v s, e, s = /m 137, (W —7)". Reflecting considerations

given for I(D) metrics earlier, there are four possible forms to r(y, 7),
based on the indegree and outdegree designations of arc head and tail
nodes (Foster et al., 2010). Theseare:r(+, — ), r(—, +),r(—, —),and
r(+ , + ). The correlations r(+, +) and r(+, —) will rarely be finite for
stream networks because the outdegree of u will almost always be 1,
resulting in s* = 0. Given constraints of Pearson’s correlation, r(y, )
outcomes of zero indicate no assortative mixing, whereas positive or
negative values indicate assortative or disassortative mixing, respec-
tively. In stream DAGs, the correlations r(—, —) and r(—, +) will gener-
ally be disassortive because of the characteristic strong convergence of
stream paths from sources to sink (e.g., Fig. 1 in Foster et al., 2010) in
most stream networks.

5. Weighted measures for non-perennial stream DAGs

While purely topological measures may be useful for describing local
importance and global connectivity in stream DAGs, they will be
strongly affected by user-defined node designations and abstracted from
many important characteristics of stream networks. To increase DAG
realism (and potentially decrease the effect of topological biases), one
can attribute relevant weighting information to nodes and arcs, e.g.,
flow rates, stream segments lengths, etc. Weights can be incorporated
directly into several of the unweighted measures introduced in Section
4. A number of weighted methods described here were developed
outside the explicit realm of graph-theory. They are included because of
their prior use in describing stream networks and their straightforward
extendibility to a weighted digraph framework. As with non-weighted
stream DAGs, both local (Section 5.1) and global (Section 5.2) sum-
maries are possible for weighted stream DAGs.

5.1. Local measures

Weighted local graph metrics include strength centrality (Section
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Table 3
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Weighted local (nodal, arc, and subgraph) metrics. While all listed metrics are potentially useful for the analysis of non-perennial streams, recommended metrics (those

likely to be particularly useful) are denoted with “X” in column one.

Metric

Definition and details

Strength centrality of the ith node

Weighted alpha centrality of the ith

node

Length of the upstream network

ending at (draining into) the ith node,

in measured units, e.g., meters.
Statistical summary of weighted
upstream shortest in-path lengths
(recommended) or downstream
shortest out-path lengths for the ith
node; e.g., mean (X), variance (s2),
skew (g1), and kurtosis (g2).
Weighted visibility of the ith node

Sum of weights from arcs

adjoining ith node.
See description of
unweighted alpha-
centrality in Section

4.1.1. Highly sensitive to
weights.

Sum of length weights of
path arcs for a subgraph
rooted at the ith node.
In-path statistics will be
undefined if the size of
the upstream network is
0, i.e., source or
disconnected nodes.

See description of
unweighted visibility in

M applied to node p in Weights Type of streamDAG code” W = igraph

Fig. 1a and ¢, with summary weighted graph object. Arc weights

specified weights, i.e., can be set using E (W) $weight <-

M(pa(w)) and M(pcw))." c(wl, w2, ...)where wl and w2
are weights intended for the first
two arcs in W.

M(pow)) = 1.4 Any arc weights Nodal igraph: :strength (W)

M(Pcw) =1.2 importance

M(paw)) =1.98 Any arc weights Nodal local.summary (W, "alpha.

M) =15 importance cent")

M(paw)) =24 Arc lengths Nodal size.intact.to.node (W,

M(pcow)) =1.5 importance, node = "node.name")

connectivity

M(paw)): Arc lengths Nodal local.summary (W, "path.

X =49 importance, len.summary")

2 = 4.04 topological

M(pr(w) ) : nuance

x =15

2 =0

M(paw)) =9 Any node Nodal multi.path.visibility (G,

M(peaw)) =1 weights importance source = "source.nodes",

Section 4.1.3.

X  Average Bernoulli stream length (
Botter and Durighetto, 2020) of the
kth arc.

Probability of the
presence of surface water
at the kth arc times the
length of the kth arc.
Reciprocal probability of
the presence of surface
water at the kth arc times
the length of the kth arc.

X  Average communication distance (
Aho et al., 2023) of the kth arc.

M(0p y()) =045

M0 ) =75

sink = "sink.node", weigths
=wel)
Probabilistic arc
length nuance.

Arc probability
(of stream
activity) and arc
length

Arc inverse
probability (of
stream activity)
and arc length

bern.length(lengths, pa,
"local")

Probabilistic arc
length nuance.

bern.length(lengths, 1/pa,
"local")

@ For examples (column 4), weights are probabilities of stream segment surface water presence shown in Fig. 1a. Exceptions include measures requiring stream
length weights, including path length summaries (row 4). In this case, universal segment lengths of 1.5 units were applied. Average Bernoulli stream length and
average communication distance (rows 6 and 7) required both stream length (= 1.5) and probabilities of stream segment surface water presence (Fig. 1a). The average
probability of stream segment surface water presence for bounding arcs used for nodal weights for the weighted visibility metric (row 5). As recommended, default in-

path lengths were used for path summaries (row 4).

P For R code: W = igraph weighted graph object, "node .name" = name of node of interest, “sink.node" = a text string naming the sink node in w, " source.
nodes" = a character vector naming the source node(s) in W, wei = node weights, lengths = vector of instream arc lengths, pa = vector of probabilities of water

presence at arcs.

2.3), and other similar weighted variants of degree centrality (e.g.,
Opsahl et al., 2010), weighted alpha-centrality, and weighted path
length summaries (Table 3). Two important weighted graph measures
whose development was driven by non-perennial stream research are
mean Bernoulli arc length [i.e., arc length multiplied by the probability of
arc presence; Botter and Durighetto (2020)] and mean communication
distance [(i.e., arc length multiplied by the reciprocal probability of arc
presence; Aho et al. (2023)]. Local mean Bernoulli stream length mea-
sures the average length of an arc (stream segment) when considering
the presence of water at that arc as a Bernoulli random variable. Thus,
for the kth arc, this metric will increase and approach the actual length of
the segment as the probability for surface water presence approaches
one. Local mean communication measures the average effective length of
an arc for the transportation of water-borne materials, after accounting
for flow rarity. Thus, for the kth arc, this metric will decrease and
approach the actual length of the segment as the probability for surface
water presence approaches one.

Under an entirely different framing of stream graphs, one can define
each stream reach as an individual node and define an edge (undirected
link) between these nodes as a confluence or barrier or split between the
reaches (Baldan et al., 2022). Then it is possible to let p;; be the prob-
ability of organism dispersal or stream transport of materials from reach
i to reach j. Let wj represent a connectivity-related weighting value for
the jth reach, and let W be the sum of those weights over all [ reaches,

then the Reach Connectivity Index for the ith reach (RCI; Baldan et al.,
2022) can be defined as:

1
RCI, = o 8
/:124;1'[7 w ®
AsBaldan et al. (2022, Eq. 2.5) point out, an undirected edge ij can be
replaced by two oppositely directed (upstream and downstream) arcs to
which p;; and p;; can be assigned as potentially distinct probabilities,
resulting in a non-DAG framework. The RCI, along with numerous
variants, is codified in the riverconn R package (Baldan et al., 2022). A
large number of weighting approaches are possible for Eq. (8) that are
considered briefly in the next section and are considered thoroughly by
Baldan et al. (2022). Other local probabilistic metrics of stream con-
nectivity based on an undirected graph framework include the local
connectivity metric of Garbin et al. (2019).

5.2. Global measures

Several existing network-level connectivity metrics from the hydro-
logical literature can be viewed as weighted digraph measures. These
include Integral Connectivity Scale Length (ICSL): i.e., the average distance
between wet nodes in a stream network (Western et al., 2001; Ali and
Roy, 2010), average Bernoulli stream network length: i.e., the sum of
average Bernoulli arc lengths, and average network-level
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Table 4
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Weighted global metrics for stream DAGs. While all listed metrics are potentially useful for the analysis of non-perennial streams, recommended metrics (those likely to

be particularly useful) are denoted with “X” in column one.

Metric

Definition and details

M applied to

graphs in Fig. 1a

and c, under

specified weights,

i.e., M(W,) and
M(W,)."

Weights

Type of summary

streamDAG code”

W = igraph weighted graph
object. Arc weights can be set
using E (W) $weight <- ¢
(wl, w2, ...)where wl and
w2 are weights intended for
the first two arcs in w.

Integral connectivity Average distance connecting wet M(W,) = 6.53
scale length (ICSL) locations (i.e., weakly connected M(W,) = 2.56

DAG nodes) based on Euclidean

distances or hydrologic distances (

Ali and Roy, 2010). Includes

surface ICSL (Western et al., 2001),

and subsurface and outlet ICSL (Ali

and Roy, 2010).
Weighted Harary index ( See Egs. (4) and (5) Harary:
Plavsi¢ et al., 1993), M(W,) = 12.84
weighted global M(W,) = 3.56

efficiency (Ek et al.,

Global efficiency:

2015) M(W,) = 12.84
M(W,) = 3.56
Average strength See description for strength M(W,) = 0.66
centrality. M(W,) = 0.46
Average alpha-centrality ~ See description for unweighted M(W,) = 1.53
alpha-centrality. M(W,) =1.33
Weighted size of sink Weights of nodes for the sink- M(Wy) =27
subgraph associated graph or subgraph are M(W.;) =45
summed.
Average Bernoulli The sum of the arc lengths M(Wy) =27
network length (Botter multiplied by either corresponding ~ M(W,) = 12
and Durighetto, 2020) probabilities of surface water
presence or (for instantaneous
measures) corresponding binary
surface water presence/absence
outcomes.
Average network-level The sum of the arc lengths M(Wy) =27
communication distance  multiplied by either corresponding ~ M(W,) = c

(Aho et al., 2023)

reciprocal probabilities of surface
water presence or (for

instantaneous measures)
corresponding reciprocal binary
surface water presence/absence
outcomes.

Arc lengths or
Euclidean distances

Arc lengths (allowing
computation of
reciprocal distances)

Any arc weights

Any arc weights

Arc lengths

Arc surface water
probability (or stream
presence/absence
data) and length

Arc surface water
reciprocal probability
(or reciprocal stream
presence/absence

DAG connectivity
based on avg. distance
of weakly connected
nodes

DAG connectivity
based on reciprocal
distances of all nodes

DAG connectivity
based on weight sums
of arcs adjoining nodes
DAG connectivity

DAG connectivity,
complexity

DAG connectivity in
units of wetted
network length

DAG disconnectivity in
units of effective
network length, due to
intermittency

ICSL (W)

harary (W)
global.efficiency (W)

mean (igraph: :strength

(w))

global.summary (W,
"avg.alpha.cent")
size.intact.to.sink (W,
sink = "sink.name")

bern.length(lengths,
pa, "global")

bern.length(lengths,
1/pa, "global")

data) and length

@ For examples (column 4), weights are probabilities of stream segment surface water presence shown in Fig. 1a. Exceptions include measures requiring stream
length weights, including ICSL (row 1), the weighted Harary index, weighted global efficiency (row 2), and the weighted size of sink subgraph (row 5). In these cases,
universal segment lengths of 1.5 units were applied. Stream (arc) lengths are also required for average network Bernoulli stream length and average network
communication distance (rows 6 and 7), along with either probabilities or binary outcomes surface water presence/absence outcomes. The latter approach (repre-

senting instantaneous conditions) is used in the Table.

b For R code: W = igraph weighted graph object, "node .name" = name of node of interest, “sink.node" = a text string naming the sink node in w, "source.
nodes" = a character vector naming the source node(s) in W, wei = nodal weights, lengths = vector of instream arc lengths, pa = vector of probabilities of water

presence (or binary water presence/absence outcomes) at arcs.

communication distance: i.e., the sum of average arc communication
distances (Table 4). Multivariate Bernoulli outcomes representing sur-
face water presence at all arcs (1 = presence, 0 = absence) can be used in
the place of probabilities to track instantaneous Bernoulli network
length (cf. Durighetto and Botter, 2022). This approach is problematic
for communication distance because one or more arc surface water ab-
sences will result in infinite instantaneous network communication
distances (see Table 4).

Reverting to a reach-as-node perspective, the Reach Connectivity
Index (Eq. (8)) can be extended to a weighted global metric, the
Catchment Connectivity Index (CCI; Baldan et al., 2022):

9

Like RCI, CCI ranges from O to 1, where a zero indicates the absence
of connectivity and a one indicates maximum stream connectivity.

10

Additionally (like RCI), CCI indices generally describe dispersal con-
straints of aquatic animals capable of upstream travel (typically fish) in
the context of stream habitat fragmentation, and thus use an undirected
(non-DAG) framework.

Many CCI variants have been developed and are codified in the riv-
erconn R package (Baldan et al., 2022). These can be distinguished by
the types of weights used, and definitions of p;;. For instance, if weights
are based on reach lengths, then Eq. (9) can be viewed as the Dendritic
Connectivity Index (Cote et al., 2009; Jaeger et al., 2014), and if reach
volumes are used as weights then Eq. (9) is the volume-based river
connectivity index (Grill et al., 2014). Other CCI variants include the
population connectivity index (Angulo-Rodeles et al., 2021), and the
probability of connectivity (Pascual-Hortal and Saura, 2006). Other
probabilistic global metrics of connectivity based on an undirected
graph framework include path connectivity and the network connec-
tivity metric of Garbin et al. (2019).
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Fig. 2. Spatially explicit DAG representations of (a) the completely wetted
Murphy Creek network, and (b) the completely wetted Konza Prairie network.
Nodes occur at stream sensor locations. Note (user-controlled) northing exag-
geration in panels.

5.3. Bayesian extensions

Bayesian extensions to Bernoulli length and communication distance
are possible by viewing the probabilities of stream segment presence at
arcs as random variables. This approach is useful because it allows: 1)
explicit consideration of the potential variability and uncertainty in
designations of probabilities of surface water presence at both local at
global scales, and 2) inclusion of both current and prior information
concerning those probabilities. A complete statistical background for
these approaches is described in Aho et al. (2023). Briefly, given current
binomial data consisting of Bernoulli {0,1} stream presence outcomes
over n trials at the kth arc, and a beta-distribution prior for the proba-
bility of the presence of water at the kth arc, the conjugate posterior beta
distribution for the probability of stream surface water presence for the
kth arc can be expressed as:

O |xx ~BETA(w-n-lN7k+Zxk, a)~n<1 - 5k) +n fok) (10)

where o is the weight given to the prior relative to the current data, p; is
the mean of the prior beta distribution, describing prior degrees of belief
concerning the presence of surface water at the kth arc, and ) xy is the
number of binary successes (stream surface water presence outcomes) at
the kth arc, over n trials in the current data. The posterior distribution in
Eq. (10) is an inductive representation of the probability of stream
presence that acknowledges potential uncertainty in designation of this
probability (due, for instance, to seasonal and year-to-year climatic
variations), based on both current and previous information. Under
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Fig. 3. Wet nodes and deduced wet arcs (blue) are distinguished from dry
nodes (gray) at Murphy Creek for the timestamp: 8/9/2019 22:30.

linear transformation, multiplying the kth posterior for the probability
of stream presence by the kth stream length will provide the kth pos-
terior for Bernoulli stream length

The posterior distribution for the reciprocal probability of stream
presence for the kth arc will follow an inverse beta distribution (see Aho
et al., 2023) with the same parameters shown in Eq. (10). Multiplying
the kth posterior for the inverse probability of stream presence by the
kth stream length will provide the kth posterior for communication
distance, providing both global and local estimates for the propensity of
stream bottlenecking (Aho et al., 2023).

6. Application of the streamDAG package to authentic non-
perennial stream networks

As “real-world” applications for the streanDAG package, we
considered two non-perennial stream networks: Murphy Creek, and a
portion of the south fork of Kings Creek in Konza Prairie (hereafter
Konza Prairie for brevity). Murphy Creek is a simple network (two
sources and a single outlet) within the larger Reynolds Creek experi-
mental watershed in the Owyhee Mountains of southwestern Idaho, USA
(43.256° N, 116.817° W). Measures of surface water presence at Murphy
Creek were made at 25 nodes at 15-min intervals from March 6, 2019 to
10/3/2019. Surface water presence/absence was determined using
Onset HOBO Pendant/Light 64 K Datalogger UA002-64 resistivity sen-
sors and HOBO pressure transducers (see Warix et al., 2021). Bounding
nodes were added at two theorized stream source locations and the
network sink to encompass the entire length of the network. This
resulted in a final Murphy Creek network with 28 nodes and 27 arcs for
analysis (Fig. 2a). Konza Prairie is a relatively complex non-perennial
stream network in the northern Flint Hills region of Kansas, USA
(39.11394° N, 96.61153°W). Our depiction of the Konza Prairie network
required 46 nodes and 45 arcs, with nine source nodes and three major
reaches leading to the outlet node (Fig. 2b). Several non-perennial
stream graphs, including the complete Murphy Creek and Konza net-
works can be called using the streanDAG function streamDAGs.

6.1. Spatial plots

Spatial representations of stream DAGs can be obtained from the
streamDAG function spatial.plot () by applying node spatial co-
ordinates to a stream DAG object. (Fig. 2). Stream shapefiles, which may
capture stream segment spatial nuances (instead of arc directional ar-
rows), can also be used by spatial.plot() with some loss of
flexibility.
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Fig. 4. Local graph-theoretic summaries for the fully wetted Konza Prairie network using local.summary (). Metrics are standardized so that each has mean of
zero and unit variance. Nodes are organized along the x-axis from sources to outlet using the ordering approach for visibilities used by the function multi.path.

visibility (). Figure code can be found in Supplementary Materials S2.

data (mur_coords) ;
(2,1))

mur <- streamDAGs ("mur_full");
("konza_full")

spatial.plot (mur, mur_coords$long, mur_coordsS$Slat,
mur_coords$SObject.ID)

spatial.plot(kon, kon_coords$long,
kon_coords$Object.ID)

data (kon_coords); par(mfrow = c

konza <- streamDAGs

kon_coordsS$lat,

6.2. Tracking intermittency

Stream intermittency can be tracked using either node or arc pres-
ence/absence data. Below we create a new graph object, G1, consisting
of the subset of wet nodes at timestamp 8/9/2019 22:30 (time point
650), from the dataframe mur_node_pres_abs. We then call G1 to
make a new Murphy Creek graph using spatial.plot () (Fig. 3). Note
that arcs missing one or more wet bounding nodes are omitted by the
algorithm.

data (mur_node_pres_abs)

Gl <- delete.nodes.pa(mur, mur_node_pres_abs[650, ]
[,-11)

spatial.plot(Gl, mur_coordsS$long,
mur_coords$SObject.ID, xlab = "Longitude",
"Latitude", plot.dry = TRUE)

mur_coordsS$Slat,
vlab =

6.3. Unweighted DAG measures

A large number of local unweighted DAG metrics can be obtained
from the streamDAG function local . summary () (see Table 1). Fig. 4
summarizes nodal results for the complete Konza Prairie network
(Fig. 2b). Along the x-axis, nodes are ordered roughly from sources
(leftmost nine nodes) to the sink (rightmost node). The importance of
nodes at reach convergence points, e.g., A16, and the catchment outlet,
OUT, is particularly evident. Local metrics generally indicate an increase
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Table 5
Unweighted global summaries of the Murphy Creek and Konza Prairie networks.
Murphy Konza
Size 27.00 45.00
Diameter 25.00 14.00
Graph order 28.00 46.00
Sources 2.00 9.00
Mean a-centrality 14.29 7.37
Number of paths to sink 27.00 45.00
Sink path length summary
x 13.78 6.51
52 55.73 10.56
@ —0.11 0.25
2 ~1.29 ~0.66
DAG degree summary
x 0.96 0.98
52 0.11 0.37
@ ~0.75 0.01
2 7.69 ~0.19
Shreve number 2.00 9.00
Strahler number 2.00 3.00
First Zagreb index 28.00 53.00
Second Zagreb index 14.50 30.50
Atom bond connectivity 0.71 5.66
Harary index 40.86 53.89
Global efficiency 0.11 0.05
Assortativity: r(+, — ) —0.02 —0.20
Assortativity: r(— , +) 0.03 0.06

in nodal importance as distance to the sink decreases. An exception is
betweenness centrality which is highest for nodes in the center of rea-
ches, but lowest for the source and sink nodes. Note that standardized
responses from improved closeness centrality and mean efficiency are
essentially identical because of their shared reliance on reciprocal
distances.

Table 5 provides a global metric comparative summary for the
complete Murphy Creek and complete Konza Prairie networks using the
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Figure code can be found in Supplementary Materials S2.

global.summary () function. Specifically:

global.summary (streamDAGs ("mur_full"), sink =
"OUT")

global.summary (streamDAGs ("konza_full"), sink =
"SFMO01_1")

Comparison of results illustrates the greater complexity of the Konza
network through larger values for all metrics except mean upstream in-
path length and mean a-centrality. These latter values largely reflect
differences in node definitions, basin size, and density of sensor
placement.

It may be informative to track changes in global metrics (and local
metrics) over time. Fig. 5 shows a 100-point time series that spans the
entire 2019 sampling season at Murphy Creek (Fig. 2a). Over this period,
graphs were created to reflect presence or absence of water at Murphy
Creek nodes, and global metrics were calculated. Note that higher
scores, indicating higher network connectivity, occur for many of the
metrics (e.g., graph order mean a-centrality, the mean and the variance
of sink path lengths, first Zagreb index) during the spring and a re-wet
period during the fall. Exceptions include measures of dispersion
(network degree variance), symmetry (sink path length skew and degree
skew), and assortativity.
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6.4. Weighted DAG measures

As with unweighted metrics, it may be informative to track weighted
global (and local) metrics for non-perennial streams over time. In Fig. 6,
we calculate ICSL, intact stream length to the node, average alpha-
centrality, and the Harary index for Murphy Creek, after defining
instream lengths as arc weights. We consider these measures over time,
based on the stream node time series data in Fig. 5. All four metrics show
dramatic decreases in network connectivity from spring to summer, with
a connectivity uptick in the fall due to rewetting.

6.5. Bayesian applications

Bayesian extensions to Bernoulli stream length and communication
distance can be facilitated with the use of the streanmDAG function
beta.posterior (). As an example, assume that we wish to apply the
naive Bayesian prior, x ~ BETA(1,1), for the probability of stream
segment surface water presence at Murphy Creek, to all stream seg-
ments. Note that the distribution BETA(1,1) is equivalent to a contin-
uous uniform distribution in 0,1, and will have mean, E(6¢) = 0.5.
Assume further that we wish to give the priors 1/3 of the weight of
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Fig. 6. Global weighted (by arc instream lengths) network connectivity mea-
sures for Murphy Creek over time. Code for creating the figure can be found in
Supplementary Materials S2.

observed current binomial data outcomes (i.e., stream presence obser-
vations over n trials). The mur_arc_pres_abs dataframe contains
1000 multivariate Bernoulli datasets for Murphy Creek, one per row. For
demonstration purposes we arbitrarily use the first 10 rows of the matrix
mur_arc_pres_abs as an observed (current) multivariate binomial
data point. We have:

data <- mur_arc_pres_abs[1:10,]

b <- beta.posterior(p.prior =0.5, dat =data, length
=mur_lengths[,2], w=1/3)

The function beta.posterior () returns a list with values for
shape parameters for the beta posteriors for the probability of stream
presence used to create Fig. 7, and the inverse beta parameters for the
reciprocal probability of stream presence (Supplementary Materials S3,
Figs. S3-2).

7. Discussion

The spatiotemporal dynamism of non-perennial streams may not be
well represented by common metrics of stream network complexity and
connectivity, many of which are time invariant. Further, many existing
stream metrics do not consider the importance of individual stream lo-
cations to stream network functionality and stability. This deficiency is
particularly problematic in non-perennial streams because certain
stream locations (e.g., flow bottlenecks) may have inordinately large
effects on the entire network. These considerations served as primary
motivators for the selection and development of tools in the streamDAG
R software package.

Many measurement methodologies are possible if we consider non-
perennial streams as directed acyclic graphs. This approach allows
standardized graphical and numeric tracking of global stream network
characteristics, and consideration of the importance of both local stream
components (e.g., arcs and nodes), and global network characteristics,
as stream locations dry and the network changes. To explain and justify
the inclusion of particular metrics in streamDAG, we considered a large
number of graph theoretic methods for their potential usefulness in the
analysis of non-perennial streams. Notably, in Supplementary Materials
S1 we identify methods that are unlikely to be useful for this application.
We deem the latter contribution helpful given the confusing myriad of
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graph theoretic methods, many of which have been repeatedly “redis-
covered” under different names. We emphasize that streamDAG has been
developed to consider passive stream network processes that clearly fall
under a directed acyclic framework, e.g., streamflow, and stream-borne
solute transport (cf. Dodds and Rothman, 2000; Rinaldo et al., 2006).
We plan on reviewing potential graph-theoretic metrics for undirected
stream phenomena (e.g. bidirectional animal dispersal, hydrologic cy-
cles) in upcoming work.

7.1. Application of the streanDAG package

The practical usefulness of graph theoretic methods for the analysis
of “real world” systems has been demonstrated repeatedly. For instance,
Urban and Keitt (2001) used graph theoretic analyses to develop con-
servation approaches for the threatened Mexican Spotted Owl (Strix
occidentalis lucida), and Saunders et al. (2015) reviewed 42 publications
in which graph theory approaches were used to measure spatial con-
nectivity in aquatic ecosystems. In the recent analyses of stream net-
works, Baldan et al. (2022) identified unifying graph theoretic
frameworks underlying a large number of approaches used to success-
fully describe the dispersal of riverine organisms, and Botter and Dur-
ighetto (2020) used a DAG framework and the concept of Bernoulli
network length to effectively describe patterns of flow persistence of
headwater streams in the southern Alps.

We demonstrated streanDAG functions in the analysis of both toy
non-perennial stream examples (Fig. 1; Sections 2-5; Tables 1-4) and
authentic North American non-perennial streams (Section 6). In these
efforts, changes to local importance and global connectivity of networks
as a consequence of drying could be clearly tracked using streamDAG
graph-theoretic algorithms (e.g., Fig. 5). Objective inter-network com-
parisons are also possible using streamDAG algorithms (Table 5),
although care should be taken in node designation to facilitate unbiased
assessments (see Section 7.3.1 below). In other applications, our group
recently found that microbial diversity in the Konza Prairie water col-
umn was uncorrelated with conventional hydrological descriptors of
stream connectivity based solely on slope and drainage area (e.g., TWI),
but was strongly positively correlated with several simple nodal graph
theoretic metrics available in streamDAG, including alpha centrality,
improved closeness centrality, path number, path length variance, in-
eccentricity, and Shreve stream order (Supplemental Materials S3,
Figs. S3-3). This result suggests that Konza hydrologic connectivity
(measured using DAG perspectives) affects microbial community
composition and structure. Additionally, detailed Bayesian summaries
for Murphy Creek have been recently completed using streamDAG
functions for Bernoulli stream length and communication distance (Aho
et al., 2023).

7.2. Correlations of graph-theory measures

We observed varying but often strong correspondence in the as-
sessments of local and global metrics in the analyses of both artificial
stream graphs (Fig. 1), and the Konza Prairie and Murphy Creek net-
works (Figs. 2-7). The correlation of local centrality measures (e.g.,
closeness centrality, degree, eigenvector centrality, betweenness cen-
trality) has been considered previously (Valente et al., 2008; Batool and
Niazi, 2014; Li et al., 2015). These papers generally hold that correla-
tions of centrality measures are due to similarities in the formal defini-
tions of indices and, conversely, an absence of correlations between
indices is due to divergent conceptualizations of centrality (Schoch
et al., 2017). However, inconsistencies in some empirical findings and a
re-consideration of graphs with respect to their neighborhood inclusion
preorder indicate that underlying directed network structures may
strongly affect the strength of correlations among local centrality mea-
sures (see Schoch et al., 2017). Empirical assessments of the correlation
of global graph measures are largely lacking, although relevant ancillary
summaries are given in a number of papers including Foo et al. (2021).
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Fig. 7. Graphical summaries of posterior beta distributions representing the probabilities of stream surface water for Murphy Creek stream arcs from 06,/01,/2019 to
10/01/2019. Arc distributions are colored by their mean values (darker distributions have smaller means). Posterior means are overlain on the distributions with
dashed lines. Code for creating the figure can be found in Supplementary Materials S2.

7.3. Uncertainties and extensions

Our work considers surficial stream networks. In principle one could
consider both subsurface networks and subsurface to surface hydrologic
fluxes (e.g., vertical connectivity). This extension of graph theoretic
approaches to subsurface networks may be challenging given funda-
mental differences between surface water channels and groundwater-
sheds (Huggins et al., 2022), although see Zuecco et al. (2019). Stream
vertical connectivity has received less attention from hydrologists
compared to surficial connectivity due to the increased difficulty in
obtaining subsurface permeability and flowpath information (Xiao et al.,
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2021). While potentially useful, models of vertical connectivity, based
on subsurface reactive transport algorithms (Steefel et al., 2015), and
hillslope models (Hopp and McDonnell, 2009), remain largely limited to
time invariant perspectives (Xiao et al., 2021).

7.3.1. Nodal designations

Importantly, many stream DAG nodes and resultant arcs will be user-
defined, and discrepancies in their designation criteria will strongly
affect stream network topologies. As a result, node locations in stream
graphs should be consistent and/or hydrologically meaningful. For
instance, nodes could represent approximately equidistant points along



K. Aho et al.

stream paths and/or joins, splits, sinks, sources, or replicates of partic-
ular environmental conditions. Our group recently placed nodes within
nine non-perennial stream networks across the United States using a
stratified sampling/apportionment design (Aho, 2014), based on a priori
cutoffs of the Topographic Wetness Index (Beven and Kirkby, 1979)
derived from digital elevation models.

The effect of biased or otherwise sub-optimal node designations can
be moderated by applying reality-driven weights to arcs or nodes. For
instance, unweighted graph-theoretic in-path lengths for a node, v, can
be made arbitrarily large by simply adding more nodes to paths ending
in v. This undesirable effect, however, can be assuaged (at least with
respect to mean path length values) if arcs are weighted by their actual
field-measured lengths. Weighted graph approaches also allow the
incorporation of both structural (topological) and functional perspec-
tives when describing streams (Baldan et al., 2022). Thus, these mea-
sures will be superior to unweighted approaches when node-specific
information unrelated to topology is important in hydrological
investigations.

8. Conclusions

Many conventional stream network metrics may poorly describe the
spatiotemporal dynamism of non-perennial streams. To address this, we
considered the applicability of DAG metrics and created an R package,
streamDAG, for their implementation. The streanDAG package allows
igraph codification and modification of stream DAGs using non-
perennial stream presence/absence data, and application of a wide va-
riety of DAG-appropriate metrics including local and global measures for
both unweighted and weighted graphs. These include Bayesian exten-
sions to the Bernoulli stream length (Botter and Durighetto, 2020) and
communication distance weighted metrics (Aho et al., 2023). We
applied streamDAG functions to both artificial and real-world non--
perennial stream DAG networks and found that changes to local site
importance and network connectedness, complexity, and nestedness due
to drying could be tracked using codified approaches. Inter-network
comparisons are also possible although biases will occur if consistent
criteria are not used for the designation of nodes. We found the
streamDAG package to be useful in analyses, and believe that other
non-perennial stream researchers are likely to find it useful as well.
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