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ABSTRACT

The huge volume of emerging graph datasets has become a double-
bladed sword for graph machine learning. On the one hand, it
empowers a myriad of graph neural networks (GNNs) with strong
empirical performance. On the other hand, training modern graph
neural networks on huge graph data is computationally expensive.
How to distill the given graph dataset while retaining most of the
trained models’ performance is a challenging problem. Existing ef-
forts approach this problem by solving meta-learning-based bilevel
optimization objectives. A major hurdle lies in that the exact so-
lutions of these methods are computationally intensive and thus,
most, if not all, of them are solved by approximate strategies which
in turn hurt the distillation performance. In this paper, inspired by
the recent advances in neural network kernel methods, we adopt a
kernel ridge regression-based meta-learning objective which has
a feasible exact solution. However, the computation of graph neu-
ral tangent kernel is very expensive, especially in the context of
dataset distillation. In response, we design a graph kernel, named
LiteGNTK, tailored for the dataset distillation problem which is
closely related to the classic random walk graph kernel. An ef-
fective model named Kernel ridge regression-based graph Dataset
Distillation (KiDD) and its variants are proposed. KiDD shows high
efficiency in both the forward and backward propagation processes.
At the same time, KiDD shows strong empirical performance over
7 real-world datasets compared with the state-of-the-art distilla-
tion methods. Thanks to the ability to find the exact solution of
the distillation objective, the learned training graphs by KiDD can
sometimes even outperform the original whole training set with as
few as 1.65% training graphs.
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1 INTRODUCTION

Graph datasets are indispensable parts of any graph machine learn-
ing and graph mining tasks ranging from fraud detection on fi-
nancial systems [55], and fake account detection on social net-
works [20], to drug discovery in bioinformatics [24]. Graph neural
networks (GNNs), as a family of powerful graph machine learn-
ing tools, are becoming critical modules in many graph machine
learning systems due to their flexibility and strong expressiveness.

However, similar to other neural network methods, training
GNNs with higher model expressiveness usually requires graph
datasets with increasing volume [21, 37] and accordingly more
intensive computation resource consumption. This limitation nat-
urally leads to a question: How can we find small, synthetic yet
informative datasets to train GNNs with a competitive performance
against GNNs trained on large graph datasets?

The inquiry into the above question has incubated an emerging
area named dataset distillation (DD) [5, 46] or dataset condensa-
tion (DC) [57]. The core idea of the existing DD or DC methods
is to approach the problem under the umbrella of meta-learning
and formulate it as a bilevel optimization problem [6]. Specifically,
their lower-level problems have training objectives of fitting the
synthetic datasets, while the upper-level optimization aims to find
the proper synthetic datasets. A variety of settings have been ex-
plored for the upper-level problem. For example, Wang et al. [46]
set the upper-level problem as the validation loss over the given
large dataset; Zhao et al. [57] design a gradient matching loss as the
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upper-level problem between the gradients on the original dataset
and on the synthetic dataset.

The vast majority of the existing works on DD or DC are for
tabular data and image data. DD/DC on graph datasets has not been
well-studied due to the complex graph structure. To the best of our
knowledge, the only graph-level (i.e., a graph is viewed as a data
point) dataset distillation work is DosCond [26], which adopts the
aforementioned gradient matching strategy [57]. To overcome the
huge computation cost for solving the bilevel optimization problem,
DosCond [26] proposes a fast but aggressive approximation of the
gradient matching loss [57], which only matches the gradients of
graph classifiers at initialization. Therefore, there exists unexplored
space for performance improvement from the inexact solution of
the distillation objective, which is one of our main foci.

Different from previous works, this paper aims to obtain the exact
solution of the bilevel dataset distillation objective while maintain-
ing computational tractability. To avoid the heavy computation of
the bi-level optimization problem, we select kernel ridge regression
(KRR) as the classifier whose prediction has a closed form. For im-
plementing KRR on graph-level tasks, a graph kernel is required.
Our work selects the recent graph neural tangent kernel (GNTK) [9]
for the KRR graph classifier because GNTK describes the training
dynamics of GNNs [9]. We name the proposed method Kernel ridge
regression-based graph Dataset Distillation (KiDD).

However, due to the inevitable computational intensity of GNTK,
naively connecting it with KRR results in low efficiency. To obtain a
practically efficient dataset distillation method, we propose a series
of novel enhanced designs. A simplified version of GNTK, LiteG-
NTK, is developed by removing non-linear activations at certain
layers. This LiteGNTK is able to avoid heavy matrix multiplications
during the iterative update of the synthetic graphs. By exploiting
the close relationship between LiteGNTK and random walk graph
kernel [28, 29], we further propose a fast low-rank KiDD variant
(KiDD-LR) that boosts the efficiency further. To handle cases where
discrete graph topology is required, another variant named KiDD-
D is proposed by applying the Gumbel-Max reparameterization
trick [23, 36] into our fully differentiable model KiDD.

In comprehensive experiments, our KRR-basedmodelKiDD shows
very strong empirical performance over 7 real-world datasets com-
pared with the state-of-the-art methods. In addition, the efficiency
study shows our proposed KiDD enjoys comparable efficiency to
DosCond, an approximate solver of the distillation objective. In
general, the contributions of this paper are summarized as follows,
• Distillationmethod.Wepropose the LiteGNTK ridge regression-
based distillation objective function, which has a feasible exact
solution. This distillation method is named KiDD.
• Model enhancements. We investigate a series of model en-
hancements specifically designed for the graph dataset distil-
lation scenario to speed up the computation and expand the
functionality. As a result, two practically efficient variants of
KiDD (i.e., KiDD-LR and KiDD-D) are proposed.
• Empirical evaluation.We conduct extensive experiments on
7 real-world datasets in terms of effectiveness and efficiency.
Results show that KiDD-LR and KiDD-D outperform the state-
of-the-art methods significantly and, impressively, with as few
as 1.65% of the number of training graphs, our methods can even

outperform the original whole dataset under certain settings.
Also, KiDD-LR and KiDD-D show sufficient efficiency, compa-
rable to or even faster than the current SOTA graph dataset
distillation method, DosCond.

2 PROBLEM DEFINITION

This section introduces the main notations used throughout this
paper. After that, a brief introduction to graph neural networks
(GNNs) and graph neural tangent kernel (GNTK) is presented. Then,
a formal problem definition is provided.

2.1 Notations

We use bold letters for matrices (e.g., A) and column vectors (e.g., u).
We use [] as the indices of matrices/vectors. E.g., A[𝑖, 𝑗] represents
the entry of matrix A at the 𝑖-th row and 𝑗-th column. Superscript
⊤ denotes the transpose of matrices/vectors. We use appropriate
subscripts to denote the properties of nodes, graphs, and a set of
graphs. For example, h𝑢 is the representation of node 𝑢,VG is the
node set of the graph G, and yT is the labels of a graph set T . All
the synthetic/distilled graphs and their components are accented
with tildes. For example, we notate a synthetic graph as G̃ = {Ã, X̃}
where Ã and X̃ are its adjacency matrix and node feature matrix,
respectively. The main notations are presented in Table 1.

2.2 Graph Neural Network

The primary operations of GNNs are as follows.
Aggregate. To update the node representation of node 𝑢, the repre-
sentations of node 𝑢’s neighbors are aggregated by the aggregate
function. A typical aggregate function, the summation (with a re-
scaling factor of the node 𝑢, 𝑐𝑢 ), is h𝑢 ← 𝑐𝑢

∑
𝑣∈N𝑢∪{𝑢} h𝑣 , where

the common choice of N𝑢 is 𝑢’s 1-hop neighbors.
Update. The representation of a node 𝑢 can be updated by the
update function. A simple example is a fully-connected layer with
element-wise non-linearity𝜎 (e.g., ReLU [17]) as h𝑢 ← 1√

𝑚
𝜎 (Wh𝑢 ),

where the𝑚 is the output dimension of the Wh𝑢 .
Readout. For the graph-level tasks, the graph representation is
aggregated over all the nodes in a graph G by the readout function.
A typical readout function, the summation, is hG =

∑
𝑣∈VG h𝑣 .

GNN variants on graph-level tasks are usually composed of mul-
tiple aggregate and update operations and end with an readout
operation.

2.3 Graph Neural Tangent Kernel

Graph neural tangent kernel (GNTK) [9] is a graph kernel that
describes infinitely wide multi-layer GNNs trained by gradient
descent through the squared loss. Concretely, the tangent kernel of
a GNN 𝑓 is presented as

𝐾𝜽 (G,G′) =
〈 𝜕𝑓 (𝜽 ,G)

𝜕𝜽
,
𝜕𝑓 (𝜽 ,G′)

𝜕𝜽

〉
, (1)

where 𝜽 denotes the set of trainable parameters of the GNN. If
the width of the GNN is infinite (i.e., 𝑚 → ∞) and every train-
able parameter is an i.i.d. Gaussian random variable, the expec-
tation of the above tangent kernel can be explicitly computed as
𝐾GNTK (G,G′) [9] and it is named GNTK. Du. et al [9] provide a
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Table 1: Symbols and Notations.

Symbol Definition

G graph
VG node set of the graph G
A adjacency matrix
X node feature matrix
𝑦 graph label
T target graph training set
S synthetic graph training set
𝑛T number of target graphs
𝑛S number of synthetic graphs
yT label vector of the graph set T
yS label vector of the graph set S

recipe to translate the computation of GNN on node representa-
tions from a graph G into the computation of GNTK on a node
covariance matrix from a pair of graphs G and G′.

Given the graph pair G and G′ with their node setsVG andVG′ ,
for a pair of nodes 𝑢 ∈ VG and 𝑢′ ∈ VG′ , if we slightly abuse the
𝑢 and 𝑢′ as the indices of the matrix, the initial covariance matrix
ΣG,G′ and the initial GNTK matrix ΘG,G′ can be computed as

ΣG,G′ [𝑢,𝑢′] = ΘG,G′ [𝑢,𝑢′] = x⊤𝑢 x𝑢′ , (2)

where x is the raw node feature. Then, the aggregate operation is
translated by the GNTK recipe as

ΣG,G′ [𝑢,𝑢′] ← 𝑐𝑢𝑐𝑢′
∑︁

𝑣∈N𝑢∪{𝑢}

∑︁
𝑣′∈N𝑢′∪{𝑢′ }

ΣG,G′ [𝑣, 𝑣 ′] (3a)

ΘG,G′ [𝑢,𝑢′] ← 𝑐𝑢𝑐𝑢′
∑︁

𝑣∈N𝑢∪{𝑢}

∑︁
𝑣′∈N𝑢′∪{𝑢′ }

ΘG,G′ [𝑣, 𝑣 ′] (3b)

The update operation is translated in the following steps

ΛG,G′ [𝑢,𝑢′] =
( ΣG,G [𝑢,𝑢] ΣG,G′ [𝑢,𝑢′]
ΣG′,G [𝑢′, 𝑢] ΣG′,G′ [𝑢′, 𝑢′]

)
, (4a)

¤ΣG,G′ [𝑢,𝑢′] = E(𝑎,𝑏 )∼N(0,ΛG,G′ [𝑢,𝑢′ ] ) ¤𝜎 (𝑎) ¤𝜎 (𝑏), (4b)
ΣG,G′ [𝑢,𝑢′] ← E(𝑎,𝑏 )∼N(0,ΛG,G′ [𝑢,𝑢′ ] )𝜎 (𝑎)𝜎 (𝑏), (4c)

ΘG,G′ [𝑢,𝑢′] ← ΘG,G′ [𝑢,𝑢′] ¤ΣG,G′ [𝑢,𝑢′] + ΣG,G′ [𝑢,𝑢′], (4d)

where ¤𝜎 (·) is the derivative of ReLU. Finally, the readout operation
is translated as follows, which computes the final GNTK value
between the graph pair G and G′

𝐾GNTK (G,G′) =
∑︁

𝑢∈VG ,𝑢′∈VG′
ΘG,G′ [𝑢,𝑢′] . (5)

To be self-contained, the exact computation of Eq. (4b) and
Eq. (4c) proposed by [3, 9] is provided in Appendix.

2.4 Graph Dataset Distillation

In this paper, we study the dataset distillation problem for graph
classification tasks. Specifically, we aim to synthesize a small num-
ber of informative graphs to empower the training of graph classi-
fiers. The problem is formally defined as follows.

Problem 1. Graph dataset distillation
Given: a set of target training graphs T = {(G𝑖 , 𝑦𝑖 )}𝑛T−10 .

Find: a set of synthetic training graphs S = {(G̃𝑖 , 𝑦𝑖 )}𝑛S−10 such that
the GNN trained over S can obtain competitive performance with
GNN trained over T .

The overall procedure is two-step. First, a distillation method
(including a distillation classifier, introduced in Section 3) is ap-
plied to synthesize S from T . Then, a downstream classifier is
trained over S and reports its performance on a test setU which
has no overlap with S or T . The downstream classifier’s test per-
formance is the metric of the distilled training set S, and in this
paper, the downstream classifier is selected from graph-level GNNs
(e.g., GIN [50]) and will be introduced in detail in Section 4.

3 PROPOSED METHOD

This section introduces the objective formulation, the proposed
model (KiDD), and the corresponding enhancements.

3.1 Optimization Objective

An ideal distilled graph dataset S for the target graph dataset T
should minimize the following optimization objective.

min
S

|EUL(U, 𝑓 (𝜽 ∗S)) − EUL(U, 𝑓 (𝜽
∗
T )) |, (6a)

s.t. 𝜽 ∗S = argmin
𝜽
L(S, 𝑓 (𝜽 )), (6b)

𝜽 ∗T = argmin
𝜽
L(T , 𝑓 (𝜽 )), (6c)

whereU is the test set sampled from the true graph distribution.
The above formula suggests the graph classifiers trained on the
target dataset (i.e., 𝑓 (𝜽 ∗T ) from Eq.(6c)) and on the synthetic dataset
(i.e., 𝑓 (𝜽 ∗S) from Eq.(6b)) should have similar expected test loss (i.e.,
Eq. (6a)). Notice here the graph classifier 𝑓 is for the distillation
purpose, i.e., synthesizing the dataset S. Thus, we name 𝑓 as the
distillation classifier in this paper. Naturally, Eq. (6a) implies the
best choice of the distillation classifier 𝑓 should be the same as the
downstream classifier. That is because, if the downstream classifier
is 𝑔, the test error EUL(U, 𝑔(𝜽 ∗S)) is minimized when 𝑓 = 𝑔,
considering (1) |T | ≫ |S| and (2) empirically, EUL(U, 𝑓 (𝜽 ∗S)) ≥
EUL(U, 𝑓 (𝜽 ∗T )).

However, as the true graph distribution is not accessible, a fea-
sible optimization goal is to replace the unknown test setU with
the large target training set T as follows.

min
S

|L(T , 𝑓 (𝜽 ∗S)) − L(T , 𝑓 (𝜽
∗
T )) |, (7)

where 𝜽 ∗T and 𝜽 ∗S are from Eq. (6c) and Eq. (6b). As the 𝜽 ∗T is the
minimizer over the L(T , 𝑓 (𝜽 )), to minimize Eq. (7), our objective
is equivalent to minimizing L(T , 𝑓 (𝜽 ∗S)). The objective function
can be re-written as follows,

min
S

L(T , 𝑓 (𝜽 ∗S)), (8a)

s.t. 𝜽 ∗S = argmin
𝜽
L(S, 𝑓 (𝜽 )), (8b)

which can be interpreted as finding a synthetic training set S such
that the trained model 𝑓 (𝜽 ∗S) overS has a small loss over the valida-
tion set T . The above objective is a bilevel optimization problem [6]
whose exact solutions [12, 13, 34, 35, 41, 44] is computationally ex-
pensive or even intractable, especially when the objective functions
are not convex. Thus, even though the best distillation classifier 𝑓 is
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the downstream GNN classifier itself, its non-convex optimization
objective makes the distillation problem costly to be solved. In this
paper, we resort to a kernel-based method that renders a tractable
and exact solution to the above objective function.

3.2 Graph Kernel Ridge Regression

To avoid the expensive hyper-gradient computation of the bilevel
optimization problem, a strategy is that if the lower-level problem
has a closed-form solution, plugging the lower-level solution into
the upper-level objective can largely simplify the optimization ob-
jective [33, 39] into a single-level problem. Kernel ridge regression
(KRR) can yield such a closed-form solution. If 𝑓 is instantiated as
the KRR and the squared loss is applied, the Eq. (8a) and Eq. (8b)
can be instantiated as

min
S

LKRR =
1
2 | |yT − KTS (KSS + 𝜖I)

−1yS | |2, (9)

where 𝜖 > 0 is a KRR hyper-parameter,KTS andKSS are the kernel
matrices. E.g.,KTS [𝑖, 𝑗] = 𝐾 (G𝑖 , G̃𝑗 ), KSS [𝑖, 𝑗] = 𝐾 (G̃𝑖 , G̃𝑗 ), G𝑖 ∈
T , G̃𝑖 , G̃𝑗 ∈ S with 𝐾 as a specific kernel function (e.g., random
walk graph kernel [28, 29]). yT and yS are the concatenated graph
labels from T and S.

However, there are two concerns about the above optimization
objective. First (model gap), in terms of expressive power and empir-
ical performance, GNNs outperform most, if not all, classic graph
kernel methods on graph classification tasks [50]. It leads to a con-
cern that whether the graph dataset S distilled through the graph
kernel-based kernel ridge regression can empower the training of
downstream GNNs. Second (informative distillation), as the size of
the distilled graph dataset is small, how to ensure the distilled
graphs are sufficiently informative to capture the critical informa-
tion from the original training set.

As a response to the first concern and to bridge the gap between
the distillation classifier and the downstream GNN classifier, a
recent graph kernel is adopted which is named graph neural tangent
kernel (GNTK) [9]. GNTK (1) measures the graph pair similarity by
mapping a graph into an infinite-dimensional GNN gradient vector
and (2) describes the training dynamics of the corresponding GNN.
Thus, GNTK-based kernel ridge regression is promising to distill
generalizable graph datasets for downstream GNN classifiers. The
specific computation of GNTK is introduced in Section 2.

As a response to the second concern and to ensure informative
distilled graphs, we propose a distillation regularization term as

Lreg = | |K̂SS − I| |2𝐹 . (10)

The final objective L is the weighted sum of LKRR and Lreg as

min
S

L = LKRR + 𝛾Lreg . (11)

K̂SS is the normalized kernel matrix between synthetic graphs
whose entry K̂SS [𝑖, 𝑗] =

KSS [𝑖, 𝑗 ]√
KSS [𝑖,𝑖 ]

√
KSS [ 𝑗, 𝑗 ]

.𝛾 is a hyper-parameter
to trade-off the KRR classification loss LKRR and the regularization
loss Lreg. The key idea of Lreg is to force the normalized kernel
matrix K̂SS to be an identity matrix so that the synthetic graphs
are more orthogonal to each other in the kernel space.

Given the optimization objective as Eq. (11) shows, the gradient
of the objective with respect to the graphs from S are computed,

i.e., 𝜕L
𝜕 G̃𝑖

, ∀G̃𝑖 ∈ S. We provide some details here. First, in our
implementation, we compute the gradient with respect to the graph
adjacency matrix Ã and node feature matrix X̃ for all the graphs
from S = {(G̃𝑖 , 𝑦𝑖 )}𝑛S−10 . Second, any gradient-based optimizer
can be applied, e.g., Adam [30]. Third, the synthetic set S can be
initialized by sampling the target set T or fully initialized randomly.
In this work, we initialize the synthetic set S by sampling T . We
name our proposed graph dataset distillation method KiDD. Next,
we present the enhancements designed for KiDD to improve its
efficiency greatly and handle discrete graph structures.

3.3 Model Enhancements

The existing computation of GNTK [9] is still expensive, especially
for our gradient descent-based dataset distillation scenario. That
is because, in every iteration, the kernel matrices KSS and KTS
need to be re-computed. Additionally, it is non-trivial to synthesize
discrete graph topology by the gradient descent-based method,
which is required in certain cases. This section introduces several
enhancements that systematically improve KiDD’s computational
feasibility and functionality.
LiteGNTK. As we introduced in Section 2, Du. et al [9] provides
a recipe to translate a specific instantiation of GNN into its corre-
sponding GNTK. The GNTK used in the existing literature [9] is
based on the typical GNNs with a non-linear activation function
at every layer (e.g., GCN [31] and GIN [50]). Hence, every layer
of their corresponding GNTK instantiations contains a translated
update operation (i.e., Eq. (4a)-(4d)). Recently, extensive empirical
studies on GNNs show that non-linearity is not a necessity for
every GNN layer, and removing the non-linearity from the last
several layers can speed up the computation [48] without sacri-
ficing or even improving the model performance [18]. Thus, we
propose to remove the update operation from all the GNTK layers
except the first one and use the following LiteGNTK for our kernel
ridge regression-based graph dataset distillation. Given two graphs
G = {A,X} and G̃ = {Ã, X̃}, the LiteGNTK 𝐾LiteGNTK between this
graph pair is computed as

ΣG,G̃ = ΘG,G̃ = XX̃⊤, (12a)
ΣG,G̃,ΘG,G̃ ← GNTK-update(ΣG,G̃,ΘG,G̃), (12b)

ΘG,G̃ ← (cGc
⊤
G̃) ⊙

(
A𝑘ΘG,G̃ (Ã

⊤)𝑘
)
, (12c)

𝐾LiteGNTK (G, G̃) =
∑︁
𝑢,𝑢̃

ΘG,G̃ [𝑢, 𝑢̃], (12d)

where ⊙ is the Hadamard product; GNTK-update is an alias of
Eq. (4a)-(4d); cG = vec({𝑐𝑘𝑢 |𝑢 ∈ G}) is the scaling vector whose
elements are the 𝑘-powered re-scaling factor of every node from G;
cG̃ is constructed similarly by the nodes from G̃. Finally, the kernel
value between the graph G and G̃ are computed by the Eq. (12d)
which is the same as the GNTK readout function. LiteGNTK is
used for all our proposed distillation models.

Advantages of LiteGNTK. First, the original GNTK [9] contains
non-linearity in each of the 𝑘 layers, which requires the computa-
tion of AΘG,G̃Ã

⊤ for 𝑘 times during every update of the synthetic
graphs. In comparison, for LiteGNTK, A𝑘 and Ã𝑘 can be precom-
puted, especially for the As from the target dataset T which are
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not updated throughout the whole distillation procedure. Second,
the LiteGNTK is closely related to the random walk graph ker-
nel [28, 29] which is shown in our following proposition. As both
LiteGNTK and random walk graph kernel include power iterations
of adjacency matrices, it reveals the possibility to develop a faster
LiteGNTK in light of the speedup of the random walk graph kernel.

Proposition 1. LiteGNTK is a generalized instantiation of the
random walk graph kernel [28, 29].

Proof. Random walk graph kernel (RWK) counts the number
of length-𝑘 common paths between graph G and G̃ as

𝐾RWK (G, G̃) = (q ⊗ q̃)⊤ (A ⊗ Ã)𝑘 (p ⊗ p̃), (13)

where p (p̃) and q (q̃) are the starting and stopping probability
vectors of graph G (G̃). Thus, Eq. (13) can be written as

𝐾RWK =
(1)
(q ⊗ q̃)⊤ (A ⊗ Ã) (𝑘−1)vec

(
A
(
vec−1 (p ⊗ p̃)

)
Ã⊤

)
, (14a)

=
(2)
(q ⊗ q̃)⊤vec

(
A𝑘 (pp̃⊤) (Ã⊤)𝑘

)
, (14b)

=
(3)

q⊤A𝑘 (pp̃⊤) (Ã⊤)𝑘 q̃, (14c)

=
(4)

∑︁
𝑢,𝑢̃

(
(qq̃⊤) ⊙

(
A𝑘 (pp̃⊤) (Ã⊤)𝑘

))
[𝑢, 𝑢̃], (14d)

where ⊗ is the Kronecker product, ⊙ is the Hadamard product, vec
is the vectorization operator, and vec−1 is the inverse operator
of vec (i.e., reshaping a vector into a matrix). Note here the vec
and vec−1 follow the row-first order as many scientific computing
packages do (e.g., PyTorch’s reshape function). The above step (1),
(2), and (3) are based on the property of the Kronecker product:
(A ⊗ B)v = vec

(
A
(
vec−1 (v)

)
B⊤

)
. Step (4) is because v⊤Av =∑

𝑖, 𝑗 v[𝑖]A[𝑖, 𝑗]v[ 𝑗] =
∑
𝑖, 𝑗 v[𝑖]v[ 𝑗]A[𝑖, 𝑗] =

∑
𝑖, 𝑗

(
(vv⊤) ⊙A

)
[𝑖, 𝑗].

Here, the matrix pp̃⊤ describes the node pair co-starting probability
from graphs G and G̃ which can be generalized as the GNTK-
updated node pair co-variance matrix ΘG,G̃ from Eq. (12b). The
matrix qq̃⊤ is a node pair co-stopping probability matrix which
can be generalized as the node pair weighting matrix cGc⊤G̃ from
Eq. (12c). Thus, we conclude that the LiteGNTK 𝐾LiteGNTK is the
generalization of the random walk graph kernel 𝐾RWK. □

Low-Rank Speed-Up. Proposition 1 reveals the connection be-
tween the random walk graph kernel and the LiteGNTK, which
inspires us to apply the fast strategy [28] proposed for the random
walk graph kernel into the computation of LiteGNTK. Real-world
graphs are known for their intrinsic low-rank topology [10], which
can significantly speed up the power iterations of the adjacency
matrices using their low-rank representations. To be specific, for
learning the topology of synthetic graphs, instead of optimizing the
objective Eq. (11) with respect to the synthetic graph’s adjacency
matrix Ã, we directly optimize its low-rank decomposed matrix
Ũ, Ṽ ∈ R𝑛×𝑟 where 𝑟 is the rank of the synthetic graphs.

Notice that in this paper, we retain the adjacency matrices of
the original training graphs G ∈ T and only learn the low-rank
matrices of the synthetic graphs G̃ ∈ S. There are 2 reasons: (1) the
original training graphs are the distillation target, whose topology

information should be kept intact; (2) the original training graphs
are usually sparse but the synthetic graphs could be dense due to
the gradient descent update, which leads to heavy computation (e.g.,
matrix multiplication). Since the KTS has much more entries than
the matrix KSS , in the following part, we analyze the computation
of the kernel value between G = {A,X} ∈ T and G̃ = {Ũ, Ṽ, X̃} ∈
S, i.e., an entry of the matrix KTS . For computing entries of KSS ,
it can be analyzed similarly and is omitted for brevity.

Given G = {A,X} ∈ T and G̃ = {Ũ, Ṽ, X̃} ∈ S, to compute their
corresponding LiteGNTK value, Eq. (12c) is modified as follows,

ΘG,G̃ ← (cGc
⊤
G̃) ⊙

(
A𝑘ΘG,G̃ (ṼŨ

⊤)𝑘
)
, (15)

while Eq. (12a), (12b), (12d) stay unchanged. The following lemma
shows such a minor change can greatly improve the model’s ef-
ficiency during both the forward computation and the gradient
backward propagation. Notice that the following analysis focuses
on the computation efficiency of the key operations containing the
synthetic graph topology variables Ũ and Ṽ.

Lemma 1. (Time Complexity) Assume both G and G̃ have 𝑛 nodes,
i.e., ΘG,G̃ ∈ R

𝑛×𝑛 , the time complexity of computing ΘG,G̃ (ṼŨ
⊤)𝑘

is 𝑂 (𝑟𝑛2). The time complexity of computing 𝜕 (ṼŨ⊤ )𝑘
𝜕Ũ

and 𝜕 (ṼŨ⊤ )𝑘
𝜕Ṽ

is 𝑂 (𝑟3𝑛3).

Proof. See appendix. □

As a comparison, without this low-rank speed-up technique, the
time complexity of computing ΘG,G̃Ã

𝑘 is 𝑂 (𝑘𝑛3) and time com-

plexity of computing 𝜕Ã𝑘

𝜕Ã
is 𝑂 (𝑘𝑛4) if Ã is a dense matrix after

gradient descent-based updating. Thus, considering 𝑟 ≪ 𝑛, our pro-
posed low-rank variant can significantly speed up the computation.
In addition, clearly, the space complexity for storing every syn-
thetic graph’s topology drops to 𝑂 (2𝑛𝑟 ) if the low-rank technique
is applied; otherwise, it is 𝑂 (𝑛2).

Benefiting from the close connection between the random walk
graph kernel and LiteGNTK, the following lemma gives an er-
ror bound on applying the low-rank technique to LiteGNTK. For
brevity, the lemma 2 only analyzes the case where synthetic graphs
are undirected (i.e., Ã is symmetric).

Lemma 2. (Error Bound) Given a target graph G = {A,X}, a
synthetic graph G̃ = {Ã, X̃} and G̃’s rank-𝑟 representation G̃𝑟 =

{ŨŨ⊤, X̃}, if we assume both G and G̃ have 𝑛 nodes, G has𝑚 edges,
and cG = cG̃ = cG̃𝑟 = 1 are all-one vectors, the error of the LiteGNTK
value after applying the low-rank speed-up can be bounded by

KLiteGNTK (G, G̃) − KLiteGNTK (G, G̃𝑟 ) ≤ 𝑛𝑚
𝑘
2 | |Θ| |𝐹

𝑛∑︁
𝑖=𝑟+1

|𝜆𝑖
𝑘 |,

(16)
where Θ = ΘG,G̃ = ΘG,G̃𝑟 is the output of Eq. (12b) and 𝜆𝑖 is the
𝑖-th largest eigenvalue of Ã.

Proof. See appendix. □

Our distillation model equipped with this low-rank speed-up
technique is named KiDD-LR, and a step-by-step algorithm to distill
graph dataset is presented in Appendix - Algorithm 1. In addition,
as Lemma 2 shows if the low-rank assumption of the synthetic
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graphs holds, the proposedKiDD-LR still provides an exact solution;
otherwise, it provides an approximate solution.
Discrete Synthetic Graphs. In spite of the great efficacy of our
proposed low-rank speed-up method, the synthetic graph topology
ŨṼ⊤ is weighted and even needs clipping to be non-negative in the
inference phase. For the case where discrete unweighted graphs are
needed, i.e., all the entries all either 0 or 1, a discrete variant of our
method is proposed. The strategy is to model every pair of nodes
as an independent Bernoulli variable [14, 26, 45] (e.g., 𝑏𝑢,𝑣 ∈ [0, 1])
such that Ã[𝑢, 𝑣] ∼ Bernoulli(𝑏𝑢,𝑣). As the sampling process is
not differentiable, we utilize the Gumbel-Max reparametrization
trick [23, 26, 36], and the adjacency matrix is computed as

Ã[𝑢, 𝑣] = sigmoid((log𝛿 − log(1 − 𝛿) + 𝑏𝑢,𝑣)/𝜏), (17)

where 𝛿 ∼ Uniform(0, 1), and 𝜏 is a temperature hyperparameter.
If 𝜏 → 0, Ã[𝑢, 𝑣] will be binary. Then, instead of modeling graph
topology by its adjacencymatrix, we can describe it by a correspond-
ing Bernoulli parameter matrix B̃ whose entries are edge-existing
Bernoulli variables, i.e., B̃[𝑢, 𝑣] = 𝑏𝑢,𝑣 . As the gradient 𝜕Ã[𝑢,𝑣 ]

𝜕B̃[𝑢,𝑣 ] is

well-defined, we can optimize B̃ in an end-to-end fashion by the
gradient descent as we introduced at the end of Section 3.2. During
the inference phase, we can set Ã[𝑢, 𝑣] = 1 if sigmoid(𝑏𝑢,𝑣) > 0.5;
otherwise, Ã[𝑢, 𝑣] = 0.

Our distillation model equipped with this Gumbel-Max tech-
nique is named KiDD-D and a detailed algorithm to use KiDD-D
distill graph dataset is presented in Appendix - Algorithm 2. Notice
that even though we can apply a similar low-rank decomposition
trick to decompose the Bernoulli parameter matrix B̃ = ŨṼ⊤, it
will not improve the model’s efficacy as we introduced in the above
subsection. That is because the efficiency improvement is mainly
from the re-ordering of the computation of the power iteration
(i.e., (ŨṼ⊤)𝑘 ) which cannot be applied to the power iteration of the

sampled adjacency matrix (i.e.,
(
sample(ŨṼ⊤)

)𝑘
).

Mini-Batch. Recall that our optimization objective Eq. (9) includes
two kernel matricesKTS andKSS . The computation of every entry
from KTS and the upper (or lower)-triangle of KSS is indepen-
dent with each other. In this way, if the computation complexity
of every entry from the kernel matrix is 𝑂 (𝐶), the total complex-
ity of computing KTS and KSS is 𝑂 ((𝑛T𝑛S + 1

2𝑛
2
S)𝐶), which

are resource-intensive for some large graph datasets. Fortunately,
KiDD and its variant are easy to be mini-batched. Specifically, at
every iteration, a subset of T and a subset of S is sampled, and
this part of S is updated by minimizing Eq. (9) through gradient
descent. This mini-batch technique is optional and can easily be
incorporated with any of the above designs. Our efficiency study
experiment shows that the mini-batch is especially important for
our proposed KiDD-D and KiDD-LR.

4 EXPERIMENTS

We design extensive experiments to answer the following questions.
• RQ1. How effective are the proposed KiDD-D and KiDD-LR
compared with the baseline methods?
• RQ2. How efficient are the proposed models?

4.1 Experimental Setup

Datasets. In this paper, we select 7 real-world graph classification
datasets including NCI1, NCI109, DD, and PROTEINS from TU-
Dataset [37] and ogbg-molhiv, ogbg-molbbbp, and ogbg-molbace
from open graph benchmarks [21]. All datasets are publicly avail-
able. The detailed dataset statistics are provided in Table 6 in
Appendix. For NCI1, NCI109, DD, and PROTEINS, 80/10/10% of
the graphs from every dataset are randomly split into the train-
ing/validation/test set. For ogbg-molhiv, ogbg-molbbbp, and ogbg-
molbace, we use their default dataset split.
Metrics. We select GIN [50] as the downstream GNN, which is
trained on the distilled graph dataset S. Its performance on the test
graphs is the metric of the corresponding distilled training graphs.
To be specific, for NCI1, NCI109, DD, and PROTEINS, accuracy
(ACC) is reported and for ogbg-molhiv, ogbg-molbbbp, and ogbg-
molbace ROC-AUC is reported as the datasets suggested. We report
the average result and the standard deviation in 10 runs.
Baseline methods.We select 4 baseline methods including 3 core-
set methods (Random, Herding [47], and K-Center [11, 43]) and a
graph dataset distillation method DosCond [26]. Concretely, Ran-
dom selection is the most naive method which randomly samples
S from T . For Herding and K-Center, we first learn the representa-
tion of every training graph by the GIN [50] trained on the whole
training set. Then, Herding selects the closest samples to the cluster
center of every class. K-Center selects the center samples such that
the distance between every node to its nearest center is minimized.
Specifically, we implement a greedy solution of K-Center [19] whose
initialized set is from Herding. DosCond is a learning-based graph
dataset distillation method that matches the training gradient on
S and T at the initialization step. DosCond is fast, but unlike the
exact solution adopted in KiDD, it applies bold approximations for
the bi-level distillation objective function.
Implementation of KiDD. In our implementation of KiDD, LiteG-
NTK is applied to all the graph kernel computations. KiDD-LR is
the variant that uses the proposed low-rank speed-up designs and
KiDD-D is the variant that uses the Gumbel-Max trick to synthesize
discrete graph topology. Mini batch is flexibly applied depending
on the size of the target dataset. Detailed parameter settings for
reproducibility are provided in Appendix1.

4.2 Efficacy Study

Effectiveness of KiDD-LR andKiDD-D. For every dataset, 1/10/50
graphs are distilled for every class by baselines and our methods,
respectively. After that, the downstream graph classifier GIN [50]
is trained on the distilled training graphs, and we report its per-
formance on the test graphs in Table 2. The right-most column
shows the downstream classifiers’ test performances trained over
the entire original training sets. The effectiveness comparison is
provided in Table 2. It is observed that
• In most cases, as expected, with the increasing number of train-
ing graphs, the downstream graph classifier’s performances are
improved. This observation is consistent among both the core-
set methods (Random, Herding, K-Center) and learning-based
distillation methods (DosCond, KiDD-D, and KiDD-LR).

1The code is available at https://github.com/pricexu/KIDD .
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Table 2: Performance comparison (mean±std). The best and second-best results are bold and underlined, respectively.

Name Graphs/Cls Ratio Random Herding K-Center DosCond KiDD-D KiDD-LR Whole Dataset

NCI1
(ACC)

1 0.06% 57.4±3.0 59.2±3.0 59.2±3.0 57.1±0.9 60.1±0.9 60.3±1.6
80.0±1.110 0.61% 59.9±2.0 62.8±0.9 59.1±0.8 60.8±0.9 61.7±1.3 63.3±1.6

50 3.04% 60.5±2.1 62.5±2.0 59.5±0.5 62.7±0.8 64.2±0.6 62.2±0.8

NCI109
(ACC)

1 0.06% 54.3±2.3 51.7±0.9 51.7±0.9 54.9±2.3 55.2±2.7 54.4±1.0
77.7±0.610 0.61% 61.9±1.6 63.6±0.3 52.9±1.7 61.4±1.5 63.5±0.5 62.8±0.7

50 3.03% 64.0±1.4 64.7±1.2 55.0±2.1 62.9±1.6 70.4±1.3 64.7±1.0

PROTEINS
(ACC)

1 0.22% 57.8±1.8 67.6±1.7 67.6±1.7 63.4±1.9 68.8±3.9 69.3±4.9
78.6±2.610 2.25% 67.2±0.7 68.3±1.0 71.4±3.3 71.7±0.4 74.1±1.9 75.3±0.4

50 11.24% 69.6±4.0 70.1±1.0 72.9±2.6 73.2±0.8 75.0±1.9 75.6±2.3

DD
(ACC)

1 0.21% 61.3±8.5 60.7±8.4 61.0±3.2 63.0±0.7 65.8±1.7 69.7±1.0
76.9±3.210 2.12% 66.8±2.1 67.4±0.7 66.2±2.4 68.1±1.8 70.6±1.3 71.1±0.8

50 10.62% 71.4±2.2 71.6±1.9 72.3±1.0 70.9±1.0 73.1±2.2 71.7±0.7

ogbg-molhiv
(ROC-AUC)

1 <0.01% 0.555±0.036 0.633±0.025 0.633±0.025 0.612±0.025 0.633±0.016 0.637±0.069
0.750±0.00710 0.06% 0.579±0.012 0.621±0.009 0.630±0.013 0.647±0.031 0.675±0.054 0.654±0.019

50 0.30% 0.623±0.013 0.616±0.014 0.628±0.014 0.620±0.018 0.708±0.062 0.709±0.020

ogbg-molbbbp
(ROC-AUC)

1 0.12% 0.579±0.025 0.628±0.012 0.628±0.012 0.584±0.030 0.628±0.011 0.623±0.006
0.650±0.01410 1.23% 0.556±0.003 0.625±0.002 0.596±0.016 0.621±0.013 0.644±0.011 0.631±0.015

50 6.13% 0.610±0.007 0.630±0.013 0.595±0.018 0.628±0.012 0.662±0.030 0.663±0.016

ogbg-molbace
(ROC-AUC)

1 0.17% 0.638±0.009 0.546±0.038 0.546±0.038 0.667±0.021 0.693±0.016 0.698±0.014
0.727±0.01710 1.65% 0.649±0.017 0.561±0.041 0.658±0.016 0.694±0.018 0.748±0.020 0.717±0.012

50 8.26% 0.655±0.020 0.703±0.012 0.662±0.013 0.710±0.006 0.766±0.007 0.724±0.020

Table 3: Efficiency comparison (second/iteration) of

KiDD with different kernels. 𝐵T , 𝐵S are the batch sizes of

the target and synthetic training sets, respectively.

(𝐵T , 𝐵S) Computation GNTK LiteGNTK LiteGNTK-LR

(32, 2) Forward 0.0475 0.0153 0.0071
Backprop 0.0241 0.0078 0.0040

(64, 2) Forward 0.0697 0.0212 0.0111
Backprop 0.0251 0.0094 0.0045

(128, 16) Forward 0.2004 0.0551 0.0288
Backprop 0.1525 0.0433 0.0173

(256, 32) Forward OOM 0.1341 0.0745
Backprop OOM 0.1450 0.0633

• Interestingly, in some cases (e.g., DD), Random is not always the
weakest baseline method, even though it is the most naive one.
It reflects that the most representative training samples could be
hard to find by heuristics (e.g., Herding, K-Center) and shows the
advantages of the learning-based methods (DosCond, KiDD-D,
and KiDD-LR).
• The proposed KiDD-D and KiDD-LR obtain the best performance
against all the baseline methods under most settings. Strikingly,
on ogbg-molbbbp and ogbg-molbace datasets, when the numbers
of synthetic graphs are only 1.65%-8.26% of the training graphs,
the graph classifiers trained on such tiny datasets are able to out-
perform the correspondences trained on the complete datasets.
It further demonstrates the advantage of learning a represen-
tative and informative training set over directly sampling the
representative ones from the existing training graphs.

Efficiency study. We first verify the efficiency improvement of
our proposed enhanced designs. Specifically, we measure the wall
clock time during the forward computation and backward gradient
propagation (implemented with PyTorch). 3 models are compared:
(1) KiDD-GNTK: using GNTK as the kernel but not our proposed
LiteGNTK; (2) KiDD-LiteGNTK: using LiteGNTK as the graph ker-
nel; (3) KiDD-LiteGNTK-LR: using LiteGNTK as the graph kernel
and applying the low-rank speed-up technique whose rank is set as
16 in this experiment. All the graph neural network kernels have 5
aggregate operations. For KiDD-GNTK and KiDD-LiteGNTK, they
do not include the Gumbel-Max reparameterization trick because
it is not proposed for better training efficiency, and in addition, it
is an element-wise operation (i.e., Ã[𝑢, 𝑣] = Gumbel-Max(B̃[𝑢, 𝑣]))
whose computation is not heavy. In this experiment, the dataset
PROTEINS is used. We test four settings with different batch sizes
of the target training graphs T and the synthetic graphs S. The
wall clock time comparison is presented in Table 3 from which we
observe that
• KiDD-LiteGNTK is significantly faster (3× faster) than KiDD-
GNTK as expected because the non-linearity between aggrega-
tion operations is removed, and the aggregation operations (i.e.,
A𝑘 ) can be precomputed. Also, as GNTK contains more opera-
tions involving more intermediate variables for modern machine
learning packages (e.g., PyTorch) that leads to heavier memory
usage. E.g., for the case with batch size (256, 32), KiDD-GNTK is
out of memory.
• KiDD-LiteGNTK-LR is much faster than KiDD-LiteGNTK, which
aligns well with the Lemma 1.
Next, we compare the wall clock time of KiDD-D and KiDD-

LR compared with the learning-based graph dataset distillation
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Table 4: Efficiency comparison (second/iteration) with the

baseline method DosCond.

Dataset Method

Graphs/Class

1 10 50

NCI1
DosCond 0.6755 0.6804 0.7009
KiDD-D 0.0255 0.0463 0.1540
KiDD-LR 0.0122 0.0240 0.0826

PROTEINS
DosCond 0.2027 0.2077 0.2112
KiDD-D 0.0323 0.0608 0.2095
KiDD-LR 0.0157 0.0313 0.1090

ogbg-molhiv
DosCond 0.0274 0.0311 0.0328
KiDD-D 0.0281 0.0492 0.1486
KiDD-LR 0.0135 0.0250 0.0748

method DosCond, which applies a fast approximation of the bilevel
gradient matching loss. As the forward and backward computation
of DosCond is not clearly defined, whose forward computation of
the gradient matching loss involves a gradient backpropagation,
we record and compare the total training time for a fixed number
of iterations. As the official implementation of Doscond 2 applies
mini batch towards the target training set T while updating S in a
full-batch fashion. For a fair comparison, we follow their settings
and set all the methods’ batch size of T as 64, the batch size of
S is the # classes × graphs/class, and both methods’ number of
the aggregation layers as 3. Then, the wall clock time per update
iteration is recorded. The wall clock time comparison is presented
in Table 4, from which we observe
• The efficiency of DosCond is consistent with respect to the batch
size of the synthetic graphs S. As a comparison, The efficiency of
our method KiDD-LR and KiDD-D is more sensitive to the batch
size of the synthetic graphs. That is because DosCond’s time
complexity is linear with respect to 𝐵T + 𝐵S but our method
needs to compute two kernel matrices KTS and KSS whose
numbers of entries are 𝐵T𝐵S and 𝐵2S , respectively. Here 𝐵T , 𝐵S
are the batch size of T and S, respectively.
• As we claimed, both KiDD-D and KiDD-LR cannot scale to very
large batch sizes (e.g., 1024). However, with an appropriate batch
size (e.g., 𝐵T = 64 and 𝐵S = 20), two KiDD variants, especially
the KiDD-D can have comparable or even better efficiency than
DosCond. This is surprising as the DosCond solves the bi-level
optimization objective approximately, but KiDD-D provides an
exact solution for the distillation optimization objective.

Convergence study. To supplement the efficiency study, a conver-
gence study is provided which shows the models’ performance with
respect to the increase of training epochs. Here we select the PRO-
TEINS and ogbg-molbace datasets and present the accuracy/ROC-
AUC of our proposed models KiDD-D and KiDD-LR in Figure 1a-1d
which shows our models can converge quickly within 15 epochs.
Notice that in this experiment we select the batch size of T as
256 indicating on the PROTEINS dataset, 1 epoch is equivalent to
4 update iterations, and on the ogbg-molbace dataset, 1 epoch is

2https://github.com/amazon-science/doscond

(a) KiDD-D on PROTEINS (b) KiDD-LR on PROTEINS

(c) KiDD-D on ogbg-molbace (d) KiDD-LR on ogbg-molbace

Figure 1: Model performance vs. training epochs.

Table 5: Ablation study results (mean±std). Themetric for the

PROTEINS is accuracy and the metric for the ogbg-molbbbp

and ogbg-molbace is ROC-AUC. The best is bold.

Method PROTEINS ogbg-molbbbp ogbg-molbace

KiDD-RWK 64.8±2.4 0.578±0.009 0.629±0.013
KiDD-LR-NR 72.2±2.8 0.645±0.005 0.699±0.026
KiDD-D-NR 72.0±1.5 0.634±0.030 0.713±0.013
KiDD-LR 75.6±2.3 0.663±0.016 0.724±0.020
KiDD-D 75.0±1.9 0.662±0.030 0.766±0.007

equivalent to 7 update iterations. As expected, the training of KiDD-
D will be more unstable compared with the training of KiDD-LR
due to the sampling operation in the forward computation.

4.3 Auxiliary Experiments

Ablation study.We provide an ablation study to understand the
effectiveness of every module of our proposed methods. Specifically,
the following models are tested: (1) KiDD-D and KiDD-LR: two
variants of our proposed KiDD; (2) KiDD-RWK: using random
walk graph kernel (i.e., Eq. (12a), (12c), and (12d)) to compute the
kernel matrix; (3) KiDD-D-NR and KiDD-LR-NR: removing the
regularization term (i.e., Eq. (10)) from the optimization objective.
Datasets PROTEINS, ogbg-molbbbp, and ogbg-molbace are selected
and the graphs/class is set as 50. The results are presented in Table 5,
from which we observe
• The performance of KiDD-RWK is significantly lower than other
KiDD variants equipped with LiteGNTK. It suggests the random
walk graph kernel (RWK)-based ridge regression cannot provide
generalizable distilled graph datasets for a GNN classifier.
• The regularization term (i.e., Eq. (10)) can improve the perfor-
mance of KiDD. Including this term to the training loss, our
proposed KiDD-LR and KiDD-D obtain the best performances.

Sensitivity Study. There are three main hyperparameters of the
proposed KiDD model, 𝜖 from Eq. (9), 𝛾 from Eq. (11), and 𝜏 from
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(a) Accuracy (%) vs. varying 𝜖0 (b) Accuracy (%) vs. varying 𝛾 (c) Accuracy (%) vs. varying initial 𝜏

Figure 2: Hyperparameter sensitivity studies.

Eq. (17). In this study, we conduct experiments on the PROTEINS
dataset with 50 synthetic graphs per class. The KiDD-D variant
is tested because the hyperparameter 𝜏 is only used for the dis-
crete scenarios. As we mentioned in the experimental settings in
Section 4.1, we set 𝜖 = 𝜖0 × trace(KSS )

𝑛S
so that 𝜖 is stable with

respect to the number of synthetic graphs. Then, we present the
model’s performance with varying 𝜖0 in Figure 2a. For the different
settings of hyperparameter 𝛾 , KiDD-D’s performance is reported in
Figure 2b. For the hyperparameter 𝜏 , as mentioned in the hyperpa-
rameter settings, we follow the suggestions from [1, 26] and anneal
the initial 𝜏 to 0.01𝜏 during the training process. Here we compare
the performance of KiDD-D with varying initial 𝜏 as shown in
Figure 2c. In general, we observe that KiDD-D’s performance is
stable with respect to the selection of hyperparameters 𝜖0 and 𝛾 .
As 𝜏 increases, the model’s performance becomes more and more
unstable since large 𝜏 will lead to large gradients [36] and thus
affect the training stability.

5 RELATED WORK

This work lies in the interaction of dataset distillation, graph aug-
mentation, and neural network kernel, as briefly introduced below.

Dataset Distillation. Compressing a large training dataset into a
smaller one is a long-standing objective in the machine learning
community. A small and informative training dataset can speed up
the model tuning and even improve the data privacy [39]. A classic
method to compress the training data is named corset which selects
training samples from the existing training data. A comprehensive
introduction about the coreset is provided by Phillips [42]. Recent
progresses [5, 34, 35] formulate the problem under the umbrella of
meta-learning (a.k.a. learning to learn). Wang et al. [46] provide an
interesting analysis of a simple linear case about dataset distillation.
More recently, dataset condensation [57] is proposed whose core
idea is to match the training gradient on the distilled dataset and the
original one. Another recent attempt is proposed by Cazenavette
et al. [5] to match the training trajectories between models trained
on the original dataset and on the synthetic dataset.

Besides, the dataset condensation is also grafted into the graph
data [27] which shrinks a large training graph into a smaller one
for the node-level tasks. The only graph-level dataset distillation
method is DosCond [26]. Both DosCond and our work aim to dis-
till the given graph dataset by formulating a bilevel optimization
problem whose lower-level problem involves the training dynam-
ics of graph classifier on the synthetic dataset. DosCond speeds
up the computation by dropping most of the lower-level training
dynamics and only using the training gradient at initialization. Our

method achieves higher efficiency by designing the classifier as a
GNTK-based KRR whose model’s prediction has a closed form.
Graph Data Augmentation. Graph data augmentation [7, 15, 16,
56, 58] aims to learn the given graph(s) such that the performance
of the downstream tasks is improved. Our work in this paper can
be viewed as augmenting the sampled small set of training graphs
from the original training set. The graph augmentation targets
can be the graph topology [59], the node features [61], the node
labels [4], and the graph labels [40]. Our work focuses on augment-
ing the graph topology and node features. Due to its flexibility,
the graph augmentation techniques have been widely applied to
node/edge/graph-level tasks on graph denoising [25, 52], graph
imbalanced learning [49, 51, 60], self-supervised learning [53, 54],
and many more.
Neural Network Kernel. The relationship between infinitely-
wide neural networks and kernel methods are studied for a long
time. Early work suggests that one-layer infinitely-wide neural
networks with i.i.d. random parameters are equivalent to Gaussian
processes [38]. Lee et al. [32] promote the above correspondence
into the deep neural network cases. Based on that, recent efforts
reveal that gradient descent training of infinitely-wide neural net-
works with squared loss is identical to the kernel ridge regres-
sion [2, 3, 8, 22] (named the neural tangent kernel (NTK)) and simi-
lar results are also studied on graph neural networks and named
as the graph neural tangent kernel (GNTK) [9]. Our work is an
application of the GNTK with our proposed novel enhancements.

6 CONCLUSION

In this paper, we study the graph dataset distillation problem. We
propose to exactly solve the bilevel distillation objective through
the kernel ridge regression-basedmethod. The graph neural tangent
kernel is applied which ensures the distilled dataset can empower
the training of the downstream graph neural networks. A series
of model enhancements are proposed to ensure the computational
tractability of graph neural tangent kernel and in addition, to handle
discrete graph topology. Comprehensive experiments are conducted
which verify the effectiveness of our proposed models KiDD-D and
KiDD-LR and at the same time, show comparable efficiency to the
state-of-the-art fast strategies.
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A EXACT COMPUTATION OF THE UPDATE

FUNCTION

To compute the Eq. (4b) and Eq. (4c) exactly, according to [3, 9],
the following properties of the ReLU activation function should be

used. If Λ̃ =

(1 𝜆

𝜆 1
)
,

E(𝑎,𝑏 )∼N(0,Λ̃)𝜎 (𝑎)𝜎 (𝑏) =
𝜆(𝜋 − arccos(𝜆)) +

√
1 − 𝜆2

2𝜋 , (18a)

E(𝑎,𝑏 )∼N(0,Λ̃) ¤𝜎 (𝑎) ¤𝜎 (𝑏) =
𝜋 − arccos(𝜆)

2𝜋 . (18b)

Also, using the homogeneity of ReLU (i.e., for ∀𝑎 ≥ 0, 𝜎 (𝑎𝑥) =
𝑎𝜎 (𝑥), and ¤𝜎 (𝑎𝑥) = ¤𝜎 (𝑥) we can decompose the ΛG,G′ [𝑢,𝑢′] =

DΛ̃D, where D =

(
𝑐1 0
0 𝑐2

)
and get

E(𝑎,𝑏 )∼N(0,DΛ̃D)𝜎 (𝑎)𝜎 (𝑏) = 𝑐1𝑐2
𝜆(𝜋 − arccos(𝜆)) +

√
1 − 𝜆2

2𝜋 ,

(19a)

E(𝑎,𝑏 )∼N(0,DΛ̃D) ¤𝜎 (𝑎) ¤𝜎 (𝑏) =
𝜋 − arccos(𝜆)

2𝜋 . (19b)

B PROOF OF LEMMA 1

Lemma 1. (Time Complexity) Assume both G and G̃ have 𝑛 nodes,
i.e.,ΘG,G̃ ∈ R

𝑛×𝑛 , the time complexity of computingΘG,G̃ (ṼŨ
⊤)𝑘

is𝑂 (𝑟𝑛2). The time complexity of computing 𝜕 (ṼŨ⊤ )𝑘
𝜕Ũ

and 𝜕 (ṼŨ⊤ )𝑘
𝜕Ṽ

is 𝑂 (𝑟3𝑛3).

Proof. ΘG,G̃ (ṼŨ
⊤)𝑘 can be rewritten as ΘG,G̃Ṽ(Ũ

⊤Ṽ)𝑘−1Ũ⊤.
Thus, the complexity of computing (Ũ⊤Ṽ)𝑘−1 is𝑂 (𝑟𝑛2 + (𝑘 −2)𝑟3),

the complexity of multiply ΘG,G̃ , Ṽ, (Ũ
⊤Ṽ)𝑘−1, Ũ⊤ from the left-

hand side is 𝑂 (2𝑟𝑛2 + 𝑟2𝑛). Hence, putting everything together the
time complexity of computing ΘG,G̃ (ṼŨ

⊤)𝑘 is𝑂 (3𝑟𝑛2 + 𝑟2𝑛 + (𝑘 −
2)𝑟3) which can be shortened as 𝑂 (𝑟𝑛2) given 𝑟 ≪ 𝑛 and 𝑘 ≪ 𝑛.

𝜕 (ṼŨ⊤ )𝑘
𝜕Ũ

=
𝜕Ṽ(Ũ⊤Ṽ)𝑘−1Û⊤

𝜕Ũ⊤Ṽ
𝜕Ũ⊤Ṽ
𝜕Ũ
+ 𝜕Ṽ(Ũ⊤Ṽ)𝑘−1Û⊤

𝜕Û
, where Û = Ũ.

It is a fact that, for any matrix M ∈ R𝑟×𝑟

𝜕M𝑘 [𝑖, 𝑗]
𝜕M[𝑠, 𝑡] =

𝜕
∑
𝑙1,...,𝑙𝑘−1 M[𝑖, 𝑙1]M[𝑙1, 𝑙2] . . .M[𝑙𝑘−1, 𝑗]

𝜕M[𝑠, 𝑡] ,

=

( 𝑘−1∑︁
𝑙=0

M𝑙 ⊗ (M⊤)𝑘−1−𝑙
)
[𝑟𝑖 + 𝑗, 𝑟𝑠 + 𝑡] .

(20)

Thus, if we represent 𝜕 (Ũ⊤Ṽ)𝑘−1
𝜕Ũ⊤Ṽ

in the shape of R𝑟 2×𝑟 2 it can be
computed as

∑𝑘−2
𝑙=0 (Ũ

⊤Ṽ)𝑙 ⊗ (Ṽ⊤Ũ)𝑘−2−𝑙 whose time complexity
is 𝑂 ((𝑘 − 1) (2𝑟2𝑛 + 𝑟4)). The time complexity of computing 𝜕Ũ⊤Ṽ

𝜕Ũ

is 𝑂 (𝑟3𝑛). The complexity of multiply 𝜕Ṽ(Ũ⊤Ṽ)𝑘−1Û⊤
𝜕Ũ⊤Ṽ

and 𝜕Ũ⊤Ṽ
𝜕Ũ

is 𝑂 (𝑟3𝑛3). The time complexity of computing 𝜕Ṽ(Ũ⊤Ṽ)𝑘−1Û⊤
𝜕Û

is
𝑂 (𝑟𝑛3). Consequently, put everything together, the time complexity
of computing 𝜕 (ṼŨ⊤ )𝑘

𝜕Ũ
is 𝑂 (𝑟3𝑛3) given 𝑟 ≪ 𝑛 and 𝑘 ≪ 𝑛.

The time complexity of computing
𝜕ΘG,G̃ (ṼŨ

⊤ )𝑘

𝜕Ṽ
can be analyzed

similarly and is omitted for brevity. □

C PROOF OF LEMMA 2

Lemma 2. (Error Bound) Given a target graph G = {A,X}, a
synthetic graph G̃ = {Ã, X̃} and G̃’s rank-𝑟 representation G̃𝑟 =

{ŨŨ⊤, X̃}, if we assume both G and G̃ have 𝑛 nodes, G has 𝑚
edges, and cG = cG̃ = cG̃𝑟 = 1 are all-one vectors, the error of
the LiteGNTK value after applying the low-rank speed-up can be
bounded by

KLiteGNTK (G, G̃) − KLiteGNTK (G, G̃𝑟 ) ≤ 𝑛𝑚
𝑘
2 | |Θ| |𝐹

𝑛∑︁
𝑖=𝑟+1

|𝜆𝑖
𝑘 |,

(21)
where Θ = ΘG,G̃ = ΘG,G̃𝑟 is the output of Eq. (12b) and 𝜆𝑖 is the
𝑖-th largest eigenvalue of Ã.

Proof. The difference between KLiteGNTK (G, G̃) and
KLiteGNTK (G, G̃𝑟 ) can be presented as

|c⊤G̃A
𝑘Θ(Ã𝑘 − (ŨŨ⊤)𝑘 )cG |

= |c⊤G̃A
𝑘Θ(

𝑛∑︁
𝑖=𝑟+1

𝜆𝑖
𝑘
ũ𝑖 ũ⊤𝑖 )cG |

≤ | |cG | |2 | |cG̃ | |2 | |A| |
𝑘
𝐹 | |Θ| |𝐹 | |

𝑛∑︁
𝑖=𝑟+1

𝜆𝑖
𝑘
ũ𝑖 ũ⊤𝑖 | |𝐹

≤ 𝑛𝑚
𝑘
2 | |Θ| |𝐹

𝑛∑︁
𝑖=𝑟+1

|𝜆𝑖
𝑘 |

(22)

where ũ𝑖 is the 𝑖-th unit eigenvector of Ã, and the last inequality
holds because (1) {u𝑖 } are the normalized eigenvectors, and (2)
| |∑𝑖 𝑎𝑖u𝑖u⊤𝑖 | |𝐹 =

√︃
trace(∑𝑖 𝑎

2
𝑖
u𝑖u⊤𝑖 ) =

√︃∑
𝑖 𝑎

2
𝑖
trace(u𝑖u⊤𝑖 ) ≤
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Algorithm 1: KiDD-LR

Input :a target graph dataset T = {(G𝑖 , 𝑦𝑖 )}𝑛T−10 , the size
of the synthetic dataset 𝑛S ;

Output : the synthetic dataset S;
1 initialization: sample 𝑛S graphs and their labels 𝑦𝑖 from the
T as the initial S; decompose adjacency matrices into
their low-rank matrices (e.g., Ũ𝑖 , Ṽ𝑖 ) by SVD.

2 while S is not converged do

3 compute KTS and KSS by Eq. (12a), (12b), Eq. (15), and
Eq. (12d);

4 Update S = {Ũ𝑖 , Ṽ𝑖 , X̃𝑖 }𝑛S−10 based on the gradient 𝜕L
𝜕S

from Eq. (9);
5 end

6 clip {Ã𝑖 = Ũ𝑖 Ṽ⊤𝑖 }
𝑛S−1
0 to be non-negative;

7 return S = {Ã𝑖 , X̃𝑖 , 𝑦𝑖 }𝑛S−10 .

Algorithm 2: KiDD-D

Input :a target graph dataset T = {(G𝑖 , 𝑦𝑖 )}𝑛T−10 , the size
of the synthetic dataset 𝑛S ;

Output : the synthetic dataset S;
1 initialization: sample 𝑛S graphs and their labels 𝑦𝑖 from the
T as the initial S; initialize the Bernoulli parameter matrix
B̃𝑖 of every synthetic graph according to their adjacency
matrix: B̃𝑖 [𝑢, 𝑣] = 𝐶 if Ã𝑖 [𝑢, 𝑣] = 1; otherwise
B̃𝑖 [𝑢, 𝑣] = −𝐶 , where 𝐶 is a constant, e.g., 1.

2 while S is not converged do

3 Sample adjacency matrices of synthetic graphs
{Ã𝑖 }𝑛S−10 by Eq. (17) and {B̃𝑖 }𝑛S−10 ;

4 compute KTS and KSS by Eq. (12a)-(12d);
5 Update S = {B̃𝑖 , X̃𝑖 }𝑛S−10 based on the gradient 𝜕L

𝜕S
from Eq. (9);

6 end

7 Discretize the adjacency matrix of every synthetic graph:
Ã𝑖 [𝑢, 𝑣] = 1 if sigmoid(B̃𝑖 [𝑢, 𝑣]) > 0.5, else Ã𝑖 [𝑢, 𝑣] = 0;

8 return S = {Ã𝑖 , X̃𝑖 , 𝑦𝑖 }𝑛S−10 .

∑
𝑖 |𝑎𝑖 |. The above bound can be further simplified by limiting X̃,

X, and Θ to special cases but we keep this form for generality. □

D DATASET STATISTICS

The detailed dataset statistics are provided in Table 6.

Table 6: Dataset statistics.

Name # Graphs # Nodes # Edges # Features # Classes

NCI1 4110 29.9 32.3 37 2
NCI109 4127 29.7 32.1 38 2

PROTEINS 1113 39.1 72.8 4 2
DD 1178 284.3 715.7 89 2

ogbg-molhiv 41127 25.5 54.9 9 2
ogbg-molbbbp 2039 24.1 51.9 9 2
ogbg-molbace 1513 34.1 73.7 9 2

E REPRODUCIBILITY

Hardwares.We implement KiDD-LR and KiDD-D in PyTorch3 and
PyTorch-geometric4. All the efficiency study results are from one
NVIDIA Tesla V100 SXM2-32GB GPU on a server with 96 Intel(R)
Xeon(R) Gold 6240R CPU @ 2.40GHz processors and 1.5T RAM.
Parameter Settings. The parameters of the KiDD-D and KiDD-LR
are set as follows. The node scaling factor 𝑐𝑢 is set as 1 for every
node𝑢 from T andS. The learning rate of KiDD-D and KiDD-LR is
searched in {1𝑒−1, 1𝑒−2, 1𝑒−3}. The 𝜖 is set as 𝜖 = 𝜖0× trace(KSS )

𝑛S
so that it is stable with respect to the size of KSS and the 𝜖0 is set
as 1𝑒 − 6. 𝛾 is searched in {0, 1𝑒 − 4, 1𝑒 − 3, 1𝑒 − 2}. For KiDD-D, the
𝜏 is annealed during the training as [1] suggested. The initial 𝜏 is
set as 1 and annealed to 0.01 at and after epoch 100. The rank 𝑟 of
the KiDD-LR is searched in {16, 32}. We plan to release the code
upon publication.

F DETAILED ALGORITHMS

Detailed algorithms of KiDD-LR and KiDD-D are provided in Al-
gorithm 1 and Algorithm 2, respectively.

G LIMITATION AND FUTURE WORK

The main limitation of the KiDD-LR and KiDD-D, as we claimed in
Section 4.2, lies in its computation complexity scales with respect
to (𝐵T𝐵S + 𝐵2S) where 𝐵T and 𝐵S are the batch sizes of the target
training set and the synthetic set. In other words, KiDD-LR and
KiDD-D are limited to medium batch sizes (e.g., 𝐵T = 256 and
𝐵S = 64). Although such batch sizes can handle most real-world
graph datasets, improving the scalability of KiDD-LR and KiDD-D
is interesting and worth studying.

3https://pytorch.org/
4https://pytorch-geometric.readthedocs.io/en/latest/
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