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ABSTRACT KEYWORDS

Graph neural networks (GNNs) have become core building blocks
behind a myriad of graph learning tasks. The vast majority of the
existing GNNs are built upon, either implicitly or explicitly, the
homophily assumption, which is not always true and could heavily
degrade the performance of learning tasks. In response, GNNss tai-
lored for heterophilic graphs have been developed. However, most
of the existing works are designed for the specific GNN models to
address heterophily, which lacks generality. In this paper, we study
the problem from the structure learning perspective and propose a
family of general solutions named ALT. It can work hand in hand
with most of the existing GNNs to handle graphs with either low or
high homophily. At the core of our method is learning to (1) decom-
pose a given graph into two components, (2) extract complementary
graph signals from these two components, and (3) adaptively inte-
grate the graph signals for node classification. Moreover, analysis
based on graph signal processing shows that our framework can
empower a broad range of existing GNNs to have adaptive filter
characteristics and further modulate the input graph signals, which
is critical for handling complex homophilic/heterophilic patterns.
The proposed ALT brings significant and consistent performance
improvement in node classification for a wide range of GNNs over
a variety of real-world datasets.

CCS CONCEPTS

« Computing methodologies — Neural networks; « Informa-
tion systems — Data mining; - Theory of computation —
Graph algorithms analysis.
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1 INTRODUCTION

Graph neural networks (GNNs) have demonstrated great power as
building blocks for a variety of graph learning tasks, such as node
classification [15], graph classification [36], link prediction [42],
clustering [2], and many more. Most of the existing GNNs follow
the homophily assumption, i.e., edges tend to connect nodes with
the same labels and similar node features. Such an assumption
holds true for networks such as citation networks [4, 40] where
a paper tends to cite related literature. However, in many other
cases, the heterophilic settings arise. For instance, to form a protein
structure, different types of amino acids are more likely to be linked
together [48]. On such heterophilic networks, the performance of
classic GNN models [13, 16, 30] could degrade greatly and might
be even worse than a multilayer perceptron (MLP) which does not
utilize any topology information at all [48].

In response, researchers have analyzed the limitations of the
existing GNNs in the presence of node heterophily and further pro-
posed specific models to address it from both the spatial and spectral
perspectives. For instance, an important design by H2GCN [48] is
that high-order neighbors should be considered during message ag-
gregation. GPRGNN [6] also aggregates messages from multi-hop
neighbors but it emphasizes that messages can also be negative via
a set of learnable aggregation weights. From the spectral perspec-
tive, FAGCN [3] points out that low-pass filter-based GNNs smooth
the node representations between connected nodes, which is not
desirable for the heterophilic settings where connected nodes are
more likely to have different labels. Hence, FAGCN [3] adaptively
mixes the low-pass graph filter with the high-pass graph filter via
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an attention mechanism to tackle this problem. A more detailed

review of related work can be found in Section 5.

Despite the theoretic insights and empirical performance gain,
most of the existing works focus on the model level, i.e., they aim to
propose better GNNs models to handle the heterophilic graphs. In
other words, the success of their methods relies on specific designs
of GNN models. In this paper, we take a step further and ask: how
to develop a generic method to benefit a broad range of GNNs for
node classification beyond homophily, even if they are not originally
tailored for the heterophilic graphs? To this end, we address this
problem from a structure learning [49] perspective, that is, we
optimize the given graph structure to benefit downstream tasks
(e.g., node classification). Different from the existing approaches
that refine the specific GNNs models, our approach focuses on the
data level by optimizing the graph topology to tackle heterophily.
Challenges. In pursuing such a data-centric general solution, here
are the key challenges. First (model diversity), our goal is to strengthen
a broad range of established GNNss so that they can handle graphs
with arbitrary homophily. However, the aggregation mechanism
and the graph convolution kernels are different between various
GNN models. It is unknown how to accommodate diverse GNNs
seamlessly. Second (theoretical foundation), analyses on the suc-
cess of some specific GNNs for heterophilic graphs have recently
emerged (e.g., from the graph signal processing perspective [27]).
However, few works focus on the theoretical foundation of struc-
ture learning and its connection to dealing with graphs with low
homophily. Our main contributions are listed as follows:

e General framework. We propose a general graph structure
learning framework named duAL sTructure learning (ALT), which
can accommodate a variety of GNN models. Specifically, after
removing the activation function from the last layer, a large vari-
ety of GNNs can be plugged into our framework and be trained
end-to-end with common optimizers.

e Proof and Analysis. We provide an in-depth analysis from the
graph signal processing perspective. Our analysis guides the
design of ALT and validates its effectiveness theoretically

e Empirical evaluations. Experiments show that with the help
of the ALT, the average accuracy boosting of existing GNNs is
from 7%-15% on 8 heterophilic datasets, and from 1.6%-4% on 8
homophilic graphs. Moreover, results show that a classic low-pass
filter-based GNN working together with our proposed ALT can
be a strong competitor against state-of-the-art baseline methods.
The rest of this paper is organized as follows. In Section 2, we

introduce the notations and the semi-supervised node classification

task. We present the proposed ALT framework in Section 3 with a

detailed analysis. In Section 4, experimental settings and empirical

results are provided. In Section 5, we review related works and after

that, we conclude this paper in Section 6.

2 PRELIMINARIES

Notations. We use bold uppercase letters for matrices (e.g., A),
bold lowercase letters for column vectors (e.g., u), lowercase and
uppercase letters in regular font for scalars (e.g., d, K), and calli-
graphic letters for sets (e.g., 7). We use A[i, j] to represent the
entry of matrix A at the i-th row and the j-th column, A[j,:] to
represent the i-th row of matrix A, and A[:, j] to represent the j-th
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column of matrix A. Similarly, u[i] denotes the i-th entry of vector
u. Superscript T denotes the transpose of matrices and vectors. ©
denotes the Hadamard product.

An attributed graph can be represented as G = {A, X} which is
composed of an adjacency matrix A € R™*" and an attribute matrix
X e R"Xd, where n is the number of nodes and d is the node feature
dimension. In total, nodes can be categorized into a set of classes C.

The normalized Laplacian matrix is L = I — D 2AD"Z where D is
the diagonal degree matrix of A. It can be decomposed as L = UAUT
where U € R™ " is the eigenvector matrix and A € R™ " is the
diagonal eigenvalue matrix. In graph signal processing [27], the
diagonal entry of A represents frequency and A[i, i] = A;. Given
a signal x € R", its graph Fourier transform [27] is represented
as X = Ux, and its inverse graph Fourier transform is defined as
x = UT%. For a diffusion matrix C € R"", its frequency response
(or profile [1]) is defined as ®¢, = diag(UT CU) where diag(-)
returns the diagonal entries. This frequency response is also known
as the filter and the convolution kernel.

Semi-supervised Node Classification. In this paper, we study
semi-supervised node classification [15, 40] where the graph topology
A, all node features X, and a part of node labels are given and
our goal is to predict the labels of unlabelled nodes. Numerous
works [15, 16, 30] achieve impressive performance on this problem.
However, recent studies show that their successes heavily rely upon
the homophily assumption of the given graphs [46, 48]. In general,
homophily describes to what extent edges tend to link nodes with
the same labels and similar features. Following previous works [24,
48], this paper focuses on the node label homophily. There are
various homophily metrics and we introduce one of them named

edge homophily [48] as: h(G) = Zi’j'Alg{:_llE}El[?]:y{j]]] e [0,1],
i,j 3

where [x]] = 1if x is true and 0 otherwise. The more homophilic a

given graph is, the closer its h(G) is to 1.

3 PROPOSED METHODS

In this section, we first propose a flexible method named ALT-
global which empowers a wide range of GNN with an adaptive
filter characteristics. Next, we carefully analyze the expressiveness
of ALT-global from the graph signal processing perspective [27].
This analysis guides the design of another more advanced method
named ALT-local which enhances the spectral expressiveness of a
broad range of GNNs to be local adaptive filters by modulating
the input graph signals.

3.1 ALT-global: A Global Adaptive Method

Intuitively, nodes with different labels should be located as far as
possible in the embedding space and nodes with the same labels
should be assigned closely. This intuition is aligned well with the
utility of many classic GNNs (e.g., GCN [15]) on homophilic graphs.
That is because, on homophilic graphs, many same-label nodes are
connected, whose embeddings will be smoothed by those classic
low-pass filter GNNs [1, 3]. In contrast, the low-pass filter GNNs’
performance degrades significantly on heterophilic graphs since
the connected nodes’ embeddings should not be smoothed. Many
efforts [3, 6] point out that a key design to deal with graphs with
unknown homophily is to equip GNNs with an adaptive filter.
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Figure 1: The Illustration of obtaining a filter with complementary filter characteristics. Given a filter (a), its reflected frequency
response (b) with offset (c) has complementary filter characteristics.

We aim to propose a data-centric solution such that minimal
modification on the given GNNs (e.g., a low-pass filter GNN) is
needed. As we do not make any assumption about the filter charac-
teristic of the given GNN, its filter can be either low-pass, high-pass,
band-pass, or others. To equip the given GNN with an adaptive
filter, our core idea is to adaptively combine signals from two fil-
ters with the complementary filter characteristics. For example, if
a low-pass filter GNN is given, it should be adaptively combined
with another high-pass filter. To find such a complementary filter, a
two-step modification of the frequency response is needed. Figure 1
shows that we can first reflect the frequency response curve over
the frequency axis and then set an appropriate offset to the reflected
frequency response. Guided by this idea, the mathematical details of
the proposed ALT-global are as follows,

H; = GNN(wA, X, 61), (1a)

Hy = GNN((1 — w)A, X, 65), (1b)
Hoffset = MLP(X, 63), (1c)
Z = softmax(H; — Hy + 1Hoffset)s (1d)

where 61 and 0; are the parameters of the backbone dual GNNs
(i.e., GNNs from Eq. 1a and Eq. 1b), 65 is the parameter of a multi-
layer perceptron (MLP), n € R and w € [0, 1] are learnable param-
eters, and Z € R™C is the prediction matrix. Here the softmax
is applied row-wise. For models using the normalized adjacency
matrix (e.g, A = (D+I)~ H (A+D)(D+D)~ H ) as the diffusion matrix
(e.g., GCN [15]), the re-weighting can be set over the normalized
adjacency matrix (i.e., wA and (1 — w)A).

We elaborate more on the design of ALT-global. First, all the
insights we obtained from Figure 1 are applicable to the convolution
kernel directly. Nonetheless, since our method works in a plug-and-
play fashion that does not modify the backbone GNNss, it uses a well-
designed aggregation (i.e., Eq. 1d) to achieve an equivalent effect.
Specifically, (1) Hj is the signals from a backbone GNN with positive
re-scaling; (2) —Hy is the negative signals that correspond to the
signals from a reflected filter; (3) nHqrfset is the offset term which
is equivalent to signals from an all-pass filter. Second, the adaptive
mixture of the above three sets of graph signals is controlled by
the learnable parameters w and 7. Other aggregation functions are
also applicable. One of the options is an MLP whose input is the
concatenation of Hy, Hy, and Hyrrget - However, it is not used in this
paper because (1) it increases the analysis difficulties dramatically
and (2) empirically, no performance advantage is observed in the
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ablation study (Section 4.4). Analysis in the following section shows
that ALT-global bears strong flexibility in filter characteristics.

3.2 Analysis of ALT-global

For brevity, in the analysis, we assume that the backbone GNNs
are graph-augmented MLPs (GA-MLPs) as defined below. This is
because many GNNs fall into the GA-MLP family if part of the
nonlinear functions is removed; also, GA-MLPs have shown strong
empirical performance while enjoying provable expressiveness [5].

DEFINITION 1. Graph-Augmented Multi-Layer Perceptron
(GA-MLP) [5] is a family of GNNs that first conduct feature trans-
formation via an MLP and then diffuse the features. Mathematically
they compute node embeddings as H = C - MLP(X) where C is the
diffusion matrix.

The (full) frequency profile [1] is used for analysis as follows.

DEFINITION 2. Frequency profile [1] is defined as
D¢, = diag(UTCU) where diag(-) returns the diagonal entries if
UTCU is a diagonal matrix. In case UT CU is not a diagonal matrix,
full frequency profile [1] is defined as ® = UT CU.

It is well-known that the frequency profile of a diffusion matrix
(if diagonal) is a filter/convolution kernel for the input graph signal.
Next, we show that ALT is indeed equipped with an adaptive filter.

LEMMA 1. The filter characteristic of the proposed ALT-global
(Eq. 1d) is adaptive regardless of the frequency filtering functionality
of the backbone GNNs (Eq. 1a and Eq. 1b).

Proor. For analysis convenience, we assume (1) the learnable
weight w is multiplied with the diffusion matrix C, and (2) the
backbone GNNs are GA-MLPs whose MLP modules (from Eq. 1a
and Eq. 1b) share common parameters with the offset MLP (from
Eq. 1c). We start from the case where backbone GNNs are fixed
low-pass filters. Without loss of generality, their corresponding
full frequency profiles can be presented as ® = I — £(A) where
£ is a monotonically increasing function. Then, in this case, the
diffusion matrices from two GNNs are re-weighted as wC and
(1 — w)C respectively. Considering the offset MLP as a special GA-
MLP whose diffusion matrix is I, the aggregated graph signals are
wC -MLP(X) — (1 — w)C -MLP(X) + 51 -MLP(X) = C - MLP(X) where
the aggregated diffusion matrix is C = wC — (1 — w)C + L. Hence
the diagonal entry of the corresponding full frequency profile is

@i, i] = 2(4) = 2w - 1)(1 = &(4)) + 1.
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When w > 0.5,1e., 2w —1 > 0, ®(};) is a monotonically decreasing
function. The proposed method is a low-pass filter when n > 0.
Similarly, it is a high-pass filter when w is close to 0 and > 1. The
above conditions are sufficient and in fact, there are many other
combinations of w and n which lead to low-pass/high-pass filters.
Similar results can be obtained when the backbone GNNs are fixed
high-pass filters and we omit that part for brevity. O

Remarks. The filter characteristics of the ALT-global can also be
interpreted from the Graph Diffusion Equation (GDE) [23] perspec-
tive and we provide the GDE-related analysis in Appendix.

3.3 Global Filters vs. Local Filters

ALT-global is proved to be equipped with adaptive filter character-
istics. However, ALT-global fundamentally applies a global filter to
every node, which could lead to suboptimal performance. Recent
studies [32, 47] reveal that heterophilic connection patterns differ
between different nodes. Take gender classification on a dating net-
work as an example. While node pairs are often of different labels
(i.e., genders), homosexuality also exists between some node pairs.
Therefore, simply applying a global low-pass or high-pass filter over
all the nodes can degrade the overall classification performance.
Next, we study how to generalize our proposed ALT-global to a
local (i.e., node-specific) and adaptive filter. Before that, let us take
a closer look at the full frequency profile [1]: @ = UT CU. In the
following proposition, we point out that ® can describe both the
filter and modulator characteristics of a given diffusion matrix C.

PRrRoPOSITION 1. The diagonal entries of the full frequency profile
® of the diffusion matrix serve as the filter and the non-zero off-
diagonal entries are the frequency modulator.

Proor. The diffusion of the input graph signal X;, = MLP(X)
can be represented as CX;, = UPUTX;,, = U(@Xin), where X;, is
the input graph signal in spectral domain. From the perspective of
graph signal processing [27], (®Xin)[i :] represents the amplitude
of output graph signal whose frequency is A;. We further expand
the computation and obtain

(@Xin)[i 5] = )" @[i, j] - Xinlji ]
Jj
In the summation, the diagonal terms of @ represent the filter/con-
volution kernel adopted by many spectral GNNs [1]. If non-zero
off-diagonal entries of ® exist, it shows that the 1;-component of the
output graph signal is merged with scaled (by ®[i, j]) Aj-component
of the input signal which is essentially the modulation [27]. m]

Based on the above property of @, the following proposition
points out the key design for local filter characteristics.

PROPOSITION 2. Modulation of the input graph signal (i.e., non-
zero off-diagonal entries of ®) is necessary for local filters.

Proor. We follow the terminology used in the proof of Propo-
sition 1. If the full frequency profile ® only contains non-zero
diagonal entries, we can obtain

(®Xin)[i:] = (diag(®)" © Xinli:], ()

2865

Zhe Xu et al.

where diag extracts the diagonal entries into a vector from the
input square matrix. Hence, if we define the scaling of the A;-
frequency signal over node p after and before the operator ® as

SCALING(i, p, @) = (d;z>§in_[)i[l)i,]m,

SCALING(i, p, ®) = SCALING(i, g, ®).

from Eq. (2) we have

Vi, p,q,

Le., for any specific frequency (e.g., 4;), its scaling over any two
nodes (p and q) are equal. In other words, the filter ® works globally
over every node. If we expect the filter ® to not work globally, i.e.

3i,p,q,  SCALING(i, p, ®) # SCALING(i, ¢, ®).

The above inequality is equivalent to

Skksi Pl k] - Xinlkpl  Spisi L k] - Xinlk.ql

Xin [lap] Xln [ls q]
Assume that Yk, if k # i, ®[i, k] = 0, and then the left-hand side is
equal to the right-hand side which leads to a contradiction. Hence,
non-zero off-diagonal entries of the full frequency profile ® must
exist if we expect the filter to not work globally. Notice that the
(@Xin) [ip]
Xin [in]

with the classic graph filtering [27] but a combination of filtering
and modulation as we mentioned in Proposition 1. O

above definition of scaling (e.g., ) is not fully aligned

Next, we present a family of GA-MLPs whose spectral expres-
siveness is limited to a global filter.

ProrosITION 3. A family of GA-MLPs are global filters if their
full frequency profiles are in the form of C = X . akAk + bl which
only contains non-zero diagonal entries.

Proor. Since {AK} and I share the same eigenvectors, the diffu-
sion matrix can be decomposed as

C= Z apAx 1+ b1 = U(Z ap(I-A)F +p1yuT.
k k

Hence, the frequency profile is ® = > ar(I - A)F + bI whose
off-diagonal entries are zero. O

A wide range of GA-MLPs (e.g., SGC [34], APPNP [16]) follow the
above form and therefore cannot modulate graph signal. Unfortu-
nately, even when they are equipped with our proposed ALT-global,
they are still global filters because ALT-global assigns the same
weight to every edge (i.e., wA and (1 — w)A).

3.4 ALT-local: A Local Adaptive Method

In this subsection, we propose a more flexible method based on
ALT-global. Our goal is to empower the backbone GNNs with local
adaptive signal filtering capabilities, which is an essential property
for capturing complex heterophilic connection patterns [32, 47]. Ac-
cording to Proposition 3, we know that if all the edges are assigned
with the same weight (e.g., wA) the corresponding full frequency
profile will only contain diagonal non-zero entries. Lemma 2 pro-
vides a critical clue on how to bring non-zero off-diagonal entries
in full frequency profiles.

LEMMA 2. By re-weighting the edge weights non-uniformly (i.e., if
re-weighting byW oA, 3i, j, k, I, Wi, j| # W[k, []), the off-diagonal
entries of ® can be non-zero.
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Figure 2: The proposed ALT-local.

Proor. We follow the assumption mentioned in the proof of
Lemma 1. The diffusion matrix C can be decomposed as C = U®U™.
For the full frequency profile ®, its off-diagonal entry ®[i, j] =
21k UL IIC[LKk]U[k, j] = 0,Vi # j. If we re-weight the diffusion
matrix by W © C such that W[L k] = wj, and W[i,j] = w #
wik, Vi # | and j # k. In other words, we start from the most basic
case where only one edge (I, k) (C[l, k] # 0) is re-weighted by wy
and all the remaining edges are re-weighted as w. Given the zero
off-diagonal entries of ® we have

<I>re—weighted [i, ]] = (UT(W O] C)U) [i,j]
= (UT(Wo Ui j] - we[i, j]
=U[Li]C[Lk]U[k, jl(wi — w).
It is common that U[L, i]U[k, j] # 0, and thus, as long as wy; #
w, we have ®re-yeighted[i, /] # 0. Therefore, we proved that if

the edge weights are re-weighted non-uniformly, the off-diagonal
entries of ® can be non-zero, i.e., the GNN can be a local filter. O

Guided by Lemma 2 we modify ALT-global as follows so that
the edge weights are different:

H; = GNN(W 0 A, X, 6y), (3a)

Hy = GNN((1 - W) 0 A, X, 0,), (3b)
Hofeset =MLP(X, 63), (3¢)
Z = softmax(H; — Hy + nHoffset ), (3d)

One option is to set W as a learnable parameter which is prune to
overfitting as the number of parameters is equal to the number of
edges. Therefore, we parameterize the edge weight W by an edge
augmenter as follows,

H = GNNayg (A, X, ¢1), (4a)
Wi, j] = wij = sigmoid(MLP(H[i,:][[H[},:]. ¢2)) ~ (4b)

where @1 and ¢; are the parameters of the augmenter GNN and a
multi-layer perceptron (MLP) respectively. Here we first obtain the
node embedding matrix via the augmenter GNN (i.e., GNNgyg) in
Eq. 4a. Then we concatenate node embeddings into edge embed-
dings (i.e., H[i, :]||H[, :]). The edge weight (i.e., w;;) is computed
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via an MLP with sigmoid activation. Naturally, the node embed-
dings from the augmenter GNN (Eq. 4a) should be as discriminative
as possible so that the edge importance can be better measured.
Thus, we use a two-layer high-pass filter GNN as the GNN5,g whose
mathematical formulation is as follows,

GNNaug (A, X, ¢1) = Ap; o MLP(X, 1), (52)
Anigh =€l -D 2AD" %, (5b)

where € is a scaling hyper-parameter to adjust the amplitude of
the high-pass filter. We name the above model (i.e., Eqs.3a-5b) as
ALT-local which is summarized in Figure 2.

Remarks. Our method is partly inspired by FAGCN [3] and we
clarify the uniqueness and advantages of our work compared with
FAGCN as follows. From the method perspective, FAGCN explic-
itly mixes high-frequency and low-frequency signals. ALT gen-
eralizes this idea to the ‘mixture of complementary filters’; thus,
even though the backbone GNN’s convolution kernel is unknown,
ALT can still boost its performance decently, which provides great
generality. For the theoretical analysis, [3] analyze the spatial ef-
fects of signals with different frequencies. Our analysis takes a solid
step forward to reveal the intrinsic connections between (i) the
full frequency profile, (ii) graph signal modulation, and (iii) local
adaptive filters.

3.5 Training Objective

The optimization objective of ALT is as follows.

¢",0" = arg Hgn Le1a(9(G.9).0.Y) (6)

where the augmenter is denoted as g(-) whose parameter is ¢ and
the dual backbone GNNs are parameterized as 0 for brevity. Specifi-
cally, for the ALT-global, 8 = {01, 02,03} and ¢ = w are from Eq.1a,
Eq.1b, and Eq.1c. For ALT-local, 8 = {61, 02, 03} is from Eq. 3a, 3b,
and Eq. 3¢c; ¢ = {P1, P2} is from Eq. 4a and 4b. L, is cross-entropy
loss between the classification results (Eq. 1d for ALT-global and
Eq. 3d for ALT-local) and the labeled nodes.

If all the feature dimensions of different layers (including the
input layers) from different backbone GNNs and MLPs are denoted
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Table 1: Performance comparison (meanz+std accuracy) on heterophilic graphs. The last column indicates the average perfor-
mance boosting for a specific backbone GNN over all the datasets.

Backbone ALT? ‘ Chameleon Squirrel Texas Wisconsin Cornell Film  Cornell5 Penn94 ‘ Avg. A

GCN No 58.4+1.1 35.4+0.6  57.6+3.5 51.2+1.6 55.9+1.6 28.1+0.3 72.1+£0.1 74.7+0.3 +12.4
Yes 65.8+0.9 52.4+0.8 70.9+4.3 76.4+3.9 73.9+5.1 35.5+1.2 77.5+0.1 80.1+0.4 ’

SGC No 58.4+0.6 37.1+£0.4  58.6+1.9 48.3+1.8 57.0%£3.4 27.3+0.1 72.6+x04 75.0+0.4 +11.9
Yes 65.6+2.0 53.240.6  71.5+2.8 72.8+1.6 72.1+£9.0 34.9+0.8 79.0+£0.3  80.2+0.1 ’

APPNP No 48.0+1.2 33.8+0.4 59.5+1.1 48.8+2.0 56.3+x1.4 28.7£0.3 70.6£0.5 73.4+0.4 +151
Yes 65.4+1.1 53.2+0.9 71.2+2.9 76.6+2.7 78.4+3.4 34.0+0.3 79.7+0.1 81.7+0.4 ’

GPRGNN No 59.2+2.5 38.4+0.8 69.1x1.0 72.4+1.6 69.6+x2.5 32.1x1.1 743%13 78.7x0.3 71

Yes 66.7+0.9 53.0+£1.0 75.4+24 79.7£0.5 70.6+1.5 32.8+1.0 80.2+0.8 82.3+0.4

FAGCN No 54.3+1.9 32514 61.5+13 56.6+5.2 66.0+£1.7 33.8+0.7 69.1£0.2 72.8+0.3 +111
Yes 64.5+1.0 52.8+x1.4  69.4x0.7 76.4+5.7 75.1%6.8 35705 79.9+0.1 81.9+0.4 )

H2GCN No 49.9+1.4 31.5£0.8  67.6%2.1 70.4+2.1 69.4+3.3 345+03 69.5+x04 73.5x0.1 +81
Yes 61.5+0.7 51.6+0.5 76.0+4.7 77.7+4.4 78.4+3.4 357403 714402 78.7x0.8 ’

as d and all the models (GNNs and MLPs) contain 2 feature trans-
formation matrices, the number of trainable parameters of ALT-
local is composed of three parts: (1) GNNayg (2d?), (2) MLP from
Eq. 4b (2d? + d), (3) GNN7, GNNj, and offset MLP (3d? + 3dc) where
c is the number of classes. In practice, the parameter number is
much smaller than the estimated number. For example for datasets
whose d > 500, empirically, setting the hidden dimension as 32 is
enough. However, compared with vanilla backbone GNNss (e.g., a
simple GCN [15]), ALT-local inevitably contains more parameters
as ALT-local is composed of 3 GNNs and 2 MLPs in total. Even
for ALT-global, it is still composed of 2 GNNs and 1 MLP. Hence,
the increased number of parameters is a potential limitation of
ALT-local and ALT-global.

4 EXPERIMENTS

Experiments in this section aim to answer the following questions.

e How applicable is the proposed ALT to improve the backbone
GNNs with arbitrary filtering characteristics?

o How effective can an existing backbone classifier be, after equip-
ping the proposed ALT?

4.1 Experiment setup

Datasets. 16 datasets are used including Cora [40], Citeseer [40],
Pubmed [40], DBLP [4], Computers [26], Photos [26], CS [26],
Physics [26], Cornell [24], Texas [24], Wisconsin [24], Chameleon [25],
Squirrel [25], Film [24], Cornell5 [19], and Penn94 [19]. We obtain all
the datasets from pytorch-geometric! which are publicly available.
In Section 4.3, in order to compare with the state-of-the-art methods,
we adopt the dataset split 48/32/20% (training/validation/test) from
arecent work ACM-GCN [20]. In the other subsections, to fully test
the applicability of ALT, we use the following challenging dataset
split: (1) we follow the given dataset split for Cora (8.5/30.5/61.0%),
Citeseer (7.4/30.9/61.7%), and Pubmed (3.8/32.1/64.1%); (2) for the

Ihttps://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
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remaining datasets, we randomly split them into 20/20/60% (train-
ing/validation/test). Detailed statistics of the datasets are presented
in Table 5 and Table 6 in Appendix.

Accuracy (ACC) is adopted as the metric and we report the
average accuracy with the standard deviation in 10 runs. Detailed
settings and reproducibility are provided in Appendix?.

4.2 Applicability of ALT

As the main goal of this paper is to propose a general solution
to handle graphs with arbitrary homophily, this section studies
the applicability of the proposed approach, ALT. Specifically, we
select 6 representative backbone node classifiers including 3 classic
GNNs: GCN [15], SGC [34], and APPNP [16], and 3 adaptive GNNs:
GPRGNN [6], FAGCN [3], and H2GCN [48] which use specific
designs to tackle graphs with low homophily. We aim to compare
the performance improvement of the above backbone classifiers
after being equipped with ALT. As ALT-local is more powerful than
ALT-global, we mainly show the performance improvement after
being equipped with ALT-local (short as ALT). The comparison
between ALT-local and ALT-global will be presented in Section 4.4.

We present the performance comparison on heterophilic graphs
in Table 1 and have the following observations. First, on the het-
erophilic graphs, in general, our method ALT can significantly
improve the performance of most of the existing GNNs, especially
for methods originally not designed for the heterophilic graphs
(e.g., GCN, SGC, and APPNP), whose performance, on average, is
improved over 10%. Second, over the heterophilic graphs, for adap-
tive GNNss (e.g., GPRGNN, FAGCN, and H2GCN), their performance
improvement is not as significant as low-pass filter GNNs. This is
expected since these methods have already dealt with heterophily
to some extent. Nonetheless, we still gain 7-11% performance im-
provements averaged over all 8 heterophilic datasets.

The performance comparison on homophilic graphs is presented
in Table 2. We test 48 graph-GNN combinations, out of which,
29 cases show accuracy improvements > 0.5%. It is worth noting

2The code is available at https://github.com/pricexu/ALT .
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Table 2: Performance comparison (meanztstd accuracy (%)) on homophilic graphs. The last column indicates the average

performance boosting for a specific backbone GNN over all the datasets.

Backbone ALT? ‘ Cora  Citeseer Pubmed DBLP Computers Photos CsS Physics ‘ Avg. A

GCN No 81.1+0.3 71.2x0.7  79.0+0.4 83.7%0.1 66.2+1.0 84.1+0.5 88.2+0.2 95.3%0.1 434
Yes 81.2+0.5 71.4+04 79.1+x09 83.7+0.4 84.1+0.1 88.9+£0.6 92.3+04 95.6+0.9 ’

SGC No 80.8+0.1 71.0+£0.2  79.5+0.5 83.8+0.0 69.1+0.4 86.2+0.4 89.7+0.1 95.3+0.0 126
Yes 80.7+0.4 71.2x0.6  79.5x0.7 83.7%£0.0 84.0+0.4 88.8+1.4 92.5+0.3 96.0+0.0 '

APPNP No 82.1+0.1 71.8x0.1  79.8%0.5 83.8+0.2 66.7x1.1 83.4x1.2 87.8+0.1 94.9+0.0 +4.0
Yes 82.7£0.3 72.1£03  79.3%x0.2 84.6+0.1 84.6+0.4 88.7£0.3 93.8+0.1 96.4+0.1 ’

GPRGNN No 78.6x1.5 68.9+09 77.6+£0.9 84.4+0.2 85.0£0.5 92.4+0.2 92.3%+0.1 95.5+0.4 16
Yes 83.0+0.4 71.0£0.4 80.3+0.2 85.1%+0.2 85.8+0.2 92.9+0.2 93.4+0.2 96.2+0.1 '

FAGCN No 79.0£0.6 72.1x0.5 78.0+x1.1 81.1%1.1 74.8+3.4 91.2+0.3 93.0+1.4 95.7+0.3 +18
Yes 79.0£0.5 71.7x0.5 783x1.2 82.5+0.3 86.0+0.8 91.5£04 93.6+1.1 96.3+0.2 ’

H2GCN No 78.9+0.6 70.3x1.0 78.2+1.0 82.4+0.0 75.8+0.3 89.7£0.2 92.5+0.2 96.2+0.1 +2.0
Yes 79.0+0.4 70.9+0.8 78.0+1.3 82.0+0.4 87.0+0.3 92.0+£0.6 94.1£0.2 96.6+0.1 ’

Table 3: Performance comparison (mean=std accuracy (%)) with the state-of-the-art methods. The best and the second best are

bold and underlined, respectively. Results marked "*" are reported from [20] with the same dataset split.

Dataset *ACM-GCN BernNet *LINKX *ACMII-GCN++ “GloGNN++ ‘ ALT-APPNP ALT-APPNP+
Cornell 85.1+6.1 81.1+8.4  77.8+5.8 86.5+6.7 86.0+5.1 86.8+4.3 90.4+4.5
Wisconsin 88.4+3.2 87.3+4.6  75.5%5.7 88.4+3.7 88.0+3.2 88.9+2.5 88.6+3.3
Texas 87.8+4.4 82.6+4.9 74.6+84 88.4+3.4 84.1+4.9 88.7+3.3 89.5+2.2
Film 36.6+0.8 34.2+1.5 36.1x1.6 37.1+1.3 37.7+1.4 37.6+0.7 37.3+1.2
Chameleon 69.1+1.9 45.4+19 68.4+14 74.8+2.2 71.2+1.8 66.7+2.0 77.0+1.9
Squirrel 55.2+1.5 33.1+14 61.8+1.8 67.4+2.2 57.9+1.8 54.3+1.2 69.4+1.5
Cora 87.9+1.0 87.6+0.6  84.6+1.1 88.3+1.0 88.3+1.1 88.1+0.5 89.6+1.3
Citeseer 77.3x1.7 76.1+£0.3  73.2%+1.0 77.1+1.6 77.2+1.8 77.6+1.5 79.9+1.2
PubMed 90.0+0.5 86.2+0.3  87.9+0.8 89.7+0.5 89.2+0.4 89.9+0.6 90.3+0.5
16 kot ALY 1'2 Mot ALY that even though GCN, SGC, and APPNP are designed mainly for
14 . homophilic graphs, the proposed ALT is still able to significantly
wi2 Wl boost their performance on Computers by nearly 18%. Moreover,
8 10 815 for each backbone GNN, the average gain of applying the proposed
0.8 14 ALT over all 8 homophilic graphs is always positive. Thus, we
06 134 conclude that ALT can retain or even boost the performance of
12 given backbone GNNs on homophilic graphs.
o 30 E‘l)?)gh 150 200 >0 E;ggh 150 200 As we mentioned at the end of Section 3.5, the model equipped
(a) Chameleon (b) Film with ALT will have more model parameters compared with a vanilla
2.00 v backbone GNN classifier. Thus, we further study the training sta-
without ALT 1.75 without ALT . 3 . .
175 with ALT with ALT bility of a backbone classifier when working with ALT. To be spe-
1.50 120 cific, we select 2 homophilic datasets Cora and Citeseer, and 2
912 o i OZ heterophilic datasets Chameleon and Film. We select the backbone
= ;:32 = 075 classifier as APPNP. The training loss (negative log-likelihood loss)
0.50 0.50 with respect to the number of epochs is reported in Figure 3a-3d
0.25 0.251 from which we clearly observe that (1) the APPNP’s training stabil-
0 50 100 150 200 0 50 100 150 200 ity is not significantly affected after equipping ALT, (2) ALT-APPNP
Epoch  Epoch can fit the homophilic graphs as good as vanilla APPNP and, im-
(c) Cora (d) Citeseer

Figure 3: Training losses of APPNP (with/without ALT).
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portantly, it can fit the heterophilic graphs much better (with lower
training loss) than the vanilla APPNP. Observation (2) aligns well
with our performance comparison reported in Table 1 and Table 2.
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Table 4: Ablation study with different backbone models.
(a) Backbone model: GCN

Backbone ‘ Version ‘ Chameleon Squirrel Film Computers Photos (6
None 584+1.1  354+0.6 28.1+0.3  66.2+1.0  84.1+0.5 88.2+0.2
Global 61.3+1.0 441203 30.6%0.1 727408  852+14 89.9+0.3
GCN Local-low 63.3£0.8  48.8+12 325+0.2  81.1+03  86.5+0.9 91.0+0.2
Local-concat |  47.1#2.6 31314 344411  76.4+58 853437 87.1+12
Local 65.8+0.9  52.4+0.8 355+1.2  84.1+0.1 88.9+0.6 92.3:0.4
(b) Backbone model: SGC
Backbone ‘ Version ‘ Chameleon Squirrel Film Computers Photos CS
None 584+0.6  37.1+0.4 27.3+0.1  69.1+#0.4  86.2+0.4  89.7+0.1
Global 59.7+0.8 41.6+£0.2  31.4+0.5 71.6+0.4 86.6+0.7  91.1+0.2
SGC Local-low 61.642.3 446203 333202  793+0.6  87.4%0.6 91.5+0.1
Local-concat |  44.0459  36.4+17 340+1.9  79.6+2.1  88.1%3.0 90.2+0.7
Local 65.6+2.0  53.2+0.6 34.9+0.8 84.0+0.4  88.8+14 92.5+0.3
(c) Backbone model: APPNP
Backbone ‘ Version ‘ Chameleon Squirrel Film Computers Photos (1
None 48.0+1.2 33.8+0.4 28.7+0.3 66.7+1.1 83.4+1.2 87.8+0.1
Global 50.8+0.4 36.1+£0.7 31.7+0.2 71.5+0.8 85.3£0.9  90.9+0.4
APPNP Local-low 58.8%+1.1 48.2+0.8  33.2+1.0 80.1+0.9 87.0+£0.6  92.7+0.2
Local-concat 51.9+0.7 40.0+£1.0  33.6+0.7 75.5%2.3 81.8+2.5 89.9+0.4
Local 65.4+1.1 53.2+0.9 34.0+0.3 84.6+0.4 88.7+0.3 93.8+0.1
4.3 Effectiveness of ALT 100 A~ Cora “~ Chameleon 100 A~ Cora <~ Chameleon
Citeseer #- Squirrel Citeseer #- Squirrel
In this section, we show that our proposed approach ALT can also _ ! _ —— : H,
be a strong competitor against state-of-the-art methods. We select °\; 80 | ——— E 80
APPNP [16] as our backbone method which is not designed for 3 ]
graphs with high heterophily. Recent efforts to handle graphs with g 60 g 60
arbitrary heterophily are selected, which include LINKX [19], Bern- . e e o
Net [14], ACM-GCN [20] and GloGNN [18]. For a fair comparison, 20 20
we adopt the same dataset split as the recent work ACM-GCN [20]. 00 02 04 06 08 00 02 04 06 08
The performance comparison is in Table 3. We observe that ALT- & &
(a) GCN (b) GPRGNN

APPNP shows comparable performance against state-of-the-art
methods on most of the datasets (except Chameleon and Squirrel).
We notice that methods LINKX, ACM-GCN++, and GloGNN++ all
use a technique to encode adjacency matrix by an MLP (i.e., MLP(A))
as a supplementary of node embeddings. Since this technique is
independent of the model design, once it is applied to our frame-
work, the model ALT-APPNP+ achieves very strong performance on
Chameleon and Squirrel datasets. In conclusion, our proposed ALT
can be comparable to, or stronger than state-of-the-art methods
even if it works with a fixed-filter backbone GNN, APPNP.

4.4 Ablation Study

We present an ablation study on datasets: Chameleon [25], Squir-
rel [25], Film [24], Computers [26], Photos [26], and CS [26]. Specif-
ically, we have the following ablated versions: (1) ALT-local, (2)
ALT-local with a low-pass filter augmenter (i.e., change Eq. 5b as a
two-layer SGC) named ALT-local-low, (3) ALT-local-concat whose
aggregation step (Eq. 3d) is instantiated by ‘concatenation’ followed
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Figure 4: Hyperparameter sensitivity of ALT with backbone
GNN as (a) GCN and (b) GPRGNN.

by an MLP, (4) ALT-global, and (5) vanilla backbone GNNs without
our methods (named as None). Results are presented in Table 4, from
which we observe that (1) the ALT-local has consistent advantages
over all ablated versions, (2) the variant ALT-local-concat’s perfor-
mance is highly unstable which may be due to its large number of
parameters in aggregating representations.

4.5 Hyperparameter Sensitivity Study

We study the sensitivity of ALT-local regarding the amplitude of
the augmenter GNN (i.e, € from Eq. 5b). We select GCN [15] and
GPRGNN [6] as backbone GNNs and conduct experiments over
Cora [40], Citeseer [40], Chameleon [25], Squirrel [25] datasets.
Results are presented in Figure 4 from which we observe that the



Node Classification Beyond Homophily:
Towards a General Solution KDD ’23, August 6-10, 2023, Long Beach, CA, USA

(c) Computers, APPNP w/o ALT (d) Computers, APPNP w/ ALT

(e) Chameleon, FAGCN w/o ALT (f) Chameleon, FAGCN w/ ALT (g) Computers, FAGCN w/o ALT (h) Computers, FAGCN w/ ALT

Figure 5: Visualization of backbone models with/without ALT on datasets Chameleon and Computers.

model performance is stable for the selection of € over four datasets example, Geom-GCN [24] and H2GCN [48] expand the message-
and both backbone GNNss (i.e., GCN and GPRGNN). passing mechanism beyond the first-order neighbors. GPRGNN [6]

and BernNet [14] reweight the propagation results so that their
4.6 Visualization proposed models are adaptive graph filters. Besides, there are many

As a supplementary study of the model effectiveness, we visual- other .\yorks that. carefl.llly design the propagation of GNN for het-
ize the node representations from the backbone models APPNP erophilic graphs including CP.GNN [47]" HOQ‘GC.N [33], GloGNN [18],
and FAGCN with/without our proposed ALT. To be specific, we and WRGAT [28]. Another .populhar line is to increase the spec-
use t-SNE [29] to map the representations of test nodes into two- tral expressiveness of GNN including FAGCN '[3].’ GBK [8], AC.M'
dimensional vectors for visualization. We select a heterophilic graph GCN [20], and DMP [39]; our wor k falls into this line by proposing
Chameleon and a homophilic graph Computers. Figure 5a-5h show a general approach. Interestlngly,‘Luan etal. [2.0] anfi Ma et al. [22]
that after equipping with our proposed ALT (1) clusters of nodes both report some cases where high het.erophlly will not hurt the
with the same class (i.e., color in our visualization) are more cohe- performance of low-pass filter GNN which reveals under-explored

sive in the embedding space and (2) backbone GNN’s node repre- space for this problem. Learning on heterophilic graphs is also
sentations from different classes are more discriminative. related to other topics. For example, [38] reveals the connections
between oversmoothing and network heterophily. A comprehen-

5 RELATED WORK sive survey [46] is provided by Zheng et al.

This section reviews two topics that are closely related to our paper: 6 CONCLUSION

graph structure learning and learning on heterophilic graphs. In this paper, we propose a general framework ALT for the semi-

Graph Structure Learning. Graph structure learning aims to mod- supervised node classification problem on graphs beyond homophily.
ify the given graph structure to improve the performance of down- Our method introduces a novel structure learning-based augmenter
stream tasks [7, 10, 11, 44, 45, 49]. For instance, to boost message to decompose the given graph. After that, most of the existing
propagation, inserting virtual nodes is an effective approach [12, 17]. GNNs can be plugged into our framework. In-depth theoretical
For topology denoising, dropping some existing edges can improve analysis shows that our proposed method can adaptively filter and
the model robustness [21, 35] and eliminate redundant informa- modulate the graph signals which is critical to address complex
tion from the input [41]. Another line of research views the given heterophilic connection patterns. Comprehensive empirical eval-
graph as the optimization variable and updates them according to uations demonstrate that the proposed ALT obtains significant
the performance of downstream node classifiers (e.g., LDS [9] and performance improvement for a wide range of GNN models, on a
Gasoline [37]). Other works which formulate the given graph as a variety of graph datasets with arbitrary homophily.

random variable and infer its optimal parameters include Bayesian

GCNN [43], GEN [31], and many more. ACKNOWLEDGMENTS

Learning on Heterophilic Graphs. Heterophilic graphs are ZX, QZ, and HT are partially supported by NSF (1947135, 2134079
also known as disassortative graphs. Many message-passing-based and 1939725 ), DARPA (HR001121C0165), NIFA (2020-67021-32799),
GNN s suffer from performance degradation on the heterophilic DHS (17STQAC00001-06-00), and ARO (W911NF2110088).

graphs and several approaches have been developed for that. For
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Node Classification Beyond Homophily:
Towards a General Solution

A ANALYSIS OF ALT-GLOBAL FROM THE
GRAPH DIFFUSION EQUATION (GDE)
PERSPECTIVE

As we claimed in Lemma 1, our proposed ALT-global can be an

adaptive filter even if the given backbone GNNs only have fixed

filters. Here, we prove this from the Graph Diffusion Equation

(GDE) [23] perspective. Our proof will focus on the case where the

diffusion matrix is the normalized adjacency matrix A = D~ 2AD"?

whose convolution kernel is fixed. Other cases can be proved in
similar ways.
Given graph signals H, its diffusion process can be presented as

H@+D = AH(®)  Thus, we have

HE+D —g@)

(t+1)—t (7a)
In the GNN case, t > 0 denotes the GNN depth and in the GDE
context, it denotes the diffusion time. Thus, if we set the time
interval as At, the graph diffusion dynamics can be presented as
follows,
H+D) _g@®)
At

HE+D _g® = = AH® —g®

= AH(® _H®), dlj_(t) =-LH"Y, (8a)

where L =1~ D~ 2AD"? is the normalized Laplacian matrix. As
ALT-global re-weights all the edges into wA and (1—w)A, we have

aa'?
d_:f = wAHY) - HY) =(-wL-(1- w)I)HY), (%a)
(2)
dH .
2= (1= wAH —H) = (~(1 - w)L - whH", (o)

Recap that the prediction matrix of ALT-global is by combining sig-

nals from dual backbone GNNs and an offset MLP as Z = softmax(H;—

Hy + nHyffset). We keep the assumption that the dual backbone
GNNs are both GA-MLPs [5] which shares parameters with our

offset MLP. Thus, we have Hio) = Hgo) = Hyfrset = H=MLP(X)
As we are analyzing its diffusion dynamics, there is no interaction

between any two columns of the feature matrix HY) (and Hgt)).
Hence, for brevity, we only show analysis of a single feature hit) =
H§t> [ m], hét) = Hét) [ m], h =horrser = Hofrset [ ml, () =

ZM [ m], Vm € {1,...,n}. The dual GNNs’ GDEs can be presented
as follows,

an'" ®
e (=wL - (1=w)Dh;", (10a)
(1)

dh
dZt = (=(1 = w)L — whh'?, (10b)

PROPOSITION 4. The solutions of Eq. 10a and Eq. 10b can be pre-
hgt) -y (a§0)e—(wa,-+(1—w))t)ui and

sented as im0 |4

h;t) = Z?:o (alfo)e_((l_wﬂﬁw)t)ui, where u; and A; refers to the

(0)

i-th eigenvector and eigenvalue of L; initial state a; " is determined

byhgo) = hgo) = afo)ui.
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Proor. Here we prove the solution of Eq. 10a and for Eq. 10b its
solution can be obtained in a similar way. For Eq. 10a, by decompos-
ing the graph signal with the eigenvectors ({u;}) of the normalized

Laplacian L we have:
hgt) = Z agt)ui.

i

(11)

As only h and a; are the functions of ¢, based on the fact that
Lu; = Aju; and Iu; = u; we have:

da'®
1
2
1
As all the eigenvectors are orthogonal with each other, by multi-
plying both sides of the above equation with u;r we have

+ W/lial(t) +(1- w)al(t))u,- =0.

(12)

daf") t t
(——+ whial) + (1 - wyaPyu; =o0. (13)
(2)
da,
- +whial” + (1-wyal" = 0. (14)
Hence, the graph signal hgt) can be represented as
n
hgt) = Z (ago)ef(w’li”l*w))t)ui. (15a)
i=0
Similarly, the graph signal h;t) can be presented as
n
hgt) = Z (ago)e_((l_W)Ai“Lw)t)ui. (16a)
i=0
[m]
Thus, the aggregated signal can be presented as
2 = hit) - hgt) + nhoffset, (17a)

n
_ Z a§0) (e—(w)k,-+(1—w))t _ e—((l—w)/li+w)t + ’7)111‘, (17b)
i=0

where we use hysreet = h(®) = pN ago)ui.

According to the graph signal processing [27], u; denotes the
graph signal with A; frequency. Hence, the A;-frequency signal

amplitude is denoted as ago) e~ (Whit(1-w))t _ = ((1-w)ditw)t |
after filtered by ALT-global. We know the signal before filtering
(i.e., diffusion) is

n

=n% = Zai(o)ui,

0) _1,(0) _1.(0)
h( ) = hl - hZ offset —
i=0

(18)

and the amplitude of the the A;-frequency signal before filtering is
a(l.). Hence, the filter response to A; frequency is

al(O) e~ (WAit(1=w)t _ p=((1=w)i+w)t ,7)
O(Ai) =

(19a)
po

=e—(wli+(1—w))t _ e—((l—w)/li+w)t

+7 (19b)

Itis clear when w > 0,, ®(4;) is a monotonically decreasing function
and whenw < 0, ®(4;) is a monotonically increasing function. With
appropriate n and different w, ALT-global can be instantiated as
either a low-pass filter or a high-pass filter.
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Table 5: Dataset statistics of heterophilic graphs.

Chameleon Squirrel Texas Wisconsin Cornell Film Cornell5 Penn94
# Nodes 2,277 5,201 183 251 183 7,600 18,660 41,554
# Edges 62,792 396,846 325 515 298 30,019 1,581,554 2,724,458
# Features 2,325 2,089 1,703 1,703 1,703 932 4,735 4,814
# Classes 5 5 5 5 5 5 2 2
h(G) 0.231 0.222 0.108 0.196 0.305 0.219 0.479 0.470
Table 6: Dataset Statistics of homophilic graphs.
Cora Citeseer Pubmed DBLP Computers Photos CSs Physics
# Nodes 2,708 3,327 19,717 17,716 13,752 7,650 18,333 34,493
# Edges 10,556 9,104 88,648 105,734 491,722 238,162 163,788 495,924
# Features 1,433 3,703 500 1,639 767 745 6,805 8,415
# Classes 7 6 3 4 10 8 15 5
h(G) 0.810 0.736 0.802 0.828 0.777 0.827 0.808 0.931

Table 7: Updating time (seconds per iteration) with and with-
out ALT.

Backbone ALT? Cora Citeseer Chameleon Film
GCN No 0.0063 0.0034 0.0032 0.0029
Yes 0.0107 0.0096 0.0094 0.0093

No 0.0035 0.0042 0.0034 0.0031

APPNP Yes 0.0090 0.0103 0.0089 0.0092
No 0.0053 0.0045 0.0054 0.0048

GPRGNN Yes 0.0121 0.0120 0.0141 0.0136
No 0.0044 0.0040 0.0045 0.0042

FAGCN Yes 0.0109 0.0105 0.0124 0.0115

B DATASET STATISTICS
Detailed dataset statistics are presented in Table 5 and Table 6.

C TRAINING TIME STUDY

An analysis of the model complexity is provided at the end of
Section 3. Also, ALT does not significantly increase the training
epochs, which is illustrated in Figure 3. In this section, we study the
training time of a backbone GNN with and without being plugged
into ALT. We select 4 datasets (Cora, Citeseer, Chameleon, Film)
and 4 backbone GNNs (GCN, APPNP, GPRGNN, FAGCN) to show
the updating time comparison per iteration in Table 7, which shows
that ALT will increase the time of every training iteration. That
is because, from Figure 2, we know the output of the augmenter
GNN is the input of the backbone dual GNNs. Thus, according to
the chain rule, the update of the augmenter GNN requires a more
complex ‘gradient computational graph’ (and more computations)
compared with the update of a vanilla backbone GNN.
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D HYPERPARAMETER SETTINGS AND
REPRODUCIBILITY

Hardware. We implement ALT in pytorch? and pytorch-geometric
using one NVIDIA Tesla V100 SXM2-32GB GPU.
Hyperparameters for ALT’s augmenter and backbone GNNs.
We search the hidden dimension in {16, 32}, and set the learning
rate as 0.05. For all the backbone GNNS, their weight decay is set
as 0.0005. For the augmenter GNN, its weight decay is searched in
{0.005, 0.0005, 0.00005}, and its € is searched in {0.2, 0.4, 0.6, 0.8}.
Both the augmenter GNN and the offset MLP use ReLU as the
activation function. We will release the code upon the publication
of the paper.

Hyperparameters for baseline GNNs. For baseline GNNS, their
hidden dimension is searched in {16,32}, their weight decay is
searched in {0.005, 0.0005, 0.00005}, and their learning rate is set
as 0.05. In addition, the propagation step of APPNP is searched
between 5 and 10 and the receptive fields’ initialization of GPRGNN
is searched between the uniform distribution and personalized
PageRank distributions as the original paper did.

4

E LIMITATIONS AND FUTURE WORK

One limitation of backbone GNNs equipped with ALT, as we men-
tioned in Section 3.5 and Section C, is the increased number of
parameters and training time compared with a vanilla backbone
GNN. Fortunately, it provides significant performance boosting and
does not influence the training stability, as presented in Section 4.2.
Besides, our theoretical analysis relies on the assumption that the
backbone GNNs are GA-MLPs. Generalizing our theoretical results
to a broader range of GNNs is our future work.

Shttps://pytorch.org/
“https://pytorch-geometric.readthedocs.io/en/latest/
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