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Population divergence is often quantified using phenotypic variation. However,
because sensory abilities are more difficult to discern, we have little information
on the plasticity and rate of sensory change between different environments.
The Mexican tetra (Astyanax mexicanus) is a fish distributed throughout Southern
Texas and Northern Mexico and has evolved troglomorphic phenotypes, such
as vestigial eyes and reduced pigmentation, when surface ancestors invaded
caves in the past several hundred thousand years. In the early 1900s, surface
A. mexicanus were introduced to the karstic Edwards-Trinity Aquifer in Texas.
Subsequent cave colonization of subterranean environments resulted in fish with
phenotypic and behavioral divergence from their surface counterparts, allowing
examination of how new environments lead to sensory changes. We hypothesized
that recently introduced cave populations would be more sensitive to light and
sound when compared to their surface counterparts. We quantified divergence
using auditory evoked potentials (AEPs) and particle acceleration levels (PALs)
to measure differences in sound sensitivity, and electroretinography (ERGs) to
measure light sensitivity. We also compared these results to measurements taken
from native populations and lab-born individuals of the introduced populations.
Honey Creek Cave fish were significantly more sensitive than proximate Honey
Creek surface fish to sound pressure levels between 0.6 and 0.8kHz and particle
acceleration levels between 0.4 and 0.8kHz. Pairwise differences were found
between San Antonio Zoo surface and the facultative subterranean San Pedro
Springs and Blue Hole populations, which exhibited more sensitivity to particle
acceleration levels between 0.5 and 0.7kHz. Electroretinography results indicate
no significant differences between populations, although Honey Creek Cave fish
may be trending toward reduced visual sensitivity. Auditory thresholds between
wild-caught and lab-raised populations of recently invaded fish show significant
differences in sensitivity, suggesting that these traits are plastic. Collectively, while
these results may point to the rapid divergence of A. mexicanus in cave habitats,
it also highlights the responsive plasticity of A. mexicanus auditory system to
disparate environments.

Astyanax mexicanus, auditory, vision, divergence, phenotype, environment, sensory
ecology
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1. Introduction

Recent studies have documented rapid phenotypic evolution in
organisms, detailing significant changes over time scales of a few
generations rather than millions of years. Several studies have
demonstrated rapid evolution in fishes, including color pattern
selection based on predator presence over 15 generations in
Trinidadian guppies (Endler, 1980), morphometric changes in South
American cichlids within decades following river damming (Gilbert
etal, 2020), and ecotype divergence in three-spine stickleback within
a single generation (Laurentino et al., 2020). The sensory systems of
organisms can evolve to match environmental conditions (Endler,
1980; Endler and Basolo, 1998) but it remains unclear how quickly
sensory systems and their sensitivity to stimuli might adapt to changing
conditions (Zakon, 2015; Dunlop et al., 2018) or may diverge between
individuals within a population, resulting in speciation (Sechausen
et al., 2008; Puechmaille et al., 2011; Tait et al., 2021).

Cave organisms offer a robust framework to study divergence,
plasticity, and evolution. Due to the similarities of characteristics among
cave systems, such as perpetual darkness, limited nutrient availability,
and the general absence of predators, there is a convergence of
phenotypic attributes observed in cave animals (Jeffery, 2001; Pipan and
Culver, 2012; Bradic et al,, 2013; Herman et al., 2018; Xiong et al, 2018;
Recknagel and Trontelj, 2022). Globally, animal lineages have evolved to
inhabit cave ecosystems in a process known as troglomorphic adaptation.
Troglomorphy describes the phenotypic features associated with cave
organisms and includes lack of pigmentation, tolerance to low nutrient
availability, vision loss, and the enhancement of non-visual sensory
systems to navigate dark environments (Yoshizawa et al, 2010; Protas
and Jeffery, 2012; O'Quin et al, 2013; Yoshizawa, 2016). While
comparisons between cave and surface species offer insight into how
similar organisms adapt to extreme environments (Porter et al., 2007),
little is known about how quickly these traits can evolve.

The Mexican tetra, Astyanax Mexicanus, provides a unique model
for examining troglomorphic sensory adaptation, since it is found in
two distinct environments: surface, abundant in many rivers in
Northern Mexico and parts of Texas, United States, and subterranean,
with approximately 30 known cave populations (Espinasa et al., 2018)
in Mexico. The Mexican cave morphotype of this species has
troglomorphic features, including lack of pigmentation and loss of
eyes. However, they can interbreed with the surface morphotype and
hybridize in the wild (Herman et al., 2018; Jeffery, 2020).

Surface A. mexicanus were introduced into the San Antonio River
in Central Texas between 1908 and 1940 (Brown, 1953). Several
populations were later established in both cave and surface waterways
in the Edwards-Trinity Aquifer system, with A. mexicanus first
observed in the Guadalupe River in 1953 (Constable et al., 2010).
Thus, the populations in Central Texas likely diverged from proximate
Rio Grande (Rio Bravo) surface populations within the last century.
Although Mexican A. mexicanus have acquired troglomorphic
characteristics over several hundred thousand years (Herman et al.,
2018), a recent study indicated morphological and behavioral changes
between the two ecotypes in Honey Creek and Honey Creek Cave,
suggesting rapid divergence between cave and surface populations
(McGaugh et al., 2020).

The cave environment differs from the surface streams and rivers
in light availability and environmental soundscapes (Niemiller and
Soares, 2015). Caves have been characterized using light availability
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and temperatures found within different cave zones (Pipan and Culver,
2012), but the soundscapes within caves are not well studied. The
aquatic soundscapes of caves often lack atmospheric input, such as
wind and rain, that are major contributors to marine (Parks et al,
2014) and freshwater surface environments (Putland and Mensinger,
2020), which may affect auditory sensitivity. In the karst cave systems
inhabited by A. mexicanus, lower ambient sound is attributed to fewer
abiotic and biotic sound sources, sound absorption by porous
limestone, and dissipation by irregular surfaces within the caves (i.e.,
stalactites, stalagmites, concavities, tunnels; lannace and Trematerra,
2014; Carvalho and Sousa, 2015; Badino and Chignola, 2019). The
absence of light in cave systems has predictably resulted in the
degradation of visual systems in troglomorphic fish (Wilkens, 1988;
Wilkens and Strecker, 2017; Soares and Niemiller, 2020). This loss of
vision is offset by increased sensitivity in other sensory modalities,
such as increased hair cell density of the lateral line, which may lead
to increased lateral line sensitivity (Yoshizawa et al., 2014; Lloyd et al.,
2018). However, it is unclear if newly colonized cave populations, prior
to undergoing visual degradation, may initially be under selection for
increased retinal or auditory sensitivity (Krishnan and Rohner, 2017).
Selection for increased retinal sensitivity and other traits is expected
in troglophilic populations that occupy spring sites and other areas of
resurgence (re-emergence of karst groundwater to surface areas).

Several studies have compared sensory systems between cave and
surface ecotypes of A. mexicanus (Yoshizawa, 2016). Early studies of
A. mexicanus found no significant difference in auditory sensitivity
between Mexican cave and surface populations using classical
conditioning approaches (Popper, 1970). More recent works have
indicated that cave A. mexicanus have increased olfactory sensitivity
(Protas et al., 2008; Blin et al., 2020) and increased number of
tastebuds when compared to surface counterparts (Varatharasan et al,,
2009; Yamamoto et al., 2009). Several studies also reveal increased wall
following behavior (Sharma et al., 2009; Patton et al., 2010), which
may be related to reliance on the lateral line. A recent study has even
characterized sound production behaviors in both native cave and
surface fish (Hyacinthe et al., 2019). However, these studies have been
confined to Mexican populations that have diverged over hundreds of
thousands of generations. The study of relatively recent colonization
events in Texas, in which cave and surface populations remain similar
in external morphology, allows investigation into potential early
divergence of sensory systems. The goal of this study is to compare
auditory and visual sensitivity between populations from recently
invaded subterranean environments and surface populations of
A. mexicanus in Texas.

The Mexican tetra is a member of the Characiae family, in the
superorder Ostariophysi (Nakatani et al., 2011; Gross, 2012) which
possess Weberian ossicles that connect the swim bladder to the inner
ear, allowing for greater detection of sound pressure (Schulz-Mirbach
etal, 2020). The increased auditory sensitivity and enhanced range of
ostariophysans such as A. mexicanus provides an excellent model for
investigating any changes in auditory thresholds. We hypothesize that
the change in environmental pressures from surface systems to
underwater caves have selected for increased auditory and visual
sensitivity in recently introduced populations of A. mexicanus and
expect to see these changes when comparing auditory and visual
thresholds of surface, subterranean, and facultatively subterranean
populations. To provide context to the direction of changes observed
in the newly invaded populations, we also compare the auditory
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sensitivity of these recently introduced populations to lab-raised fish
from the native range. We employ measurements of sound pressure
via the auditory brainstem response (also known as the auditory
evoked potential, or AEP) and measurements of particle acceleration
of the presented sound stimuli to capture the two metrics of auditory
sensitivity found in ostariophysan fish. We additionally measure visual
sensitivity using electroretinography, a methodology that records the
rapid electrical response of light-sensitive cells in the eye. Furthermore,
to determine if these traits have a heritable (rather than plastic)
mechanism, wild-caught and lab-raised fish from the recently
introduced A. mexicanus populations are compared.

2. Methods
2.1. Population sampling

Previous work compared Honey Creek Cave fish to Honey Creek
surface fish (McGaugh et al., 2020). Here, we examine this comparison,
in addition to fish from a second river drainage within Texas. For this
additional comparison, we collected fish from San Pedro Springs, Blue
Hole, and the San Antonio Zoo. San Pedro Springs and Blue Hole fish
reside underground during low aquifer conditions while San Antonio
Zoo fish are exclusively surface dwellers in a portion of the river
maintained by a groundwater well. A. mexicanus specimens were
collected from five locations (Figure 1). Fish were obtained in Honey
Creek which feeds into the nearby Guadalupe River in Comal
Country, Texas, with cave fish obtained <100 m inside of the spring
entrance of Honey Creek Cave (the source of Honey Creek) during
June 2019 and February 2020, and surface fish were obtained from
Honey Creek approximately 1,500 m downstream of the cave entrance
in February 2020. San Pedro Spring fish were collected June 2019 from
springs emerging from a bedrock headwall in San Pedro Springs Park,
San Antonio, TX, which is a public recreational area with springs
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feeding into an outdoor pool. Blue Hole fish were collected June 2019
from the Blue Hole, a (formerly artesian) modified open spring that
feeds into the nearby San Antonio River on the University of the
Incarnate Word campus in San Antonio, TX. The Headwaters
Sanctuary at University of the Incarnate Word houses the headwaters
of the San Antonio River, with the Blue Hole serving as the centerpiece
of the sanctuary. The spring is ephemeral: during periods of low
aquifer levels, the population retreats to the subterranean portion of
the spring. Above 204 asl, the spring flows into the San Antonio River
via a short spring run. Fish do not appear to colonize the spring pool
via the river, but rather from deeper in the spring system
(A. Gluesenkamp, pers. observation).

In addition to collection, a SoundTrap STH 300 hydrophone
(Ocean Instruments NZ; Warkworth, Aukland, NZ) was deployed for
24h at each collection site. San Antonio Zoo surface fish were
collected in June 2019 from a headwater branch of the San Antonio
River that originates on San Antonio Zoo grounds. San Antonio Zoo,
San Pedro Springs and Blue Hole are within 7 km from one another
and connected by the San Antonio River. Individuals from all five
populations were transported to the University of Minnesota (St. Paul
Campus) within 7 days of collection via a direct flight by Delta Cargo.
Fish were maintained at the University of Minnesota, St. Paul Campus
between 3months to 1year before transport to the University of
Minnesota Duluth. Aquariums at the St. Paul campus were kept
between 21 and 23°C and on a 14:10 light cycle. All fish were fed
frozen bloodworms, brine shrimp, or Tetra Cichlid flakes (Spectrum
Brands Pet, LLC, Blacksburg, VA, United States) 1-2 times a day, ad
libitum. Fish were transported to the University of Minnesota-Duluth
in buckets filled with water conditioned using 0.5% API Stress Coat
Plus (Mars Fishcare Inc., Chalfront, PA, United States) that were
equipped with battery-operated air pumps for water circulation.

To test the lab-raised descendants of wild-caught fish, wild-
caught Blue Hole, Honey Creek Cave, and Honey Creek Surface fish
were bred in the lab and raised to at least 6 months post-fertilization

/\ Honey Creek Surface and Cave
O Blue Hole

. San Antonio Zoo
[] san Pedro Springs

A

Bulvedere

i Timberwood
Scenic Oaks Park
Northcliff
Kentwood
Shavano Manor
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SRS Universal
Castle Corner dty
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| I
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0 3 6km Antonio

FIGURE 1

Geographic locations of recently invaded population sampling. Five recently invaded populations of Astyanax mexicanus found in the Edwards-Trinity
Aquifier system were sampled for this study, with collection points indicated on the map. The triangle shape indicates both a surface and cave
environment. Circles indicate intermediate environments, while a square indicates a surface environment.
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prior to transportation to the University of Minnesota Duluth. Fish
were bred following an adapted protocol from Borowsky (2008):
larval fish were fed Hikari First Bites Fish Food (Hikari Sales USA,
Inc., Hayward, CA, United States) for the first 30days post-
fertilization in small aquaria kept at room temperature. At
approximately 30 days post-fertilization, larval fish were switched
to a diet of crushed flake, frozen brine shrimp, and frozen
bloodworms in heated (26°C) fully-filtered tanks at a density of one
fish per 9-18 L. Heat was removed 6 months post-fertilization, and
lab-born fish were treated as adults. Animal care and housing
practices were carried out in accordance with all IACUC guidelines
(UMN IACUC protocol 2002-37827A).

In addition to recently established populations, we tested
descendants of wild-caught cave and surface fish from their native
range. Fish were sourced from the Stowers Institute for Medical
Research (Kansas City, MO) and included lab lineages of two cave
populations (Pachon and Molino) and one surface population
(Mexican surface river). These three populations were transported to
the University of Minnesota via FedEx overnight shipment.

2.2. Animal husbandry

A total of eight separate populations were used in this study:
Honey Creek Cave (n=7), Honey Creek surface (n=10), San Pedro
Springs (n=7), Blue Hole (n=7), San Antonio Zoo surface (n=11),
lab-lineage Molino Cave (n=5), lab-lineage Pachon Cave (n=5) and
lab-lineage Mexican surface (n=5). In addition, we also tested
lab-raised Blue Hole (= 10), lab-raised Honey Creek Cave (n=6),
and lab-raised Honey Creek Surface fish (n=5). Fish were maintained
indoors at the University of Minnesota Duluth. Each population was
housed separately in 75.7 L glass tanks filled with buffered pond water
(0.56g KCl, 0.44g NaCl, and 2.6g CaCl, per 75.7L, pH=7.0) and
equipped with mechanical, chemical, and biological filters. Water
temperature was maintained between 20 and 22°C. Illumination was
provided by a Marineland LED Light Hood (Spectrum Brands Pet,
LLC.,, Blacksburg, VA, United States) on top of each tank containing
surface fish on a 9h light:15h dark cycle. The cave tanks were not
illuminated and separated from the surface tanks by opaque dividers
but still received dim indirect light from the surface tanks. All
populations were fed Tetra Cichlid Flakes daily. Prior to each
experiment, standard length (SL, mm), total length (TL, mm) and wet
weight (M, g) were recorded.

2.3. Auditory evoked potentials

Auditory evoked potentials (AEP) testing was conducted in a
375L cylindrical fiberglass tank (88 cm inner diameter, 62 cm height,
57 cm water depth) seated on a 1 cm thick rubber mat on cinderblocks
(41 x20x10cm) to reduce noise (Figure 2A). The experimental tank
was housed within a galvanized angle iron frame (110x 125 x 182 cm)
surrounded on the top and three sides with FOAMULAR Insulation
Sheathing 2.5 cm thick (Owens Corning; Toledo, OH, United States)
to reduce background sound and prevent the fish from seeing
the experimenter.

Prior to electrode implantation, fish were anesthetized for 5min
using phosphate buffered tricaine methanesulfonate (MS-222) at a

Frontiers in Ecology and Evolution

10.3389/fevo.2023.1085975

concentration of 0.005%; (Western Chemical Inc., Ferndale, WA,
United States) and then were suspended in a mesh sling using an
adjustable Omano Microscope arm boom stand (Microscope LLC,;
Roanoke, VA, United States) within a smaller plastic anesthetic
chamber (26.5x18.5x 19 cm) containing the anesthetic solution to
maintain quiescence throughout the experiment. The dorsal surface
of the fish was maintained 4 cm below the surface of the water and
42 cm above an underwater speaker Model UW-30 (Electro-Voice;
Burnsville, MN, United States).

Stainless steel electrodes (Rochester Electro-Medical Inc.; Tampa,
FL, United States) were insulated with acrylic paint to within 2 mm of
the electrode tip and implanted subcutaneously. The recording
electrode was positioned above the brainstem and placed medially on
the dorsal surface of the head approximately 2mm posterior to an
imaginary line drawn between the anterior margins of the opercula.
A reference electrode was placed medially between the nares
(Figure 2A). AEP signals were amplified using a headstage (gain =10x)
connected to a Model EX1 extracellular differential amplifier with a
gain of 100x (Dagan Corporation; Minneapolis, MN, United States)
with a 0.02kHz high-pass filter and a 5.0kHz low-pass filter. A
Micro-3 model 1401 data acquisition system (Cambridge Electronic
Design [CED], Milton, Cambridge, United Kingdom) and Spike2
(Version 8, CED) script (file “fishabr v1.20.s2s”)" were used to set
sound signal parameters, calibrate sound pressure level (SPL)
attenuation, and digitize the received AEP signals. A programmable
attenuator (Model 3505, CED) and Model AS-35 amplifier (Accusonic
Corp., Markham, Ontario, Canada) controlled the SPL of the
presented signals. The attenuator and amplifier were calibrated using
a Model 8103 hydrophone (Briiel & Kjaer; Virum, Denmark) placed
in the same position as the experimental fish. The hydrophone was
connected to a Nexus Model 2609-01s Conditioning Amplifier (Briiel
& Kjaer; Virum, Denmark). Pure tone signals were attenuated in 3dB
1 pPa SPL,,, steps.

Auditory thresholds for 15 frequencies between 0.1 and
4.0kHz were tested. For stimulus presentation, pure tone bursts
for each frequency were broadcast (50 ms; 500 repetitions; 3 ms
delay) and responses were collected and averaged using the same
Spike2 script as mentioned above. The presence of AEPs were
verified by two means: (1) through the observation of the
characteristic wave visible above the background noise
(>0.001 mV) at the second harmonic of the stimulation frequency
(Supplementary Figure S1) and (2) by fast Fourier transform
power spectrum analysis (FFT, Hanning window=1,024)
(Supplementary Figure S2) to calculate power spectra of the
average waveforms at two times the stimulus frequency (Vetter
etal.,, 2018). Visual AEPs with FFT peaks above the background
noise (>0.001 mV) at the second harmonic of the stimulation
frequency were considered evoked potentials. The auditory
threshold at each tested frequency was defined as the minimum
SPL that elicited an observable AEP response and a FFT peak at
the second harmonic of the stimulus frequency. Threshold
measurements were conducted by gradually increasing SPL,,,
until AEPs were detected or the maximum output of the speaker
at a given frequency was reached.

1 https://ced.co.uk/downloads/scriptspkexpr
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Auditory evoked potentials. (A) Schematic of auditory evoked potential (AEP) experimental setup. (B—D) Median auditory sound pressure level (+SE)
sensitivity compared between populations. (B) Comparison between Honey Creek Cave (blue circle) and Honey Creek Surface (yellow square).
Asterisks (*) indicate a significant difference (Mann-whitney U test, p<0.05) between populations. (C) Comparison between San Antonio Zoo (grey
circle), Blue Hole (cyan square) and San Pedro Springs (magnenta triangle). Asterisks (*) indicate a significant (Kruskal-Wallis with post-hoc pairwise
Wilcox w/Holm correction, p<0.05) difference between San Antonio Zoo and Blue Hole. A black circle (s) indicates a significant difference between San
Antonio Zoo and San Pedro Springs. (D) Comparison between Mexican Surface (red circle), Molino Cave (black square) and Pachon Cave (blue
traingle). A significant difference is defined as p<0.05 using a Kruskal-Wallis test with post-hoc pairwise Wilcox w/ Holm adjustment. Asterisks (*)
indicate a significant difference between Mexican surface and Pachon Cave. A black circle (s) indicates a significant difference between Mexican
surface and Molino Cave. A diamond ({)) indicates significant differences between all pairwise population comparisons.

2.4. Particle acceleration thresholds

Particle acceleration level (PAL) thresholds were determined by
running a playback experiment which used the experimentally
determined sound pressure threshold levels to then measure and
calculate particle acceleration thresholds for each fish tested. PALs
were calculated using a Model W356A12/NC (PCB Piezotronics Inc.;
Depew, NY, United States) triaxial accelerometer (sensitivity,
x=10.47mVms~2, y=10.35mVms 2, z=10.29 mVms ) modified to
be neutrally buoyant and connected to a signal conditioner (482C15;
Piezotronics Inc.) and positioned within the AEP experimental tank
in the same position as the fish head. For each frequency,
corresponding PAL measurements were made for each SPL
throughout the attenuation range. The accelerometer was positioned
with its x-axis in the rostral-caudal, the y-axis in the lateral, and the
z-axis to the dorsal-ventral planes of the fish. To calculate the PAL, the

Frontiers in Ecology and Evolution

Vims was determined for each axis (x, y, and z) and then converted into
individual magnitude vectors. The following equation was used to
calculate PAL thresholds:

dBre.Ims %= 2010g(\/x2 +y2 +22 )

2.5. Electroretinography

All electroretinography (ERG) testing was conducted in a room
illuminated by dim red light (15 W light bulbs with Kodak GBX-2
dark red safelight filter). Each fish was anesthetized with MS-222
solution between 0.0075 and 0.0085%, buffered with sodium
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bicarbonate to a pH of 7.0, for 5min prior to placement in
experimental chamber. The fish was then placed on a moist sponge in
the acrylic experimental tank (13 x 18 x 8 cm) and covered with a wet
Kimwipe (Kimberly-Clark Professional; Roswell, GA, United States).
The experimental tank was housed within an opaque metal faraday
cage (77 x 67 x97 cm) to prevent equipment light from reaching the
fish (Supplementary Figure S3). The buffered MS-222 solution was
delivered to the fish via a gravity-fed tube placed in the buccal cavity
of the fish to maintain the surgical plane of anesthesia.

A small incision through the limbus of the eye was made with a
0.3mm 15° stab knife (Surgical Specialties; Westwood, MA,
United States). A 0.64 mm diameter silver-silver chloride electrode
was inserted into the incision, with the reference electrode placed
within the nostril of the ipsilateral side. ERG waveforms were
amplified using a DAMS50 (World Precision, Inc.; Sarasota, FL,
United States) bioamplifier (1,000x gain; 1 Hz high pass, 3kHz low
pass), filtered with a digital 60 Hz notch filter to reduce electrical noise
in the system, and recorded with a Powerlab 4SP (AD Instruments,
Inc.; Colorado Springs, CO, United States) using Lab Chart7 Software
(AD Instruments) on a Dell laptop.

A 100 W quartz tungsten-halogen Model 6333 lamp (Newport
Corp.; Stratford, CT, United States) powered by a constant current
power supply (Model 68938; Newport) produced the light stimulus.
Stimulus duration (200ms) was regulated with an electronic
shutter (Model 76994; Newport) and controller (Model 76995;
Newport). A dual filter wheel (Model 7736; Newport) containing
neutral density filters from 0.1 to 3.0 regulated light intensity, with
wavelength controlled by a monochromator (Model 77250;
Newport). Light intensity was determined using a radiant power
energy meter (Model 70260; Newport) and probe (Model 70268;
Newport). A fiber optic light pipe (Model 77632; Newport)
transmitted the light from the monochromator to the eye,
completely illuminating it.

All fish were dark adapted for 30-60min. Test flashes were
initiated at the 30min mark to determine if the retina was dark
adapted, which was defined as the absence of a negative inflection
(also known as the “a-wave”) prior to the positive inflection (“b-wave,”
see Supplementary Figure 54) in the ERG response waveform. If the
a-wave remained, the fish was allowed to dark adapt for an additional
10min, and the process was repeated until the a-wave was
undetectable. Wavelengths between 425 and 700 nm were presented
to the fish in random order with flash duration of 200 ms and interflash
interval of 10 to 30s. Experiments were conducted during the fish’s
light cycle to avoid circadian rhythm effects.

The response criterion was set as the b-wave amplitude (baseline
to peak) at 425nm and averaged approximately 30mV
(Supplementary Figure S4). Other wavelengths were reduced in
intensity using neutral density filters until the response equaled to the
b-wave amplitude at 425 nm. Upon completion of the ERG, fish were
revived by delivering buffered pondwater to the fish via a separate
gravity-fed tube until gilling resumed, and fish were returned to
home aquaria.

2.6. Statistics

To determine if Honey Creek Cave fish were more sensitive to
auditory and visual stimuli than Honey Creek surface fish, the SPL,
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PAL and ERG threshold data were analyzed using a T-test. Because
the SPL, PAL and ERG data were not normally distributed (Shapiro-
Wilk test: SPL data [W=0.99, p<0.001], PAL [W=0.98, p<0.001],
ERG [W=0.81, p<0.001]), non-parametric tests were used. Similarly,
lab-raised populations were compared to wild-caught fish using a
non-parametric T-test. If the dataset had equal variance as determined
by Levene’s test, a Welch’s T test was conducted; otherwise, a Mann-
Whitney U test was used.

To test for differences in auditory and visual sensitivity between
the surface San Antonio Zoo population and the facultative Blue Hole
and San Pedro Springs populations, the SPL, PAL and ERG threshold
data were analyzed via a Kruskal-Wallis H. To determine if native cave
populations were more sensitive to auditory stimuli than native
surface populations, the SPL and PAL values of lab-raised fish derived
from wild caught fish sampled from Pachén Cave, Molino Cave and a
Mexican surface site were also compared using a Kruskal-Wallis H
test. If significant differences (p <0.05) were found between groups,
post hoc pairwise Wilcoxon Rank-Sum tests with Holm adjustment
were conducted”

Statistical analysis was completed using R Version 4.2.2 “Innocent
and Trusting” (R Core Team, 2022). Graphs were created in both R
and SigmaPlot (Version 15.0). Data are reported as median + SE.

3. Results
3.1. Sound pressure thresholds

All populations responded to frequencies between 0.1 and
4.0kHz, with the highest sensitivity detected between 0.2 and 0.5 kHz.
Honey Creek Cave populations displayed significantly more sensitive
sound pressure thresholds (Mann-Whitney U test, p<0.05) than
surface conspecifics between 0.6 and 0.8kHz (Figure 2B). Blue Hole
and San Pedro Springs populations were significantly more sensitive
(Pairwise Wilcox with Holm Adj., p<0.05) than San Antonio Zoo
surface fish at 0.6-0.7kHz and 0.6kHz, respectfully (Figure 2C).
Mexican surface fish were most sensitive of all the native populations
at 0.2kHz while Molino Cave and Pachén Cave were more sensitive
between 0.3 and 0.4kHz (Figure 2D), although these thresholds are
not significantly different from Mexican surface fish.

Sound pressure sensitivity also differed between wild-caught and
lab raised fish. Only Honey Creek Surface exhibited similar thresholds
between wild-caught and lab-raised fish at 0.3-0.7 kHz (p <0.05) and
1.2-3.0kHz (p<0.01) (Figure 3A). Wild-caught fish were significantly
more sensitive to sound pressure than lab-raised descendants at all
frequencies except 3.0-4.0kHz in Honey Creek Cave (Welch’s T test;
p<0.05) and Blue Hole (Mann-Whitney U test, p <0.05) population
fish (Figures 3B,C). While it appears that sound pressure threshold is
highly dependent on developmental environment, higher sensitivity
in wild-caught fish suggests that the soundscape of these recently
colonized cave-like areas hold ecological information relevant to
A. mexicanus.

Native cave and surface populations exhibited overall less
sensitivity to sound pressure than the recently invaded populations
(Figure 2D). Fish inhabiting subterranean environments appear to
consistently detect frequencies between 600 and 700 kHz at lower
sound pressure levels when compared to surface fish, indicating
increased auditory sensitivity.
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FIGURE 3

Wild caught and lab-raised AEP Thresholds. (A—C) Median auditory sound pressure level (+SE) sensitivity compared between populations.

(A) Comparison between wild-caught (red circle) and lab-raised (brown square) Honey Creek Surface fish. Asterisks (*) indicates significant (Mann-
whitney U test, p<0.05) difference between populations. (B-C) All frequencies tested show significant differences (Welch's T test, p<0.05) between
populations unless marked with “ns”, indicating no significant difference. (B) Comparison between wild-caught (light blue) and lab-raised (beige
square) Honey Creek Cave fish. (C) Comparison between wild-caught (dark blue circle) and lab-raised (green square) Blue Hole fish.

3.2. Particle acceleration thresholds

The threshold values determined from playback particle
acceleration experiments (Figure 4A) revealed additional
differences between populations. Honey Creek Cave fish were
significantly more sensitive (Mann-Whitney U test, p <0.05) to
particle acceleration than Honey Creek surface fish between
0.4-0.8kHz and at 3.0-4.0kHz (Figure 4B). Wild-caught Blue
Hole and San Pedro Springs fish both had significantly lower
particle acceleration thresholds than wild-caught San Antonio
Zoo surface fish between 0.5-0.7 (Pairwise Wilcox w/ Holm Adj.,
p<0.05) (Figure 4C). In addition to this range, among wild-caught
fish, Blue Hole fish were significantly more sensitive than San
Antonio Zoo at 1.2kHz (Pairwise Wilcox w/ Holm adjustment,
p<0.01), and San Pedro Springs fish were significantly more
sensitive than San Antonio Zoo at 3.0 kHz (Pairwise Wilcox w/
Holm adjustment, p <0.01).

Similar to the results seen in sound pressure level thresholds, all
native Mexican cave and surface fish exhibited less overall particle
acceleration level sensitivity than the recently invaded fish from Texas.
While both Molino and Pachén cave fish demonstrated qualitatively
higher sensitivities at lower frequencies (0.3-0.4kHz), though this
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difference was not statistically significant from surface fish
(Figure 4D). However, Molino cave fish were significantly more
sensitive to particle acceleration at 0.8kHz than Mexican surface
(Pairwise Wilcox w/ Holm adjustment, p <0.05), while Pachén cave
fish were more sensitive than Mexican surface fish at 4.0 kHz (Pairwise
Wilcox w/ Holm adjustment, p<0.05).

When compared to wild-caught populations, lab-raised fish were
less sensitive than wild-caught fish, especially in the Honey Creek
Surface (Figure 5A) and Honey Creek Cave (Figure 5B) comparisons.
At most frequencies wild-caught Blue Hole fish were more sensitive
than the lab-raised individuals; however, lab-raised Blue Hole fish
were significantly more sensitive than wild-caught fish at 4.0kHz
(Mann-Whitney U test, p<0.05) (Figure 5C).

Taken holistically, it appears that wild-caught fish from
subterranean environments were more sensitive to particle
acceleration detection than wild-caught fish from surface habitats
or those raised in the lab. The pattern of greater sensitivity among
wild-caught cave-dwelling individuals than surface conspecifics
is upheld both when comparing both sound pressure sensitivity
in auditory evoked potentials thresholds and particle acceleration
sensitivity in particle acceleration level thresholds. However, this
sensitivity appears to be highly dependent on developmental
environment.
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Particle acceleration levels. (A) Schematic of particle acceleration level (PAL) experimental setup. (B—D) Median auditory particle acceleration level
(+SE) sensitivity compared between populations. (B) Comparison between Honey Creek Cave (dark blue circle) and Honey Creek surface (yellow
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3.3. Electroretinography thresholds

All populations were maximally sensitive to wavelengths between
500 and 600 nm. There were no significant differences between Honey
Creek Cave and surface populations. There were also no significant
differences in spectral sensitivity found between San Antonio Zoo
surface, San Pedro Springs, and Blue Hole populations. We had
expected cave-dwelling fish to be the less sensitive to light levels,
which is maintained in the Honey Creek Cave and Honey Creek
surface sensitivity curve comparison at 530 and 560 nm, albeit not at
a significant level (Mann-Whitney U test, p=0.054 at 530nm,
p=0.055 at 560 nm; Supplementary Figure S5). However, comparisons
between the surface population of San Antonio Zoo and the
intermediate populations of San Pedro Springs and Blue Hole suggest
that cave-dwelling fish were more sensitive than those living in surface
habitats, as sensitivity curves (Supplementary Figure S5) seem to
indicate that the San Pedro Springs population is the most sensitive to
all wavelengths of light, followed by Blue Hole population, and ending
with San Antonio Zoo population as the least sensitive of the three.
Lab-raised populations were not tested since these wild-caught
population differences were not significant.
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4. Discussion

Phenotypic divergence is often contextualized using
morphological features as indicators of change (Kozak et al., 2011).
However, few studies examine changes in sensory thresholds due to
the difficulty in quantifying the phenotypic features underlying
sensory systems (Partan, 2017; Kelley et al., 2018). Recently diverged
populations allow us to examine both precursors to evolution as well
as phenotypic plasticity of sensory systems in response to
environmental pressures. Here, we show clear auditory sensory
divergence between two fish populations: Honey Creek Cave fish are
significantly more sensitive to several frequencies of sound than
Honey Creek surface fish. The two facultatively subterranean
populations (San Pedro Springs and Blue Hole) were also more
sensitive to certain frequencies than San Antonio Zoo surface fish.
However, when comparing wild-caught fish to lab-raised progeny, it
was evident that these traits are non-heritable and that auditory
sensitivity is likely a plastic trait influenced by developmental
environment. While most comparisons of retinal sensitivity were not
statistically significant, qualitative examination of the ERG curves

showed both recently introduced and partially subterranean
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FIGURE 5

Wild-caught and lab-raised PAL thresholds. (A—C) Median auditory particle acceleration sensitivity (+SE) between wild-caught and lab-raised
populations. Asterisks (*) indicate significant (Mann—Whitney U Test, p<0.05) differences between populations. (A) Comparison between wild-caught
(red circle) and lab-raised (brown square) Honey Creek Surface fish. (B) Comparison between wild-caught (light blue) and lab-raised (beige square)
Honey Creek Cave fish. (C) Comparison between wild-caught (dark blue circle) and lab-raised (green square) Blue Hole Fish.

populations trended toward increased sensitivity compared to surface
fish. Taken together, these results delineate a relationship between
sensory thresholds and environmental pressures in these recently
established A. mexicanus populations.

4.1. Sound pressure and particle
acceleration sensitivity

Few studies have been conducted on auditory sensitivities of
cavefishes (Soares et al., 2016), and previous investigations examining
auditory sensitivity between cave and surface fish have not found many
physiological differences. For example, a previous study using
avoidance conditioning techniques to determine sound thresholds
indicated no significant differences in auditory sensitivities between
cave and surface populations of Mexican A. mexicanus (Popper, 1970).
Although a separate study between cave and surface populations of the
Atlantic Molly (Poecilia mexicana) showed differences in otolith
morphology, AEP experiments were unable to detect any differences in
auditory sensitivity (Schulz-Mirbach et al., 2010). However, while both
cave and surface amblyopsid fish exhibit similar auditory sensitivity to
pure tones up to 800 Hz, only surface fish were able to detect frequencies
>800 Hz, suggesting cave amblyopsids may have lost higher frequency
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sensitivity in response to high frequency noise in caves (Niemiller et al.,
2013). Our data corroborates and provides additional evidence of this
low-frequency sensitivity, while also showing significant differences
between cave and subterranean dwelling fish.

While many previous AEP experiments only reported sound
pressure measurements, it is imperative to report particle motion as
all fish can detect the particle motion component of sound (Ladich
and Fay, 2013), therefore both methods are included here to allow
comparison with previous studies. Our results indicate that wild-
caught cave populations are more sensitive to particle acceleration
than sound pressure when compared to surface conspecifics. The only
previous study which has measured cave fish particle motion
sensitivity was done comparing cave and surface ecotypes of
P. mexicana and found no significant difference in particle motion
sensitivity between the two ecotypes (Schulz-Mirbach et al., 2010).
Further examination of particle motion sensitivity should be pursued
to better understand the relevancy of this modality of sound detection
in cave soundscapes. While we acknowledge the limitations of AEPs
since physiological responses do not necessarily equate to active
perception or match with thresholds found in behavioral studies
(Popper etal., 2019), we used this methodology because it is minimally
invasive and can still provide important insights on sensory perception
(Ladich and Fay, 2013).
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When comparing auditory sensitivity, we found that wild-
caught fish were generally more sensitive to particle acceleration
and sound pressure level than their lab-raised descendants, with the
exception being that both lab-raised and wild-caught Honey Creek
Surface population fish had similar sound pressure level sensitivity
thresholds. However, we observed no consistent patterns when
comparing lab-raised and wild-caught populations. We suggest that
auditory sensitivity is a trait that exhibits phenotypic plasticity, and
that the differences observed among populations in this study are
not likely the result of genetic differences. Behavioral and
phenotypic plasticity has been suggested as an evolutionary
adaptation to environmental variation (Sommer, 2020). Adaptive
plasticity is well studied across several organisms in response to
both sensory deprivation and sensory stimulation in Ilab
environments (Bharmauria et al., 2022). Additionally, previous
studies have demonstrated that both A. mexicanus surface and cave
ecotypes express rapid behavioral and morphological responses to
environmental conditions (Bilandzija et al., 2020; Espinasa et al.,
2021). While the results presented do not indicate that auditory
sensitivity is an adaptive phenotype in recently established
populations, highly plastic organisms may be better suited to
colonize novel selective landscapes and sensory plasticity may play
a role in convergent troglomorphic traits.

It should be noted that this data is presented with the caveat that
individual fish were not of the same age during data collection. Wild-
caught fish were maintained in the lab for over a year prior to testing
and aging of these individuals was prohibitive due to the large sample
sizes needed for accurate age validation (Campana, 2001).The age of
experimental organisms can critically affect results when collecting
neurological data (McCutcheon and Marinelli, 2009), therefore
we encourage future iterations of this work to control for age between
tested individuals.

4.2. Visual sensitivity trends

Honey Creek Cave fish showed no significant difference in
sensitivity when compared to Honey Creek surface fish, although
Honey Creek Cave fish did have readings that indicated less visual
sensitivity. While the Blue Hole population, San Pedro Springs
populations, and San Antonio Zoo surface fish have remarkably
similar ERG curves, at wavelengths greater than 575nm, San Pedro
Springs were most sensitive to light stimuli, followed by Blue Hole,
then San Antonio Zoo. The genetic underpinnings of vision in
A.mexicanus has been heavily studied in order to trace back the eyeless
phenotype seen in cave ecotype fish (Dowling et al., 2002; O'Quin
et al,, 2013; McGaugh et al., 2014; Krishnan and Rohner, 2017).
However, such studies have not explored the plasticity of the visual
system. In general, there exists a gap in the literature exploring
candidate genes that control plastic traits. The authors propose that
methods using genomic sequencing and QTL mapping to characterize
traits such as metabolic function (Carlson et al., 2018; Riddle et al.,
2021) can be similarly applied to questions regarding sensory
trait plasticity.

While newly invaded cave populations have not previously been
examined for eye function, deep water fish similarly inhabit low-light
environments. Unlike cave organisms, who have lost use of their visual
system in dark cave environments, deep water oceanic fish have
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evolved elaborate retinal specialization to detect downwelling light
(Collin and Partridge, 1996; Warrant and Locket, 2004) and
bioluminescent organisms (Locket, 1970). Similarly, the dim light,
found in the transition (twilight) zone between the cave mouth and
perpetually dark recesses may select initially for increased
scotopic vision.

4.3. Environmental factors of sensory
divergence

The geology of Honey Creek Cave may play a large role in the
divergence seen between Honey Creek Cave fish and their surface
counterparts. Honey Creek Cave is the longest cave system in
Texas (Veni, 1994) and its current surveyed length exceeds 30 km,
with extensive subterranean stream habitat (Reddell, 1964),
although A. mexicanus have only been observed in the first 200 m
of stream passage (A. Gluesenkamp, pers. observation). Our
results suggest that there are changes in both auditory and visual
sensitivity between Honey Creek surface and Honey Creek Cave
populations. The amount of change in sensitivity may
be tempered by both the recent colonization of this environment
and potential continual gene flow between cave and surface
populations. While surface individuals were collected 1,500 m
from the cave mouth, the cave population was sampled within
100 m of the cave entrance. Further studies on the migration of
cave and surface fish between environments need to
be conducted. Additionally, while Honey Creek Cave and Honey
Creek surface populations may experience physical barriers to
gene flow between surface and subterranean habitats, populations
at the other sites enjoy ephemeral to perennial access to
subterranean and surface environments. Therefore, it is not
surprising that San Pedro Springs and Blue Hole populations
displayed intermediate auditory sensitivities compared to Honey
Creek cave and San Antonio surface fish.

The recent establishment of A. mexicanus populations in Central
Texas provides a unique opportunity to observe potential rapid
sensory divergence occurring over a period of less than a century. Our
data suggests that divergence is primarily influenced by environment
and is more pronounced in auditory sensitivity rather than vision,
with increased auditory sensitivity in subterranean populations
compared to surface conspecifics. However, further genetic and
genomic work will be necessary to exclude the genetic determination
of such traits and better characterize the plasticity of the adaptable
A.mexicanus.
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