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Abstract

Rapid developments over the last several decades have brought increased
focus and attention to the role of time scales and heterogeneity in the mod-
eling of human processes. To address these emerging questions, subgroup-
ing methods developed in the discrete-time framework—such as the vector
autoregression (VAR)—have undergone widespread development to iden-
tify shared nomothetic trends from idiographic modeling results. Given
the dependence of VAR-based parameters on the measurement intervals
of the data, we sought to clarify the strengths and limitations of these
methods in recovering subgroup dynamics under different measurement
intervals. Building on the work of Molenaar and collaborators for sub-
grouping individual time-series by means of the subgrouped chain graph-
ical VAR (scgVAR) and the subgrouping option in the group iterative mul-
tiple model estimation (S-GIMME), we present results from a Monte Carlo
study aimed at addressing the implications of identifying subgroups using
these discrete-time methods when applied to continuous-time data. Re-
sults indicate that discrete-time subgrouping methods perform well at re-
covering true subgroups when the measurement intervals are large enough
to capture the full range of a system’s dynamics, either via lagged or con-
temporaneous effects. Further implications and limitations are discussed
therein.
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Introduction

In 2004, Peter Molenaar published a manifesto calling for a return of the person
to the scientific study of psychology (Molenaar, 2004). Slowly but surely, the scientific
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study of psychology has seen steady increases in the application of idiographic meth-
ods for studying person-specific processes in fields ranging from the analysis of fMRI
data (Gates & Molenaar, 2012) to affective dynamics (De Vos et al., 2017; Wright et al.,
2019). This has led to a general increase in our understanding of individual psychological
and behavioral processes. However, as the late physicist John Archibald Wheeler once
remarked, "[...] As our island of knowledge grows, so does the shore of our ignorance." (Hor-
gan, 1992). Appropriately, these advances in understanding have been accompanied by a
commensurate increase in questions that must be addressed.

For instance, while great progress has been made in developing methods that ac-
count for, and characterize, between-person heterogeneity in dynamic processes, less at-
tention has been devoted to understanding how sensitive these methods are to violations
of their assumptions. Importantly, while it is increasingly recognized that many pro-
cesses of interest to psychologists unfold continuously over time, popular approaches
for clustering individuals based on their time-series dynamics assume the sampling rate
of the underlying process is well-specified. In this paper, we introduce continuous-time
processes and two popular discrete-time modeling approaches that account for between-
person heterogeneity at the process level. We will then examine how these dynamic
network models and their subgrouping algorithms perform when applied to continuous
processes at varying intervals of time, At. Specifically, we compare two popular meth-
ods, subgrouped chain graphical VAR (scgVAR; Park et al., 2022) and subgrouping with
group iterative multiple model estimation (5-GIMME; Gates et al., 2017) and discuss the
influence of varying sampling intervals on subgroup and parameter recovery. Finally,
we offer some practical insights on key considerations for subgrouping with real-world
dynamic network data.

Continuous Time Processes

To begin, we discuss the nature of modeling individuals over time. Processes can be
thought of as unfolding continuously over time and relating to one another with varying
strengths as a function of that time (Voelkle et al., 2012). Continuously evolving processes
may be described as a set of differential equations that describe how change in one vari-
able may affect change of another variable and can be expressed in the following general
form:

dy(t) = [b+ An(t)] dt + GAW(¢) (1)

where dy is a p-variate set of differentials (changes) in a vector of latent variables, 5(t),
A is a p x p drift matrix which describes how changes in the values of 1 at time relate
to itself and other variables, b is a vector of intercepts. W(#) is a vector of process noises
(specifically, standard Wiener processes) whose changes between any two time points,
dW(t), are assumed to be normally distributed with zero means and variance-covariances
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that depend on G, the diffusion matrix, and the time interval between two time points,
At. (Arnold, 1974; Voelkle et al., 2012).

The strengths of formulating change processes within a continuous-time (CT) frame-
work are numerous (Chow et al., 2022; Ryan & Hamaker, 2022). In contrast to modeling
variables in discrete-time (DT), CT models are able to handle irregularly spaced data and
are not particularly sensitive to the sampling rate of the data (Gollob & Reichardt, 1987;
Ryan & Hamaker, 2022). That said, the popularity of DT models far eclipses that of CT
models in the social and behavioral sciences for a few practical reasons: measurements
are typically taken in discrete time intervals (e.g., every day, week, month, etc.), DT mod-
els are typically simpler to interpret, and are more familiar to behavioral scientists (Ryan
& Hamaker, 2022). The historical popularity of DT approaches also means CT-analogues
of many popular DT modeling approaches have yet to be developed. For this reason, it is
important to better understand the implications of applying DT models to CT processes.

Modeling in Discrete Time

The Vector Autoregressive (VAR) Model. The VAR model is a common approach
for modeling multivariate time series. The parameters of the VAR can be used to char-
acterize the dynamics of a system of variables at a given, discrete lag (Liitkepohl, 2005)
with VAR models quickly becoming an invaluable methodological tool for understanding
person-specific processes. Importantly, VAR models have proved invaluable for studying
individuals in dynamic networks large enough to include many theoretically-relevant
constructs (~5 to 30 variables; Bringmann et al., 2018; Epskamp, Waldorp, et al., 2018;
Park et al., 2021). We describe the standard VAR(1) model of centered variables as:

1, = @i, + g;- ()

where @7 is a p-dimensional matrix of auto- and cross-regression coefficients capturing
the lagged effects of the observed variables, and {; is the p-variate vector of process noises
which are assumed to be independent and normally distributed; {; ~ N(0,¥*).

When fitting DT VAR models to continuous processes, some information relating to
the dynamics may not be captured depending on the size of the sampling interval (i.e.,
At). In the following section, we discuss the relations between the DT VAR with their
CT counterparts to provide an intuition as to where this information manifests in the DT
VAR.

Relating Continuous and Discrete Time. Several authors (e.g., Voelkle et al., 2012)
have noted that analytic solutions exist which map out values of #, at any arbitrary time-
point based on Eq. 1. The set of exact transformations described below can transform
the elements from the general stochastic differential equation in Eq. 1 into the equivalent
forms of the VAR model in Eq. 2 at a given At (see Eqs 7-11; Voelkle et al., 2012):

@ (At) = A 3)
¥ (At) = irow{A, ! [e* — TJrow(Q)} 4)

where Ay = AQ I+ I A; row(.) is a row operator which transforms a matrix row-wise
into a column vector and irow(.) is the reverse operation turning a column vector into
a matrix, Q is the continuous-time error covariance matrix also known as the diffusion
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matrix (Arnold, 1974; Voelkle et al., 2012). One critical feature of the CT VAR is that the
sampling interval, At, is explicitly encoded into both ®* and ¥*, thus allowing parameters
in the CT VAR to be uniquely defined regardless of the values of At. In contrast, the DT
VAR model requires the observed data to be equally spaced to obtain ®* and ¥* as
constant (At-invariant) values. These relations are summarized in part in Figure 1 and
show how parameters from a CT model may be transformed and manifest at different
sampling intervals (i.e., At =1 or 10).

Notice the current set of scores in Equation 2 depends only on the previous time
point. Thus, any lagged effects among variables that occur faster than the sampling rate
will be captured in the process-noise covariance matrix, ¥*, as contemporaneous effects.
The contemporaneous effects can be deduced explicitly using variants of the VAR model,
such as the graphical VAR (gVAR; Epskamp, Waldorp, et al., 2018) for non-directed
effects and the structural VAR (sVAR; Liitkepohl, 2005) for directed contemporaneous
effects. That is, these variants of the standard VAR may be used to explicitly model
dynamics which occur faster than a given measurement interval.

While the gVAR and sVAR models may-to an extent-be able to compensate for a
mismatch between the underlying process and the sampling interval by modeling con-
temporaneous effects, some limitations remain. For instance, our discussions thus far
have only discussed fitting a single model to a single subject. Some issues arise when
faced with modeling multiple subjects such as how one deals with within-sample het-
erogeneity. Following, we discuss these challenges and some approaches that have been
developed for tackling these issues.

Clustering of Discrete Time Dynamic Networks

The question as to how one may reconcile person- and group-level inferences has
risen in tandem with the person-specific paradigm. Myriad methodologies exist for bal-
ancing individual- and group-specific inference under an umbrella term referred to as
"idio-thetic" methods (Beck & Jackson, 2020). While a full discussion could be had on the
full breadth of these methods, we instead focus on two methods which identify group-,
subgroup-, and individual-level trends in novel ways and have been inspired-if not di-
rectly influenced-by Molenaar’s work. Here, we outline these two approaches for cluster-
ing dynamic networks: the subgrouped chain graphical VAR (Park et al., 2022, scgVAR, )
and the subgrouping option in the group iterative multiple model estimation (S-GIMME;
Gates et al., 2017) procedure. In doing so, we will introduce the larger modeling frame-
works these approaches are built on, graphical VAR and GIMME, respectively. Lastly, we
will discuss important ways these approaches differ in relation to recovering contempo-
raneous relations.

Subgroup Chained Graphical VAR

The scgVAR (Park et al., 2022) is an idio-thetic method that serves to find homo-
geneous subgroups within the framework of the graphical VAR model. As the scgVAR
approach utilizes the gVAR modeling framework it is useful to first review gVAR specifi-
cation and estimation.
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gVAR. In the gVAR approach, parameters from the standard VAR model are trans-
formed onto a correlation scale (Epskamp, van Borkulo, et al., 2018; Park et al., 2021; Wild
et al., 2010). These transformed parameters are referred to as the partial contemporaneous
correlations (PCCs) and partial directed correlations (PDCs) obtained as:

Kmn
S0 = ©

where «,, and %, are diagonal elements and «x,,, are off-diagonal elements from the
precision matrix of the VAR where K = ¥*~1 The resulting PCC matrix is then a partial
correlation matrix representing the contemporaneous relations between the m and n'"
variables after conditioning on all other variables.

PDCy ) = P 5 (6)
V Yium®nn + Ppin

where ¢7,, indicates the m!" row and n'* column element of ®*, ¥, represents a diag-
onal element of the covariance matrix of the VAR, ¥*. Here, the PDC matrix indicates
the lagged relations between the m and n'"* variables after conditioning on all others.
One common approach for estimating a gVAR is with the least absolute shrinkage and
selection operator (LASSO; Rothman et al., 2010; Tibshirani, 1996) but other estimation
routines may also be used. Regularization methods such as the LASSO are favorable
for estimating these effects as they produce sparse networks (Epskamp, Waldorp, et al.,
2018). Notably, the contemporaneous effects as conveyed through the PCCs are agnostic
regarding the direction of effects (Epskamp, Waldorp, et al., 2018).

sgcVAR. The subgrouping extension of the scgVAR algorithm begins by fitting
graphical VAR models to all N subjects in a given sample. Following this, a similarity
matrix is constructed, D where any element, d,; indicates the number of dynamic pa-

rameters the p and g' subjects share in common with one another. Here, commonality
is defined as any instance where a pair of subjects both share a non-zero parameter of
similar polarity. For instance, if ¢;, = 0.3 for the p™ subject and phi;» = —0.3 for the g'"
subject then our algorithm would classify them as separate due to the difference in polar-
ity (i.e.,, 0.3 vs -0.3). A community detection approach—-WalkTrap (Pons & Latapy, 2005)-is
then applied to D to identify subgroups of individuals whose dynamics are most similar
to one another. Finally, a group-level model is fitted to the sample by chaining the time-
series together and subgroup-level models are estimated by chaining together subjects
assigned to the same communities.

Subgrouping Group Iterative Multiple Model Estimation

The S-GIMME algorithm (Gates et al., 2017) is an extension of the GIMME ecosystem
designed to provide functionality for clustering individuals based on similarities and
differences in their dynamic process. and is foundationally built upon the structural VAR
model. We first introduce the structural VAR, then discuss the broader GIMME algorithm
before finishing with developments specific to subgrouping individuals.

sVAR. While the scgVAR approach is built upon the graphical VAR model, GIMME
and S-GIMME are based on the structural-VAR (Liitkepohl, 2005). The sVAR model pro-
vides an alternative method for explicitly modeling directional associations in the con-
temporaneous space and is parameterized as follows:

e = ®on, + P11y, + G, (7)
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where @ is the p x p regression matrix containing the contemporaneous effects with 0’s
along the diagonal, ®; is the p X p regression matrix of lagged effects, and ( is the p
variate residual vector. The sVAR’s ®; matrix encodes the contemporaneous directional
effect of each variable on one another. Notably, the ®] from Eq. 2 also differs from the @&,
in Eq. 7. Specifically, ®] pertains to the lagged coefficients matrix of the standard VAR
model and ®; pertains to the lagged coefficients matrix of the structural VAR, which
capture lingering associations among the variables that are not accounted for by the con-
temporaneous effects in ®g. In practice, the values contained in both matrices will differ
in the presence of directed contemporaneous relations.

As written, the structural parameters of the sVAR are not identified, and a number
of approaches for identification have been proposed in the literature. For example, a
VAR(1) may be transformed to an sVAR(1) by means of Cholesky decomposition on the
residual covariance matrix (Liitkepohl, 2005; Molenaar, 2017); however, this approach has
been criticized due to the effect that ordering may have on the recovery of directed con-
temporaneous effects. For example, the first variable may have contemporaneous effects
on all other p-variables but the second variable may only influence the variables inputted
after and not the first variable. Thus, the decision on how one orders the variables in
the analysis may have an impact on the recovered directionality of contemporaneous ef-
fects (Liitkepohl, 2005). In some instances, theory may be used to guide the ordering of
the variables; however, in higher dimensional dynamic networks, this may not be feasi-
ble. Another approach for dealing with the identification issue for sVAR models is the
GIMME algorithm and is discussed below.

GIMME. The sVAR implementation in GIMME and S-GIMME resolves the identi-
tiability issue raised previously by relying on a diagonal structure imposed on the process
noise covariance matrix, Cov({,), as well as unique information conveyed by each pro-
cess’s autoregressive parameter, to identify the reciprocal effects (i.e., those of 7y ;; — 1 it
and it — Hiir; k # k') between any two variables in #;, that dissipate at a faster rate
than those reflected at At = 1 (Gates et al., 2010).

The GIMME algorithm operates by means of specifying a null sVAR model to all
individuals in a given dataset. As noted above, this null model is one in which all au-
toregressive effects and all diagonal elements of the residual covariance matrix are freed
for estimation for all subjects. Following this, modification indices are assessed across all
individuals and parameters are freed for estimation if they would improve model fit for a
user-defined percentage of individuals until no paths in either ®; or ®; would improve
the model fit for the specified percentage of individuals (Gates & Molenaar, 2012). Fol-
lowing this step, paths which were added in previous steps that are no longer statistically
significant for a majority of individuals are pruned from the group-level model. Then,
GIMME concludes with individual model estimation using the same iterative procedure
of assessing person-specific modification indices.

S-GIMME. The Subgrouping Group Iterative Multiple Model Estimation (S-GIMME;
Gates et al., 2017) algorithm is an idio-thetic method built on the GIMME framework to
further identify subgroup-level information along with the group- and individual-level
processes via an iterative procedure and community detection (see Gates et al., 2017,
Figure 3). Simply, S-GIMME identifies group-level paths which improve model fit for a
majority of individuals discussed in the previous section. Group-level paths—in the case
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Table 1
Transformations relating parameters of the CT VAR to the DT VAR, sVAR, and gVAR
CT VAR — DT VAR at fixed equal At

A — @ (At) @ (At) = AN

Q — ¥*(At) ¥*(At) = irow{A, ! [eAA — T]row(Q)}
sVAR — DT VAR with known At

D) & ©; — O o = (1-®)) @

Q) &Y — ¥ Y= (1—®y) ¥ (I D)

DT VAR — gVAR with known At
o & K & Y™ —>PDC(

—_— (lb;!il

) Bt 038

— Kmn

’7"”7]”) \ KmmKnn

Hmn) PDC(

77m/’1n)

of GIMME and S-GIMME-are indicators that indicate that a parameter is freed for esti-
mation for all subjects within a group or subgroup; however, this is not a single parameter
value which applies to all subjects. Following this, the community detection procedure
Walktrap (Pons & Latapy, 2005) is applied to identify subgroups of individuals whose
models are most similar to one another. Subgroup-level models are then fitted based on
the recovered subgroups, with the constraint that the original group-level paths be esti-
mated. Finally, individual sVAR models are fitted to each subject until some convergence
criterion are satisfied (see Gates et al., 2017; Gates et al., 2014, for more information).
S-GIMME has been applied to the analysis of fMRI (Gates et al., 2014; Henry et al., 2019)
and ecological momentary assessment data (EMA; Lane et al., 2019; Park et al., 2021).

Comparing Approaches

Ultimately, the sVAR and gVAR are different models for capturing lagged and con-
temporaneous relationships between variables but accomplish this goal in unique ways.
Further, additional work has described how parameters of the sVAR and gVAR-as an ex-
tension of the VAR model-relate to parameters from CT models some of which we have
compiled into Table 1 (Chow et al., 2022; Demeshko et al., 2015a). Specific to the sVAR,
modeling of contemporaneous effects makes use of directed associations in ®g. Further,
in GIMME, estimation of the sVAR is performed via raw data maximum likelihood, with
the raw input data containing the concurrent and lagged time-series in separate columns,
and produce estimates that are equivalent to the block-Toeplitz approach with no missing
data (Molenaar, 1985; Park et al., 2021).

In contrast, the gVAR models contemporaneous information via the inverse of the
residual covariance matrix, K, with graphical LASSO regularization (GLASSO; Friedman
et al., 2008). As a result, the contemporaneous relations in the gVAR are non-directional
and indicate the relationship between two variables after partialing out all other associ-
ations. Additionally, estimation of gVAR models also capitalizes on use of the lagged
time series as predictors within a penalized (as imposed via the GLASSO) least squares
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or maximum likelihood framework. Standard error estimates are not available directly
from the GLASSO. Inferences are performed instead by using the GLASSO to shrink (and
thus biasing) some of the less important coefficients toward zero, with penalized coeffi-
cients that fall below a particular threshold subsequently set to zero. As such, inferences
involving the gVAR also suffers from some limitations (Park et al., 2021; Williams & Rast,
2020). Conceptually, these differences yield different interpretations on the same data
with respect to bidirectional associations—among others-where the sVAR may be capable
of providing bidirectional connections from x — y and y — x interpreted as individual
regression coefficients. In contrast, the gVAR would show a single, nondirectional connec-
tion between the two variables indicating a partial correlation between the two variables.
More discussion on the similarities and differences between these models can be found
in Park et al. (2021) including discussions on the differences between the optimization
criterion and possible.

The scgVAR and S-GIMME allow for the identification of subgroups and have found
success in the past decade (Gates et al., 2017; Gates et al., 2014; Lane et al., 2019; Park et
al., 2021; Wright et al., 2019). Aside from performing subgrouping identification based on
alternative variations of the VAR model (the gVAR and SVAR models, respectively), other
differences exist between the two approaches (see Epskamp, Waldorp, et al., 2018). For
instance, unlike S-GIMME, the scgVAR does not constrain group- or subgroup-level paths
to be estimated for all individuals. Moreover, the scgVAR determines edge eligibility by
use of the LASSO algorithm whereas S-GIMME makes use of an iterative modification
index search.

Despite their differences, both the gVAR and sVAR are simply discrete-time vari-
ations of the same CT VAR model (Chow et al., 2022; Demeshko et al., 2015b). One
common finding across both approaches is that-in most empirical applications—the net-
works discovered by these approaches tend to discover mainly contemporaneous effects;
that is, most effects tend to occur faster than the lag-1 sampling rate (Wright et al., 2019).
This consistent finding may be caused by the empirical sampling rate being significantly
slower than the true dynamics or due to omitted common causes which have different
lagged influences on the observed variables. Focusing on the former, it is unclear to what
extent the performance of these approaches varies when the same CT model is used to
generate data and subgroup differences under different time intervals, strengths of coef-
ficients in the drift matrix in Equation 1, and magnitudes of subgroup differences in drift
matrix coefficients. These factors have direct implications on the relative distribution of
the lagged and contemporaneous effects captured by the two approaches and thus, their
relative performances. We conduct a Monte Carlo simulation study to address two spe-
cific questions: (1) how well do discrete-time approaches identify subgroup differences
in continuous processes across At and effect size conditions? and (2) Do differences in
At and effect size relate to differences in the quality of parameter estimates when using
discrete-time approaches on continuous processes?

Simulation Study

In empirical- and simulation-based studies, VAR-based approaches have been used
to identify meaningful subgroups with unique structural differences in their discrete-
time network dynamics (e.g., ®o, ®1,PDC, or PCC; Bulteel et al., 2016; Henry et al.,



EVALUATING DISCRETE TIME METHODS FOR SUBGROUPING CONTINUOUS
PROCESSES 9

2019; Price et al., 2017). However, the use of intensive longitudinal data is wrought with
questions regarding the optimal alignment of time-scales and sampling rates (Ram &
Diehl, 2014; Ryan & Hamaker, 2022). For example, these issues arise in studies of daily
affect (Wright et al., 2019) where emotions unfold and influence each other faster than
data are typically collected and fMRI where neuronal activity occurs significantly faster
than the imaging rate (James et al., 2019).

To address these questions, we simulated 2 subgroups of individuals of sample size
Nigtar = 50 (ng1 = 25;ng = 25) using a 4-variate Ornstein-Uhlenbeck (OU) model at a
temporal resolution of 0.1 units (see Oravecz & Tuerlinckx, 2011). Notably, the interpreta-
tion of this temporal resolution depends on the underlying timescale of the process being
measured such that 0.1 units could stand for 0.1 seconds or 0.1 weeks, based on the metric
for quantifying elapsed time used by the researcher. For example, a At = 1 could corre-
spond to a single day and the various values of At would then scale in relation to that
with At = 0.1 relating to assessments every 2.4-hours, At = 0.5 relating to assessments
every 12-hours, and a At = 10.0 being equivalent to an assessment every 10-days. The
temporal resolution was held constant across all subjects. The OU model is considered
the continuous-time analogue for the discrete-time VAR(1) and is presented in Equation
8 as a special case of Equation 1.

dr(t) = Bl — 5(t)] dt + GAW (1) ®)

here, A in Equation 1 is represented as —B and b = Bu, where B is the drift matrix and
p is a vector of intercepts which characterize the resting states or "home-bases" of the p-
variables (Oravecz & Tuerlinckx, 2011). Both subgroups shared four auto-regressive and
one cross-process effect (By1, By, B33, Ba4, B3;1) and differed on two cross-process effects,
one in terms of sign only (B ), and one in terms of path location (B, 4 in subgroup 1 and
By 3 in subgroup 2).

We examined the influence of effect size, specifically, separation between the two
subgroups in drift matrix coefficients under a small and large effect size conditions, with
drift matrices: B¢; and Bgo.

050 o 0.00 0.00 050 —c¢ 0.00 0.00
B _ |0:00 050 000 —c| o 000 050 0.00 0.00 )
gl —a 0.00 050 0.00]" "8 —a 0.00 050 0.00]"

0.00 0.00 0.00 0.50 0.00 0.00 —c¢ 0.50

where o—subgroup specific paths—and a—common paths—took on values of 0.30 or 0.60 in
the small and large effect size conditions, respectively. In addition, we repeated the evalu-
ation of effect size using an alternative set of drift coefficients, namely, with cross-process
coefficients taking on values of 0.90 and 1.20. This yielded two additional sets of coeffi-
cients that mirrored the first evaluation in terms of the separation between subgroups (i.e.,
“effect size”), but both subgroups’ coefficients deviated further from zero and were more
prone to show sustained deviations from, or slower return to the system’s intercepts. In
the other words, this second set of drift coefficients generated dynamics that were closer
to the boundary of being unstable (Liitkepohl, 2005). The selection of B matrices was to
emphasize strong cross-process effects that would vary in their detectability across the
tested sampling intervals (At) whilst maintaining stationarity. For the simulation study,



EVALUATING DISCRETE TIME METHODS FOR SUBGROUPING CONTINUOUS
PROCESSES 10

we selected the length of T to be T = 14 to emulate a 2-week long experiment and T = 100
in a manner similar to those seen in the applied time-series literature (e.g., De Vos et al.,
2017). These designations—as noted previously—are dependent on the metric of elapsed
time determined by the researcher and are used in this study as illustrative examples. As
such, if At = 1.0 represented a single day then T = 14 would be a 2-week long experi-
ment and At = 0.5 would be a week long experiment with 2 measures per day. Specific to
our data-generation, we simulated over 10,000 time-points based on the continuous OU
processes at an interval of At = 0.1-units. We used this At and also subsampled the data
every 0.5,1.0, and 10.0 units to emulate subsampling a continuous process at different At
values. To obtain the target T, we sampled the last 14 or 100 time points of the subsam-
pled time-series to ensure that the effects of any initial (transient) dynamics on the data
were discarded.

How Well do Discrete-Time Approaches Identify Subgroups Across At and Effect Size
Conditions?

For both scgVAR and S-GIMME, subgroup recovery improved as a function of in-
creasing T and separation between groups in both the stable and nearly unstable config-
urations. To accomplish this, we use the Adjusted Rand Index (Hubert & Arabie, 1985).
ARIs are calculated as:

M (a+d)—[(a+Db)(a+c)+ (c+d)(b+d)
M2 —[(a+b)(a+c)+ (c+d)(b+4d)]

where N are number of subjects, a is the number of hits, b is the number of false negative
classifications, c is the number of false positives, and d is the number of true negatives.
Excellent recovery is ARIg4 > 0.90, good recovery ARIya > 0.80, moderate recovery is
ARIpa > 0.65, and values below ARIy4 = 0.65 are poor (Lane et al., 2019; Steinley, 2004).
Notably, reasonable subgroup recovery could be accomplished with limited time points
(i.e., T = 14) when At was large (e.g., At = 10), with larger separation between subgroups,
and strong coefficient strengths (Figure 2). The scgVAR tended to outperform S-GIMME
with regard to subgrouping accuracy, especially under less idealized conditions, namely,
small T coupled with overly densely spaced repeated measures (small At), small separa-
tion between subgroups, and weak signal strengths. These differences in recovery may
be a result of how S-GIMME was designed to identify subgroups based only on non-zero
coefficients during the group search process. Thus, homogeneity in identically zero paths
contributed toward subgroup identification in sgcvar but not S-GIMME, thereby reducing
the latter’s performance in conditions where insufficient non-zero paths were available to
distinguish among subgroups.

Conclusion: Discrete-time approaches can identify subgroup differences in contin-
uous processes fairly well; conditional on effect size, At, and their interaction. Discrete-
time subgrouping approaches perform better in the presence of stronger effect sizes and
greater effective distances between the subgroups. Further, larger At allowed weaker coef-
ficients to accumulate over the sampling interval and helped the discrete-time algorithms
to delineate the subgroups.

ARIys = (10)
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Do Differences in At and Effect Size Relate to Differences in Bias and Variation in
Parameter Estimates?

Overall, both sgcVAR and S-GIMME tended to show underestimation (negative bi-
ases) in the values of the parameters in ®* and ¥* as seen in Figure 3. Biases tended
to improve with larger T but with no marked improvement across subgroup separation
in the weak and strong drift coefficient configurations. Inspection of the relative biases
(rBiases) helped to highlight that scgVAR tended to perform more accurately at small
configurations of At while S-GIMME struggled, producing substantially larger rBiases es-
pecially in situations where the true values of the coefficients (e.g., in some ®* elements)
were close to zero. In addition, given that S-GIMME by design disregarded identically
zero paths as a source of subgroup homogeneity, S-GIMME tended to fix more of the near-
zero ®* elements to zero than did scgVAR, fix the weak AR paths to 0.00 while scgVAR
would estimate some parameters effectively reducing the rBiases. As At and subgroup
separation increased, rBias for both S-GIMME and scgVAR stayed relatively low. Finally,
as At = 10, the rBiases in ®* became very poor again. This is due to the fact that the
parameters in ®* became incredibly small once again and thus more difficult to detect
for both algorithms.

Evaluation of the RMSEs indicated that even though only negligible differences in
biases were observed for the two approaches for the values in ®* under more idealized
conditions, S-GIMME tended to yield notably larger RMSEs for ®* but conversely, smaller
RMSEs for values in ¥* under At = 10. These points are highlighted in Figure 4. This
suggested that the sVAR formulation assumed within the S-GIMME framework in which
some contemporaneous covariations among the processes are parameterized into the ma-
trix of contemporaneous effects could yield more stable numerical estimation results for
values in ¥* when At is large. In contrast, sgcVAR, based on its current design that
counts identically zero paths in ®* as a source of subgroup homogeneity, was more sen-
sitive at estimating values in ®* accurately and with less variability across Monte Carlo
replications (Chow et al., 2022).

Conclusion: Generally, the point-estimates for discrete-time approaches were rel-
atively unbiased in ®* across conditions. Additionally, the point-estimates became less
biased in ¥* across levels of At. However, these relations with At and effect size was more
complex and multi-faceted than the raw plots would suggest. Biases in ®* tended to re-
main consistently low across At; though, for varying reasons across conditions; discussed
below. Relatedly, bias in ¥* tended to improve with At as effects in the process noises
were able to accumulate over the progressively larger sampling intervals with lower RM-
SEs as well, reflecting less variability in the point-estimates.

Summary of Results

Taken together, the results of these simulations suggest that both methods-S-GIMME
and scgVAR-perform relatively well when subgrouping individuals at large At > 1.0
conditions irrespective of the effect size or degree of stability in dynamics. That is, by
enabling relatively weak effects to accumulate in the ®* and ¥* matrices over time, dif-
ferences between subgroups can be more easily differentiated from one another. These
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differences can be detected more easily with greater T or with a greater degree of sepa-
ration between the subgroups.

Both methods returned point-estimates with relatively low-levels of bias; however,
the origins of these biases—as discussed above—stems from different causes. When At is
small, the true ®* matrices are very weak. Thus, S-GIMME tended to constrain many
paths to 0.00 whereas scgVAR would estimate some paths; this was reflected in the dif-
ferences in the rBiases. With increased At, the true ®*-matrices become weak once again
alongside significantly more prominent covariances in the true residual covariance matri-
ces, ¥*, making detection of ®* more difficult for both algorithms. Relatedly, RMSEs in
¥ decreased with increases in At for both models reflecting less bias and less variability
in the parameter estimates.

It is important to note that the parameters in ®* and ¥* are intricately related to
one another and appear in the transformations of each other across modeling frameworks
(e.g., from CT to SVAR and VAR), biases in one parameter may be offset/compensated
through corresponding biases in other parameters. For instance, the sVAR—from which
S-GIMME is derived—embeds contemporaneous information into both the ®* and ¥* ma-
trices when transformed onto the VAR metric; thus, the same errors may manifest across
the transformed VAR matrices in different ways within the simulations. Considering that
the contemporaneous effects in the sVAR are obtained by constraining the ¥*-matrix to
be diagonal, contemporaneous covariances may be modeled as contemporaneous effects
in the sVAR which would then be embedded into the ®* coefficients matrix via back-
transformations covered by Gates et al. (2010).

Ultimately, the results suggest that both S-GIMME and the scgVAR are viable meth-
ods for identifying heterogeneous subgroups in continuous processes. Notably, with as
few as T = 14 timepoints, the scgVAR was able to return acceptable subgroup classifica-
tions (ARI > 0.75) under large effect sizes in our stable configurations. These results can
be even more meaningful in cases where sampling at faster intervals is costly or otherwise
burdensome to subjects.

Discussion

As noted at the opening of this issue, Molenaar’s (2004) call for a return of the person
to the scientific study of psychology was heard by many in the behavioral sciences. The
commensurate rise in the application of N = 1 techniques is a clear indication of this
revolution. Similarly, the increased adoption of N = 1 analyses led to a rise in criticisms
regarding the generalizability of such results to new subjects leading to the emergence
of idio-thetic methods. These methods attempt to identify nomothetic commonalities
among a set of idiographic processes and have been primarily developed for models in
discrete-time including S-GIMME and the scgVAR; both of which have been co-developed
by Molenaar (Gates et al., 2014; Park et al., 2022).

The current work sheds light on how well methods for subgrouping originally de-
veloped in the discrete-time framework perform at identifying subgroups when the data-
generating models are based in continuous-time across a range of discrete sampling in-
tervals. Simulation results indicated that both scgVAR and GIMME performed well in
recovering the true subgroup structure with At > 1.0 with some promising results when
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T was as small as T = 14. These results generally fall in line with observations in em-
pirical applications (e.g., Wright et al., 2019) which found that effects in these models
tended to be contemporaneous; highlighting that effects were typically occurring faster
than the sampling rate. Our work extends this observation to simulated data and suggest
that the emergence contemporaneous effects are directly related to At as has also been
illustrated by Chow et al. (2022) and Demeshko et al. (2015a). In practice, dense mea-
surement intervals (i.e., small At) may only be viable with some reduction in T to keep
participant burden manageable. Our results indicated that good recovery of subgroup
membership and dynamics within the context of dynamic network analysis is contingent
on thoughtful consideration of choices for At and T.

Even though fitting models in continuous-time circumvents many issues in the
discrete-time context, they still represent a vast minority of empirical applications. Fur-
ther, many if not all, methods for identifying homogeneous clusters of individuals in
dynamics are are based in discrete-time. Our work demonstrates that-in instances where
titting continuous-time models are difficult or impractical-subgrouping with the scgVAR
or S-GIMME approaches may be useful for identifying meaningful differences between
subgroups across a range of At’s for continuous processes of various strengths.

Limitations

Our study had several limitations than can be addressed in future work. In our sim-
ulations measured related to the quality of estimates were excluded due to the relative
complexity of transforming the standard errors of S-GIMME back to the standard VAR
and the general lack of standard errors produced by the LASSO regularized scgVAR.
These issues may be overcome by application of the delta method and bootstrapping
methods; however, due to time constraints, these avenues were not pursued. Another
limitation was the size of our simulated network. Dynamic network applications typi-
cally contain more than four variables. Such larger networks sizes render it difficult to
understand the nature and long-run stability (as T approaches o) of the dynamic pro-
cesses of interest in their canonical form for both DT and CT frameworks. Further inves-
tigation into the types of dynamics characterizing dynamic networks, the need to include
higher-order lags (or alternatively, higher differential order in the CT framework), and
properties of the subgrouping methods under diverse types of observed variables is war-
ranted. Further, the DT subgrouping approaches could be compared against clustering
approaches developed in the CT framework; however, there currently are not many tools
readily available for these methods (e.g., Liu et al., 2020). With these considerations in
mind future work will consider applying the scgVAR and S-GIMME subgrouping algo-
rithms to recent extensions capable of fitting sparse VAR models in high-dimensions with
both group and individual features (multi-VAR; Fisher et al., 2022).
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