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Abstract  38 

Transfusion of red blood cells (RBCs) is one of the most valuable and widespread treatments in modern medicine. 39 

Lifesaving RBC transfusions are facilitated by the cold storage of RBC units in blood banks worldwide. Currently, 40 

RBC storage and subsequent transfusion practices are performed using simplistic workflows. More specifically, 41 

most blood banks follow the “first-in-first-out” principle to avoid wastage, whereas most healthcare providers prefer 42 

the “last-in-first-out” approach simply favoring chronologically younger RBCs. Neither approach addresses recent 43 

advances through -omics showing that stored RBC quality is highly variable depending on donor-, time-, and 44 

processing-specific factors. Thus, it is time to rethink our workflows in transfusion medicine taking advantage of 45 

novel technologies to perform RBC quality assessment. We imagine a future where lab-on-a-chip technologies 46 

utilize novel predictive markers of RBC quality identified by -omics and machine learning to usher in a new era of 47 

safer and precise transfusion medicine.  48 

 49 
Keywords: red blood cell, storage lesion, biopreservation, transfusion medicine, lab-on-a-chip, metabolomics, 50 
machine learning, precision medicine   51 
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Introduction  52 

Red blood cells (RBCs) constitute more than 90% of the cellular blood content in humans and perform one of the 53 

most essential roles for life, oxygen transport. RBC transfusion is a common preventive and therapeutic procedure 54 

with 36 thousand units transfused daily in the US alone (1–3). Here, we review the decades-old quality control 55 

practices for stored RBCs and contend that advances are warranted using novel lab-on-a-chip (LOC) technologies 56 

to enable precision transfusion medicine.  57 

 58 

Blood transfusion therapy has evolved into today's practice over the last four centuries (4). Consequently, many 59 

patients and practitioners mistakenly assume that current transfusion workflows have reached their final form. 60 

Historically, the first convincing demonstrations of blood transfusion and its utility occurred during the First World 61 

War. These demonstrations were facilitated by advances in blood storage practices (5) including additive solutions-62 

enabled extended storage (6, 7), and later plastic blood bags (8) that permitted lighter weight and reduced 63 

contamination.  64 

 65 

The World Health Organization (WHO) reports that whole blood donation exceeds 120 million units annually, in 66 

response to a massive global need (3). The logistics of the RBC supply-and-demand chain are sustained through 67 

commonly agreed-upon storage practices in blood banks. The US Food and Drug Administration (FDA) and the 68 

Centers for Disease Control and Prevention (CDC) are involved in keeping the blood supply safe by mandating 69 

quality control and assurance parameters, and monitoring incidents during manufacturing and adverse post-70 

transfusion reactions (9). These US agencies, along with their international counterparts, have been instrumental in 71 

establishing quality and product clearance regulations for RBC storage and transfusion. Specifically, the current 72 

practice for RBC banking is storage at 4 °C for 42 days (10–12). This practice is based primarily on the FDA-73 

mandated requirements that RBCs undergo less than 1% hemolysis during storage and that at least 75% of 74 

transfused RBCs survive at 24 hours after transfusion (13, 14). The slow pace of change and improvements to these 75 

common practices, however, should not imply that RBC storage and transfusion strategies are optimal. It rather 76 

signals a lack of low-cost and translatable tools to assess quantitatively, (i.e., objectively via unbiased 77 

measurements), the quality of RBC units. 78 

 79 

Stored RBCs exhibit unique donor-, time-, and processing-dependent metabolic and morphological changes 80 

collectively termed storage lesions (15, 16) (Fig. 1). For example, increased cellular acidity inhibits glycolytic 81 

pathway enzymes, depleting adenosine triphosphate (ATP) reserves. A decline in 2,3-diphosphoglycerate (2,3-82 

DPG) changes oxygen kinetics (17, 18). Morphological changes and oxidative injuries jointly cause RBC 83 

breakdown (i.e., intravascular hemolysis) or increased sequestration in the spleen (i.e., extravascular hemolysis) 84 
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(19, 20). Overall, these lesions imply reduced viability and impaired functionality of stored RBCs, negatively 85 

impacting their efficacy and safety in transfusion. 86 

 87 
Several studies in the early 2000s have highlighted risks associated with the use of older stored RBCs versus fresh 88 

units (21–26). Others have challenged such claims using large-scale randomized clinical trials (27–31). However, 89 

these trials have also drawn criticism due to their study design and intrinsic limitations (poor delineation of storage 90 

time, mortality as the primary outcome, etc.) (27, 28, 32). Thus, a consensus on the clinical impact of the time-91 

dependent RBC storage lesion has not yet been reached. This stems from a lack of data on the actual quality (real 92 

age (33)) of RBC units beyond their storage time (chronological age) (Fig. 1). Following initial pathogen screening 93 

and blood typing, only some arbitrary RBC units – if any – go through destructive (sacrificing the tested RBC units) 94 

quality control assays, and only visual inspections are conducted as end-point quality control release tests (Fig. 1). 95 

However, recent studies indicate that the temporal evolution of storage lesions is dependent on donor variability 96 

factors such as sex, age, ethnicity, genetic disposition, body mass index, metabolism, and lifestyle (34–38). The 97 

severity of adverse effects from RBC transfusion also depends on recipient factors (e.g., health state, transfusion 98 

volume and frequency). Objective assessment of storage lesions can lead to RBC quality and “real age” 99 

determination and rational decision-making for donor-to-recipient selection. Doing so will improve transfusion 100 

safety and efficacy, and potentially lead to better storage practices. 101 

 102 

Two emerging approaches have been used to quantitatively assess the RBC storage lesions: -omics and machine 103 

learning. Specifically, -omics methods (proteomics, lipidomics, metabolomics) that provide comprehensive 104 

characterization and quantification of biomolecules via mass spectrometry have been used to study RBC changes 105 

upon storage. These studies have led to identification of potential biomarkers to assess RBC storage injuries (39). 106 

Similarly, machine learning combined with imaging flow cytometry has captured the progression of storage-107 

induced changes in RBC morphology and deformability (40, 41). Together, -omics and machine learning 108 

technologies have the potential to identify key quality parameters that are predictive of clinical transfusion success 109 

for stored RBCs. Yet, the adoption of -omics on a large scale for routine use is hindered by their cost and analysis 110 

time, though these hurdles are overcome with the introduction of high-throughput -omics. 111 

 112 

Lab-on-a-chip (LOC) technologies offer an alternative for routinely measuring RBC unit quality. These LOC 113 

technologies allow miniaturization of analytical assays with the benefits of sensitivity, specificity, ease of use, 114 

portability, rapid turnaround, and high-throughput (42–45). As such, LOCs can become a new frontier for assessing 115 

stored RBC products using quality parameters that result from combined -omics and machine learning studies. More 116 

specifically, LOCs can measure and immediately report these key quality parameters for every stored RBC unit to 117 

enable safer transfusion (without any unintended adverse consequences) by matching the properties of the RBC 118 

unit to the needs of the patient (right unit to right patient). Nevertheless, despite their increasing adoption and 119 
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commercial successes in other areas (pregnancy, glucose, and rapid COVID-19 tests), LOCs are scarcely used to 120 

assess stored RBCs. Yet, recent research is demonstrating the potential of LOCs to improve RBC safety assessment 121 

(46–53).  122 

 123 

This Perspective introduces the unexplored intersection of i) RBC storage lesions, ii) the need for RBC quality 124 

assessment, and iii) the potential for integrated LOC technologies to provide for safer transfusion therapy. First, we 125 

highlight the issues regarding the quality of stored RBCs. Specifically, we and others posit that stored RBCs, under 126 

current practices, are not always safe to transfuse due to donor, time, and processing factors. This is especially 127 

problematic for critically ill patients, those on chronic transfusion regimens, and surgeries where large volumes of 128 

RBCs are transfused. The lack of assessment of stored RBCs before transfusion on a unit-by-unit basis represents 129 

a failure, especially in this era of precision medicine. We then discuss solutions to this critical issue using accessible 130 

and robust LOC platforms and their convergence with other state-of-the-art approaches (-omics and machine 131 

learning). 132 

Current Practices in Red Blood Cell Storage and Quality Assessment 133 

Storage of Red Blood Cells 134 

RBCs undergo donor-, time, and processing-dependent metabolic, biochemical, and morphological injuries during 135 

their extended storage, collectively termed storage lesions (54–56). These include progressive increases in 136 

hemolysis (57); intra- and extra-cellular acidification (58); depletion of glucose (15); accumulation of extracellular 137 

potassium and intracellular calcium ions (54); alteration in osmotic fragility; depletion of intracellular energy and 138 

redox pools (reduced and oxidized glutathione) (55); and decrease in deformability (59) (Fig. 2). The identification 139 

of storage lesions and efforts to mitigate them have led to the development of improved storage solutions to extend 140 

storage time for banking purposes. As a result, the current widely used storage method for RBCs is cold storage at 141 

4 °C for up to 42 days of storage in various additive solutions (SAG-M, AS-1, AS-3, etc.) (54).  142 

 143 

Quality Assessment of Stored RBCs  144 

There are only two criteria mandated by the FDA and international counterparts for the quality and acceptable 145 

storage of RBCs: i) at least 75% of autologous RBCs must survive at 24 hours in vivo after transfusion, and ii) there 146 

must be less than 1% hemolysis in the storage container (13, 14). Novel RBC products – featuring new storage 147 

solutions, methods, or other improvements – must meet these FDA criteria for clinical use. The standard practice 148 

of up to 42 days of cold storage for RBCs is primarily driven by the need to meet these two criteria. In 2008, several 149 

clinical retrospective studies presented data that suggested chronologically old RBCs (stored for more than two 150 

weeks) were associated with worse outcomes upon transfusion in different patient groups. In contrast, subsequent 151 

randomized clinical trials indicated that there are no significant differences between transfusing chronologically 152 



 
6 

 

fresh versus older stored RBCs. In the following paragraphs, we summarize the findings of these different studies 153 

and the ongoing discussion on stored RBC quality and their chronological age. Nevertheless, the different views on 154 

this question stem from a lack of data on the real age – i.e., quantitative and objective metrics of quality – of RBC 155 

units beyond their chronological age. In this Perspective, our goal is to urge that the field adopt robust and routine 156 

quality assessment of stored RBCs.  157 

 158 

According to the 2008 retrospective clinical study, transfusion of RBCs cold-stored for more than two weeks was 159 

associated with increased risks of postoperative complications and reduced survival after cardiac surgery (21). A 160 

similar result was found for trauma patients and corroborated by further studies (22, 23). Specifically, trauma 161 

patients administered three or more RBC units within 24 hours of their hospitalization had a higher mortality risk 162 

when relatively older (>14 days) RBCs were used. A follow-up study indicated inhibition of regional microvascular 163 

perfusion in anemic (but otherwise stable) patients when older (>21 days) RBCs were used (24). However, these 164 

studies were retrospective and hence lacked proper randomization. Nevertheless, their findings prompted agencies 165 

such as the US National Heart, Lung, and Blood Institute (NHLBI) to reexamine the suitability of the current 166 

practices (25, 60).  167 

 168 

Subsequent randomized clinical trials (RCTs) on a subset of patient groups indicated no inferiority of selective 169 

transfusion of freshest available RBC products vs standard of care for various patient groups (27–31). These studies 170 

contrast with the previous retrospective and observational clinical studies and with recent animal studies that predict 171 

high mortality in disease models of animals when older (42-days-old) RBCs are transfused (61, 62). While RCTs 172 

are regarded as the gold standard for clinical studies, several issues were raised regarding these RCTs (27, 28). 173 

These RCTs were conducted in specific patient groups, and their results may not be generalizable to all patient 174 

populations. Also, none of the RCTs evaluated the effect of transfusing RBCs stored between 35-42 days, which is 175 

the period other clinical trials have questioned (63). In fact, Pereira et al. suggested that the RCTs lack enough 176 

power to resolve the issue of the “old” RBCs (32) and recommended reducing the maximum storage time to 35 177 

days.  178 

 179 

The quality of stored RBCs may not necessarily be dictated by their chronological age. As we already indicated, 180 

the RBC quality varies based on not only storage time but also donor, processing, storage solution, and 181 

environmental factors. Indeed, within individual RBC units, there are heterogenous subpopulations with unique 182 

structural, functional, and metabolic dissimilarities due to donor-dependent differences in hematopoiesis and in vivo 183 

eryptosis (64). Similarly, the needs of each patient for transfusion vary depending on several factors, including their 184 

own disposition, condition, and the anticipated operation. Therefore, the focus when using stored RBCs should be 185 

on assessing the quality and thus the transfusibility of each stored unit for the particular patient in need, whether the 186 

storage lesions be due to donor, time, or processing factors. These considerations have fueled the debate on 187 
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personalized transfusion medicine approaches, a key goal in the agenda of the NHLBI, as discussed in the State of 188 

the Science in Transfusion Medicine Workshop (60). Thus, rather than an overly simplistic “first-in-first-out” or 189 

“last-in-first-out” approach, a data-driven selection of stored RBC units for each patient will prove superior (Fig. 190 

1). The routine use of such a data-driven approach will reduce transfusion complications, improve outcomes, and 191 

enable better allocation of RBC units for every patient.  192 

State-of-the-Art Assessment Approaches via -Omics and Machine Learning   193 

-Omics for Transfusion Medicine 194 

There has been progress in recent years in our understanding of storage lesions using -omics technologies (55) – 195 

especially metabolomics (65). This has been primarily driven by advancements in high-throughput mass 196 

spectrometry (66), a technology allowing the analysis of large populations. A paradigmatic example is the Recipient 197 

Epidemiology and Donor Evaluation Study III – RBC Omics (REDS). This study enrolled ~14 thousand healthy 198 

donors across four US blood centers, and performed both donor genomics and metabolomic analyses of stored RBC 199 

units (67). These data were gathered in parallel to laboratory measurements of hemolysis (35, 68), clinical 200 

measurements of iron metabolism (69), and recipient databases for functional read-outs (e.g., post-transfusion 201 

hemoglobin increments (70)), ultimately resulting in what is defined as a “vein-to-vein” database (71).  202 

 203 

The opportunity to generate a wealth of data through metabolomics testing of thousands of RBC units in the REDS 204 

study has allowed the field to appreciate the impact of donor biological variables (sex (34), age (35), ethnicity (72), 205 

body mass index (36), testosterone levels (37)) on RBC storage quality. Interestingly, the genetic background of 206 

the donor significantly impacts the heterogeneity observed in storage profiles. Such is the case for common 207 

polymorphisms – e.g., glucose 6-phosphate dehydrogenase deficiency that affects ~7% of the world population 208 

(73). Similar considerations apply to other common polymorphisms, such as those found in beta-thalassemia minor 209 

(74), band 3 (75), and glutathione peroxidase 4 (76). Metabolomics has also demonstrated the impact of processing 210 

(e.g., leukoreduction/leukodepletion (77)), and the blood donor “exposome” on the onset, progression, and ultimate 211 

storage lesion severity (78). Specifically, based on -omics studies, we now appreciate the impact of factors such as 212 

donor exposure to smoking (38), alcohol (79), and caffeine (80) on RBC storage quality. Furthermore, -omics has 213 

shown that certain drugs – that are not grounds for donor deferral – are routinely identifiable in stored blood 214 

products, with the potential to negatively impact storage quality and promote untoward consequences in transfusion 215 

recipients (78).  216 

 217 

Overall, large-scale -omics studies have paved the way for personalized medicine, revealing that storage duration 218 

(chronological age) might be less relevant than the “real age” (metabolic age) of the unit (81). Applications of -219 

omics to transfusion medicine have recently yielded potential new metrics of the storage lesion and post-transfusion 220 
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performances. These include post-transfusion recovery (82), storage or oxidative hemolysis (34, 73), or oxygen 221 

kinetics (17). These parameters can now drive the development of cost-effective, targeted strategies to monitor 222 

theoretically all the >100 million blood units donated yearly worldwide.  223 

 224 

Machine Learning for Transfusion Medicine 225 

Advanced technologies to assess RBC quality and state – such as -omics – generate complex multivariate data (83). 226 

This data-intensive (i.e., “big data”) approach to assessing stored RBC quality necessitates using computational 227 

statistical techniques to objectively extract meaningful patterns from these data sets (84). Such combination of big 228 

data and computational statistical tools is critical to biological interpretation and aiding the data-driven selection of 229 

stored RBCs for precision transfusion medicine (85).   230 

 231 

Among computational approaches, machine learning (ML) has shown promise in accurately classifying complex 232 

multivariate data and aiding critical decision-making in biomedicine (86–88). Of interest to transfusion medicine, 233 

ML was recently leveraged to predict preoperative RBC demand and the objective assessment of stored RBC quality 234 

(40, 89). One study involved a retrospective analysis of ~130 thousand surgery patients using seven ML algorithms 235 

(81). This led to a more objective approach for predicting the quantity of RBCs needed by each patient, compared 236 

to clinicians making the same decisions without ML. In another study, brightfield images were used to distinguish 237 

between RBC morphologies and predict stored RBC quality using ML algorithms (40). ML results correlated better 238 

with physiological tests of RBC quality, compared to subjective expert annotation. Further examples at the 239 

intersection of transfusion medicine, big data, and ML include the improved quality monitoring of stored RBC units 240 

via the identification of new injury markers (40) and the development of new products (90); novel storage additives 241 

(91) and strategies (92); rejuvenated units (93).  242 

 243 

These advanced technologies, especially -omics, have enriched our understanding of storage lesions and led to the 244 

development of potential new metrics for RBC quality assessment. Currently, these technologies are limited to 245 

research, predominantly due to the relatively low accessibility of the instruments and the complexity of the data. 246 

Although the ML toolbox has demonstrated success in tackling such data, implementation of ML-based solutions 247 

in healthcare will require expertise and installation of software infrastructure. This necessitates an alternative 248 

approach that can harness the results of -omics and ML and provide quick, non-invasive, economically feasible, 249 

and user-friendly quality measurements on stored RBC units.  250 
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Lab-on-a-Chip Technologies for the Assessment of Stored Red Blood Cells  251 

Overview of Lab-on-a-Chip Technologies  252 

Lab-on-a-chip (LOC) platforms are miniaturized fluidic systems that facilitate chemical and biological analyses 253 

with sample volume requirements as low as pico-to-nanoliters (Fig. 3a) (42–45). Many materials (polycarbonate, 254 

paper, polydimethylsiloxane) are available for applications with different requirements. Fabrication methods are 255 

dictated by the material choice and include lithography, hot embossing, and 3D printing. Chemical and biological 256 

analyses require the manipulation of fluids facilitated by components including i) pumps to drive, ii) valves to 257 

selectively direct, and iii) mixers to combine fluids (94, 95). Optical, ultrasonic, electrochemical, electrical, and 258 

other analytical components can also be integrated (96–102), further expanding the LOC toolbox for sensing 259 

biomarkers (proteins, metabolites, etc.).   260 

 261 

During recent decades, LOCs have enabled several transformative technologies that have improved public health 262 

and become commercial successes (45). These range from nucleic acid sequencing (103) to rapid diagnostics (103), 263 

biochemical analyses (104), and antibody selection (105). Today, LOCs are also indispensable in single-cell -omics 264 

(106), synthetic biology (107), liquid biopsy (108), organs-on-chips (109), and wearable sensors (110). Despite 265 

their increasing utility, LOCs have not yet made a translational impact in transfusion medicine. However, the 266 

promising examples described below demonstrate the utility of LOCs to quantify stored RBC quality.  267 

 268 

LOC Platforms for RBC Quality Assessment  269 

Microfluidic platforms have been utilized to characterize storage-induced alterations in RBCs, with a predominant 270 

focus on the stiffness analysis of stored RBCs (Fig. 3b). The simplest approach allows RBCs to adhere to glass in 271 

a microchannel (46). A pressure-driven flow is then used to deform the adherent RBCs and measure their shear 272 

modulus via image analysis. Similar shear modulus measurements are also possible by deforming RBCs flowing 273 

through a constriction and quantifying their subsequent recovery in a wider channel through image analysis (47, 274 

48). These suspension-based approaches enable a higher throughput than the adherent cell approach. Together, these 275 

studies have confirmed storage-induced increases in RBC stiffness.  276 

 277 

An alternative approach to direct measurement of shear modulus is the margination and subsequent fractionation of 278 

RBCs of different deformability. Several groups have developed microfluidic cell sorters where deformable RBCs 279 

migrate toward the channel center, and stiffened ones toward the sidewalls in laminar flow (49, 50). These studies 280 

show significant correlations between storage-induced osmotic fragility and storage-induced stiffness in RBCs (49), 281 

and deduce storage time from the fraction of stiff RBCs (50).  282 

 283 
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Such deformability-based fractionation of stored RBCs can also be achieved with higher fidelity using a 284 

microfluidic ratchet device (51). This device features an array of constrictions (tapered micropillars) and 12 outlets. 285 

The size of constrictions varies gradually perpendicular to the sample flow direction. Using an oscillatory crossflow, 286 

cells can be filtered through constrictions until they reach a limiting constriction size. The device can fractionate 287 

cells into 12 stiffness levels to study donor and storage-induced variability in RBC stiffness. A micropillar array of 288 

reducing constriction size along the flow direction can also be used to measure RBC deformation (52). This device 289 

(OcclusionChip) mimics a transition from capillaries to microcapillaries and reports the number of occluded 290 

constrictions in each array zone. This allows the quantification of deformability associated with microcapillary 291 

occlusion (53). This device has been integrated with microelectrode arrays to enable real-time, electronic, portable 292 

read-out of RBC microcapillary occlusion via the Microfluidic Impedance Red Cell Assay (MIRCA) (111). The 293 

American Medical Association (AMA) has issued the first and only CPT® Proprietary Laboratory Analyses (PLA) 294 

Codes (CPT® 0303U and 0304U) for measuring RBC health using this LOC technology.  295 

 296 

An active research area using LOCs is measuring RBC metabolite release. Two examples feature measurements of 297 

the ability of stored RBCs to i) release oxygen (112) and ii) release ATP and nitric oxide (NO) in circulation rather 298 

than measuring the intracellular levels (113, 114). Measurement of oxygen release rate is possible using precisely 299 

controlled microenvironments at the single-cell level in LOCs via luminescent probes (112). Similarly, ATP and 300 

NO can be facilitated by the chemiluminescent detection of the luciferin/luciferase reaction for ATP and 301 

amperometric (113) or fluorogenic detection for NO (114). Indeed, LOCs can measure ATP and NO release from 302 

RBCs (113) and quantify the downstream effects of ATP release – stimulation of NO release by endothelial cells – 303 

by integrated microfluidic components (114). These studies, together, have assessed the quality of stored RBCs 304 

with different glucose levels and compared normoxic and hypoxic conditions for storage.   305 

 306 

An inevitable and detrimental effect of RBC storage is oxidative stress, which usually correlates well with hemolysis 307 

and, thus, the “real age” of stored RBCs. A study shows that oxidative stresses of stored RBCs can be predicted 308 

from the dielectrophoretic mobility of the cells. Specifically, an optical trap was used to immobilize RBCs in a 309 

microfluidic chip, and then a dielectrophoretic trap was activated to measure the dielectrophoretic force on each 310 

RBC (115). This study indicates that longer-stored RBCs and RBCs subjected to oxidative stress have significantly 311 

lower dielectrophoretic mobilities compared to fresh and shorter-stored RBCs.  312 

A Convergent Future of RBC Quality Assessment for Precision Transfusion 313 

Medicine 314 

How best to assess the freshness, quality, and transfusion efficacy of unique RBC units is still unresolved. The 315 

current RBC transfusion workflow fails to assess the donor-, time-, and processing-dependent quality (“real age”) 316 
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of RBCs prior to transfusion. The inability to use real age dismisses variables that affect RBC quality and the 317 

suitability of the unit for the particular patient. Consequently, a long list of complications, ranging from sepsis and 318 

multi-organ failure to other morbidities, and ultimately mortality can occur following RBC transfusion. This is 319 

especially true for critically and chronically ill patients who require multiple transfusions. 320 

 321 

We have highlighted the lack of quantitative assessment of stored RBCs before transfusion on a unit-by-unit basis, 322 

a notable failure in this era of personalized medicine. We foresee that, over the next decade, state-of-the-art 323 

technologies such as -omics and machine learning can be combined to first identify a set of key quantitative quality 324 

metrics (i.e., a quality index) for stored RBCs. This work is already underway, led by the pioneers in the field (116). 325 

Subsequent translation of such quality metrics to a non-invasive and continuous assessment of RBC quality during 326 

storage could enable better and more appropriate allocation, less waste, and, most importantly, safer transfusion 327 

with better efficacy for all patients. 328 

 329 
Lab-on-a-chip platforms (LOCs) are now mature enough to be integrated with advanced biosensors featuring 330 

flexible electronics and wireless transmitters. We anticipate that such integrated LOCs can be installed on every 331 

RBC storage bag and enable measurements of multiple biochemical and morphological parameters. Accordingly, 332 

we envision a future where LOCs leverage quantitative quality indices – identified by -omics and machine learning– 333 

to monitor stored RBC quality continuously and affordably (Fig. 4).  334 

 335 

Limitations and Challenges for Precision Transfusion Medicine 336 

The path to our envisioned convergent future (Fig. 4), where integrated LOCs on each RBC unit provide quality 337 

assessment prior to transfusion, is not without its hurdles and challenges. The ASSURED criteria for LOC platforms 338 

stand for “affordable, sensitive, specific, user‐friendly, rapid and robust, equipment free, and deliverable to end‐339 

user” (117). As summarized in this Perspective, the current LOC platforms developed for stored RBC assessment 340 

present a promising foundation. For successful translation to blood banks, we envision that these platforms must 341 

address three main technical challenges in terms of sampling, detection and detection miniaturization, and 342 

integration with blood units.  343 

 344 

Firstly, the sampling of RBC units should be performed without any contamination and any changes to the quality 345 

of the unit, i.e., in a non-invasive manner. Further, the sampling should be representative of the entire unit and bias 346 

free. Given that an advantage of LOCs is the use of low volumes compared to traditional assays, this implies the 347 

use of repeated or continuous sampling to ensure robust and representative measurements. While current sampling 348 

approaches such as sampling site couples or sterile connected containers can be used in early non-integrated versions 349 

of LOC safety assessments, they are cumbersome and impractical for the long-term integrated and streamlined 350 
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vision for RBC safety assessment. In this regard, engineering solutions providing small volume, and one-way / 351 

contamination-free sampling from inside the RBC units will be necessary.  352 

 353 

Secondly, the detection of biomarkers for quality assessments should be performed in reasonably miniaturized 354 

platforms suitable for integration with 180-500 ml storage bags. Further, the ideal set of quality indices for RBC 355 

efficacy might necessitate multiple different detection modalities, which may pose additional challenges for 356 

achieving a reasonably small footprint for the integrated LOC platforms. Currently most of the research LOC 357 

platforms for RBC analyses feature cumbersome detection techniques such as benchtop microscopic imaging. 358 

Miniaturization and integration of detection on LOCs requires advanced engineering approaches. Reassuringly, 359 

many examples of commercially available LOCs that are stand-alone and portable demonstrate feasibility. 360 

Furthermore, continuous advances in microelectronics and micro-electro-mechanical systems (MEMS) devices and 361 

micro/nano fabrication are expected to enable manufacturing of miniaturized detection techniques. A common 362 

limitation for LOC platforms used in research for RBC assessment thus far has been their inability to work with the 363 

high hematocrit samples that are the norm for packed RBC units. This detection-related limitation can likely be 364 

overcome with on-chip manipulation, dilution, and multiplexing approaches.  365 

 366 

Once the best strategy to perform aseptic and non-invasive sampling is established and the LOC platforms are 367 

sufficiently miniaturized, the next step will be integration of these platforms with the storage bags. We envision 368 

two routes for this integration. The first features a fully closed system where sampled volumes are routed to an LOC 369 

platform that is integrally manufactured with the blood bags. The second approach features a modular cartridge-370 

based system that can accommodate different LOC platform designs through a universal fluid coupling port. The 371 

latter approach might allow rapid iteration of the platform technologies without affecting the design of the rest of 372 

the blood bag unit. The final engineering step is to integrate user-friendly reporting of the generated data through 373 

wireless technologies and cloud-based data management approaches.  374 

 375 

Beyond the technical and practical challenges, the economics of integrating LOC platforms into the transfusion 376 

medicine workflow needs to be addressed. This challenge can be overcome by economies of scale and rapid 377 

advances in fabrication of microsystems technologies, which are expected to bring the unit costs down. The rapid 378 

cost and size reduction that we have witnessed during the microprocessor revolution is a prime example of how 379 

similar economic challenges have been overcome. User-friendly implementation of LOC platforms should impose 380 

few new skillset requirements, which will ease the adoption process. 381 

 382 
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Concluding Remarks  383 

Lab-on-a-chip technologies can ensure a more successful transfusion workflow by enabling objective assessment 384 

of stored RBC units using quality metrics identified by -omics and machine learning, thus ushering in a new era of 385 

precision transfusion medicine. Addressing the potential and challenges of precision transfusion medicine will 386 

facilitate the proposed convergent future, as depicted in Fig. 4. This will require all stakeholders (including experts 387 

in blood banking, biopreservation, transfusion medicine, -omics, machine learning, bioengineering, ethics, 388 

regulation, and ultimately patients) to participate in multidisciplinary discussions and collaborations rather than 389 

their current isolated efforts. This Perspective – where we have a diverse team of such stakeholders – is a step 390 

towards this envisioned era of precision in transfusion medicine. 391 
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Legends 658 

Figure 1. The current and proposed future workflow for RBC storage and transfusion medicine. Donors vary in 659 
sex, age, ethnicity, genetic disposition, body mass index, metabolism, and habits. These variations can lead to different 660 
initial quality levels for donated RBCs and to different quality changes during storage. Currently, blood banks store 661 
donated RBCs for 42 days at 4 oC. This storage can induce injuries collectively termed the “storage lesions” in a donor-662 
, time-, and processing-dependent manner. Thus, the injury to each stored RBC unit can be unique. The current quality 663 
assessments performed on individual RBC units before transfusion are infectious disease marker testing and donor 664 
screening, blood typing, and visual inspection for bacterial contamination. These assessments are agreed upon and 665 
mandated by health agencies worldwide – including the FDA and CDC. RBC units are generally allocated following the 666 
“first-in-first-out” protocol. However, this workflow may result in post-transfusion complications and significantly 667 
reduced efficacy. The advances in lab-on-a-chip technologies armed with information from -omics and machine learning 668 
studies offer a better alternative. We envision a future where each RBC unit is assessed continuously during storage using 669 
multiple quality metrics based on objective unbiased measurements via lab-on-a-chip technologies. Patients with 670 
different medical conditions will then be administered the right RBC unit via data-driven allocation. Such an approach 671 
will maximize the efficacy of transfusion therapies and reduce complications. 672 

 673 

Figure 2. Donor-, time-, and processing-dependent red blood cell (RBC) storage lesions. RBCs undergo various 674 
injuries during storage in their biochemical content, oxidative state, and morphology. Major biochemical changes include 675 
the depletion of ATP and 2-3 DPG. This is accompanied by an increase in reactive oxygen species (ROS) damaging 676 

proteins and lipids (through increased malondialdehyde – MDA), among other injuries affecting the cellular integrity. 677 
These injuries are often observed as irreversible RBC morphological changes resulting in loss of integrity (hemolysis), 678 
deformability, and discoid morphology. While these alterations have a general time-dependent trend, they also depend 679 
on the donor and the initial blood processing, which varies among blood collection centers. These donor-, time-, and 680 
processing-dependent changes are not monitored in today’s practice of blood banking. 681 

 682 

Figure 3. Lab-on-a-chip (LOC) platforms for red blood cell (RBC) quality assessment. Figure (a) shows different 683 
aspects, components, and materials of lab-on-a-chip platforms from design and fabrication to operation (flow) and 684 
sensing. Such platforms enable detection of various biomarkers ranging from cells and proteins to ions. Figure (b) shows 685 

a schematic representation of one of the most commonly used RBC deformability measurements using LOC platforms. 686 
Such platforms use microfluidic constrictions to quantify the degree of deformability. 687 

 688 

Figure 4. Convergent future of stored red blood cell assessment towards precision transfusion. Novel -omics and 689 
machine learning technologies have recently been used to assess RBC storage lesions. We envision that the integration 690 
of these technologies will identify key quality metrics (quality indices) for stored RBCs in the near future. These quality 691 
indices can then guide lab-on-a-chip platforms armed with novel biosensors to continuously monitor stored RBC quality 692 

and then match the properties of the RBC unit to the needs of the patient.  693 
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