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Abstract

We study e —H(n) and Ps(n) — p collisions near the three-body breakup threshold and thresh-
olds for the charge-transfer processes. We show that classical trajectory Monte Carlo (CTMC)
simulations for the three-body breakup agree reasonably well in this energy region with quantum-
mechanical convergent close-coupling (CCC) calculations even if the initial hydrogen atom or
positronium atom is in the ground state. The threshold behavior of the three-body breakup
cross section in e™—H(1s) and Ps(1s) — p collisions agrees with the Wannier law with the Klar’s
exponent and obeys the classical scaling laws, although some deviation from the Klar-Wannier
behavior is observed in the CCC results. Below the threshold the agreement between CTMC and
CCC disappears. In particular CTMC method fails completely for the processes of H formation
in Ps(1s) — p collisions and Ps formation in et —H collisions well below the three-body breakup
threshold. For higher initial states the CTMC results below the threshold improve substantially,
in accordance with the correspondence principle. This is explained by comparing the quantum-

mechanical threshold laws with the classical laws.



I. INTRODUCTION

The threshold laws are ubiquitous in collision processes [1]. It is important to under-
stand the role of quantum effects in these laws. In particular, the Wigner threshold law [2]
is purely quantum-mechanical. For an endothermic reaction it appears as a manifestation of
quantum suppression [3]. In contrast, the Wannier law [4] for electron-impact ionization of
atoms was derived within the framework of classical mechanics and confirmed by the qua-
siclassical theory [5, 6]. Although there is no formal proof of this law within the framework
of quantum-mechanical three-body problem, there is a strong evidence that the three-body
physics of particles interacting by the Coulomb force, near the threshold of the three-body
breakup, is described adequately by classical mechanics. This is not surprising since low-
energy Coulomb scattering is essentially classical [4, 7]. However, until recently, the absence
of accurate quantum calculations in the challenging near-threshold region prevented rigorous
tests of Wannier physics. Recent convergent close-coupling (CCC) calculations of e —H and
Ps—p collisions [8-12] are attempting to overcome this obstacle and allow a detailed verifi-
cation of the classical approach. On the other hand, with the increasing degree of excitation
of reactants, quantum calculations become very challenging computationally whereas clas-
sical calculations can be extended for higher states with the same computational efficiency.
Moreover, due to the classical scaling laws the volume of the classical trajectory Monte
Carlo (CTMC) calculations can be substantially reduced by rescaling results obtained for
the ground target state. It is important therefore to investigate the validity of the classical
methods in the near-threshold regions.

In the present paper we investigate the threshold behavior of several processes involving

three particles interacting by the Coulomb law

Ps(n)+p—e +e" +p (1)
Ps(n) +p — e" + H(n') (2)
e +H(n) —wet+e +p (3)
et + H(n) — Ps(n) + p, (4)

where n is the principal quantum number, by using the CTMC method [13] and comparing

results with quantum CCC calculations. A more detailed investigation involving analysis of



initial and final angular momentum states of H and Ps are also possible [11, 12], but the
major physics is captured by looking at the n dependence. Therefore we will be considering
cross sections averaged over initial and summed over final angular momentum states. As
a rule, we will also sum the cross sections over the final discrete n’ states. Note that
the charge-conjugated reactions, which have the same cross sections, are important for the
antihydrogen formation, and they were studied in this context [10, 11]. Here we will be
discussing reactions involving p and H, but the same conclusions will be applicable to the
charge-conjugated reactions involving p and H.

Reactions (3) and (4) near the three-body breakup threshold were studied by the CTMC
method in [14, 15], and more recently in [16]. Klar [17] obtained an extension of the Wannier
law with €™, e™ and p in the final state, this includes reactions (1) and (3). The cross section
for these reactions behaves as

o = C(AE)" (5)

where C'is a constant, AF is the energy relative to the threshold, and g = 2.65. This result
was confirmed by semiclassical theories [18, 19]. Moreover, Thra et al. [19] and Jansen et al.
[20], using the hyperspherical hidden-crossing theory, obtained an exponential correction to
Eq. (5) which slows down the growth of the ionization cross section well above the threshold.
Quantum CCC calculations [21] confirm the Klar prediction and the correction obtained in
[19]. Measurements of positron-impact ionization of hydrogen [22] do not go close enough
to the threshold to verify the Klar-Wannier law. Experimental data on positron-impact
ionization of He [23] confirm the Wannier law with the exponent close to that predicted by
Klar, although more recent measurements with the argon atom [24] produced much lower
exponent g = 1.05 &+ 0.14. The authors [24] suggested that their measurements, performed
above AE = 0.2 eV were not close enough to the threshold to reproduce the Klar-Wannier
law for Ar. However, for atomic hydrogen, as will be shown below, the range of validity of
the Klar-Wannier law extends up to AF = 10 eV.

The threshold behavior of the reactions (2) and (4) depends on their threshold energies
and the initial principal quantum number n. Reaction (2) (summed over all final states) is

always exothermic, and for n = 1 obeys the Bethe-Wigner threshold law [2, 25]
oo BTV (6)
where E is the incident center-of mass energy. However, for n > 1 the hydrogen atom, due
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to the degeneracy of its excited states, possesses an effective dipole moment which makes

the cross section for H formation to diverge as E~! [26, 27], i.e.
ocx B (7)

In addition, partial cross sections exhibit Gailitis-Damburg oscillations [26, 28] as functions
of In E. However, these oscillations are not detectable in total cross sections, summed over
angular momentum for the relative motion [28]. The dipole threshold law is valid as long
as we neglect the relativistic splitting between the excited states. Within the energy region
where this splitting cannot be ignored the Bethe-Wigner law is restored. In the present
paper we consider the energies which are well beyond this region, therefore we neglect the
relativistic splitting.

The Ps formation reaction (4) is endothermic for n = 1, therefore it obeys the Wigner
law [2]

o (E— E)Y? (8)

where F; = 0.25 a.u. is the threshold energy. For n > 1 it becomes exothermic, and obeys
the dipole threshold law for an exothermic reaction, Eq. (7). Note that for partial n — n/
cases the reaction can be endothermic, if n’ > nv/2 for reaction (2), and for n’ > n//2 for
reaction (4). In this case the quantum cross section, similar to the classical cross section,
becomes finite at the threshold [26] if n’ > 1. However, the threshold law, both its classical
and quantum versions, does not say anything about the threshold value of the cross section
which depends on the interaction in the reaction zone, therefore the threshold value of the
cross section can be substantially different in classical and quantum theories. Similar, the
coefficient of proportionality in the threshold law for the exothermic case, Eq. (7), as well
as the range of validity of the threshold law, can be substantially different in classical and
quantum theories.

Our goal is to perform detail studies of classical and quantum threshold behavior for
reactions (1)-(4) for the ground and a first few excited states. For highly excited states, as
was shown by previous studies [11, 12, 29-31], quantum and classical cross sections converge
fast, according to the generalized correspondence principle [32]. Although the principle was
originally applied to ion-atom collisions, it works rather well even for collisions involving a

light particle, Ps. The reason for this is that Ps in excited states interacts with the proton
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by effectively dipolar force, and the scattering laws involving dipolar interactions are similar
in quantum and classical mechanics [31].

Atomic units are used throughout unless stated otherwise.

II. THE CTMC METHOD

The CTMC theory for a three-body system consisting of charged particles where two of
them are bound is described in refs. [13, 33]. The CTMC approach has been applied before
in the case of a Ps atom interacting with a proton with no external field [11, 29-31], and
recently extended to the laser-assisted case [34]. The theory is described in brief as follows.
For a given impact parameter and the principal quantum number nps of the projectile Ps
atom, an ensemble of initial states is prepared by a random selection of the eccentricity, the
orientation of the mutual motion (Kepler orbits) of the e~ — e™ pair, and the position of e~
on the orbit. A classical trajectory for each random state is then propagated towards the
proton which is stationary at the origin of the configurations space. A similar procedure is
performed for e™—H collisions.

The Hamilton equations of motion are solved using the regularization method described
in [35, 36]. The solutions are propagated giving sufficient time for the interaction of the
projectile (Ps or e™) with the target (p or H). At the end of the propagation, the final
energies and the angular momenta of the trajectories are checked to generate the statistics
in different final channels to calculate the probabilities and cross sections. For example, the
charge-transfer probability P(b) as a function of the impact parameter b is computed as a
ratio between the number of trajectories leading to the formation of the final atom and the
total number of sampled trajectories. The charge-transfer cross section oor is then given by
the integral [ 27 P(b)bdb. The total number of trajectories for each energy point was varied
between 6 x 10* and 10° to make sure that a typical statistical error for the cross section is
less than 2%. However, when the cross section is small, particularly for ionization near the
threshold, the error can significantly exceed this limit reaching sometimes 30%.

In the process of our calculations we have found that the charge-transfer cross section ex-
hibits regular oscillations with small amplitudes which are beyond the statistical uncertainty
of the CTMC method. We found out that these are an artefact of classical calculations which

start with a fixed position of the projectile in the configuration space. These oscillations



and the process of their elimination are discussed in the Appendix.

III. CONVERGENT CLOSE-COUPLING METHOD

The two-center convergent close-coupling method for positron-hydrogen scattering was
developed by Kadyrov and Bray [8]. It explicitly incorporates Ps formation with convergence
against basis size having to be checked for both the H and Ps centers. As a truncated
complete Laguerre basis is used for both centers, the two non-orthogonal expansions lead to
highly ill-conditioned system of linear equations. This manifests itself as numerical problems
when large expansions are used, see near-threshold regions in Charlton et al.  [12] for
example. Generally, the smaller the required cross sections the larger the expansions are
necessary to obtain convergence. However, if the larger expansions lead to particularly ill-
conditioned linear equations then obtaining accurate results for the smaller cross sections
can become problematic. In part, the motivation for the present CCC calculations is to
obtain, as accurately as possible, near-threshold cross sections for excitation of states with

principal quantum number n < 3.

The CCC calculations are parametrized by the Laguerre basis orbital angular momentum
quantum number [ < [,.., basis size N; and exponential fall-off ;. In the case of two-center
calculations these are independent for the two centers. For simplicity, we take N; = Ny — [
and A, = A\. The CCC calculations of Charlton et al. [12] had [, = 9 and Ny = 30 for
both centers, with 2Ap; = Ay = 0.5. Here we take [, = 4 and Ny = 25 for both centers,
with 2Aps = Ay = 1.

The two-center CCC calculations of the underlying matrix elements rely on analytical
expansions for their sufficiently rapid computational evaluation, which has only been im-
plemented for Ny < 30. Owing to potential precision loss associated with such expansions,
presently we have utilized calculations with Ny = 25. This limitation is unfortunate as
in the near-threshold region for breakup we require large basis sizes in order to have suffi-
ciently many open positive-energy pseudostates which represent the breakup. This shall be

discussed further below when considering the corresponding breakup by electrons.



IV. CLASSICAL SCALING LAWS

The classical motion in a system of charged particles is invariant under the following
scaling rules [13, 37, 3§]

v =ao’r, t'=a’t 9)

Consider a collision characterized by the center-of-mass energy F and impact parameter b
involving a hydrogenlike system (target) with the initial energy e and angular momentum

L. Then the following scaling law for the collision probability can be obtained from (9)
P (E,b) = P2 ar(E/0?, a?D). (10)
For the cross section integrated over impact parameter we obtain
oer(E) = a0 ja2 ar(E /). (11)
Choosing a = 1/n where n is the principal quantum number of the target, we have
P,r(E,b) = Py 1/n(n’E,b/n?) (12)
and
onn(E) = n401,L/n(n2E). (13)

This result was obtained by using the classical density of states of the target corresponding
to a fixed energy E and angular momentum L. Allowing L (or eccentricity of the target
orbit) to be randomly distributed, we obtain similar results for the probability and cross
section averaged over L:

P,(E,b) = P(n*E,b/n?) (14)

and

o (E) = n'o(n*E). (15)
Apply now the classical scaling to the Klar-Wannier law
o1 = C(E — Et)ﬂ’ (16)

where p = 2.65 is the Klar’s exponent for the process with e”e*p in the final state [17].
For positron impact ionization of the H(1s) atom E; = 0.5 a.u., and for the Ps(1s) breakup

process Iy = 0.25 a.u. For an arbitrary n we obtain
o, = Cn* P2 (AE)H, (17)
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where
AE =F — —. (18)
It is important to note [32] that the classical scaling laws do not apply rigorously to quantal

scattering because of the dimension of . In addition, in quantum theory the average over

angular momentum of the target is carried out by using the equation

1
On=— Z(Ql + 1)ow (19)
1

where [ is the orbital angular momentum quantum number of the target. It is obvious
therefore that the classical approach is less accurate for small n when the number of possible

values of [, which is equal to n, is low.

V. RESULTS AND DISCUSSION
A. Ps-p collisions

In Fig. 1 we present cross sections for Ps breakup in collisions with protons. Cross section
o1 obeys the Wannier law, Eq. (16), for energy up to 10 eV above the threshold energy,
E;, = 6.8 eV. Such a wide range of validity of the threshold law follows from the Wannier’s

derivation [4] based on the smallness of the parameter (Gaussian units)

AFa

e2

f= (20)

where a is the reaction zone radius which for the ete™p system is of the order of the Bohr
radius, and e is the elementary charge. Therefore we should expect the threshold law to
be valid for AE smaller than 1 a.u.=27.2 eV. These considerations could also explain the
relatively narrow range of validity of the Wannier law in the process of positron-impact
ionization of Ar [24] since the reaction radius is much larger in this case as compared to that
for the process of ionization of hydrogen.

The quantum cross section for the Ps(n = 1) breakup, although qualitatively agrees with
the CTMC result, is substantially higher near the threshold and peaks at a lower energy
than the CTMC cross section. For the Ps(n = 2) breakup the agreement is much better.
We will address this issue in more detail in the next subsection on et —H collisions.

The classical scaling, Eq. (9), describes very well the results of ab initio CTMC cal-

culations. A similar picture is observed in Fig. 2 for n = 3 and 4. The scaled results
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FIG. 1. Ps breakup in Ps(n)+p collisions. The Wannier fit is shown by short-dashed lines. Dashed

line: the n = 2 results obtained from scaling of the n = 1 data. Stars: CTMC results for n = 2.

Both sets of data for n = 2 are divided by 2* = 16.

are somewhat different from the ab initio results reflecting statistical uncertainties of the
CTMC calculations. The range of the validity of the Wannier law squeezes according to the
scaling law as 1/n? being about 2.5, 1.0 and 0.65 eV above the threshold for n = 2, 3 and 4

respectively.

In Fig. 3 we present the cross section for the exothermic process of H formation in the
same collision. Comparison with CCC results [9] shows strong disagreement at low energies
for n = 1 where the classical cross section is very high and diverges as 1/E, in contrast to
the quantum result which obeys the quantum Bethe-Wigner law for the exothermic reaction,

Eq. (6), and whose absolute value is two orders of magnitude lower at E below 0.1 eV. It
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FIG. 2. Cross section for Ps breakup in Ps(n)+p collisions for n = 3 and 4, comparison of the

CTMC results with the CCC data.

is apparent that the low-energy region in this case is a pure quantum domain since the Ps
wavelength in this region is much longer than the range of Ps—p interaction. Note also that
the scaled cross sections, ¢ = o /n?*, exhibit different n dependence in the low-energy region:
whereas ¢ produced by CCC calculations grows with n, ¢ produced by CTMC decreases with
n. However, near the three-body breakup threshold classical and quantum cross sections
start to agree, and this agreement continues for higher energies. This observation confirms
that in the Wannier region the classical approach is valid for the charge-transfer process.
This means that the three-body dynamics in this energy region is described very well by
classical mechanics. With the increase of the principal quantum number agreement between
classical and quantum results spreads down to low energies [11]. This is consistent with

the generalized correspondence principle [32] as well as with the quantum threshold law for
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FIG. 3. H formation in Ps+p collisions for n(Ps)=1, 2 and 3, comparison of CTMC and CCC [9]

calculations.

collisions involving interaction of charged particle with excited hydrogenlike systems, Eq. (7)
[26, 27]. Note that for n = 2, although both classical and quantum cross sections behave as
C/E, the coefficient C' is substantially different in two theories, and the range of validity of
this dependence is very different as well. However, already for n = 3 agreement is excellent.

This reflects the fast growth of the Ps dipole moment with n.

B. et—H collisions

Another confirmation of the validity of classical mechanics near the three-body breakup
threshold is the results for reactions (3), (4) involving e™+H collisions.

In Fig. 4 we present Ps formation and positron-impact ionization cross sections for

11



e" +H(n=1)->e" +e +p,Ps+p

102 e
([ e 1= =S W=I=
100 b
5
S,
c 10 |
g CTMC ionization
2| i
g 10 i CTMC Ps formation —— ]
G CCC ionization - - -
3| i
10 I CCC Ps formation [
0.00123*(E-Ey,)?%° ——
-4 | |
10 extended -----
0.004*(E-Ey,)*%° ——
10-5 . . | . . ) . .
0.1 1 10

positron energy relative to the ionization threshold (eV)

FIG. 4. Cross section for Ps formation and ionization in e™—H collisions. Solid lines: CTMC
results and the Klar-Wannier fit to the ionization cross section; short-dashed line: the extension
of the Klar-Wannier law [20]. The units for constants in the fit correspond to those used on the
axes. Dashed line: CCC ionization [39]. Squares: CCC Ps formation. Solid circles with error bars

indicate statistical uncertainty in the CTMC results for ionization.

positron collisions with the hydrogen atom in the ground state. The Wannier threshold law
with the Klar’s exponent p = 2.65 is reproduced quite well, taking into account that the
number of trajectories near the threshold should be enormous (about two orders of magni-
tude higher than in the region far from the threshold) due to the instability of the “Wannier
ridge” trajectories near the three-body breakup threshold [4]. However, the extension [20]
of the Klar-Wannier law does not show an improvement. To show the statistical uncertainty

near the threshold, two points on the graph are shown with error bars, estimated by stan-
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dard root-mean square deviation, although the actual uncertainty can be larger. By varying
the exponent p while fitting the cross section to the Wannier law, we were able to estimate
its uncertainty as Ap = £0.06.

Near the three-body breakup threshold (E; = 13.6 €V) contribution of excited Ps states

to charge transfer, reaction (4), is very insignificant: the channel
e+Hn=1) = Ps(n'=2)+p

contributes only 0.13 a.u., and higher n’ give virtually nothing. Agreement with CCC
calculations [39] is very good for the Ps formation process, but some differences can be seen
when the cross sections are plotted on the linear scale, see below Fig. 6. However, for
the ionization process disagreement is increasing with decreasing energy. We note that in
the near-threshold region (AE < 3 eV) both classical and quantum methods suffer from
substantial uncertainties. The CTMC method for breakup cross sections in this region
requires very large number of trajectories, and the CCC results are affected by a poor
convergence when the cross section becomes very small [39]. Still, it is observed that whereas
both CTMC and CCC results obey the Klar-Wannier law, the CCC results for the ionization
are systematically higher near the threshold so that the coefficient C' in the Wannier law,
Eq. (16), obtained from the CCC calculations, exceeds the CTMC result by a factor 3.25.
At this point it is unclear if disagreement between CTMC and CCC is due to numerical
uncertainties or due to some inherent defects of the classical theory. To shed more light on
this issue, in Fig. 5 we present comparison of cross section for electron-impact ionization
of H. CTMC results are taken from Vrinceanu [38] using the classical parameter [/n = 0.1,
and the CCC results have been obtained using Laguerre bases having N, = 25 — [ and
N; =60 — [, with \; = 1 for | < l,,x = 6. Both CCC calculations agree with experiment
[40] where available. However, the larger CCC results converge to the Wannier law, with
the Wannier exponent p = 1.127, better than the smaller ones, indicating the importance
of large expansions when studying near-threshold breakup. The same energy-dependence
is observed for the CTMC results, but again, the absolute values are somewhat different
with the CTMC results exceeding those of CCC. We note that the classical microcanonical
distribution cannot properly describe the probability density in s states, and this is the most
probable reason for the difference [38]. However, we expect that with the growth of n, when

states with more orbital angular momenta appear, classical [-averaged cross section should
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FIG. 5. Cross section for electron-impact ionization of H, comparison of the CTMC results of
Vrinceanu [38] with CCC results employing the Ny = 25 and Ny = 60 bases (see text) and with
experiment [40]. Note that the experimental error bars are too small to be visible on the scale of

drawing.

approach the quantum-calculated one.

Overall, comparison of CTMC with CCC results allows us to conclude that the three-
body dynamics in this energy region is described reasonably well by classical mechanics.
Above the threshold our CTMC results also agree with the earlier calculations of Ohsaki et

al. [14], and near the threshold with recent calculations of Liu et al. [16].

The CTMC calculations by [16] employ the so-called Heisenberg correction [41] to the
Coulomb potential to incorporate the Heisenberg uncertainty principle in treatment of col-
lisional process. The present results show that this procedure is unnecessary in the Wannier
region where classical treatment works fine. The Heisenberg correction has been shown
to stabilize bound states when they are calculated by classical mechanics [41]. For systems
containing more than one electron the energy-bound correction was proposed [42] to prevent
autoionization forbidden by quantum mechanics. However, at low collision energies, when
one of the reactants is a neutral particle, the classical mechanics fails completely, and it is
unlikely that its deficiency could be fixed with the Heisenberg potential or the energy-bound

potential.
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FIG. 6. Cross sections for Ps formation in e™—H(1s) collisions, comparison of CTMC, CCC [39],
and experiment [43]. Dotted line is the Wigner law dependence with the proportionality constant
1.08 a.u./(eV)'/2. Dash-dotted red line is the unphysical CTMC cross section below the actual

threshold, see text.

We will next continue the discussion of the Ps formation process by extending the energy
range below the three-body breakup threshold. In Fig. 6 we present the Ps formation results
in the near-threshold region and compare with CCC calculations [39] and experimental data
[43]. The CTMC cross sections have been averaged over artificial oscillations as discussed in
the Appendix. The failure of the classical theory in this region is apparent: while classical
cross section is finite at the threshold, quantum cross section starts from the zero value at the
threshold, according to the Wigner law. This is a typical case of the quantum suppression

[3]. Moreover, classically the process of Ps formation can occur below the actual threshold
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because the energy of the Ps (1s) state is not bounded from below. This unphysical behavior
is indicated in Fig. 6 by the dash-dotted red line whereas the vertical threshold onset at
E = 6.8 eV is artificial from the classical point of view.

We have attempted to fit the CCC cross section near the threshold by the function
C(E — E;)Y/?, in accordance with the Wigner law, where C' was chosen to reproduce the
CCC cross section at £ — F; = 0.2 €V. It is apparent from Fig. 6 that the range of validity
of the Wigner law is much narrower than that for the Wannier law. This can be understood
from the basic physics of the ionization process versus the Ps formation process. In the first
(classical) case the range of validity follows from 5 < 1 [4] where § is given by Eq. (20)
which leads to AE < 1 a.u.=27.2 €V. In contrast, the quantum-mechanical Wigner law is
based on the assumption that the wavelength of the outgoing particle is much greater than
the reaction radius a, or k < 1/a. The reaction radius for Ps formation can be estimated as
a =4 au. Then we get AE < 1/(2ma?) = 1/64 a.u.=0.42 eV where m = 2 a.u. is the Ps
mass.

In Fig. 7 we present cross sections for Ps formation in collisions of et with excited
hydrogen calculated by the CTMC and CCC methods. The CTMC data are in agreement
with the classical scaling laws. The process is exothermic for both n = 2 and n = 3.
For n = 2 disagreement between CTMC and CCC is very large in the low-energy region,
although at n = 3 agreement is much better. Because of the nonzero dipole moment of the
H atom in the excited state, the quantum cross section diverges as 1/E even for n = 2,
however its absolute value is very different from the classical in this case. This is in sharp
contrast with the three-body breakup behavior. Also, the n = 2 quantum cross section
exhibits a step-wise structure at the threshold for Ps formation in the excited n’ = 2 state.
The onset is in accord with the Gailitis-Damburg threshold law [26] which predicts that
reactions, leading to formation of a charged fragment and a hydrogenlike fragment in an
excited state, have finite cross section at the threshold. This structure is absent in the
classical cross section since the energy levels in these calculations are not quantized.

In Fig. 8 we present the positron-impact ionization of H from the excited states. the
CTMC results near threshold can be fitted by the Klar-Wannier law as shown in the figure.
The fit works for n = 2 for energies of about 3.5 eV above the threshold whereas for n = 3
the range of validity of the Wannier law narrows down to about 1 eV above the threshold.

As in the case of n = 1, the CCC cross sections are somewhat higher than the CTMC ones.
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FIG. 7. et —H(n) —Ps+p cross sections for n = 2,3, comparison of CTMC and CCC calculations.

More of a concern is that the CCC cross section cannot be fit by the Klar-Wannier law.
A similar discrepancy was found in the Ps breakup cross sections in Ps-p/p collisions [12].
To investigate the matter further we have plotted the classical probability for ionization of
H(n = 2) as a function of impact parameter b and compared it with its quantum analogue
calculated from the CCC cross sections as

olk

P, quant — ﬁ

where b is determined from the angular momentum as

b— <L + ;) /k. (21)

Since we use the classical relation between b and L, L in Eq. (21) should be understood

as the angular momentum of the incident e*. On the other hand, in CCC calculations
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FIG. 8. e"—H(n) — p + e’ + e~ cross sections for n = 2,3, comparison of CTMC and CCC

calculations.

L is the total orbital angular momentum of the system which creates some uncertainty in
CTMC-CCC comparison which decreases with increasing L. In Fig. 9 we present probability
comparison for three selected energies close to the ionization threshold, F; = 3.40 eV. For the
lowest considered energy, E' = 4.19 eV, the statistical uncertainty of the CTMC calculations
is quite large, but it is decreasing from about 30% at E = 4.19 eV to about 5% at E = 5.79
eV whereas the error caused by treating the collision angular momentum as a continuous
quantity remains about 30% for all depicted curves. The latter error was estimated as
due to uncertainty in b calculated as Ab = .5/k, and the actual error might be somewhat
lower. Nevertheless disagreement between CCC and CTMC calculations certainly exceeds
both errors. Whereas at large impact parameters the disagreement can be explained by

the neglect of tunneling in classical calculations, the reason for strong disagreement at the
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FIG. 9. e"—H(n) — Ps+ e™ + ¢~ probability as a function of impact parameter for n = 2 and

three selected energies, comparison of CTMC and CCC calculations.

position of the peak is unclear. It is interesting that the effect is opposite to quantum
suppression found in cross sections for hydrogen formation in Ps—p collisions [31]. In that
case quantum-mechanical probability is substantially lower than the classical at low impact

parameters which results in the lower integrated cross section.

Farther away from the threshold the classical and quantum probabilities start to converge,
except at larger impact parameters where quantum P(b) continues to be higher. However,

the relative difference in integrated cross sections becomes small.
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VI. CONCLUSION

While in general classical and quantum cross sections for reactions involving three-body
system e*e” p are convergent at high principal quantum number n of the reactant (Ps or H),
the near-threshold region is of a special interest. In the present paper we have shown that
near the three-body breakup threshold classical and quantum results for three-body breakup
and charge transfer agree, reasonably well even for n = 1, both in energy dependence and
absolute values, although some disagreement in the absolute value of the near-threshold
positron-impact ionization cross section is observed. For scattering from the ground state
disagreement is likely due to inability of classical microcanonical distribution to reproduce
the quantum probability density. However, in general the classical mechanics works reason-
ably well in the Wannier region. In contrast, the threshold behavior of the charge transfer
reaction in Ps-p and e —H collisions is very different in the classical and quantum theories.
For n = 1 the classical results fail completely both in energy dependence and the abso-
lute value. For n = 2, although both classical and quantum functional behavior for the
exothermic charge transfer is similar, the quantitative disagreement is still very large. For
higher n the classical and quantum versions converge fast. Since classical calculations are
computationally less expensive than quantum, these conclusions are providing a useful guide
for future calculations of reactions involving three particles interacting by the Coulomb law.
The unresolved question deals with the near-threshold behavior of the CCC e™-impact ion-
ization cross section from excited states. For n > 1 the present Ny = 25 CCC calculations
do not obey the Klar-Wannier law, similar to what has been observed in Ps-breakup cross
sections [12]. This problem requires further investigation, but is most likely to be due to
numerical limitations associated with having a too small Laguerre basis for the problem of

interest.
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APPENDIX: OSCILLATIONS IN CLASSICAL PS FORMATION CROSS SEC-
TIONS

Cross sections for charge transfer plotted as a function of the projectile energy on a
finer energy scale exhibit oscillations. For example cross sections for Ps formation in et —H

collisions oscillate with a period which varies between 0.5 and 0.8 eV in the energy range
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between the threshold and 20 eV, as shown in Fig. 10. These oscillations are regular, and
cannot be attributed to statistical uncertainties. However, this is an artificial effect caused
by a fixed starting point for running trajectory. To show this, consider a positron incident
on H atom with the zero impact parameter and initial velocity v. Consider for simplicity a
circular electron trajectory and neglect the e™—H interaction. Then the electron trajectory

is described by the equations
r_ =rcos(wt — @), y_ =rsin(wt— )

where 7 is the radius of the trajectory, w the angular frequency, and —¢ is a random initial

phase. The positron trajectory is described by the equations
Ty = x9 — Vi, yr =0

where z( is the positron’s initial position. For the effective charge transfer we require r_ =
r,. Then we obtain

sin(wt —¢) =0, t=(r+7k+¢)/w

where k is an integer. Solving now
rcos(wt — @) = xg — vt

we obtain
zo — reos(wt — @) wlzg + (—1)Fr]
t  oalk+1)+9

These values of velocity correspond to events when the charge transfer is most likely.

Although v, depends on the random quantity ¢, this dependence is weak since k should be
large for moderate values of v;. Indeed, for the ground state w = 1 a.u., and xg is typically
several hundred a.u., therefore k should be of the order of 100. Averaging (22) over ¢, we
obtain

[zo + (=1)%r], k+3

1 .
o Ml

(vi) = 2177 /OZW vk(@)dg = w

Using r < xg and k > 1, we obtain

V =

Tk

and the corresponding values of energy are
1 fxow\?
E.=—-—) .
9 ( k >
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The lower curve is the cross section in a.u. divided by 40, which incorporates all impact parameters.

The value of k corresponding to the peak at £ = Fj, is
k= (28,) /20
T

and the distance between peaks is

2F

With the increase of Ej, the distance between peaks grows as (2£)%/?2

which is in agreement
with the numerical results. Furthermore, for xqg = 300 a.u., F, = 13.6 €V, for example, we
obtain k = 95 and AE,=0.28 eV, compared to the computed AF, =0.5-0.6 eV. Agreement
is reasonable for such a simplistic estimate. The discussed effects can also be observed for
the probability as a function of E for a fixed impact parameter b. In Fig. 11 we plot the
probability for b = 2 a.u. and compare it with the cross section (divided by 40 for a better
view). The probability exhibits some statistical uncertainties, but it is clear that its maxima
match maxima in the cross section. Since a similar dependence is observed for other impact
parameters, the oscillations do not disappear after integration over b.

For a given energy E the oscillation frequency grows with the growth of zg, and for
o — 00 it becomes indefinitely large whereby the average over an arbitrarily small interval

of energies gives the physical value of the probability and the cross section. In fact there
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is no need to go to very large values of zy. Even for the xy values of about 300 a.u. the
average over oscillation period gives accurate enough values of physical cross sections. We
demonstrate this by presenting in Fig. 10 cross sections averaged over oscillations which
give physically meaningful values. Since the average of oscillations over E is equivalent to
the average over x(, the oscillations should not appear in quantum-mechanical calculations

where the plane wave has an infinite uncertainty in x.
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